EP1682771A1 - Ventil für eine kraftstoffeinspritzpumpe - Google Patents

Ventil für eine kraftstoffeinspritzpumpe

Info

Publication number
EP1682771A1
EP1682771A1 EP04786716A EP04786716A EP1682771A1 EP 1682771 A1 EP1682771 A1 EP 1682771A1 EP 04786716 A EP04786716 A EP 04786716A EP 04786716 A EP04786716 A EP 04786716A EP 1682771 A1 EP1682771 A1 EP 1682771A1
Authority
EP
European Patent Office
Prior art keywords
valve
fillet
cross
fuel
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04786716A
Other languages
English (en)
French (fr)
Other versions
EP1682771B1 (de
Inventor
Stefan Schuerg
Wolfgang Stoecklein
Holger Rapp
Violaine Chassagnoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1682771A1 publication Critical patent/EP1682771A1/de
Application granted granted Critical
Publication of EP1682771B1 publication Critical patent/EP1682771B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion

Definitions

  • the invention relates to a valve for a fuel injection system of an internal combustion engine with the features specified in the preamble of claim 1, in particular for an injector of a common rail injection system.
  • Common-rail injection systems have a plurality of injectors which, under the control of an electronic engine control, are fed with fuel by a high-pressure pump from a central high-pressure accumulator called a common-rail and inject the fuel into the combustion chambers of the cylinders of the internal combustion engine via a valve.
  • a valve is known, inter alia, from DE 199 40 296 A1 by the applicant and, depending on the valve position, serves to connect or separate a high-pressure region of an injector of the injection system with a low-pressure region when fuel flows through the valve into the combustion chamber Injected cylinder or the supply of fuel is to be interrupted.
  • fillet is to be understood to mean a concave annular groove in the circumference of the valve member, while cross-sectional thickening is understood to mean a part of the valve member which adjoins in the flow direction and whose diameter is larger than the diameter in the region of the annular groove.
  • a particularly good vortex formation in the enlarged annular space behind the valve gap is achieved in a preferred embodiment of the invention in that an undercut circumferential tear-off edge is arranged between the fillet and the cross-sectional thickening, on which outer circumferential surface sections of the fillet adjoining this edge on both sides and the cross-sectional width increase. meet at an obtuse angle.
  • the outer peripheral surface section adjoining the edge on the side of the cross-sectional thickening is preferably oriented essentially parallel to a central axis of the valve member
  • the one adjoining the edge on the side of the fillet is Circumferential surface section preferably inclined against the direction of flow at an angle between 20 and 80 degrees, preferably between 30 and 60 degrees, towards the central axis of the valve member, so that the two peripheral surface sections meet at an angle between 200 and 260 degrees, preferably between 190 and 240 degrees.
  • a particularly simple and cost-effective production of the tear-off edge is possible according to a further preferred embodiment of the invention in that, when the valve member is finished, its outer peripheral surface is not ground down to the final diameter, at least in the region of the sealing surface opposite the valve seat and the fillet however in the area of the cross-sectional thickening, so that the material remaining there automatically leads to the formation of the tear-off edge.
  • the cross section of the valve member tapers behind the cross-sectional thickening in the direction of flow, but this need not necessarily be the case.
  • the concave fillet expediently has a radius of curvature which is preferably at least 0.2 mm and is expediently constant over the entire width of the fillet.
  • Figure 1 is a side view of a valve member or valve pin of a valve according to the invention.
  • FIG. 2 shows an enlarged cross-sectional view of the valve in the region of the valve gap according to detail Z from FIG. 1;
  • FIG. 3 shows an enlarged detail corresponding to FIG. 2, but with a different geometry of the valve member in the flow direction behind the valve gap;
  • valve 4 shows an enlarged detail corresponding to FIG. 2, but with a still different geometry of the valve member and the valve housing in the flow direction behind the valve gap.
  • valve 2 shown only partially in the drawing is part of a
  • Injector of a common rail injection system of an internal combustion engine which serves to fuel from a common rail injected central high-pressure accumulator into the combustion chambers of the cylinders of the internal combustion engine.
  • the valve 2 essentially consists of a valve housing 4, into which a rotationally symmetrical valve pin 6 (cf. FIG. 1) is inserted so as to be axially movable.
  • the valve pin 6 has a conical sealing surface 8 which tapers in the direction of flow and, when the valve 2 is closed, bears sealingly against a complementary conical valve seat 10 of the housing 4.
  • the sealing surface 8 together with the valve seat 10, delimits a valve gap 12 surrounding the valve pin 6 in the form of an annular flow channel through which the fuel to be injected closes from the high pressure side 14 of the valve 2 whose low pressure side 16 flows.
  • the valve pin 6 also has a circumferential groove 18 arranged in the outer circumference directly behind the sealing surface 8 in the direction of flow, that is to say a concave recess or groove in longitudinal section, over the axial width of which the diameter of the valve pin 6 is smaller than in front of or behind it is where the valve pin 6 is provided with a cross-sectional thickening 20 adjacent to the fillet 18.
  • the fillet 18 serves to deflect at least a portion of the fuel flow, which is discharged essentially axially in the axial direction behind the valve seat 10, in such a way that it has a speed component directed away from a central axis 22 of the valve pin 6 and after it emerges from the fillet 18 against one opposite region of the inner wall 24 of an outflow bore 26 of the valve housing 4 bounces.
  • the fuel flow is divided into two partial flows, the larger of which is directed after the impact along the inner wall 24 of the outflow bore 26 into the downstream part of the bore 26, during the smaller is directed back towards the valve gap 12 against the flow direction.
  • the angle of inclination of the fuel stream emerging from the groove 18 with respect to the central axis 22 of the valve pin 6 must not be too small, since otherwise all of the fuel is directed directly into the outflow bore 26. Therefore, on the one hand, the fillet 18 should not be formed too flat, but should have a certain minimum depth T (FIG. 1) in relation to the subsequent cross-sectional thickening, which in the middle of the valve pin 6 has a diameter Sealing surface of 1.35 mm should preferably be greater than 0.04 mm.
  • the fillet 18 should not be rounded at the transition to the cross-sectional thickening because the angle of inclination of the fuel flow emerging from the fillet 18 with respect to the central axis 22 also becomes smaller.
  • a circumferential edge 34 is provided between the fillet 18 and the cross-sectional thickening 20, on which adjoining outer peripheral surface sections 36, 38 of the fillet 18 and the cross-sectional thickening 20 enclose an obtuse angle ⁇ (FIG. 1), which is at least 200 degrees and preferably between Should be 220 degrees and 240 degrees.
  • the stall at the edge 34 causes the fuel to emerge from the fillet 18 at an angle of inclination to the central axis 22 which essentially corresponds to the angle of inclination of the peripheral surface section 36 adjacent to the edge 34 within the fillet 18.
  • this angle of inclination is chosen, more or less fuel is directed back in the direction of the valve gap 12 when the fuel flow impacts the opposite region of the inner wall 24 of the outflow bore 26.
  • this angle of inclination which is preferably between 20 and 60 degrees, the proportion of the fuel flowing back can therefore be set to such a value that cavitation damage immediately behind the valve seat 10 is prevented by a vortex formation, but on the other hand the vortex formation fertilizer does not affect the outflow of the fuel after it emerges from the valve gap 12.
  • the fuel flowing back along the inner wall 24 protects the latter up to immediately behind the valve gap 12 from damage caused by cavitation, which could otherwise be caused as a result of a pressure drop in the fuel when it emerges from the valve gap 12 into the annular space 30.
  • FIG. 2 shows a valve pin 6 in which the circumferential surface section 36 adjacent to the edge 34 within the fillet 18 is oriented at an inclination angle ⁇ of approximately 60 degrees to the central axis 22 of the valve pin 6, the fuel is therefore rather steeply directed onto the inner wall 24 3 and 4 show two valve bolts 6, in which this angle of inclination ⁇ is approximately 35 degrees and approximately 20 degrees, respectively, and therefore correspondingly less fuel with formation a vortex 34 is directed back in the direction of the valve gap 28.
  • the opposite inner wall 24 of the outflow bore 26 is provided with a small step 40 there.
  • this step 40 favors the deflection of part of the fuel flow in the direction of the valve gap 12.
  • the concave delimitation of the fillet 18 is circular in all of the exemplary embodiments, the radius of curvature not being less than 0.2 mm in order to enable inexpensive series production of the valve pin 6.
  • the fillet 18 preferably merges seamlessly into the sealing surface 8, as shown in all of the exemplary embodiments.
  • the sharp tear-off edge 34 on the other side of the fillet 18 can be produced inexpensively in a series production of the valve pin 6 by grinding the valve pin 6 to its final diameter on both sides of the cross-sectional thickening 20 during its finishing, but not in the area of the cross-sectional thickening 20 that the diameter existing there prior to the grinding finishing of the valve pin 6 is retained, which automatically leads to the formation of the tear-off edge 34 at the transition to the fillet 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Ventil (2) für ein Kraftstoffeinspritzsystem mit einem in einem Ventilgehäuse (4) ausgebildeten Ventilsitz (8) und einem im Ventilgehäuse (4) beweglichen Ventilglied (6), das eine bei geschlossenem Ventil (2) dichtend gegen den Ventilsitz (8) anliegende Dichtfläche (10) aufweist, die bei geöffnetem Ventil (2) zusammen mit dem Ventilsitz (8) einen von Kraftstoff durchströmten Ventilspalt (12) begrenzt. Um Kavitationsschäden zu verhindern wird vorgeschlagen, dass das Ventilglied (6) eine in Strömungsrichtung unmittelbar hinter der Dichtfläche (10) angeordnete umlaufende Hohlkehle (18) aufweist, an die sich eine umlaufende Querschnittsverdickung (20) des Ventilglieds (6) anschliesst.

Description

Ventil für eine Kraftstoffeinspritzpumpe
Die Erfindung betrifft ein Ventil für ein Kraftstoffeinspritzsystem einer Verbrennungsmaschine mit den im Oberbegriff des Anspruchs 1 an- gegebenen Merkmalen, und zwar insbesondere für einen Injektor eines Common-Rail-Einspritzsystems.
Stand der Technik
Common-Rail-Einspritzsysteme weisen eine Mehrzahl von Injektoren auf, die unter der Kontrolle einer elektronischen Motorsteuerung von einer Hochdruckpumpe aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher mit Kraftstoff gespeist werden und den Kraftstoff über ein Ventil in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen. Ein solches Ventil ist unter anderem aus der DE 199 40 296 A1 der Anmelderin bekannt und dient je nach Ventilstellung dazu, einen Hochdruckbereich eines Injektors des Einspritzsystems mit einem Niederdruckbereich zu verbinden bzw. von diesem zu trennen, wenn Kraftstoff durch das Ventil in den Brennraum eines Zylinders eingespritzt bzw. die Zufuhr von Kraftstoff unterbrochen werden soll.
Wenn der Kraftstoff bei geöffnetem Ventil mit hoher Geschwindigkeit durch den zwischen Ventilsitz und Dichtfläche gebildeten Ringkanals strömt, dessen Querschnitt sich hinter dem Ventilsitz stark erweitert, kann es dort zu Kavitationen im Kraftstoff kommen. Dabei bilden sich im Kraftstoff Dampfblasen, wenn der Druck lokal unter den Dampfdruck des Kraftstoffs absinkt. Bei einem erneuten Druckanstieg kondensiert der Kraftstoff in den Dampfblasen, wobei er mit hoher Ge- schwindigkeit gegen benachbarte Begrenzungsflächen des Ringkanals schlägt. Dadurch kann es direkt hinter dem Ventilsitz zum Auftreten von Kavitationsschäden kommen, durch die mit fortschreitender Erosion auch der Ventilsitz selbst angegriffen wird.
Um dieses Problem zu lösen, wurde in der DE 199 40 296 A1 vorgeschlagen, den Querschnitt des Ringkanals ausgehend von einem minimalen Querschnitt im Bereich des Ventilspalts mit einem konstanten Gradienten zu erweitern. Jedoch hat sich gezeigt, dass dies Maßnahme nicht immer ausreicht, um Kavitationsschäden sicher zu verhindern.
Vorteile der Erfindung
Bei Verwendung des erfindungsgemäßen Ventils mit den im An- spruch 1 genannten Merkmalen konnten demgegenüber Kavitationsschäden mit gutem Erfolg verhindert werden, weil der Kraftstoffstrom hinter dem Ventilsitz nicht einfach nur in axiale Richtung umgelenkt wird. Statt dessen erhält er beim Durchströmen der Hohlkehle eine Geschwindigkeitskomponente in einer von der Mittelachse des Ven- tilgliedes weg weisenden Richtung, so dass er nach dem Austritt aus der Hohlkehle auf einen gegenüberliegenden Bereich einer Innenwand einer Abströmbohrung des Ventilgehäuses prallt. Beim Aufprall wird ein Teil des Kraftstoffstroms entlang der Innenwand zurück in Richtung des Ventilspalts geleitet, wodurch sich unmittelbar hinter diesem im erweiterten Ringraum zwischen der Hohlkehle und dem gegenüberliegenden Wandbereich der Innenwand ein Wirbel bildet. Durch diesen Wirbel wird zum einen zusätzlicher Kraftstoff in den Ringraum hinter dem Ventilspalt eingetragen, so dass dort vermehrt Kraftstoff vorhanden ist, was Kavitationserscheinungen in der Nähe des Ventilspalts und dadurch langfristig verursachten Kavitationsschäden am Ventilsitz entgegenwirkt. Zum anderen strömt der in Richtung des Ventilspalts zurück geleitete Kraftstoff an der Innenwand des Ventilgehäuses entlang, womit gerade in diesen besonders kavitationsgefährdeten Bereich zusätzlicher Kraftstoff einge- bracht und eine lokale Dampfblasenbildung infolge eines Kraftstoffdruckabfalls vermieden werden kann.
Unter Hohlkehle soll im Kontext der vorliegenden Erfindung eine konkave Ringnut im Umfang des Ventilglieds verstanden werden, während unter Querschnittsverdickung ein in Strömungsrichtung angrenzender Teil des Ventilglieds verstanden wird, dessen Durchmesser größer als der Durchmesser im Bereich der Ringnut ist.
Eine besonders gute Wirbelbildung im erweiterten Ringraum hinter dem Ventilspalt wird in bevorzugter Ausgestaltung der Erfindung dadurch erreicht, dass zwischen der Hohlkehle und der Querschnittsverdickung eine hinterschnittene umlaufende Abrisskante angeordnet ist, an der beiderseits an diese Kante angrenzende äußere Um- fangsflächenabschnitte der Hohlkehle und der Querschnittserweite- rung unter einem überstumpfen Winkel aufeinandertreffen.
Während der auf der Seite der Querschnittsverdickung an die Kante angrenzende äußere Umfangsflächenabschnitt bevorzugt im Wesentlichen parallel zu einer Mittelachse des Ventilglieds ausgerichtet ist, ist der auf der Seite der Hohlkehle an die Kante angrenzende Umfangsflächenabschnitt vorzugsweise entgegen der Strömungsrichtung unter einem Winkel zwischen 20 und 80 Grad, vorzugsweise zwischen 30 und 60 Grad, zur Mittelachse des Ventilglieds hin geneigt, so dass die beiden Umfangsflächenabschnitte unter einem Winkel zwischen 200 und 260 Grad, vorzugsweise zwischen 190 und 240 Grad aufeinandertreffen.
Eine besonders einfache und kostengünstige Herstellung der Abrisskante ist gemäß einer weiteren bevorzugten Ausgestaltung der Erfin- düng dadurch möglich, dass man bei der Endbearbeitung des Ventilgliedes dessen äußere Umfangsfläche mindestens im Bereich der dem Ventilsitz gegenüberliegenden Dichtfläche und der Hohlkehle bis auf den endgültigen Durchmesser abschleift, nicht jedoch im Bereich der Querschnittsverdickung, so dass das dort stehen bleibende Material automatisch zur Bildung der Abrisskante führt. In diesem Fall verjüngt sich der Querschnitt des Ventilglieds in Strömungsrichtung hinter der Querschnittsverdickung, was jedoch nicht notwendigerweise der Fall sein muss.
Um eine für die Serienfertigung kostengünstig zu fertigende Geometrie des Ventilglieds bereitzustellen, weist die konkave Hohlkehle zweckmäßig einen Krümmungsradius auf, der bevorzugt mindestens 0,2 mm beträgt und zweckmäßig über die gesamte Breite der Hohlkehle gleichbleibend groß ist.
Um die Wirbelbildung zu fördern, kann gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung auch vorgesehen werden, einen der Hohlkehle im Wesentlichen gegenüberliegenden Innenwandabschnitt der Abströmbohrung nicht parallel zur Mittelachse des Ventil- glieds bzw. zur Mittelachse der Abströmbohrung auszurichten, son- dern in diesem Abschnitt eine Stufe oder Schräge anzubringen, die eine Umlenkung eines Teils des Kraftstoffstroms in Richtung des Ventilspalts unterstützt.
Zeichnungen
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine Seitenansicht eines Ventilglieds oder Ventilbolzens eines erfindungsgemäßen Ventils; 0
Figur 2 eine vergrößerte Querschnittsansicht des Ventils im Bereich des Ventilspalts gemäß Ausschnitt Z aus Figur 1 ;
Figur 3 eine Ausschnittsvergrößerung entsprechend Figur 2, jedoch mit einer anderen Geometrie des Ventilglieds in Strömungsrichtung hinter dem Ventilspalt;
Figur 4 eine Ausschnittsvergrößerung entsprechend Figur 2, jedoch mit einer noch anderen Geometrie des Ventilglieds und des Ventilgehäuses in Strömungsrichtung hinter dem Ventilspält.
Beschreibung des Ausführungsbeispiels
Das in der Zeichnung nur teilweise dargestellte Ventil 2 ist Teil eines
Injektors eines Common-Rail-Einspritzsystems einer Verbrennungs- maschine, der dazu dient, Kraftstoff aus einem als Common-Rail be- zeichneten zentralen Hochdruckspeicher in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen.
Der vollständige Aufbau eines derartigen Injektors ist zum Beispiel in der DE 196 19 523 A1 der Anmelderin ausführlich beschrieben, während sich weitere Einzelheiten über den Aufbau seines Ventils aus der bereits genannten DE 199 40 296 A1 der Anmelderin entnehmen lassen, so dass an dieser Stelle auf eine nähere Erläuterung verzichtet und zu diesem Zweck auf die genannten Druckschriften ver- wiesen wird.
Das Ventil 2 besteht im Wesentlichen aus einem Ventilgehäuse 4, in das ein rotationssymmetrischer Ventilbolzen 6 (vgl. Figur 1) axial beweglich eingesetzt ist. Der Ventilbolzen 6 weist eine konische, in Strömungsrichtung verjüngte Dichtfläche 8 auf, die bei geschlossenem Ventil 2 dichtend gegen einen komplementären konischen Ventilsitz 10 des Gehäuses 4 anliegt. Wie am besten in den Figuren 2 bis 4 dargestellt, begrenzt bei geöffnetem Ventil 2 die Dichtfläche 8 zusammen mit dem Ventilsitz 10 einen den Ventilbolzen 6 umgebenden Ventilspalt 12 in Form eines ringförmigen Strömungskanals, durch den der einzuspritzende Kraftstoff von der Hochdruckseite 14 des Ventils 2 zu dessen Niederdruckseite 16 strömt.
Der Ventilbolzen 6 weist weiter eine in Strömungsrichtung unmittel- bar hinter der Dichtfläche 8 in seinem äußeren Umfang angeordnete umlaufende Hohlkehle 18 auf, das heißt eine im Längsschnitt konkave Vertiefung oder Nut, über deren axiale Breite der Durchmesser des Ventilbolzens 6 kleiner als davor bzw. dahinter ist, wo der Ventilbolzen 6 mit einer an die Hohlkehle 18 angrenzenden Querschnitts- verdickung 20 versehen ist. Die Hohlkehle 18 dient dazu, mindestens einen Teil des hinter dem Ventilsitz 10 im Wesentlichen in axialer Richtung abgeführten Kraft- stoffstroms so umzulenken, dass er eine von einer Mittelachse 22 des Ventilbolzens 6 weg gerichtete Geschwindigkeitskomponente aufweist und nach seinem Austritt aus der Hohlkehle 18 gegen einen gegenüberliegenden Bereich der Innenwand 24 einer Abströmbohrung 26 des Ventilgehäuses 4 prallt. Wie am besten in Figur 2, 3 und 4 durch Pfeile dargestellt, teilt sich dabei der Kraftstoffstrom in zwei Teilströme auf, von denen der größere nach dem Aufprall entlang der Innenwand 24 der Abströmbohrung 26 in den stromabwärtigen Teil der Bohrung 26 gelenkt wird, während der kleinere entgegen der Strömungsrichtung zum Ventilspalt 12 hin zurück gelenkt wird. In dem in Strömungsrichtung an den Ventilspalt 12 anschließenden er- weiterten Ringraum 30 zwischen der Hohlkehle 18 und dem gegenüberliegenden Wandbereich der Innenwand 24 bildet dieser Teilstrom zusammen mit dem aus dem Ventilspalt 12 abströmenden Kraftstoffstrom einen Wirbel 32, der das Ventilgehäuse 4 im Bereich unmittelbar hinter dem Ventilsitz 10 vor einer durch Kavitation hervorgerufe- nen Erosion schützt, so dass der Ventilsitz 10 auch über eine lange Betriebszeit unbeschädigt bleibt.
Um diesen schützenden Wirbel 32 zu bilden, darf der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 des Ventilbolzens 6 nicht zu klein sein, da ansonsten der gesamte Kraftstoff direkt in die Abströmbohrung 26 gelenkt wird. Daher sollte zum einen die Hohlkehle 18 nicht zu flach ausgebildet sein, sondern in Bezug zur anschließenden Querschnittsverdickung eine gewisse Mindesttiefe T (Figur 1) aufweisen, die bei einem Durchmesser des Ventilbolzens 6 in der Mitte der Dichtfläche von 1 ,35 mm vorzugsweise größer als 0,04 mm sein sollte. Zum anderen sollte die Hohlkehle 18 am Übergang zur Querschnittsverdickung nicht gerundet sein, weil dadurch der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 ebenfalls kleiner wird. Statt dessen wird zwischen der Hohlkehle 18 und der Querschnittsverdickung 20 eine umlaufende Kante 34 vorgesehen, an der aneinandergrenzende äußere Umfangsflächenabschnitte 36, 38 der Hohlkehle 18 und der Querschnittsverdickung 20 einen überstumpfen Winkel ß (Figur 1) einschließen, der wenigstens 200 Grad betragen und vorzugsweise zwischen 220 Grad und 240 Grad liegen sollte. Anders als bei einem gerundeten Übergang reißt an einer solchen Kante 34 die Strömung des Kraftstoffs von der Umfangsfläche des Ventilbolzens 6 ab, was jedoch wegen der gehärteten Oberfläche des Ventilbolzens 6 keine Kavitationsschäden zur Folge hat. Der Strömungsabriss an der Kante 34 bewirkt, dass der Kraftstoff aus der Hohlkehle 18 unter einem Neigungswinkel zur Mittelachse 22 austritt, der im Wesentlichen dem Neigungswinkel des innerhalb der Hohlkehle 18 an die Kante 34 angrenzenden Umfangsflächenabschnitts 36 entspricht. Je nach- dem, wie groß dieser Neigungswinkel gewählt wird, wird beim Aufprall des Kraftstoffstroms auf den gegenüberliegenden Bereich der Innenwand 24 der Abströmbohrung 26 mehr oder weniger Kraftstoff in Richtung des Ventilspalts 12 zurück gelenkt. Durch eine geeignete Wahl dieses Neigungswinkels, der vorzugsweise zwischen 20 und 60 Grad beträgt, kann daher der Anteil des zurückströmenden Kraftstoffs auf einen solchen Wert eingestellt werden, dass einerseits durch eine Wirbelbildung Kavitationsschäden unmittelbar hinter dem Ventilsitz 10 verhindert werden, andererseits jedoch die Wirbelbil- düng das Abströmen des Kraftstoffs nach seinem Austritt aus dem Ventilspalt 12 nicht beeinträchtigt.
Bei allen dargestellten Ausführungsbeispielen schützt der entlang der Innenwand 24 zurückströmende Kraftstoff die letztere bis unmittelbar hinter dem Ventilspalt 12 vor kavitationsbedingten Schäden, die ansonsten infolge eines Druckabfalls im Kraftstoff bei dessen Austritt aus dem Ventilspalt 12 in den Ringraum 30 verursacht werden könnten.
Während Figur 2 einen Ventilbolzen 6 zeigt, bei dem der innerhalb der Hohlkehle 18 an die Kante 34 angrenzende Umfangsflächenab- schnitt 36 unter einem Neigungswinkel α von etwa 60 Grad zur Mittelachse 22 des Ventilbolzens 6 ausgerichtet ist, der Kraftstoff daher ziemlich steil auf die Innenwand 24 der Abströmbohrung 26 prallt und somit relativ viel Kraftstoff in Richtung des Ventilspalts 28 zurück gelenkt wird, zeigen die Figuren 3 und 4 zwei Ventilbolzen 6, bei denen dieser Neigungswinkel α etwa 35 Grad bzw. etwa 20 Grad beträgt, und daher entsprechend weniger Kraftstoff unter Bildung eines Wirbels 34 in Richtung des Ventilspalts 28 zurück gelenkt wird.
Da der Neigungswinkel α in Figur 4 bereits im Grenzbereich liegt, in dem sich noch ein Wirbel 34 bildet, ist dort die gegenüberliegende Innenwand 24 der Abströmbohrung 26 mit einer kleinen Stufe 40 versehen. Diese Stufe 40 begünstigt infolge ihrer zur Mittelachse 22 des Ventilbolzens 6 und der Abströmbohrung 26 geneigten Oberfläche das Zurücklenken eines Teils des Kraftstoffstroms in Richtung des Ventilspalts 12. Die konkave Begrenzung der Hohlkehle 18 ist bei allen Ausführungsbeispielen kreisförmig, wobei der Krümmungsradius 0,2 mm nicht unterschreiten sollte, um eine kostengünstige Serienfertigung des Ventilbolzens 6 zu ermöglichen. An ihrer dem Ventilspalt 12 zu- gewandten Seite geht die Hohlkehle 18 vorzugsweise übergangslos in die Dichtfläche 8 über, wie bei allen Ausführungsbeispielen dargestellt.
Die scharfe Abrisskante 34 auf der anderen Seite der Hohlkehle 18 kann bei einer Serienfertigung der Ventilbolzen 6 kostengünstig dadurch hergestellt werden, dass der Ventilbolzen 6 bei seiner Endbearbeitung beiderseits der Querschnittsverdickung 20 auf seinen endgültigen Durchmesser abgeschliffen wird, nicht jedoch im Bereich der Querschnittsverdickung 20, so dass dort der vor der schleifenden Endbearbeitung des Ventilbolzens 6 vorhandene Durchmesser erhalten bleibt, was am Übergang zur Hohlkehle 18 automatisch zur Ausbildung der Abrisskante 34 führt.

Claims

Patentansprüche
1. Ventil für ein Kraftstoffeinspritzsystem mit einem in einem Ventilgehäuse ausgebildeten Ventilsitz und einem im Ventilgehäuse beweglichen Ventilglied, das eine bei geschlossenem Ventil dichtend gegen den Ventilsitz anliegende Dichtfläche aufweist, die bei geöffnetem Ventil zusammen mit dem Ventilsitz einen von Kraftstoff durchströmten Ventilspalt begrenzt, dadurch gekennzeichnet, dass das Ventilglied (6) eine in Strömungsrichtung unmittelbar hinter der Dichtfläche (8) angeordnete umlaufende Hohlkehle (18) aufweist, an die sich eine umlaufende Querschnittsverdickung (20) des Ventilglieds (6) anschließt.
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, dass zwi- sehen der Hohlkehle (18) und der Querschnittsverdickung (20) eine umlaufende Kante (34) angeordnet ist, an der aneinandergrenzende äußere Umfangsflächenabschnitte (36, 38) der Hohlkehle (18) und der Querschnittsverdickung (20) unter einem Winkel (ß) aufeinandertreffen.
3. Ventil nach Anspruch 2 dadurch gekennzeichnet, dass die Umfangsflächenabschnitte (36, 38) des Ventilglieds (6) an der Kante (34) unter einem überstumpfen Winkel (ß) aufeinandertreffen.
4. Ventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der auf der Seite der Querschnittsverdickung (20) an die Kante (34) angrenzende äußere Umfangsflächenabschnitt (38) im Wesentlichen parallel zu einer Mittelachse (22) des Ventilglieds (6) ausge- richtet ist.
5. Ventil nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der auf der Seite der Hohlkehle (18) an die Kante (34) angrenzende Umfangsflächenabschnitt (36) unter einem Winkel zwischen 20 und 60 Grad zu einer Mittelachse (22) des Ventilglieds (6) geneigt ist.
6. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Krümmungsradius der Hohlkehle (18) größer als 0,2 mm ist.
7. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hohlkehle (18) und die Dichtfläche (8) übergangslos ineinander übergehen.
8. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sich der Querschnitt des Ventilglieds (6) in Strömungsrichtung hinter der Querschnittsverdickung (20) verjüngt.
9. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine äußere Umfangsfläche des Ventilglieds (6) mindestens im Bereich der Dichtfläche (8) und der Hohlkehle (18) abgeschliffen ist, nicht jedoch im Bereich der Querschnittsverdickung (20).
10. Kraftstoffeinspritzpumpe, gekennzeichnet durch einem Ventil nach einem der vorangehenden Ansprüche.
EP04786716A 2003-11-05 2004-09-06 Ventil für eine kraftstoffeinspritzpumpe Expired - Lifetime EP1682771B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351680A DE10351680A1 (de) 2003-11-05 2003-11-05 Ventil für eine Kraftstoffeinspritzpumpe
PCT/DE2004/001994 WO2005045228A1 (de) 2003-11-05 2004-09-06 Ventil für eine kraftstoffeinspritzpumpe

Publications (2)

Publication Number Publication Date
EP1682771A1 true EP1682771A1 (de) 2006-07-26
EP1682771B1 EP1682771B1 (de) 2012-11-14

Family

ID=34559352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786716A Expired - Lifetime EP1682771B1 (de) 2003-11-05 2004-09-06 Ventil für eine kraftstoffeinspritzpumpe

Country Status (7)

Country Link
US (1) US20070119991A1 (de)
EP (1) EP1682771B1 (de)
JP (1) JP2006526729A (de)
KR (1) KR101100973B1 (de)
CN (1) CN1875184B (de)
DE (1) DE10351680A1 (de)
WO (1) WO2005045228A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720724B2 (ja) * 2006-11-13 2011-07-13 トヨタ自動車株式会社 燃料噴射弁
DE102010043360A1 (de) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Kraftstoffinjektor
DE102011004993A1 (de) * 2011-03-02 2012-09-06 Robert Bosch Gmbh Ventileinrichtung zum Schalten oder Zumessen eines Fluids
DE102012218667B4 (de) * 2012-10-12 2014-06-05 Continental Automotive Gmbh Magnetventil
JP6224415B2 (ja) * 2013-10-29 2017-11-01 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP6781661B2 (ja) * 2017-04-20 2020-11-04 ボッシュ株式会社 燃料噴射装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
US4503884A (en) * 1982-06-22 1985-03-12 Spils Richard W Angle globe valve
ATE59434T1 (de) * 1984-09-14 1991-01-15 Bosch Gmbh Robert Elektrisch gesteuerte kraftstoffeinspritzpumpe fuer brennkraftmaschinen.
US4941508A (en) * 1989-12-28 1990-07-17 Dana Corporation Force balanced hydraulic spool valve
DE19619523A1 (de) 1996-05-15 1997-11-20 Bosch Gmbh Robert Kraftstoffeinspritzventil für Hochdruckeinspritzung
DE19940296A1 (de) 1999-08-25 2001-03-01 Bosch Gmbh Robert Ventil
DE10000501A1 (de) * 2000-01-08 2001-07-19 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1118765A3 (de) * 2000-01-19 2003-11-19 CRT Common Rail Technologies AG Brennstoffeinspritzventil für Verbrennungskraftmaschinen
DE10008554A1 (de) 2000-02-24 2001-08-30 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10031264A1 (de) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
JP2002039031A (ja) * 2000-07-10 2002-02-06 Robert Bosch Gmbh 後置された圧力制御エレメントを備えた、燃料を噴射するためのインジェクタ
DE10134526B4 (de) * 2001-07-16 2007-10-11 Robert Bosch Gmbh Schaltventil für Kraftstoffeinspritzsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005045228A1 *

Also Published As

Publication number Publication date
CN1875184A (zh) 2006-12-06
EP1682771B1 (de) 2012-11-14
KR20060108655A (ko) 2006-10-18
WO2005045228A1 (de) 2005-05-19
CN1875184B (zh) 2011-04-06
DE10351680A1 (de) 2005-06-09
US20070119991A1 (en) 2007-05-31
KR101100973B1 (ko) 2011-12-29
JP2006526729A (ja) 2006-11-24

Similar Documents

Publication Publication Date Title
EP1891324B1 (de) Kraftstoffeinspritzventll für brennkraftmaschinen
EP2129903B1 (de) Kraftstoffinjektor mit einer zusätzlichen ablaufdrossel oder mit einer verbesserten anordnung derselben im steuerventil
EP2470771B1 (de) Kraftstoffeinspritzventil
EP0347581B1 (de) Einspritzpumpe für Brennkraftmaschinen
DE10122256A1 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
EP1910663B1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
EP1682771B1 (de) Ventil für eine kraftstoffeinspritzpumpe
EP1574701A1 (de) Common-Rail Injektor
WO2000001936A2 (de) Druckventil
DE19843616A1 (de) Kraftstoffeinspritzdüse
DE69805999T2 (de) Brennstoffeinspritzpumpe für verbrennungsmotoren, insbesondere langsamlaufende grossdieselmotoren für die schiffahrt
EP1527272B1 (de) Kraftstoffinjektor mit hochdruckfestem anschlussbereich
EP1952012B1 (de) Einspritzinjektor
DE3409924A1 (de) Duesenhalter fuer eine kraftstoffeinspritzduese
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
WO2003074865A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
DE19706661A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE10148350A1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere Injektor für Brennkraftmaschinen mit Direkteinspritzung, sowie Kraftstoffsystem und Brennkraftmaschine
AT511731B1 (de) Kavitationsoptimierte drosselbohrungen
EP1003964A1 (de) Kraftstoffeinspritzventil
EP1915527B1 (de) Teilentdrosseltes einspritzventilglied für kraftstoffinjektoren
DE10147830A1 (de) Kraftstoffinjektor
AT414159B (de) Einspritzdüse
DE4132505A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20081017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUERG, STEFAN

Inventor name: STOECKLEIN, WOLFGANG

Inventor name: RAPP, HOLGER

Inventor name: CHASSAGNOUX, VIOLAINE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013871

Country of ref document: DE

Effective date: 20130110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013871

Country of ref document: DE

Effective date: 20130815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170925

Year of fee payment: 14

Ref country code: IT

Payment date: 20170926

Year of fee payment: 14

Ref country code: GB

Payment date: 20170925

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013871

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401