DE102018126693A1 - Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors - Google Patents

Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors Download PDF

Info

Publication number
DE102018126693A1
DE102018126693A1 DE102018126693.6A DE102018126693A DE102018126693A1 DE 102018126693 A1 DE102018126693 A1 DE 102018126693A1 DE 102018126693 A DE102018126693 A DE 102018126693A DE 102018126693 A1 DE102018126693 A1 DE 102018126693A1
Authority
DE
Germany
Prior art keywords
value
air ratio
internal combustion
combustion engine
quantity deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018126693.6A
Other languages
English (en)
Inventor
Philippe Lang
Sebastian Grasreiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Priority to DE102018126693.6A priority Critical patent/DE102018126693A1/de
Priority to PCT/EP2019/077882 priority patent/WO2020083705A1/de
Priority to CN201980060546.7A priority patent/CN112703306B/zh
Priority to US17/288,260 priority patent/US11549457B2/en
Publication of DE102018126693A1 publication Critical patent/DE102018126693A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/002Controlling intake air by simultaneous control of throttle and variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

Die Erfindung beschreibt ein Verfahren zur Erkennung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung, Drosselklappe und variabler Einlassventilhubsteuerung. Das erfindungsgemäße Verfahren umfasst in einem Schritt a) das Durchführen eines ersten Mengenabweichungstests, durch den ein erster Luftzahlverhältniswert (w) ermittelt wird, der aus einem während des ersten Mengenabweichungstest gemessenen Lambdawert (λ) und einem gewünschten Lambdawert (λ) der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet wird, wobei im ersten Mengenabweichungstest eine Laststeuerung mittels der variablen Einlassventilhubsteuerung durchgeführt wird. Schritt b) umfasst das Durchführen eines zweiten Mengenabweichungstests, durch den ein zweiter Luftzahlverhältniswert (w) ermittelt wird, umfasst, der aus einem während des zweiten Mengenabweichungstest gemessenen Lambdawert (λ) und einem gewünschten Lambdawert (λ) der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet wird, wobei im zweiten Mengenabweichungstest eine Laststeuerung mittels der Drosselklappe durchgeführt wird. Schließlich erfolgt in Schritt c) das Bestimmen eines Vergleichsergebnisses aus dem ersten Luftzahlverhältniswert (w) und dem zweiten Luftzahlverhältniswert (w), wobei anhand des Vergleichsergebnisses das Vorliegen eines Fehlers im Einlasstrakt des Verbrennungsmotors erkennbar ist.

Description

  • Die Erfindung betrifft ein Verfahren zur Erkennung eines Fehlers im Einlasstrakt eines Verbrennungsmotors sowie ein entsprechendes Motortestgerät. Insbesondere betrifft die Erfindung ein Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors, der eine Kraftstoffdirekteinspritzung, eine Drosselklappe und eine variable Einlassventilhubsteuerung aufweist.
  • Bei Ottomotoren mit Benzindirekteinspritzung kann es zu einer Verkokung des Einlasstraktes kommen, insbesondere am Einlassventil (beispielsweise an der Ventilkehlung) oder im Einlasskanal an der Ventilöffnung. Bei einer derartigen Verkokung lagert sich kohleähnliches Material im Einlasstrakt ab. Ursächlich für die Verkokungsneigung bei Ottomotoren mit Benzindirekteinspritzung ist, dass bei Ottomotoren mit Benzindirekteinspritzung keine kontinuierliche reinigende Spülung des Einlasstraktes, beispielsweise des Einlassventils, mit Benzin stattfindet, da der Kraftstoff direkt im Brennraum eingespritzt wird. Ölrückstände aus der Kurbelgehäuse-Entlüftung, der Ventilschaftdichtung oder der Turbolagerung können sich in Verbindung mit Rußpartikeln aus dem Zylinder unter Hitzeeinwirkung in Form von Kohle im Einlass ablagern. Die Verkokungsneigung nimmt dabei bei Verwendung von Kraftstoffen und Ölen mit niedriger Qualität und bei Fahrprofilen mit niedriger Last tendenziell zu.
  • Diese Verkokung sorgt für eine Verschlechterung der Laufruhe im Kaltleerlauf und kann zu einem erhöhten Kraftstoffverbrauch sowie zu Beanstandungen im Warmlauf-Fahrverhalten führen. Ein Verkokungsbelag beispielsweise oben an der Ventilkehlung zwischen Ventilteller und Ventilschaft kann die Tumble-Strömung stören, so dass die Leerlaufdrehzahl stärker schwankt und es im Extremfall sogar zu Zündaussetzern kommen kann. Ein Verkokungsbelag kann sogar als Strömungswiderstand aufgrund unzureichender Zylinderfüllung zu einem Leistungsabfall führen. Darüber hinaus kann ein Verkokungsbelag am Einlassventil oder an der Ventilöffnung ein korrektes Schließen des Ventils verhindern, so dass es zu Kompressionsverlusten und sporadischen Zündaussetzern kommt.
  • Typischerweise kann der Grad der Verkokung im Einlasstrakt in der Werkstatt nur nach Demontage von Motorenteilen visuell festgestellt werden. Falls der Einlasstrakt entsprechend verkokt ist, erfolgt dann eine Reinigung des Einlasstrakts oder ein Austausch der betroffenen Bauteile.
  • Die optische Erkennung einer Verkokung weist den Nachteil eines hohen Arbeitsaufwands zur Demontage der Motorenteile für die optische Zugänglichkeit auf. Außerdem ist die optische Begutachtung mit dem Nachteil mangelnder Objektivierbarkeit verbunden, da die Verkokung bei einer rein visuellen Betrachtung schwer zu beurteilen ist.
  • Aus der Druckschrift DE 10 2012 213 241 A1 ist ein Verfahren bekannt, das zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung keine Demontage des Verbrennungsmotors erfordert und eine objektive Beurteilung der Verkokung ermöglicht. Das dort beschriebene Verfahren kann jedoch nur bei Verbrennungsmotoren mit Phasenverstellung der Ventilöffnungszeiten (sog. variable Einlassventilsteuerung) zur Anwendung gelangen, bei denen die Steuerung eines Luftmassenstroms mithilfe einer Drosselklappe erfolgt. Bei diesem Verfahren wird der Verbrennungsmotor im Leerlauf mit gegenüber dem Leerlaufnormalbetrieb erhöhter Leerlaufdrehzahl betrieben. Außerdem wird die Öffnungszeit der Einlassventile mithilfe der variablen Einlassventilsteuerung in Richtung früh verstellt, wodurch die Ventilüberschneidung (die Zeitdauer bei der das Einlassventil bereits geöffnet ist, noch bevor das Auslassventil geschlossen ist) vergrößert wird. Mittels Messung wird dann eine für die Laufunruhe des Verbrennungsmotors charakteristische Laufunruhe-Kenngröße des Verbrennungsmotors bestimmt. Anhand der Laufunruhe-Kenngröße lässt sich dann das Vorliegen einer Verkokung im Einlasstrakt erkennen.
  • Dieses Verfahren kann jedoch nicht bei solchen Verbrennungsmotoren zum Einsatz kommen, bei denen die Steuerung des Luftmassenstroms mittels variabler Einlassventilhubsteuerung erfolgt, da das Brennverfahren anders ausgelegt ist. Während bei einem Verbrennungsmotor mit gedrosselter Laststeuerung die Restgassteuerung über den Einlass erfolgt, wird bei einem Verbrennungsmotor mit variabler Einlassventilhubsteuerung die Restgassteuerung über den Auslass realisiert.
  • Es ist Aufgabe der Erfindung, ein Verfahren zur Erkennung eines Fehlers, insbesondere einer Verkokung, eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung und variabler Einlassventilhubsteuerung anzugeben, welches zur Erkennung keine Demontage des Verbrennungsmotors erfordert und zumindest ein Indiz für das Vorliegen einer Verkokung ermöglicht. Ferner ist die Aufgabe auf die Angabe eines Motortestgeräts mit entsprechenden Eigenschaften gerichtet.
  • Diese Aufgabe wird durch die Merkmale der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen angegeben.
  • Ein erster Aspekt der Erfindung betrifft ein Verfahren zur Erkennung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors. Der Verbrennungsmotor weist eine oder mehrere Zylinderbänke auf, wobei eine jeweilige Zylinderbank mehrere Zylinder mit jeweils einer darin ausgebildeten Brennkammer und zumindest einer Einspritzdüse umfasst. Insbesondere ist in jeder Brennkammer genau eine Einspritzdüse vorgesehen. Den Brennkammern einer jeweiligen Zylinderbank wird ein gemeinsamer Luftmassenstrom zugeführt. Ebenso wird von den Brennkammern einer jeweiligen Zylinderbank ein gemeinsamer Abgasstrom abgeführt. Der Verbrennungsmotor weist eine Kraftstoffdirekteinspritzung auf, insbesondere handelt es sich um einen Ottomotor mit Benzindirekteinspritzung.
  • Das Verfahren läuft beispielsweise auf einem fahrzeugexternen Motortestgerät ab, welches beispielsweise in einer Fahrzeug-Reparaturwerkstatt verwendet wird. Das Motortestgerät wird über eine entsprechende Fahrzeugschnittstelle mit der Motorsteuerung des Fahrzeugs drahtlos oder drahtgebunden verbunden und kann darüber hinaus den Betrieb des Fahrzeugs steuern und Messwerte von der Motorsteuerung abrufen. Es ist auch denkbar, dass das Verfahren auf dem Motorsteuergerät des Fahrzeugs abläuft, wobei beispielsweise im Fall der Erkennung eines Fehlers, insbesondere einer Verkokung, eine Reinigung der Einlasskanäle und/oder der Einlassventile angewiesen wird. Es kann dazu ein Hinweis zur Reinigung an den Fahrer oder an einen Monteur in der Werkstatt ausgegeben werden und/oder ein entsprechender Hinweis in einem Fehlerspeicher des Fahrzeugs abgelegt werden. Es ist auch denkbar, dass bei einer Erkennung eines Fehlers im Einlasstrakt, insbesondere einer Verkokung, über das Motorsteuergerät eine automatische Reinigung des Fahrzeugs durchgeführt wird, beispielsweise über die Einbringung von Reinigungsflüssigkeit in den Einlasstrakt oder die Umschaltung in einen Reinigungsbetriebsmodus des Verbrennungsmotors.
  • Der Verbrennungsmotor weist eine Drosselklappe im Einlasstrakt und eine variable Einlassventilhubsteuerung (auch VVT, Variabler Ventiltrieb, genannt) auf. Die variable Einlassventilhubsteuerung ermöglicht es, den Ventilhub zu regeln. Mit dem variablen Ventilhub lässt sich die Einlassmenge von Luft in eine Brennkammer des Verbrennungsmotors regeln, so dass die einer Zylinderbank vorgeschaltete Drosselklappe im normalen Betrieb nicht mehr benötigt wird. Die Drosselklappe wird nur in besonderen Betriebszuständen, etwa in einem Notlaufbetrieb, verwendet. Durch die drosselfreie Laststeuerung können Ladungswechselverluste reduziert werden. Eine höhere Einströmgeschwindigkeit der Luft führt zu einer besseren Durchmischung des Benzin-Luft-Gemisches in der Brennkammer.
  • Bei dem Verfahren wird in einem ersten Schritt ein erster Mengenabweichungstest durchgeführt. Durch den Mengenabweichungstest wird ein erster Luftzahlverhältniswert ermittelt, der aus einem während des ersten Mengenabweichungstests gemessenen Lambdawert und einem gewünschten Lambdawert der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet wird. Im ersten Mengenabweichungstest wird eine Laststeuerung des Verbrennungsmotors mittels der variablen Einlassventilhubsteuerung durchgeführt.
  • In einem zweiten Schritt wird ein zweiter Mengenabweichungstest durchgeführt. Durch den zweiten Mengenabweichungstest wird ein zweiter Luftzahlverhältniswert ermittelt, der aus einem während des zweiten Mengenabweichungstest gemessenen Lambdawert und einem gewünschten Lambdawert der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet wird. Im zweiten Mengenabweichungstest wird eine Laststeuerung des Verbrennungsmotors mittels der im Einlasstrakt angeordneten Drosselklappe durchgeführt.
  • In einem dritten Schritt erfolgt das Bestimmen eines Vergleichsergebnisses aus dem ersten Luftzahlverhältniswert und dem zweiten Luftzahlverhältniswert. Anhand des Vergleichsergebnisses ist das Vorliegen eines Fehlers im Einlasstrakt des Verbrennungsmotors erkennbar.
  • Während der Durchführung des ersten und des zweiten Mengenabweichungstests erfolgt keine Änderung am Kraftstoffpfad, also der Zulieferung der benötigten Kraftstoffmasse für die Verbrennung. Demgegenüber wird durch die unterschiedliche Laststeuerung, einmal mittels der variablen Einlassventilhubsteuerung und einmal mittels der Drosselklappe, der Luftpfad verändert, sofern ein Fehler bzw. eine Verkokung vorliegt.
  • Das erfindungsgemäße Verfahren erlaubt eine objektive Feststellung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung. Die objektive Feststellung erfolgt durch Messung anstatt durch eine subjektive visuelle Beurteilung. Eine Reinigung bzw. Reparatur findet dadurch nur dann statt, wenn dies objektiv tatsächlich notwendig ist.
  • Eine Demontage des Verbrennungsmotors allein zur visuellen Beurteilung einer Verkokung ist bei Anwendung des hierin beschriebenen Verfahrens nicht erforderlich. Eine Verkokung kann in sehr kurzer Zeit festgestellt werden. Die Zeitdauer zur Feststellung, ob ein Fehler im Einlasstrakt des Verbrennungsmotors, insbesondere eine Verkokung vorliegt, kann beispielsweise innerhalb von etwa zehn Minuten anstatt in einer Stunde und mehr bei Demontage des Verbrennungsmotors stattfinden. Der Motor muss mithilfe der beschriebenen Methode nicht mehr teilzerlegt werden, wodurch sich weitere Fehlerursachen für die anstehenden Reparaturen bis auf das zwingend Notwendige minimieren lassen. Darüber hinaus ist die Genauigkeit der Erkennung einer Verkokung mit Hilfe einer erfindungsgemäß durchgeführten bilanzierenden Gemischabweichungsmethode deutlich höher als dies im Stand der Technik der Fall ist.
  • Die Durchführung des ersten und/oder des zweiten Mengenabweichungstests erfolgt zweckmäßigerweise im Leerlaufbetrieb des Verbrennungsmotors. Die Steuerung erfolgt, wie oben beschrieben, durch ein fahrzeugexternes Motortestgerät oder die Motorsteuerung des Fahrzeugs.
  • Der erste Mengenabweichungstest wird zweckmäßigerweise bei geöffneter Drosselklappe und bei kleinem oder sogar minimalem Hub des Einlassventils durchgeführt. Mit anderen Worten erfolgt die Durchführung des ersten Mengenabweichungstests im sog. ungedrosselten Zustand, bei dem die in eine Brennkammer eingeführte Luftmenge ausschließlich von der Höhe des Hubs des Einlassventils abhängt. Aufgrund eines gewählten kleinen oder minimalen Hubs wird sich die in die Brennkammer eingeführte Luft bei vorliegender Verkokung im Einlasskanal oder am Einlassventil in einer gegenüber der erwarteten Luftmenge reduzierten Luftmenge bemerkbar machen. Da der gewünschte Lambdawert (d.h. der Soll-Lambdawert) dadurch stärker von dem gemessenen Lambdawert abweicht, macht sich dies in einem bestimmten ersten zu fetten Luftzahlverhältniswert bemerkbar.
  • Demgegenüber wird der zweite Mengenabweichungstest bei maximalem Hub des Einlassventils und weitgehend geschlossener Drosselklappe durchgeführt. Die Laststeuerung erfolgt somit mittels der Drosselklappe (sog. gedrosselter Betrieb). Bei einer vorliegenden Verkokung im Einlasskanal oder am Einlassventil wird der zweite Luftverhältniswert keine so starke Abweichung wie im ersten Mengenabweichungstest erfahren, da der Querschnitt, durch den die Luftmenge in die Brennkammer strömen kann, prozentual weniger stark durch die Verkokung beeinflusst ist, als während der Durchführung des ersten Mengenabweichungstests.
  • Auf das Vorliegen eines Fehlers im Einlasstrakt, d.h. im Luftpfad des Verbrennungsmotors, kann somit dann geschlossen werden, wenn der erste Luftzahlverhältniswert und der zweite Luftzahlverhältniswert unterschiedlich sind. Insbesondere wird auf das Vorliegen einer Verkokung im Einlasstrakt geschlossen, wenn der erste Luftzahlverhältniswert kleiner als ein vorgegebener erster Schwellwert und der zweite Luftzahlverhältniswert größer oder gleich dem vorgegebenen ersten Schwellwert ist.
  • Demgegenüber kann auf das Vorliegen einer Leckage im Einlasstrakt geschlossen werden, wenn der erste Luftzahlverhältniswert größer als ein vorgegebener zweiter Schwellwert und der zweite Luftzahlverhältniswert noch einmal mehr erhöht gegenüber dem vorgegebenen zweiten Schwellwert ist. Dies ergibt sich aus dem Umstand, dass während des ersten Mengenabweichungstests kaum Unterdruck im Leerlauf auftritt. Eine Leckage im Einlasstrakt, insbesondere im Luftsammler, führt damit zu einem zu mageren Kraftstoff-Luft-Gemisch. Der erste Luftzahlverhältniswert ist damit größer als der vorgegebene zweite Schwellwert. Während des zweiten Mengenabweichungstests entsteht nach der Drosselklappe im Einlasstrakt, insbesondere im Luftsammler, ein hoher Unterdruck. Eine Leckage wird damit in den Einlasstrakt bzw. Luftsammler eindringen, mit dem Effekt, dass das Kraftstoff-Luft-Gemisch viel zu mager ist. Infolgedessen ergibt sich ein zweiter Luftzahlverhältniswert, der deutlich größer als der zweite Schwellwert ist.
  • Der erste Luftzahlverhältniswert wird insbesondere durch den Quotienten aus dem während des ersten Mengenabweichungstests gemessenen Lambdawert und dem gewünschten Lambdawert gebildet. Der zweite Luftzahlverhältniswert wird durch den Quotienten aus dem während des zweiten Mengenabweichungstests gemessenen Lambdawert und dem gewünschten Lambdawert gebildet.
  • Durch die bevorzugte Art der Bestimmung des ersten und des zweiten Luftzahlverhältniswerts liegt eine Verkokung dann vor, wenn der erste Luftzahlverhältniswert kleiner als der vorgegebene Schwellwert und damit kleiner als der zweite Luftzahlverhältniswert ist. Dies ergibt sich daraus, dass während des ersten Mengenabweichungstests bei gegebener Verkokung eine geringere Menge an Luft in die Brennkammer strömen kann, als dies der Fall wäre, wenn keine Verkokung vorliegt. Der gemessene Lambdawert ist somit kleiner als der gewünschte Lambdawert. Demgegenüber ist im zweiten Mengenabweichungstest der Unterschied zwischen dem gemessenen und dem gewünschten Lambdawert nicht so groß, da die Verkokung das in die Brennkammer einströmende Luftvolumen nicht derart stark verändert.
  • Der erste und der zweite vorgegebene Schwellwert sind insbesondere gleich groß, insbesondere 1.
  • Es wird ferner ein Computerprogrammprodukt vorgeschlagen, das direkt in den internen Speicher eines digitalen Computers geladen werden kann und Softwarecodeabschnitte umfasst, mit denen die Schritte des hierin beschriebenen Verfahrens ausgeführt werden, wenn das Produkt auf einem Computer läuft. Das Computerprogrammprodukt kann in der Form eines Datenträgers, z.B. einer DVD, einer CD-ROM, eines USB-Speichersticks und dergleichen vorliegen. Das Computerprogrammprodukt kann auch als ein über ein drahtloses oder leitungsgebundenes Netz ladbares Signal vorliegen.
  • Ein zweiter Aspekt der Erfindung ist auf ein Motortestgerät gerichtet. Das Motortestgerät ist zur Erkennung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung, Drosselklappe und variabler Einlassventilhubsteuerung eingerichtet. Das Gerät ist mit dem Kraftfahrzeug zum Steuern des Betriebs des Fahrzeugs und zur Entgegennahme von fahrzeuginternen Messwerten verbindbar, beispielsweise über eine elektrische Verbindung oder eine Funkverbindung. Das Motortestgerät steuert den Verbrennungsmotor über das Motorsteuergerät so, dass das oben beschriebene Verfahren durchgeführt wird.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen anhand eines Ausführungsbeispiels beschrieben. Es zeigt:
    • 1 ein beispielhaftes Ablaufdiagramm für ein erfindungsgemäßes Verfahren zur Erkennung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors.
  • In 1 ist ein beispielhaftes Ablaufdiagramm des erfindungsgemäßen Verfahrens zur Erkennung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors dargestellt. Der Verbrennungsmotor weist eine oder mehrere Zylinderbänke auf, wobei eine jeweilige Zylinderbank mehrere Zylinder mit jeweils einer darin ausgebildeten Brennkammer und zumindest einer Einspritzdüse umfasst. Insbesondere ist in jeder Brennkammer genau eine Einspritzdüse vorgesehen. Den Brennkammern einer jeweiligen Zylinderbank wird ein gemeinsamer Luftmassenstrom zugeführt. Ebenso wird von den Brennkammern einer jeweiligen Zylinderbank ein gemeinsamer Abgasstrom abgeführt. Der Verbrennungsmotor weist eine Kraftstoffdirekteinspritzung auf, insbesondere handelt es sich um einen Ottomotor mit Benzindirekteinspritzung und vollvariabler Ventilsteuerung.
  • In Schritt S1 erfolgt das Durchführen eines ersten Mengenabweichungstests, durch den ein erster Luftzahlverhältniswert w1 ermittelt wird. Der Luftzahlverhältniswert w1 wird durch den Quotienten aus dem während des ersten Mengenabweichungstests gemessenen Lambdawert λreal,1 und dem gewünschten Lambdawert λsoll,1 (d.h. dem Soll-Lambdawert) der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet. Im ersten Mengenabweichungstest erfolgt eine Laststeuerung des Verbrennungsmotors mittels einer variablen Einlassventilhubsteuerung (VVT).
  • In Schritt S2 wird ein zweiter Mengenabweichungstest durchgeführt, durch den ein zweiter Luftzahlverhältniswert w2 ermittelt wird. Der zweite Luftzahlverhältniswert w2 wird durch den Quotienten aus dem während des zweiten Mengenabweichungstest gemessenen Lambdawerts λreal,2 und dem gewünschten Lambdawert λsoll,2 (d.h. einem Soll-Lambdawert) der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet. Im zweiten Mengenabweichungstest erfolgt die Laststeuerung des Verbrennungsmotors mittels der Drosselklappe im Einlasstrakt des Verbrennungsmotors.
  • In Schritt S3 erfolgt ein Vergleich der zuvor ermittelten ersten und zweiten Luftzahlverhältniswerte w1 und w2 . Anhand des Vergleichsergebnisses kann auf das Vorliegen eines Fehlers, insbesondere auf das Vorliegen einer Verkokung, im Einlasstrakt des Verbrennungsmotors geschlossen werden.
  • Der erste und der zweite Mengenabweichungstest werden nacheinander im Leerlaufbetrieb des Verbrennungsmotors durchgeführt.
  • Der in Schritt S1 durchgeführte erste Mengenabweichungstest wird bei kleinem oder minimalem Hub des Einlassventils durchgeführt, wobei die Drosselklappe, die im Einlasstrakt des Verbrennungsmotors angeordnet ist, geöffnet ist. Mit anderen Worten wird der erste Mengenabweichungstest in der herkömmlichen Betriebsart eines Verbrennungsmotors durchgeführt, welcher über eine variable Einlassventilhubsteuerung verfügt.
  • Demgegenüber wird der zweite Mengenabweichungstest in Schritt S2 bei maximalem Hub des Einlassventils (d.h. das Einlassventil ist maximal geöffnet) und weitgehend geschlossener Drosselklappe durchgeführt. Diese Betriebsart entspricht einem Notlaufbetrieb, bei dem bei Motoren mit variabler Einlassventilhubsteuerung die Laststeuerung mittels der Drosselklappe durchgeführt wird.
  • Abhängig davon, ob ein Fehler im Einlasstrakt und insbesondere eine Verkokung vorliegt, ergeben sich charakteristische erste und zweite Luftzahlverhältniswerte w1 , w2 , wobei deren Verhältnis zueinander die Erkennung des Vorliegens eines Fehlers im Einlasstrakt und insbesondere das Vorliegen einer Verkokung erlaubt.
  • Auf einen allgemeinen Fehler im Einlasstrakt kann geschlossen werden, wenn der erste Luftzahlverhältniswert w1 , der in Schritt S1 ermittelt wurde, und der zweite Luftzahlverhältniswert w2 , der im zweiten Schritt S2 ermittelt wurde, unterschiedlich sind. Dies resultiert aus dem Umstand, dass die Luftzahlverhältniswerte w1 , w2 dann den gleichen Wert aufweisen müssten, wenn die in Schritt S1 und S2 jeweils gemessenen Lambdawerte λreal,1 und λreal,2 bei unterschiedlicher Laststeuerung die gleiche Luftmenge in die Brennkammern einbringen, was sich in einem jeweils gleichen gemessenen Lambdawert niederschlagen müsste. Unterscheidet sich demgegenüber die in den Schritten S1 und S2 in die Brennkammern eingebrachte Luftmenge voneinander, so führt dies zu Unterschieden in den in den Schritten S1 und S2 gemessenen Lambdawerten λreal,1, λreal,2, während die gewünschten Lambdawerte λsoll,1, λsoll,2 unverändert bleiben.
  • Eine Verkokung führt dazu, dass sich kohleähnliche Masse im Einlass, insbesondere im Einlasskanal und/oder am Einlassventil ablagert. Das allmähliche Anwachsen der Kohle führt insbesondere in Schritt S1, bei dem das Ventil nur minimal geöffnet ist, den ansonsten vorhandenen Luftströmungsquerschnitt überproportional stark verringert. Dadurch kann eine geringere Luftmenge in die Brennkammer einströmen, wodurch der gemessene Lambdawert λreal,1 kleiner wird. Dies macht sich in einer Abnahme des ersten Luftzahlverhältniswerts w1 bemerkbar. Ist somit der erste Luftzahlwert w1 kleiner als der zweite Luftzahlverhältniswert w2 , so kann auf eine Verkokung geschlossen werden. Der Vergleich kann insbesondere gegenüber einem vorgegebenen Schwellwert, der zu 1 gewählt wird, erfolgen, da die jeweiligen Luftzahlkennwerte w1 , w2 dem Wert 1 entsprechen, wenn kein Fehler vorliegt, da dann der gemessene und der gewünschte Lambdawert annähernd gleich groß sind. Der umgekehrte Fall, in dem der erste Luftzahlverhältniswert w1 größer als der vorgegebene Schwellwert sowie größer als der zweite Luftzahlverhältniswert w2 ist, lässt den Verdacht auf eine Leckage im Einlasstrakt zu, da hier aufgrund der Strömungsverhältnisse im zweiten Schritt S2, in dem der Verbrennungsmotor gedrosselt betrieben wird, weniger Luftmenge in die Brennkammer schafft.
  • Es ist insbesondere zweckmäßig, wenn die oben beschriebene Prüfung zylinderindividuell durchgeführt wird. Hierzu werden der erste Luftzahlverhältniswert w1 und der zweite Luftzahlverhältniswert w2 zylinderindividuell ermittelt, ebenso wie ein Vergleich zylinderindividuell bestimmt wird. Hierdurch ist es nicht nur möglich, eine grundsätzliche Aussage über das Vorliegen eines Fehlers bzw. einer Verkokung vorzunehmen, sondern sogar den den Fehler aufweisenden Zylinder zu bestimmen bzw. eine Fehlerintensität pro Zylinder auszuweisen.
  • Auf welche Weise in dem ersten Schritt S1 und dem zweiten Schritt S2 die gemessenen Lambdawerte λreal,1 bzw. λreal,2 sowie die gewünschten Lambdawerte λsoll,1 bzw. λsoll,2 ermittelt werden, ist dem Fachmann grundsätzlich bekannt. Ein mögliches Vorgehen ist beispielsweise in der WO 2016/041742 A1 des Anmelders beschrieben.
  • Darüber hinaus sind dem Fachmann weitere Vorgehensweisen zur zylinderindividuellen Bestimmung eines gemessenen und eines gewünschten Lambdawerts bekannt, so dass in der vorliegenden Beschreibung auf eine detaillierte Beschreibung der Bestimmung verzichtet wird.
  • Bezugszeichenliste
  • S1
    Verfahrensschritt
    S2
    Verfahrensschritt
    S3
    Verfahrensschritt
    λreal,1
    gemessener Lambdawert im ersten Mengenabweichungstest
    λreal,2
    gemessener Lambdawert im zweiten Mengenabweichungstest
    λsoll,1
    gewünschter (Soll-)Lambdawert im ersten Mengenabweichungstest
    λsoll,2
    gewünschter (Soll-)Lambdawert im zweiten Mengenabweichungstest
    w1
    erster Luftzahlkennwert
    w2
    zweiter Luftzahlkennwert
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102012213241 A1 [0006]
    • WO 2016/041742 A1 [0041]

Claims (12)

  1. Verfahren zur Erkennung eines Fehlers, insbesondere einer Verkokung, im Einlasstrakt eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung, Drosselklappe und variabler Einlassventilhubsteuerung, mit den Schritten: a) Durchführen eines ersten Mengenabweichungstests, durch den ein erster Luftzahlverhältniswert (w1) ermittelt wird, der aus einem während des ersten Mengenabweichungstest gemessenen Lambdawert (λreal,1) und einem gewünschten Lambdawert (λsoll,1) der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet wird, wobei im ersten Mengenabweichungstest eine Laststeuerung mittels der variablen Einlassventilhubsteuerung durchgeführt wird; b) Durchführen eines zweiten Mengenabweichungstests, durch den ein zweiter Luftzahlverhältniswert (w2) ermittelt wird, der aus einem während des zweiten Mengenabweichungstest gemessenen Lambdawert (λreal,2) und einem gewünschten Lambdawert (λsoll,2) der Kraftstoffverbrennung in den Brennkammern des Verbrennungsmotors gebildet wird, wobei im zweiten Mengenabweichungstest eine Laststeuerung mittels der Drosselklappe durchgeführt wird; c) Bestimmen eines Vergleichsergebnisses aus dem ersten Luftzahlverhältniswert (w1) und dem zweiten Luftzahlverhältniswert (w2), wobei anhand des Vergleichsergebnisses das Vorliegen eines Fehlers im Einlasstrakt des Verbrennungsmotors erkennbar ist.
  2. Verfahren nach Anspruch 1, bei dem der erste und/oder der zweite Mengenabweichungstest im Leerlaufbetrieb des Verbrennungsmotors durchgeführt werden.
  3. Verfahren nach Anspruch 1 oder 2, bei dem der erste Mengenabweichungstest bei kleinem oder minimalem Hub des Einlassventils und geöffneter Drosselklappe durchgeführt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der zweite Mengenabweichungstest bei maximalem Hub des Einlassventils und weitgehend geschlossener Drosselklappe durchgeführt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste Luftzahlverhältniswert (w1) und der zweite Luftzahlverhältniswert (w2) zylinderindividuell ermittelt werden, und das Vergleichsergebnis zylinderindividuell bestimmt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste Luftzahlverhältniswert (w1) durch den Quotienten aus dem während des ersten Mengenabweichungstest gemessenen Lambdawerts (λreal,1) und dem gewünschten Lambdawert (λsoll,1) gebildet wird und der zweite Luftzahlverhältniswert (w2) durch den Quotienten aus dem während des zweiten Mengenabweichungstest gemessenen Lambdawerts (λreal,2) und dem gewünschten Lambdawert (λsoll,2) gebildet wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem auf das Vorliegen eines Fehlers im Einlasstrakt geschlossen wird, wenn der erste Luftzahlverhältniswert (w1) und der zweite Luftzahlverhältniswert (w2) unterschiedlich sind.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem auf das Vorliegen einer Verkokung im Einlasstrakt geschlossen wird, wenn der erste Luftzahlverhältniswert (w1) kleiner als ein vorgegebener erster Schwellwert und der zweite Luftzahlverhältniswert (w2) größer als der vorgegebene erste Schwellwert ist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem auf das Vorliegen einer Leckage im Einlasstrakt geschlossen wird, wenn der erste Luftzahlverhältniswert (w1) größer als ein vorgegebener zweiter Schwellwert und der zweite Luftzahlverhältniswert (w2) noch einmal mehr erhöht gegenüber dem vorgegebenen zweiten Schwellwert.(w2) ist.
  10. Verfahren nach einem der Ansprüche 8 und 9, bei dem der vorgegebene erste und der vorgegebene zweite Schwellwert gleich groß, insbesondere 1, sind.
  11. Computerprogrammprodukt, das direkt in den internen Speicher eines digitalen Computers geladen werden kann und Softwarecodeabschnitte umfasst, mit denen die Schritte gemäß einem der Ansprüche 1 bis 9 ausgeführt werden, wenn das Produkt auf einem Computer läuft
  12. Motortesteinrichtung zur Erkennung von Fehlern im Einlasstrakt eines Verbrennungsmotors, die dazu ausgebildet ist, das Verfahren gemäß einem der Ansprüche 1 bis 9 durchzuführen.
DE102018126693.6A 2018-10-25 2018-10-25 Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors Pending DE102018126693A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102018126693.6A DE102018126693A1 (de) 2018-10-25 2018-10-25 Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors
PCT/EP2019/077882 WO2020083705A1 (de) 2018-10-25 2019-10-15 Verfahren zur erkennung einer verkokung im einlasstrakt eines verbrennungsmotors
CN201980060546.7A CN112703306B (zh) 2018-10-25 2019-10-15 用于识别在内燃机的进气道中的结焦的方法
US17/288,260 US11549457B2 (en) 2018-10-25 2019-10-15 Method for detecting coking in the intake tract of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018126693.6A DE102018126693A1 (de) 2018-10-25 2018-10-25 Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors

Publications (1)

Publication Number Publication Date
DE102018126693A1 true DE102018126693A1 (de) 2020-04-30

Family

ID=68290222

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018126693.6A Pending DE102018126693A1 (de) 2018-10-25 2018-10-25 Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors

Country Status (4)

Country Link
US (1) US11549457B2 (de)
CN (1) CN112703306B (de)
DE (1) DE102018126693A1 (de)
WO (1) WO2020083705A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175021A1 (de) * 2021-02-22 2022-08-25 Bayerische Motoren Werke Aktiengesellschaft Detektion eines abbrands in einer sauganlage
DE102022202514A1 (de) 2022-03-14 2023-09-14 Psa Automobiles Sa Steuergerät und Verfahren zum Betreiben einer Brennkraftmaschine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945813A1 (de) * 1999-09-24 2001-03-29 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE10339251A1 (de) * 2003-08-26 2005-03-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006034633A1 (de) * 2006-07-27 2008-01-31 Dr.Ing.H.C. F. Porsche Ag Verfahren zum Reinigen eines Brennraums und eines Einlasstrakts einer Brennkraftmaschine
DE102010035026A1 (de) * 2010-08-20 2012-02-23 Fev Motorentechnik Gmbh Verfahren zur Korrektur einer mittels einer Kraftstoffeinspritzvorrichtung eingespritzten Kraftstoffmenge in einer Verbrennungskraftmaschine
DE102011005283B4 (de) * 2011-03-09 2013-05-23 Continental Automotive Gmbh Verfahren zur Erkennung fehlerhafter Komponenten eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102012213241A1 (de) 2012-07-27 2014-02-13 Bayerische Motoren Werke Aktiengesellschaft Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors
DE102014105270A1 (de) * 2013-04-24 2014-10-30 Ford Global Technologies, Llc System und Verfahren für Einspritzdüsenverkokungsdiagnose und -minderung
DE10300592B4 (de) * 2003-01-10 2015-12-10 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
WO2016041742A1 (de) 2014-09-15 2016-03-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur erkennung von defekten einspritzdüsen eines verbrennungsmotors
DE10256906B4 (de) * 2002-12-03 2017-10-12 Robert Bosch Gmbh Verfahren zur Regelung eines Luft-/Kraftstoff-Gemisches bei einer Brennkraftmaschine
DE102016219067A1 (de) * 2016-09-30 2018-04-05 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023874A (ja) * 2003-07-04 2005-01-27 Hitachi Unisia Automotive Ltd 可変動弁機構付内燃機関の空燃比制御装置
DE10355335B4 (de) * 2003-11-27 2018-01-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP2005214073A (ja) 2004-01-29 2005-08-11 Denso Corp 可変バルブリフト制御システムの異常診断装置
JP4470765B2 (ja) * 2005-03-10 2010-06-02 トヨタ自動車株式会社 多気筒内燃機関の制御装置
JP2007231741A (ja) * 2006-02-27 2007-09-13 Toyota Motor Corp 内燃機関の動弁装置
JP4396678B2 (ja) * 2006-09-08 2010-01-13 トヨタ自動車株式会社 内燃機関の制御装置
US7861515B2 (en) * 2007-07-13 2011-01-04 Ford Global Technologies, Llc Monitoring of exhaust gas oxygen sensor performance
DE102008012459B3 (de) 2008-03-04 2009-09-10 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008001099A1 (de) 2008-04-09 2009-10-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fehlerdiagnose in einem Motorsystem mit variabler Ventilansteuerung
WO2012066666A1 (ja) * 2010-11-18 2012-05-24 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945813A1 (de) * 1999-09-24 2001-03-29 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE10256906B4 (de) * 2002-12-03 2017-10-12 Robert Bosch Gmbh Verfahren zur Regelung eines Luft-/Kraftstoff-Gemisches bei einer Brennkraftmaschine
DE10300592B4 (de) * 2003-01-10 2015-12-10 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE10339251A1 (de) * 2003-08-26 2005-03-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006034633A1 (de) * 2006-07-27 2008-01-31 Dr.Ing.H.C. F. Porsche Ag Verfahren zum Reinigen eines Brennraums und eines Einlasstrakts einer Brennkraftmaschine
DE102010035026A1 (de) * 2010-08-20 2012-02-23 Fev Motorentechnik Gmbh Verfahren zur Korrektur einer mittels einer Kraftstoffeinspritzvorrichtung eingespritzten Kraftstoffmenge in einer Verbrennungskraftmaschine
DE102011005283B4 (de) * 2011-03-09 2013-05-23 Continental Automotive Gmbh Verfahren zur Erkennung fehlerhafter Komponenten eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102012213241A1 (de) 2012-07-27 2014-02-13 Bayerische Motoren Werke Aktiengesellschaft Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors
DE102014105270A1 (de) * 2013-04-24 2014-10-30 Ford Global Technologies, Llc System und Verfahren für Einspritzdüsenverkokungsdiagnose und -minderung
WO2016041742A1 (de) 2014-09-15 2016-03-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur erkennung von defekten einspritzdüsen eines verbrennungsmotors
DE102016219067A1 (de) * 2016-09-30 2018-04-05 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022175021A1 (de) * 2021-02-22 2022-08-25 Bayerische Motoren Werke Aktiengesellschaft Detektion eines abbrands in einer sauganlage
DE102022202514A1 (de) 2022-03-14 2023-09-14 Psa Automobiles Sa Steuergerät und Verfahren zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
CN112703306B (zh) 2023-04-07
WO2020083705A1 (de) 2020-04-30
CN112703306A (zh) 2021-04-23
US20210381460A1 (en) 2021-12-09
US11549457B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2020083704A1 (de) Verfahren zur erkennung einer verkokung im einlasstrakt eines verbrennungsmotors mit variabler einlassventilhubsteuerung
DE102008041804B4 (de) Verfahren und Vorrichtung zur Überwachung einer Abgasrückführungsanordnung
DE102011011337B3 (de) Verfahren zur Zylindergleichstellung einer Mehrzylinder-Verbrennungskraftmaschine
WO2016041742A1 (de) Verfahren zur erkennung von defekten einspritzdüsen eines verbrennungsmotors
DE102007021283A1 (de) Verfahren und Vorrichtung zur Ermittlung des Verbrennungs-Lambdawerts einer Brennkraftmaschine
WO2013041293A1 (de) Verfahren zur beurteilung eines einspritzverhaltens wenigstens eines einspritz-ventils einer brennkraftmaschine und betriebsverfahren für brennkraftmaschine
WO2020083705A1 (de) Verfahren zur erkennung einer verkokung im einlasstrakt eines verbrennungsmotors
WO2014016321A1 (de) Erkennung einer verkokung im einlasstrakt eines verbrennungsmotors
DE102011081634B4 (de) Verfahren und Vorrichtung zur Diagnose eines Fehlers in einem Abgasrückführungssystem
DE102007007815B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010042852A1 (de) Verfahren zur Überwachung einer Adaption einer Verzugszeit eines Einspritzventils einer Brennkraftmaschine
DE102008005883A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010044165A1 (de) Verfahren zur Bestimmung eines Zusammenhangs zwischen Einspritzdauer und Einspritzmenge bei einem Injektor einer Brennkraftmaschine
DE102015225504A1 (de) Verfahren zur Fehlerkompensation einer Kraftstoffeinspritzmenge beim Betrieb einer Brennkraftmaschine
DE102015207172A1 (de) Verfahren zum Erkennen eines Fehlers bei einer Kraftstoffzuführung einer Brennkraftmaschine
DE102022101290B4 (de) Verfahren zur Kraftstoffbestimmung
EP3810916B1 (de) Verfahren zur ermittlung und/oder zur erkennung einer versottung einer luft-ansaugstrecke zu einer brennkammer eines verbrennungsmotors
DE202013102541U1 (de) Verbrennungsmotor
DE102016225102B4 (de) Verfahren zum Überprüfen wenigstens eines Injektors eines Kraftstoffzumesssystems einer Brennkraftmaschine eines Fahrzeugs
DE10338775A1 (de) Diagnoseeinrichtung für einen Verbrennungsmotor
DE102015217138A1 (de) Verfahren zum Ermitteln einer Ursache eines Fehlers in einem Einspritzsystem einer Brennkraftmaschine
DE102015219526B4 (de) Verfahren und System zum Betreiben einer Brennkraftmaschine
DE102012213389B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102012213387B3 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
R163 Identified publications notified