DE102016216396A1 - Kippsegmentlager - Google Patents

Kippsegmentlager Download PDF

Info

Publication number
DE102016216396A1
DE102016216396A1 DE102016216396.5A DE102016216396A DE102016216396A1 DE 102016216396 A1 DE102016216396 A1 DE 102016216396A1 DE 102016216396 A DE102016216396 A DE 102016216396A DE 102016216396 A1 DE102016216396 A1 DE 102016216396A1
Authority
DE
Germany
Prior art keywords
spring element
section
cross
tilting pad
pad bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016216396.5A
Other languages
English (en)
Inventor
Jochen Doehring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016216396.5A priority Critical patent/DE102016216396A1/de
Priority to JP2019510922A priority patent/JP6894499B2/ja
Priority to PCT/EP2017/070265 priority patent/WO2018041579A1/de
Priority to CN201780066632.XA priority patent/CN109996969B/zh
Priority to US16/329,081 priority patent/US10738823B2/en
Publication of DE102016216396A1 publication Critical patent/DE102016216396A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/166Sliding contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/027Planar, e.g. in sheet form; leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3615Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with means for modifying the spring characteristic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3737Planar, e.g. in sheet form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings

Abstract

Die Erfindung betrifft ein Kippsegmentlager (1) aufweisend: eine Hülse (5), mehrere Kippsegmente (4), welche in der Hülse (5) angeordnet sind, wobei zwischen der Hülse (5) und dem jeweiligen Kippsegment (4) ein zugeordnetes Federelement (3) vorgesehen ist, wobei das Federelement (3) wenigstens zwei Abschnitte mit einer unterschiedlich großen Steifigkeit aufweist durch Variieren der Dicke des Querschnitts (8, 10) des Federelements (3) in Breitenrichtung und/oder Längsrichtung des Federelements (3).

Description

  • Die Erfindung betrifft ein Kippsegmentlager zur Lagerung einer Welle.
  • Stand der Technik
  • Kippsegmentlager sind aus der Art der Luftlager.
  • Aus der DE 10 2010 049 493 A1 ist ein ringförmiges Tragteil bekannt, welches eine Öffnung aufweist, in welchem Lagerelemente angeordnet sind. Die Lagerelemente sind als Kippsegmente ausgebildet. Dabei ist in der Öffnung des Tragteils ein Halteelement angeordnet, welches eine pilzförmige Ausgestaltung aufweist, so dass im Bereich des Halteelements eine oder mehrere Nasen angeordnet sind, welche Hinterschnitte bilden. Diese Hinterschnitte wirken mit einer in das Lagerelement eingebrachten Öffnung zusammen, welche ebenfalls in einer mit den Hinterschnitten des Halteelements korrespondierenden Art so ausgebildet ist, dass in montiertem Zustand die Hinterschnitte mit Abstand von geeigneten Teilen des Lagerelements hintergriffen werden. Das Lagerelement wird beim Einlegen in die Öffnung des Tragteils eingerastet und kann so gegen ein Herausfallen gesichert werden.
  • Offenbarung der Erfindung
  • Die Erfindung offenbart ein Kippsegmentlager mit den Merkmalen des Patentanspruchs 1.
  • Demgemäß ist ein Kippsegmentlager vorgesehen, aufweisend:
    eine Hülse,
    mehrere Kippsegmente, welche in der Hülse angeordnet sind, wobei zwischen der Hülse und dem jeweiligen Kippsegment ein zugeordnetes Federelement vorgesehen ist, wobei das Federelements wenigstens zwei Abschnitte mit einer unterschiedlich großen Steifigkeit aufweist durch Variieren der Dicke des Querschnitts des Federelements in Breitenrichtung und/oder Längsrichtung des Federelements.
  • Vorteile der Erfindung
  • Durch das Ausbilden des Federelements mit wenigstens zwei Abschnitten mit einer unterschiedlichen Steifigkeit kann die Steifigkeit des Federelements gezielt angepasst werden. So kann das Federelement beispielsweise in der Mitte steifer aufgrund einer größeren Dicke ausgebildet sein als an seinen Seiten, so dass das Federelement größere Kräfte durch ein zugeordnetes Kippsegment beim Hochfahren einer in dem Kippsegmentlager gelagerten Welle aufnehmen kann, ohne dass die Welle sich ungewollt in radialer Richtung zu einer Seite verschiebt oder zu stark verschiebt. Insbesondere kann mittels des Federelements und seinen wenigstens zwei unterschiedlich steifen Abschnitten und dem zugeordneten Kippsegment die Position der Welle im Mittelpunkt der Hülse bestimmt werden. Das integrierte Federelement dient dabei als Positionshilfe einschließlich der Federfunktion bei erhöhten Kräften.
  • Bevorzugte Weiterbildungen sind Gegenstand der Unteransprüche.
  • In einer Ausführungsform der Erfindung nimmt die Dicke des Querschnitts des Federelements in Breitenrichtung und/oder Längsrichtung des Federelements von einem Endpunkt des Querschnitts ausgehend zu, insbesondere zur Mitte des Querschnitts hin zu, und anschließend zu dem gegenüberliegenden Endpunkt des Querschnitts wieder ab, insbesondere von der Mitte des Querschnitts hin abnimmt. Dadurch nimmt die Steifigkeit des Federelements zu Mitte hin zu. Die Steifigkeit in der Mitte oder einem Mittenbereich des Federelements kann dabei an den Drehzahlbereich einer durch das Kippsegmentlager zu lagernden Welle derart angepasst sein, dass die Welle sich nicht oder nur in einem vorbestimmten Bereich radial nach außen bewegen kann, in welchem beispielsweise kein unerwünschtes Anstreifen eines mit der Welle verbundenen Laufrads an einem zugeordneten Gehäuse erfolgt.
  • Die Dicke des Querschnitts des Federelements kann in einer Ausführungsform der Erfindung in Breitenrichtung oder Längsrichtung des Federelements von einem Endpunkt des Querschnitts zum gegenüberliegenden Endpunkt des Querschnitts konstant sein. Somit kann die Dicke des Querschnitts sowohl kontinuierlich zunehmen oder auch diskontinuierlich und bei einer diskontinuierlichen Zunahme der Dicke auch wenigstens einen Abschnitt mit einer konstanten Dicke oder Dickenlauf aufweisen. Dadurch ergeben sich zusätzliche Möglichkeiten zum gezielten Einstellen der Steifigkeit in Längs- und Breitenrichtung und des Verlaufs der Steifigkeit des Federelements in Längs- und Breitenrichtung.
  • Die Dicke des Querschnitts nimmt in einer Ausführungsform der Erfindung zumindest in einem Abschnitt des Querschnitts des Federelements in Breitenrichtung und/oder Längsrichtung kontinuierlich zu oder diskontinuierlich zu und/oder die Dicke des Querschnitts des Federelements nimmt in Breitenrichtung und/oder Längsrichtung zumindest in einem Abschnitt des Querschnitts kontinuierlich ab oder diskontinuierlich ab. Durch Abschnitte des Federelements wo die Querschnittsdicke abnimmt, kann das Federelement in diesen Abschnitten weicher oder gezielt die Steifigkeit des Federelements reduziert werden, je nach Funktion und Einsatzzweck.
  • Die Steifigkeit des Federelements nimmt in einer weiteren Ausführungsform der Erfindung von seinen Endkanten, z.B. Längsendkanten, ausgehend zur Mitte hin zu und/oder ab. Die Steifigkeit des Federelements kann dem entsprechend kontinuierlich oder diskontinuierlichen zu und/oder abnehmen und an die entsprechende Funktion und den entsprechenden Einsatzweck gezielt angepasst werden.
  • In einer anderen Ausführungsform der Erfindung kann der Querschnitt des Federelements in Breitenrichtung und/oder Längsrichtung symmetrisch sein und insbesondere wenigstens eine Symmetrieachse aufweisen. Derartige Federelemente sind besonders einfach in ihrer Herstellung durch die symmetrische Gestaltung. Ebenso kann der Querschnitt des Federelements in Breitenrichtung und/oder Längsrichtung auch nicht symmetrisch ausgebildet sein, je nach Funktion und Einsatzzweck.
  • Das Federelement weist bezogen auf die Hülse eine der Hülse gegenüberliegende Außenseite und eine dem Kippsegment gegenüberliegende Innenseite auf, wobei gemäß einer Ausführungsform der Erfindung die Außenseite und/oder Innenseite des Federelements nach außen gewölbt oder konkav ist.
  • In einer weiteren Ausführungsform der Erfindung ist die Außenseite oder Innenseite des Federelements plan. Eine solche plane Ausgestaltung einer Seite des Federelements hat den Vorteil, dass Fertigungskosten reduziert werden können.
  • Die Außenseite und/oder Innenseite des Federelements ist in einer anderen Ausführungsform der Erfindung nach innen gewölbt oder konvex. Dies ist von Vorteil hinsichtlich der Fertigung und der Montage, je nachdem wo die Kippsegmente eingebaut werden
  • In einer Ausführungsform der Erfindung weist das Federelement eine progressive oder eine degressive Federkennlinie auf. Auf diese Weise kann der Anwendungsbereich des Federelements zusätzlich erweitert werden.
  • Gemäß einer Ausführungsform der Erfindung ist ein Spalt zwischen der Innenseite der Hülse und der Außenseite des jeweiligen Federelements durch eine zugeordnete Einstelleinrichtung einstellbar, welche mit dem Federelement gekoppelt ist. Das Federelement kann dabei mit einer entsprechenden Öffnung versehen werden zum Koppeln des Federelements mit der Einstelleinrichtung, beispielsweise durch Auffädeln oder Aufrasten.
  • In einer weiteren Ausführungsform der Erfindung ist wenigstens eines der Kippsegmente des Kippsegmentlagers aus Graphit oder einem anderen geeigneten Material, welches im Betrieb eine möglichst geringe Reibung aufweist, ausgebildet. Ebenso kann das Kippsegment mit einer Beschichtung aus einem geeigneten Material versehen sein, welches im Betrieb eine möglichst geringe Reibung aufweist.
  • Die Federelement des Kippsegmentlagers sind in Ausführungsformen der Erfindung beispielsweise aus Metall, Kunststoff und/oder einem Faserverbundwerkstoff hergestellt. Ein Federelement aus Metall kann beispielsweise als ein aus dem vollen gefrästes Metallfederelement ausgebildet sein.
  • Kurze Beschreibung der Zeichnungen
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Figuren erläutert. Es zeigen:
  • 1 eine teilweise transparente und teilweise geschnittene Perspektivansicht einer Ausführungsform eines erfindungsgemäßen Kippsegmentlagers zur Lagerung einer Welle;
  • 2 eine schematische und stark vereinfachte Schnittansicht des erfindungsgemäßen Kippsegmentlagers gemäß 1, wobei ein Federelement in einer Ausgangsposition vor dem Einbau in das Kippsegmentlager gezeigt ist;
  • 3 eine stark vereinfachte Ansicht des Federelements gemäß 2, wobei das Federelement in einer eingebauten Position gezeigt ist;
  • 4 das Kippsegmentlager gemäß 2, wobei alle Federelemente gezeigt und in der Einbauposition in dem Kippsegmentlager dargestellt sind;
  • 5 eine schematische und stark vereinfachte Schnittansicht einer weiteren Ausführungsform eines Federelements des erfindungsgemäßen Kippsegmentlagers
  • 6 eine schematische und stark vereinfachte Schnittansicht einer weiteren Ausführungsform eines Federelements des erfindungsgemäßen Kippsegmentlagers;
  • 7 eine schematische und stark vereinfachte Schnittansicht noch einer weiteren Ausführungsform eines Federelements des erfindungsgemäßen Kippsegmentlagers; und
  • 8 eine schematische und stark vereinfachte Schnittansicht einer anderen Ausführungsform eines Federelements des erfindungsgemäßen Kippsegmentlagers.
  • Ausführungsformen der Erfindung
  • In 1 ist eine teilweise transparente und teilweise geschnittene Perspektivansicht einer Ausführungsform eines erfindungsgemäßen Kippsegmentlagers 1 zur Lagerung einer Welle 2 gezeigt. Weiter zeigt 2 eine schematische und stark vereinfachte Schnittansicht des erfindungsgemäßen Kippsegmentlagers 1 gemäß 1, wobei ein Federelement 3 in einer Ausgangsposition vor dem Einbau in das Kippsegmentlager 1 gezeigt ist. 3 zeigt das Federelement 3 gemäß 2 wiederum in seiner eingebauten Position in dem Kippsegmentlager, ohne jedoch die Weiteren Bauteile des Kippsegmentlagers aus Gründen der Übersichtlichkeit. Des Weiteren zeigt 4 ebenfalls eine schematische und stark vereinfachte Schnittansicht des erfindungsgemäßen Kippsegmentlagers 1 gemäß 1, wobei das dem jeweiligen Kippsegment 4 zugeordnete Federelement 3, wie zuvor in den 2 und 3 gezeigt, in der eingebauten Position dargestellt ist.
  • Aufgrund von Fertigungstoleranzen werden bisher Graphitkippsegmente hinterfedert. Dabei werden herkömmliche Blattfedern verwendet, welche aus einem Metallblech hergestellt sind und eine durchgehend konstante Dicke aufweisen. So kann es beispielsweise bei Turboladern dazu kommen, dass der Spalt entsprechend groß ist zwischen dem Gehäuse und dem Turbinen- bzw. Verdichterrad, welche auf einer gemeinsamen Welle befestigt sind, so dass der Wirkungsgrad des Turbolagers gering bleibt. Bei einem zu kleinen Abstand kann es dagegen jeweils zu einem ungewollten Anstreifen des Turbinen- bzw. Verdichterrads am Gehäuse des Turboladers kommen, was wiederum zu einem anschließenden vollständigen Ausfall des Turboladers führen kann.
  • Gemäß der Erfindung wird daher ein Kippsegmentlager 1 bereitgestellt, bei welchem das jeweilige Federelement 3 zum Hinterfedern eines zugeordneten Kippsegments 4 des Kippsegmentlagers 1 wenigstens zwei Abschnitte mit einer unterschiedlich großen Steifigkeit aufweist. Dazu variiert die Dicke des Federelements und genauer die Dicke des Querschnitts des Federelements in Breitenrichtung und/oder Längsrichtung des Federelements, so dass das Federelement wenigstens zwei Abschnitte mit einer unterschiedlich großen Steifigkeit aufweist. Auf diese Weise kann die Federkennlinie des Federelements gezielt an das Kippsegmentlager 1 und das durch das Federelement 3 zu hinterfedernde Kippsegment 4 angepasst werden und beispielsweise einen progressiven oder degressiven Kennlinienverlauf aufweisen, je nach Funktion und Einsatzzweck, wie im Folgenden anhand der 1 bis 4 sowie den nachfolgenden 5 bis 9 detailliert erläutert wird.
  • Gemäß dem erfindungsgemäßen Kippsegmentlager 1 können auf diese Weise die Herstellungskosten bei dem Kippsegmentlager 1 verringert werden, da Fertigungstoleranzen durch eine einstellbare Federkennlinie des jeweiligen Federelements 3 des Kippsegmentlagers 1 korrigiert werden können. Dadurch kann die durch das Kippsegmentlager 1 gelagerte Welle 2 insbesondere in radialer Richtung besser positioniert werden und beispielsweise bei einem Turbolager ein unerwünschtes Anstreifen dessen Verdichter- bzw. Turbinenrads am zugeordneten Gehäuse verhindert werden. Ein weiterer Vorteil des erfindungsgemäßen Kippsegmentlagers 1 liegt in der flexiblen Anpassung der Spaltgeometrie zwischen Welle 2 und jeweiligem Kippsegment 4, wodurch das Tragverhalten des Kippsegmentlagers 1 gezielt beeinflusst werden kann. Des Weiteren können die kombiniert gefederten und geführten Kippsegmente 4 vor allem beim Einbau und Ausrichten der Welle 2 aber auch zur Erweiterung von Steifigkeit und/oder der Dämpfung im Betrieb verwendet werden. Außerdem können neben Graphit andere Kippsegmentmaterialien verwendet werden, welche beispielsweise gute Notlaufeigenschaften, d.h. eine geringe oder möglichst geringe Reibung aufweisen. Die Kippsegmente können mit einer Beschichtung, z.B. vorne an dem Kippsegment, aus einem Gleitlack, einer C-Schicht oder Kohlenstoffschicht usw. versehen sein. Zusätzlich oder alternativ können die Kippsemente mit einer Mikrostruktur an der Außenseite versehen sein, z.B. einer Fischhautstruktur usw.. Das jeweilige Federelement 3, sowie nachfolgend in den 59 weiteren Ausführungsbeispiele für ein Federelement können beispielsweise aus Metall, Kunststoff, und/oder Faserverbundwerkstoff usw. hergestellt werden. Die Federelemente aus Metall können beispielsweise durch Stanzen, Fräsen Sintern, Pressen, ein geeignetes Fügeverfahren usw. hergestellt werden..
  • Das erfindungsgemäße Kippsegmentlager 1 gemäß der 1 bis 4 weist eine Hülse 5 auf, in welcher mehrere Kippsegmente 4, beispielsweise drei Kippsegmente 4 aus Graphit oder einem Graphitmaterial, angeordnet sind. Zwischen der Innenseite der Hülse 5 und der Außenseite des jeweiligen Kippsegments 4 ist das jeweilige Federelement 3 angeordnet. Die Dicke des Federelements 3 ist dabei nicht durchgehend über seine gesamte Läng und Breite konstant sondern variiert zumindest entlang seiner Länge oder Breite. Wie insbesondere in den 2, 3 und 4 gezeigt ist, nimmt die Dicke des Querschnitts 8 des Federelements 3 beispielsweise in Breitenrichtung B ausgehend von seinem ersten Endpunkt 7 auf der Endkante 6 des Federelements 3 in Richtung der Mitte oder zur Mitte des Federelements 3 hin zu und von dort aus zu dem gegenüberliegenden Endpunkt 7 auf der anderen Endkante 6 des Federelements 3 wieder ab, so dass der Querschnitt des Federelements 3 in der Mitte dicker und damit steifer ist als im Bereich seiner Endpunkte 7. Wie in 2 gezeigt ist, ist der Querschnitt des Federelements 3 in Breitenrichtung B beispielsweise spiegelsymmetrisch zu seiner Mittelachse 9. Die Dicke des Querschnitts 10 des Federelements 3 in Längsrichtung L, wie in 3 gezeigt ist, ist dagegen beispielsweise konstant.
  • Das Federelement 3 weist in dem Ausführungsbeispiel in den 1 bis 4 z.B. eine nach außen oder konvex gewölbte Außenseite auf und eine plane oder ebene Innenseite. Der umgekehrte Fall ist ebenso möglich. Die Außenseite des Federelements 3 ist dabei die Seite mit welcher das Federelement 3 in seiner Einbauposition in dem Kippsegmentlager 1 der Innenseite der Hülse 5 gegenüberliegt. Die Innenseite des Federelements 3 ist wiederum die Seite mit welcher das Federelement 3 in seiner Einbauposition in dem Kippsegmentlager 1 der Außenseite der in dem Kippsegmentlager 1 gelagerten Welle 2 gegenüberliegt. Dies gilt für alle Ausführungsformen der Erfindung.
  • Ebenso können auch die Außenseite und Innenseite des Federelements 3 nach außen gewölbt oder konvex ausgebildet sein, wie in den nachfolgenden 5 und 8. Grundsätzlich kann auch eine der Seiten nach außen gewölbt oder konvex und die andere Seite nach innen gewölbt oder konkav ausgebildet sein, wie in nachfolgender 6 gezeigt ist.
  • Weitere Varianten für das Ausbilden des Federelements 3 neben den 5 und 6 sind in den nachfolgenden 7, 8 und 9 gezeigt.
  • Zum Einstellen der Vorspannung des jeweiligen Federelements 3 wird der Spalt zwischen der Innenseite der Hülse 5 und der Außenseite des jeweiligen Federelements 3 eingestellt. Das Einstellen des Spalts erfolgt dabei durch eine Einstelleinrichtung 11, welche mit dem jeweiligen Federelement 3 beispielsweise durch Verrasten gekoppelt oder verbunden ist, wie in 1 gezeigt ist. In der Darstellung in 2 ist lediglich eine Einstelleinrichtung für eines der Kippsegmente und sein Federelement stark vereinfacht und rein schematisch mit einer gestrichelten Linie angedeutet. In 4 ist die jeweilige Einstelleinrichtung des zugeordneten Federelements und Kippsegments aus Gründen der Übersichtlichkeit nicht dargestellt.
  • Bei der in den 1 gezeigten Ausgestaltung weist die Einstelleinrichtung 11 beispielsweise ein Stiftelement 12 mit einem Kopf 13 an einem ersten oder inneren Ende auf, wobei das Stiftelement 12 mit einem Außengewinde versehen ist. Dabei kann eine entsprechende Schraube das Stiftelement 12 mit dem Kopf 13 bilden. Das zugeordnete Kippsegment 4 weist, wie in 1 gezeigt ist, auf seiner Außenseite eine Vertiefung 14 auf, in welche der Kopf 13 des Stiftelements 12 aufnehmbar ist. Dadurch kann Bauraum eingespart werden. Eine derartige Vertiefung 14 in dem Kippsegment 4 ist aber lediglich optional. In den vereinfachten Darstellungen in den 2 und 4 ist eine derartige Vertiefung in den Kippsegmenten nicht dargestellt aus Gründen der Übersichtlichkeit.
  • Des Weiteren weist die Einstelleinrichtung 11 beispielsweise eine Mutter 15 mit einem entsprechenden Innengewinde auf, welche an einem zweiten oder äußeren Ende des Stiftelements 12 aufgeschraubt ist. Das Stiftelement 12 ist in einer Durchgangsbohrung 16 der Hülse 5 aufgenommen, wobei der Kopf 13 des Stiftelements 12 dabei in der Hülse 4 und die auf das Stiftelement 12 aufgeschraubte Mutter 15 außen an der Hülse 4 angeordnet ist. Die Hülse 4 weist dabei wahlweise eine zusätzliche Vertiefung 17 an der Außenseite auf, wie in den 1 gezeigt ist, in welcher die Mutter 15 aufnehmbar, beispielsweise bündig aufnehmbar, ist. Je nach Funktion und Einsatzzweck kann eine derartige Vertiefung 17 auf der Außenseite der Hülse 4 zur Aufnahme der Mutter 15 auch entfallen. In den vereinfachten Darstellungen in den 2 und 4 ist eine derartige Vertiefung in der Hülse nicht dargestellt aus Gründen der Übersichtlichkeit.
  • Das Federelement 3 kann derart ausgestaltet sein, dass es ein Loch oder eine Bohrung aufweist, wobei das Federelement 3 mit seinem Loch oder seiner Bohrung auf das Stiftelement 12 der Einstelleinrichtung 11 aufgefädelt wird, bevor die Einstelleinrichtung 11 anschließend mit dem Federelement 3 zusammen in der Hülse 4 montiert wird. Ebenso kann das Federelement 3 aber auch, wie in 1 gezeigt ist, auf das Stiftelement 12 aufrastbar oder aufclipsbar ausgebildet sein. Dazu kann das Federelement 3 derart ausgebildet sein, dass es eine Durchgangsöffnung 18 aufweist, welche beispielsweise kreisförmig ausgebildet ist, wenigstens einen oder mehrere flexible Rastabschnitte 19 aufweist, welche entlang des Rands der Durchgangsöffnung 18 verteilt sind. Die Durchgangsöffnung 18 mit ihren flexiblen Rastabschnitten 19 ist dabei ausreichend groß dimensioniert, um über den Kopf 13 des Stiftelements 12 aufgeschoben zu werden, wobei die flexiblen Rastabschnitte 18 dabei beim Durchführen des Kopfes 13 zunächst nach außen gedrückt werden bevor sie anschließend zurückfedern. Die durch die äußeren Enden bzw. Endkanten der Rastabschnitte 18 gebildete Rastabschnitt-Öffnung 20 weist dabei einen Durchmesser auf der z.B. gleich oder größer als der Außendurchmesser des Stiftelements 12 und kleiner als der Außendurchmesser des Kopfes 13 des Stiftelements 12 in 1 und dem entsprechend auch kleiner als der Durchmesser der Durchgangsöffnung 18 ist. Dadurch kann das Federelement 3 über den Kopf 13 des Stiftelements 12 in 1 aufgeschoben werden und die Rastabschnitte 18 dabei zur Seite drücken. Nach dem Passieren des Kopfes 13 federn die Rastabschnitte 18 zurück, so dass das Federelement 3 nicht ungewollt von dem Stiftelement 12 herunterrutschen kann, sondern durch dessen Kopf 13 gehalten wird. Für ein besseres Verrasten kann das Federelement 3 dabei im Bereich der Rastabschnitte 18 gegebenenfalls mit einer geringeren Dicke ausgebildet werden als die ansonsten aufgedickte Mitte des Federelements 3.
  • Zum Einstellen des Spalts zwischen der Innenseite der Hülse 5 und der Außenseite des Federelements 3 und damit der Federvorspannung des Federelements 3 wird das Federelement 3 durch die Einstelleinrichtung 11, welche mit dem Federelement gekoppelt ist, in Richtung der Innenseite der Hülse 5 oder entgegen der Innenseite der Hülse 5 bewegt.
  • In dem in 1 gezeigten Ausführungsbeispiel der Einstelleinrichtung 11 wird die Mutter 15 entlang des Gewindeabschnitts des Stiftelements 12 in Richtung der Hülse 5 geschraubt und der Abstand oder Spalt zwischen der Außenseite des Federelements 3 und der Innenseite der Hülse 5 und dem entsprechend die Vorspannung des Federelements 3 eingestellt.
  • Dadurch, dass das Federelement 3 dabei wenigstens zwei Abschnitte mit einer unterschiedlich großen Steifigkeit aufweist durch Variieren der Dicke des Federelements in Breitenrichtung und/oder Längsrichtung, kann die Federkennlinie des Federelements 3 und damit der Spalt zwischen der Außenseite des Federelements 3 und der Innenseite der Hülse 5 gezielt eingestellt und an einen jeweiligen Einsatzzweck z.B. bei einer Maschine mit sehr hohen Drehzahlen oder dagegen niedrigen Drehzahlen angepasst werden. Beispielweise weist das Federelement 3 in den 14 und nachfolgenden 59 aufgrund der größeren Dicke in einem Mittenbereich eine größere Federsteifigkeit in diesem Bereich auf als im Bereich seiner Längskanten auf, wo die Dicke des Federelements 3 geringer ist als in dem Mittenabschnitt. Dadurch wird bewirkt, dass bei einem Hochdrehen der durch das Kippsegmentlager 1 gelagerten Welle 2, das jeweilige Kippsegment 4 eine größere Kraft auf das zugeordnete Federelement 3 aufbringen kann, ohne dass das Kippsegment 4 und mit ihm die Welle 2 sich ungewollt zu weit nach außen in Richtung der Innenseite der Hülse 5 bewegen kann, was ansonsten zu einem Streifen eines mit der Welle 2 verbundenen Laufrads an einem zugeordneten Gehäuse führen könnte. Durch den verdickten Abschnitt oder Bereich ist das Federelement 3 in diesem verdickten Abschnitt oder Bereich steifer und kann eine größere Kraft durch das Kippsegment 4 bei Bedarf aufnehmen. Das Federelement 3 wird dabei beim Hochdrehen der Welle 2 oder bei hohen Drehzahlen der Welle 2 in eingebautem Zustand, wie in den 3 und 4 gezeigt ist, weniger stark durch den Druck des zugeordneten Kippsegments 4 nach außen gebogen, wodurch die durch das Kippsegmentlager 1 gelagert Welle 2 sich entsprechend weniger radial nach außen mit dem Kippsegment 4 bewegen kann. Auf diese Weise kann ein ungewolltes Anstreifen eines mit der Welle 2 verbundenen Laufrads an einem zugeordneten Gehäuse verhindert werden. Die Dicke des Federelements 3 und insbesondere die Position, die Höhe der Dicke, der Dickenverlauf usw. der wenigstens zwei Querschnittsbereiche unterschiedlicher Dicke des Federelements kann gezielt an die jeweilige Anwendung des Kippsegmentlagers 1 und die Drehzahlbereiche der Welle 2, sowie Betriebsbedingungen des Kippsegmentlagers 1 und der Welle 2, die durch das Kippsegmentlager 1 gelagert wird, wie z.B. die Betriebstemperatur usw., angepasst oder hierfür geeignete ausgelegt werden.
  • In 3 ist, wie zuvor beschrieben eine stark vereinfachte Ansicht des Federelements 3 in eingebautem Zustand gemäß 2 gezeigt.
  • Da der Querschnitt des jeweilige Federelements 3 in Breitenrichtung B im Bereich seiner beiden Endpunkte 6 auf den Endkanten 7 dünner als in der Mitte ausgebildet ist, ist das Federelement 3 im Bereich seiner Längs-Endkanten 7 weich und weist dem entsprechend eine geringere Federsteifigkeit als in der Mitte auf. Mit in Breitenrichtung B z.B. bis zur Mitte hin zunehmender Querschnittsdicke des Federelements 3, wie durch die Punkte P1 und P2 sowie P1* und P2* auf dem Federelement 3 in 3 angedeutet wird, nimmt dem entsprechend die Federsteifigkeit des Federelements 3 zu, wie mit den beiden Pfeile S und S* in 3 angedeutet ist. Der Pfeil F stellt dabei die Kraft des jeweiligen Kippsegments beim Hochdrehen der Welle dar, welche durch das Kippsegmentlager gelagert wird. Dabei wird der sog. Biegebalken verkürzt.
  • In den nachfolgenden 5 bis 9 sind schematische, stark vereinfachte, nicht maßstäbliche und transparente Perspektivansichten verschiedener Ausführungsbeispiele des Federelements 3 gezeigt, wie es für das jeweilige Kippsegment 4 des Kippsegmentlagers 1, wie beispielhaft zuvor in den 1, 2 und 4 gezeigt verwendet werden kann. Die jeweilige Öffnung, z.B. Durchgangsbohrung 16 oder Durchgangsöffnung 18 mit Rastabschnitten 19, des Federelements 3 zur Verbindung mit der zuvor beschriebenen Einstelleinrichtung 11 zum Einstellen der Vorspannung des Federelements ist in den 5 bis 9 aus Gründen der Übersichtlichkeit nicht dargestellt.
  • Wie in 5 gezeigt ist, kann der Querschnitt des Federelement 3 in Breitenrichtung B auf wenigstens einer Seite von seinen beiden Endpunkten 6 an den Längs-Endkanten 7 in seiner Dicke hin zunehmen, beispielsweise kontinuierlich bis zur Mitte des Federelements 3 hin zunehmen, wie mit einer durchgezogenen Linie für eine Seite des Federelements 3, z.B. die Außenseite oder die der Hülse gegenüberliegenden Seite des Federelements, und mit einer gestrichelten Linie für die andere Seite des Federelements 3, z.B. die Innenseite oder die der Welle gegenüberliegenden Seite des Federelements angedeutet ist. Beide Seiten des Federelements können in ihrer Dicke von den Endkanten zur Mitte hin zunehmen, so dass beide Seiten nach außen gewölbt oder konvex sind, wie in 5 angedeutet ist, oder eine Seite kann eben oder plan ausgebildet sein, wie in 6 gezeigt ist. Der Querschnitt des Federelements in Längsrichtung kann dagegen eine konstante Dicke aufweisen, wie in 5 und 6 gezeigt ist. Das Federelement kann beispielsweise symmetrisch ausgebildet sein und z.B. die beiden Endpunkte 7 eine Symmetrieachse bilden und/oder die Mittelachse 9 des Querschnitts des Federelements. Gleiches gilt für die Mittelachse 9 in nachfolgender 6, diese kann ebenfalls eine Symmetrieachse des Federelements 3 bilden.
  • In 6 weist das Federelement 3, wie zuvor beschrieben eine gewölbte Seite und eine ebene oder plane Seite auf. Die Dicke des Querschnitts des Federelements nimmt in Breitenrichtung B bis zur Mitte oder Mittelachse 9 zu und anschließend wieder ab. Die Zu- und/oder Abnahme der Dicke des Federelements in Breitenrichtung kann zumindest teilweise kontinuierlich oder diskontinuierlich sein. Die Dicke des Querschnitts in Längsrichtung L ist dagegen in dem Ausführungsbeispiel in 6 konstant.
  • In dem Ausführungsbeispiel des Federelements in 7 ist das Federelement 3 auf einer Seite nach außen gewölbt oder konvex und auf der anderen Seite nach innen gewölbt oder konkav. Die Dicke des Querschnitts des Federelements 3 in Breitenrichtung B nimmt beispielsweise ebenfalls bis zur Mitte hin zu und anschließend ab. Dagegen ist die Dicke des Querschnitts des Federelements 3 in Längsrichtung L beispielsweise konstant.
  • In dem in 8 gezeigten Ausführungsbeispiel des Federelements 3 nimmt die Dicke des Querschnitts des Federelement 3 in Breitenrichtung B von einem Endpunkt 6 des Querschnitts auf der Längs-Endkante 7 des Federelements bis zur Mittenlachse 9 diskoninuierlich zu und dann bis zu dem gegenüberliegenden Endpunkt 6 wieder diskontinuierlich ab. In dem Ausführungsbeispiel in 8 weist das Federelement 3 dem entsprechend einen Querschnittsabschnitt in Breitenrichtung B auf, in welchem die Dicke kontinuierlich zunimmt. In dem darauf folgenden zweiten Abschnitt verläuft die Dicke konstant. In dem anschließenden dritten Abschnitt nimmt die Dicke wieder kontinuierlich zu bis zu dem darauffolgenden vierten Abschnitt, in welchem die Dicke konstant bleibt bis zur Mittelachse 9 und in dem Ausführungsbeispiel in 8 Symmetrieachse des Federelements 3. Wie mit einer gestrichelten Linie in 8 angedeutet ist, kann auch die Achse durch die beiden Endpunkte 6 eine Symmetrieachse des Federelements bilden.
  • In einem weiteren Ausführungsbeispiel wie in 8 mit einer gepunkteten Linie angedeutet ist, kann der vierte Abschnitt nicht ganz bis zur Mittelachse des Querschnitts des Federelements 3 verlaufen, sondern sich ein fünfter Abschnitt anschließen, in welchem die Dicke des Querschnitts des Federelements 3 bis zur Mittelachse 9 abnimmt, beispielsweise kontinuierlich abnimmt. Die Dicke des Querschnitts des Federelements 3 in Längsrichtung L ist dagegen beispielsweise konstant.
  • Das jeweilige Federelement, wie es beispielhaft in den 18 zuvor gezeigt wurde, kann derart in seiner Dicke und damit Steifigkeit variiert werden, dass das Federelement eine progressive oder degressive Federkennlinie aufweist, je nach Funktion und Einsatzzweck. Dies gilt für alle Ausführungsformen der Erfindung.
  • Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend vollständig beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar. Die in den 1 bis 8 gezeigten Ausführungsbeispiele sind miteinander kombinierbar, insbesondere einzelne Merkmale davon.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102010049493 A1 [0003]

Claims (14)

  1. Kippsegmentlager (1) aufweisend: eine Hülse (5), mehrere Kippsegmente (4), welche in der Hülse (5) angeordnet sind, wobei zwischen der Hülse (5) und dem jeweiligen Kippsegment (4) ein zugeordnetes Federelement (3) vorgesehen ist, wobei das Federelement (3) wenigstens zwei Abschnitte mit einer unterschiedlich großen Steifigkeit aufweist durch Variieren der Dicke des Querschnitts (8, 10) des Federelements (3) in Breitenrichtung und/oder Längsrichtung des Federelements (3).
  2. Kippsegmentlager nach Anspruch 1, dadurch gekennzeichnet, dass die Dicke des Querschnitts (8, 10) des Federelements (3) in Breitenrichtung und/oder Längsrichtung des Federelements (3) von einem Endpunkt (6) des Querschnitts ausgehend zunimmt, insbesondere zur Mitte (9) des Querschnitts (8, 10) hin zunimmt, und anschließend zu dem gegenüberliegenden Endpunkt (6) des Querschnitts wieder abnimmt, insbesondere von der Mitte (9) des Querschnitts (8, 10) in abnimmt.
  3. Kippsegmentlager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dicke des Querschnitts (8, 10) des Federelements (3) in Breitenrichtung oder Längsrichtung des Federelements (3) von einem Endpunkt (6) des Querschnitts (8, 10) zum gegenüberliegenden Endpunkt (6) des Querschnitts konstant ist.
  4. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke des Querschnitts (8, 10) zumindest in einem Abschnitt des Querschnitts des Federelements (3) in Breitenrichtung und/oder Längsrichtung kontinuierlich zunimmt oder diskontinuierlich zunimmt und/oder die Dicke des Querschnitts (8, 10) des Federelements (3) in Breitenrichtung und/oder Längsrichtung zumindest in einem Abschnitt des Querschnitts kontinuierlich abnimmt oder diskontinuierlich abnimmt.
  5. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Steifigkeit des Federelements (3) von seinen Endkanten (7) ausgehend zur Mitte (9) hin zunimmt und/oder abnimmt, wobei die Steifigkeit kontinuierlich oder diskontinuierlichen zunimmt und/oder abnimmt.
  6. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Querschnitt (8, 10) des Federelements (3) in Breitenrichtung und/oder Längsrichtung symmetrische ist und insbesondere wenigstens eine Symmetrieachse (9) aufweist oder der Querschnitt (8, 10) des Federelements in Breitenrichtung und/oder Längsrichtung nicht symmetrisch ist.
  7. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Federelement (3) bezogen auf die Hülse (5) eine der Hülse gegenüberliegende Außenseite und eine dem Kippsegment (4) gegenüberliegende Innenseite aufweist, wobei die Außenseite und/oder Innenseite des Federelements (3) nach außen gewölbt oder konkav ist.
  8. Kippsegmentlager nach Anspruch 7, dadurch gekennzeichnet, dass die Außenseite oder Innenseite des Federelements (3) plan ist.
  9. Kippsegmentlager nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die die Außenseite und/oder Innenseite des Federelements (3) nach innen gewölbt oder konvex ist.
  10. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Federelement (3) eine progressive oder eine degressive Federkennlinie aufweist.
  11. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Spalt zwischen der Innenseite der Hülse (5) und der Außenseite des jeweiligen Federelements (3) durch eine zugeordnete Einstelleinrichtung (11) einstellbar ist, welche mit dem Federelement (3) gekoppelt ist.
  12. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines der Kippsegmente (4) des Kippsegmentlagers (1) aus Graphit und/oder Stahl hergestellt ist.
  13. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass, das Kippsegmentlager (1) zumindest in einem Abschnitt seiner Außenseite mit einer zusätzlichen Beschichtung und/oder Oberflächenstrukturierung versehen ist, wobei als zusätzliche Beschichtung insbesondere wenigstens eine C-Schicht, eine Messingschichtung und/oder ein Gleitlack vorgesehen ist, und wobei als Oberflächenstrukturierung insbesondere eine Mikrostrukturierung oder eine durch einen Schleifprozess hergestellte Oberfläche vorgesehen ist.
  14. Kippsegmentlager nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Federelemente (3) aus Metall, Kunststoff und/oder einem Faserverbundwerkstoff hergestellt sind, wobei das Federelement (3) aus Metall eine aus dem vollen gefrästes Metallfederelement ist.
DE102016216396.5A 2016-08-31 2016-08-31 Kippsegmentlager Pending DE102016216396A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102016216396.5A DE102016216396A1 (de) 2016-08-31 2016-08-31 Kippsegmentlager
JP2019510922A JP6894499B2 (ja) 2016-08-31 2017-08-10 ティルティングパッド軸受
PCT/EP2017/070265 WO2018041579A1 (de) 2016-08-31 2017-08-10 Kippsegmentlager
CN201780066632.XA CN109996969B (zh) 2016-08-31 2017-08-10 可倾瓦轴承
US16/329,081 US10738823B2 (en) 2016-08-31 2017-08-10 Tilting-pad bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016216396.5A DE102016216396A1 (de) 2016-08-31 2016-08-31 Kippsegmentlager

Publications (1)

Publication Number Publication Date
DE102016216396A1 true DE102016216396A1 (de) 2018-03-01

Family

ID=59593073

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016216396.5A Pending DE102016216396A1 (de) 2016-08-31 2016-08-31 Kippsegmentlager

Country Status (5)

Country Link
US (1) US10738823B2 (de)
JP (1) JP6894499B2 (de)
CN (1) CN109996969B (de)
DE (1) DE102016216396A1 (de)
WO (1) WO2018041579A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132553A (zh) * 2019-03-25 2019-08-16 沈阳透平机械股份有限公司 可倾瓦轴承瓦支撑刚度的确定方法、装置及计算机设备
DE102021124856A1 (de) 2021-09-27 2023-03-30 Voith Patent Gmbh Kippsegmentradiallager und Wellenanordnung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016216395A1 (de) * 2016-08-31 2018-03-01 Robert Bosch Gmbh Kippsegmentlager

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049493A1 (de) 2010-10-27 2012-05-03 Voith Patent Gmbh Kippsegmentlager

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1595744A (en) 1924-09-08 1926-08-10 Westinghouse Electric & Mfg Co Flexible bearing
DE1575519A1 (de) * 1951-01-28 1972-03-23 Kugelfischer G Schaefer & Co Hochbelastbare Gleitlagerstuetze
US3238072A (en) * 1963-06-12 1966-03-01 Rockwell Standard Co Method of making taper leaf springs
US3434762A (en) * 1963-07-11 1969-03-25 Garrett Corp Hydrodynamic shaft bearing
US3215480A (en) * 1963-08-29 1965-11-02 David J Marley Hydrodynamic foil bearings with bearing foil retaining means
GB1243183A (en) * 1967-10-16 1971-08-18 Glacier Co Ltd Improvements in or relating to thrust or journal bearings
US3900357A (en) * 1970-05-04 1975-08-19 Edgewater Corp Composite material springs and manufacture
US3711169A (en) * 1971-12-15 1973-01-16 Wankesha Bearings Corp Tilting-flexible pad journal bearing
FR2187060A5 (de) * 1972-05-29 1974-01-11 Nord Ressorts
JPS5316858B2 (de) * 1973-04-24 1978-06-03
GB1562511A (en) * 1976-06-12 1980-03-12 Rolls Royce Fluid bearings
US4099799A (en) 1977-04-28 1978-07-11 Nasa Cantilever mounted resilient pad gas bearing
SU709858A1 (ru) * 1978-02-09 1980-01-15 Предприятие П/Я М-5727 Радиальный сегментный подшипник
EP0068387B1 (de) * 1981-06-29 1986-03-26 Shimadzu Corporation Fluidfilm-Lager mit Folien
US4688778A (en) * 1982-10-01 1987-08-25 Isosport Verbundbauteile Ges.M.B.H. Plastic leaf spring
JPS60196425A (ja) * 1984-03-16 1985-10-04 Daido Metal Kogyo Kk 軸受すきまを一定に維持されたパツド型ジヤ−ナル軸受装置
US4668108A (en) * 1985-03-22 1987-05-26 General Electric Company Bearing having anisotropic stiffness
AT392525B (de) * 1985-11-14 1991-04-25 Kofler Walter Dr Blattfeder aus faser-kunststoff-verbundwerkstoff
US4767222A (en) * 1987-06-11 1988-08-30 Williams International Corporation Compliant hydrodynamic gas lubricated bearing
FR2636690B1 (fr) * 1988-09-20 1992-05-22 Abg Semca Palier a film fluide et son procede de realisation
US4927275A (en) 1988-09-23 1990-05-22 The Torrington Company Equalizing hydrodynamic bearing
US4913563A (en) * 1988-11-07 1990-04-03 Westinghouse Electric Corp. Hydrodynamic pivoted pad bearing assembly for a reactor coolant pump
JPH0727132Y2 (ja) 1990-05-23 1995-06-21 新神戸電機株式会社 樹脂含浸基材の乾燥装置
US5205652A (en) * 1992-08-18 1993-04-27 Williams International Corporation Nonlinear spring supported hydrodynamic bearing
US5266066A (en) * 1992-08-21 1993-11-30 Borg-Warner Automative, Inc. Spring blade chain tensioner
CA2082097A1 (en) * 1992-11-04 1994-05-05 James E. Ross Stirrup assembly for securing a cargo having upper and lower pairs of opposed, ball headed studs extending laterally from each side of a cylindrical, securing stud
JPH06307434A (ja) * 1993-04-20 1994-11-01 Mitsubishi Heavy Ind Ltd 動圧気体軸受
JPH0727132A (ja) * 1993-07-09 1995-01-27 Mitsubishi Heavy Ind Ltd ジャーナル軸受
JP3337296B2 (ja) * 1993-11-30 2002-10-21 三菱重工業株式会社 動圧軸受
JPH08312641A (ja) * 1995-05-15 1996-11-26 Mitsubishi Heavy Ind Ltd 動圧気体軸受
AU733160B2 (en) * 1996-04-18 2001-05-10 Duramax, Inc. Grooved staved bearing assembly
AU2002220250A1 (en) 2000-11-03 2002-05-15 Capstone Turbine Corporation Bidirectional radial foil bearing
US6698930B2 (en) * 2000-12-01 2004-03-02 Mitsubishi Heavy Industries, Ltd. Foil gas bearing
US7066651B2 (en) * 2004-07-09 2006-06-27 Rotating Machinery Technology Inc Disc spring centering device for squeeze film dampers
JP2006207632A (ja) * 2005-01-26 2006-08-10 Kubota Corp すべり軸受装置およびポンプ装置
WO2008102921A1 (en) * 2007-02-21 2008-08-28 Machinenow Co., Ltd. Vibration isolator using body springs
US8083413B2 (en) * 2007-10-23 2011-12-27 General Electric Company Compliant hybrid gas journal bearing using integral wire mesh dampers
JP2009228717A (ja) * 2008-03-20 2009-10-08 Tokai Rubber Ind Ltd バウンドストッパ
JP2010078079A (ja) * 2008-09-26 2010-04-08 Tokai Rubber Ind Ltd エンジンマウント装置
WO2011044428A2 (en) * 2009-10-09 2011-04-14 Dresser-Rand Company Auxiliary bearing system for magnetically supported rotor system
DE102009046822A1 (de) * 2009-11-18 2011-05-19 Robert Bosch Gmbh Schaltventil mit einem in einem Gehäuse bewegbaren Ventilelement
DE102011012654A1 (de) * 2011-02-28 2012-08-30 Benteler Sgl Gmbh & Co. Kg Verfahren zur Herstellung einer Blattfeder als Faserverbundbauteil sowie Blattfeder
KR101294213B1 (ko) * 2011-10-13 2013-08-08 (주)동서기연 교체가 실용적인 베어링의 틸팅 패드
CN102562783B (zh) * 2012-01-11 2013-11-06 西安交通大学 由可控可倾瓦块和承载瓦块构成的一种变性能径向轴承
JP6410006B2 (ja) * 2013-08-01 2018-10-24 株式会社Ihi回転機械エンジニアリング ティルティングパッド軸受及びターボ圧縮機
US9429191B2 (en) * 2013-10-11 2016-08-30 General Electric Company Journal bearing assemblies and methods of assembling same
DE102013223329A1 (de) 2013-11-15 2015-05-21 Bosch Mahle Turbo Systems Gmbh & Co. Kg Gasdynamisches Luftlager

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049493A1 (de) 2010-10-27 2012-05-03 Voith Patent Gmbh Kippsegmentlager

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132553A (zh) * 2019-03-25 2019-08-16 沈阳透平机械股份有限公司 可倾瓦轴承瓦支撑刚度的确定方法、装置及计算机设备
CN110132553B (zh) * 2019-03-25 2020-12-29 沈阳透平机械股份有限公司 可倾瓦轴承瓦支撑刚度的确定方法、装置及计算机设备
DE102021124856A1 (de) 2021-09-27 2023-03-30 Voith Patent Gmbh Kippsegmentradiallager und Wellenanordnung
WO2023046947A1 (de) 2021-09-27 2023-03-30 Voith Patent Gmbh Kippsegmentradiallager und wellenanordnung

Also Published As

Publication number Publication date
US20190219097A1 (en) 2019-07-18
US10738823B2 (en) 2020-08-11
JP2019525104A (ja) 2019-09-05
WO2018041579A1 (de) 2018-03-08
CN109996969B (zh) 2021-08-24
JP6894499B2 (ja) 2021-06-30
CN109996969A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2018041578A1 (de) Kippsegmentlager
EP3260716B1 (de) Kippsegmentlager
DE102006010270B4 (de) Zahnradanordnung
WO2016066599A1 (de) Kühlkanalabdeckung sowie mit einer kühlkanalabdeckung versehener kolben
DE102013223329A1 (de) Gasdynamisches Luftlager
DE102013200586A1 (de) Kugelgelenk
DE112009002345T5 (de) Verarbeitung von Videodaten in Geräten mit eingeschränkten Ressourcen
DE102016216396A1 (de) Kippsegmentlager
EP1101044A1 (de) Gummilager mit radialer wegbegrenzung und dämpfungsmittelkanal
DE102014013077A1 (de) Elastomerlager als Buchsenlager
EP1691104B1 (de) Elastisches Lager
DE102013011469A1 (de) Führungseinrichtung für eine Schwimmsattel-Scheibenbremse
EP3230595A1 (de) Anordnung eines laufrads auf einem rotierenden teil und verfahren zur herstellung der anordnung
DE102005027486B4 (de) Radial-Nadellager, insbesondere Nadelhülse
WO2018202386A1 (de) Dämpfventil für einen schwingungsdämpfer
WO2011160984A2 (de) Elektrische maschine
DE102017108370A1 (de) Wälzgewindetrieb
DE102016216383A1 (de) Kippsegmentlager
DE102006059346B4 (de) Lagersitzanordnung zur axialen und radialen Fixierung
DE102015205745A1 (de) Lageranordnung
DE102011080165A1 (de) Sicherungselement, Lenkungslager mit einem Sicherungselement und Lenksäule mit einem Lenkungslager und einem Sicherungselement
DE102010060198B4 (de) Lager für einen Stabilisator eines Kraftfahrzeugs
DE102011079629A1 (de) Elektromagnetisch betätigbares Ventil
DE102019116250B4 (de) Schwenkwiegenlagerung und Verfahren zur Herstellung einer Schwenkwiegenlagerung
DE102016222521A1 (de) Tripodegelenk

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed