DE102016206389A1 - Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors - Google Patents

Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors Download PDF

Info

Publication number
DE102016206389A1
DE102016206389A1 DE102016206389.8A DE102016206389A DE102016206389A1 DE 102016206389 A1 DE102016206389 A1 DE 102016206389A1 DE 102016206389 A DE102016206389 A DE 102016206389A DE 102016206389 A1 DE102016206389 A1 DE 102016206389A1
Authority
DE
Germany
Prior art keywords
wheel speed
speed sensor
sensor element
wheel
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016206389.8A
Other languages
English (en)
Inventor
Ralf Endres
Stephan Jonas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Priority to DE102016206389.8A priority Critical patent/DE102016206389A1/de
Priority to PCT/EP2017/057190 priority patent/WO2017178215A1/de
Priority to KR1020187029551A priority patent/KR102253423B1/ko
Priority to EP17713661.1A priority patent/EP3443359A1/de
Priority to US16/086,912 priority patent/US10890597B2/en
Priority to CN201780023555.XA priority patent/CN109073670A/zh
Publication of DE102016206389A1 publication Critical patent/DE102016206389A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/026Housings for speed measuring devices, e.g. pulse generator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Abstract

Die Erfindung betrifft einen Raddrehzahlsensor (100) zur Montage an einer Fahrzeugachse, mit einem Sensorgehäuse (101), und einem Leitungsträger (103), welcher in dem Sensorgehäuse (101) angeordnet ist, mit einer ersten Oberfläche (105-1) und einer von der ersten Oberfläche (105-1) abgewandte zweiten Oberfläche (105-2), wobei ein erstes Raddrehzahlsensorelement (107-1) zum Erfassen von ersten physikalischen Messgrößen auf der ersten Oberfläche (105-1) des Leitungsträgers (103) angeordnet ist, und wobei ein zweites Raddrehzahlsensorelement (107-2) zum Erfassen von zweiten physikalischen Messgrößen auf der zweiten Oberfläche (105-2) des Leitungsträgers (103) angeordnet ist.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft das Gebiet der Sensorik im Bereich der Antriebstechnik für Fahrzeuge. Insbesondere betrifft die Erfindung einen Raddrehzahlsensor zur Montage an einer Fahrzeugachse.
  • TECHNISCHER HINTERGRUND
  • Raddrehzahlsensoren in Fahrzeugen liefern Signale an Steuergeräte von Sicherheitssystemen wie Antiblockiersystemen (ABS) oder Elektronische Stabilitätskontrollen (ESP). Aus diesen Signalen können Informationen wie eine Einzelraddrehzahl oder eine Radgeschwindigkeit eines Rades des Fahrzeugs sowie eine Fahrzeuggeschwindigkeit bestimmt werden. Meist ist jedes Einzelrad des Fahrzeugs mit einem eigenen Raddrehzahlsensor ausgestattet. Das Detektionsprinzip einer Raddrehzahl beruht in der Regel auf der Auswertung eines magnetischen Signals eines mit einer Radachse fest verbundenen Geberrades durch ein magnetosensitives Messelement des Raddrehzahlsensors. Das Signal des Raddrehzahlsensors wird dabei über eine Kabelverbindung an das Steuergerät (ECU, electronic control unit) weitergeleitet.
  • Um den Anforderungen zukünftiger Sicherheitssysteme in Fahrzeugen gerecht zu werden, ist es notwendig, jedes Einzelrad mit einem Paar redundanter Raddrehzahlsensoren auszustatten, um bei einem Ausfall eines der beiden Raddrehzahlsensoren ein zuverlässiges Eingreifen des Sicherheitssystems zu ermöglichen. Ein Beispiel für eine Anwendung eines redundanten Raddrehzahlsensors ist hochautomatisiertes Fahren. Hierbei müssen Sicherheitssysteme wie ABS und ESP redundant ausgeführt werden, damit bei Ausfall eines Sicherheitssystems gewährleistet ist, dass bis zum Eingriff des Fahrers in die Fahrsituation und darüber hinaus der Ausfall des Sicherheitssystems das Verhalten des Fahrzeugs nicht beeinflusst.
  • Fahrzeuge mit einem redundanten Satz Raddrehzahlsensoren pro Rad auszustatten ist mit konventionellen Raddrehzahlsensoren jedoch aufwändig und schwierig, da zwei Montagepositionen für jeweils einen Raddrehzahlsensor am Einzelrad vorgesehen werden müssen, was in der Regel durch das Fehlen geeigneter Verbaustellen erschwert wird. Ferner müssen beide Raddrehzahlsensoren korrekt und möglichst identisch zum Geberrad positioniert werden, um möglichst identische Signale zu liefern, was die Montage der redundanten Raddrehzahlsensoren am Rad jedoch zusätzlich erschwert.
  • BESCHREIBUNG DER ERFINDUNG
  • Es ist daher die Aufgabe der vorliegenden Erfindung, ein effizientes Konzept für einen Raddrehzahlsensor zu schaffen, welcher den Sicherheitsanforderungen des hochautomatisierten Fahrens genügt.
  • Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Ansprüche, der Beschreibung sowie der Figuren.
  • Die im Folgenden vorgestellten Sensorsysteme und Sensorelemente können von verschiedener Art sein. Die einzelnen beschriebenen Elemente können durch Hardware- und oder Softwarekomponenten realisiert sein, beispielsweise elektronische Komponenten, die durch verschiedene Technologien hergestellt werden können und zum Beispiel Halbleiterchips, ASICs, Mikroprozessoren, digitale Signalprozessoren, integrierte elektrische Schaltungen, elektrooptische Schaltungen und/oder passive Bauelemente umfassen.
  • Die im Folgenden vorgestellte Lösung basiert auf einem Drehzahlsensor mit zwei Sensorelementen, die jeweils separat elektrisch kontaktierbar sind. Die Ausführung kann in einem möglichst kompakten Gehäuse erfolgen.
  • Gemäß einem ersten Aspekt betrifft die Erfindung einen Raddrehzahlsensor zur Montage an einer Fahrzeugachse, mit einem Sensorgehäuse, und einem Leitungsträger, welcher in dem Sensorgehäuse angeordnet ist, wobei der Leitungsträger eine erste Oberfläche und eine von der ersten Oberfläche abgewandte zweite Oberfläche aufweist, wobei ein erstes Raddrehzahlsensorelement zum Erfassen von ersten physikalischen Messgrößen auf der ersten Oberfläche des Leitungsträgers angeordnet ist, und ein zweites Raddrehzahlsensorelement zum Erfassen von zweiten physikalischen Messgrößen auf der zweiten Oberfläche des Leitungsträgers angeordnet ist.
  • Ein solcher Raddrehzahlsensor entspricht den Sicherheitsanforderungen des autonomen Fahrens, da er zwei Raddrehzahlsensorelemente umfasst, wobei einer der beiden als redundanter Sensor fungieren kann. Ferner ist er aufgrund der beidseitigen Anordnung der Raddrehzahlsensorelemente auf dem Leitungsträger, insbesondere auf einem Leadframe, ausreichend kompakt aufgebaut, so dass er nur wenig mehr Platz einnimmt als ein System mit einem einzigen Raddrehzahlsensorelement und damit einfach an der Fahrzeugachse eines Fahrzeugs angebracht werden kann.
  • Gemäß einer Ausführungsform sind die Raddrehzahlsensorelemente ausgebildet, die physikalischen Messgrößen auf der Basis eines wechselnden Magnetfelds einer magnetischen Lesespur zu erfassen, wobei die magnetische Lesespur von einem Geberrad ausgebildet wird, welches an der Fahrzeugachse angeordnet ist. Dadurch wird der Vorteil erreicht, dass die Raddrehzahl effizient auf der Basis des wechselnden Magnetfelds des Geberrades erfasst werden kann.
  • Das Geberrad mit der magnetischen Lesespur kann einen Multipolring umfassen, in welchem Magnete mit wechselnder Polrichtung eingesetzt sind. Die von der Achse abgewandte Oberfläche des Multipolrings kann die Lesespur aufweisen oder bilden. Der Multipolring kann in einem Dichtring eines Radlagers des Fahrzeugs eingesetzt sein.
  • Bei der Drehung des Geberrades können die Raddrehzahlsensorelemente des Raddrehzahlsensors ein wechselndes Magnetfeld erfassen. Die physikalischen Messgrößen können Messgrößen umfassen, welche beim Vorbeilaufen von Abschnitten der Lesespur mit wechselnder magnetischer Polrichtung von den Raddrehzahlsensorelementen erfasst werden. Dieses Wechselsignal kann von einer Elektronik in den Raddrehzahlsensorelementen (beispielsweise einem ASIC) in ein Messsignal, insbesondere ein digitales Messsignal, umgewandelt werden. Die Übertragung des Messsignals zum Steuergerät kann als Stromsignal, beispielsweise im Pulsweitenmodulationsverfahren, im Zwei-Pegel-Verfahren oder gemäß einem seriellen Datenprotokoll, oder als Spannungssignal erfolgen.
  • Gemäß einer Ausführungsform umfassen das erste Raddrehzahlsensorelement und das zweite Raddrehzahlsensorelement jeweils ein magnetisches Sensorelement, insbesondere ein AMR-Sensorelement, ein GMR-Sensorelement, ein TMR-Sensorelement oder ein Hall-Sensorelement, zum Erfassen der physikalischen Messgrößen. Dadurch wird der Vorteil erreicht, dass die Raddrehzahlsensorelemente effizient die physikalischen Messgrößen erfassen können.
  • Das magnetische Sensorelement kann ein aktives oder passives elektronisches Bauteil sein. Das aktive Sensorelement lässt einen größeren Luftspalt zu und reagiert bereits auf kleinste Änderungen im Magnetfeld, so dass eine sehr genaue Raddrehzahlmessung realisiert werden kann.
  • Gemäß einer Ausführungsform umfassen das erste Raddrehzahlsensorelement und das zweite Raddrehzahlsensorelement jeweils einen elektrischen Schalkreis zur Aufbereitung der physikalischen Messgrößen. Dadurch wird der Vorteil erreicht, dass die Raddrehzahlsensorelemente flexibel ausgeführt sein können.
  • Durch die zugehörigen elektrischen Schaltkreise können die physikalischen Messgrößen der Raddrehzahlsensorelemente aufbereitet werden und beispielsweise in ein digitales Messsignal umgewandelt werden. Ferner können die Messgrößen an eine Schnittstelle mit einem Steuergerät angepasst werden. Der elektrische Schaltkreis kann auch eine entsprechende EMV-Verträglichkeit des Messsignals liefern, so dass entsprechende EMV-Richtlinien eingehalten werden.
  • Gemäß einer Ausführungsform sind das magnetische Sensorelement und der elektrische Schaltkreis eines jeden Raddrehzahlsensorelements als separate bauliche Komponenten auf dem Leitungsträger montiert. Dadurch wird der Vorteil erreicht, dass die Raddrehzahlsensorelemente flexibel ausgeführt sein können.
  • Die Raddrehzahlsensorelemente können auf diese Art und Weise mit verschiedenen elektrischen Schaltkreisen und/oder Sensorelementen, mit unterschiedlichen Funktionalitäten, betrieben werden. Änderungen in der Ausführung der magnetischen Sensorelemente sind damit bei der Fertigung des Raddrehzahlsensors leichter zu implementieren.
  • Gemäß einer Ausführungsform ist das erste Raddrehzahlsensorelement baugleich zu dem zweiten Raddrehzahlsensorelement ausgeführt, oder sind das magnetische Sensorelement des ersten Raddrehzahlsensorelements und das magnetische Sensorelement des zweiten Raddrehzahlsensorelements unterschiedlich ausgebildet. Dadurch wird der Vorteil erreicht, dass ein redundantes Sensorsystem. Bei Ausfall des ersten Raddrehzahlsensorelements kann das zweite Raddrehzahlsensorelement übernehmen. Alternativ können auch beide Raddrehzahlsensorelemente parallel betrieben werden, um eine genauere Messung durch Mittelwertbildung zu erzielen.
  • Die magnetischen Sensorelemente können ausgebildet sein, unterschiedliche Detektionsprinzipien zu verwenden. Beispielsweise ist ein magnetisches Sensorelement als AMR-Sensorelement ausgebildet und das andere magnetische Sensorelement ist als GMR-, TMR- oder Hall-Sensorelement ausgebildet.
  • Gemäß einer Ausführungsform sind das erste Raddrehzahlsensorelement und zweite Raddrehzahlsensorelement an einer Stirnseite des Leitungsträgers angeordnet sind. Dadurch wird der Vorteil erreicht, dass eine möglichste genaue Messung der physikalischen Messgrößen erfolgen kann. Insbesondere sind das erste Raddrehzahlsensorelement und das zweite Raddrehzahlsensorelement an der gleichen Stirnseite des Leitungsträgers angeordnet.
  • Gemäß einer Ausführungsform umfasst der Leitungsträger ein Leadframe, wobei das Leadframe aus einem Metall, insbesondere Kupfer, geformt ist. Der Leitungsträger kann ferner eine Trägerplatte umfassen, in welche das Leadframe eingebettet ist.
  • Gemäß einer Ausführungsform weist das erste Raddrehzahlsensorelement einen ersten elektrischen Anschluss zur Übertragung der ersten physikalischen Messgrößen auf, und weist das zweite Raddrehzahlsensorelement einen zweiten elektrischen Anschluss zur Übertagung der zweiten physikalischen Messgrößen auf. Dadurch wird der Vorteil erreicht, dass die erfassten physikalischen Messgrößen bzw. die auf den Messgrößen basierenden Messsignale effizient zur Ermittlung der Raddrehzahl beispielsweise an eine Steuerung übermittelt werden können.
  • Gemäß einer Ausführungsform ist der erste elektrische Anschluss über eine erste Leiteranordnung zur Übertragung der ersten physikalischen Messgrößen mit einer ersten Steuerung verbindbar, und ist der zweite elektrische Anschluss über eine zweite Leiteranordnung zur Übertragung der zweiten physikalischen Messgrößen mit einer zweiten Steuerung verbindbar. Dadurch wird der Vorteil erreicht, dass die erfassten physikalischen Messgrößen effizient zur Ermittlung der Raddrehzahl an die erste bzw. zweite Steuerung übermittelt werden können.
  • Die erste Steuerung und die zweite Steuerung können jeweils einen Prozessor bzw. einen Mikroprozessor umfassen. Die erste Steuerung und die zweite Steuerung können jeweils zur Energieversorgung mit einer separaten Energiequelle oder einer gemeinsamen Energiequelle, insbesondere einer Fahrzeugbatterie, verbunden sein.
  • Ferner können die erste Steuerung und die zweite Steuerung gleich sein, bzw. können die erste Steuerung und die zweite Steuerung Komponenten einer gemeinsamen Steuerung des Kraftfahrzeugs sein. Die Steuerungen können Teil eines Sicherheitssystems des Fahrzeugs wie einem Antiblockiersystem (ABS) oder einer Elektronische Stabilitätskontrolle (ESP) sein.
  • Die erste Leiteranordnung und die zweite Leiteranordnung können jeweils ein zweipoliges elektrisches Anschlusskabel mit einer Spannungsversorgungsleitung und einer weiteren Leitung umfassen. Die weitere Leitung kann als Sensormasse dienen. Über die Spannungsversorgungsleitung kann gleichzeitig ein Sensorsignal, insbesondere die physikalischen Messgrößen, übermittelt werden.
  • Gemäß einer Ausführungsform ist die erste Steuerung ausgebildet, auf der Basis der ersten physikalischen Messgrößen eine erste Raddrehzahl zu erfassen, und ist die zweite Steuerung ausgebildet, auf der Basis der zweiten physikalischen Messgrößen eine zweite Raddrehzahl zu erfassen. Dadurch wird der Vorteil erreicht, dass die Steuerungen unabhängig voneinander und nur auf Basis der von dem zugehörigen Raddrehzahlsensorelement erfassten physikalischen Messgrößen die Raddrehzahl erfassen können. Somit sind nicht nur die Raddrehzahlsensorelemente selbst, sondern auch die zugehörigen Steuerungen redundant.
  • Gemäß einer Ausführungsform sind die erste Leiteranordnung und die zweite Leiteranordnung zumindest abschnittsweise von einem gemeinsamen Mantel ummantelt. Ferner können die erste Leiteranordnung und die zweite Leiteranordnung zumindest abschnittsweise als gemeinsame Leiteranordnung ausgebildet sein. Dadurch wird der Vorteil erreicht, dass die erste Leiteranordnung und die zweite Leiteranordnung platzsparend in dem Fahrzeug angeordnet bzw. verlegt werden können.
  • Gemäß einer Ausführungsform ist das Sensorgehäuse ein Kunststoffgehäuse, insbesondere ein Spritzgussgehäuse. Dadurch wird der Vorteil erreicht, dass das Gehäuse besonders einfach und kostengünstig gefertigt werden kann. Das Sensorgehäuse kann aus PBT (Polybutylenterephthalat) gebildet sein.
  • Gemäß einer Ausführungsform ist das Sensorgehäuse mittels einer stofffesten Verbindung mit dem Leitungsträger verbunden. Dadurch wird der Vorteil erreicht, dass eine effiziente Befestigung des Sensorgehäuses an dem Leitungsträger erfolgen kann. Das Gehäuse kann mittels Spritzgießen gefertigt werden. Der Leitungsträger kann Dichtelemente umfassen, die beim Spritzgießen des Sensorgehäuses eine gas- und flüssigkeitsdichte Verbindung mit dem Sensorgehäuse eingehen.
  • Gemäß einem zweiten Aspekt betrifft die Erfindung ein Befestigungssystem zur Montage eines Raddrehzahlsensors an einer Fahrzeugachse eines Fahrzeugs, wobei der Raddrehzahlsensor ein Sensorgehäuse und einen Leitungsträger umfasst, welcher in dem Sensorgehäuse angeordnet ist, wobei der Leitungsträger eine erste Oberfläche und eine von der ersten Oberfläche abgewandte zweite Oberfläche aufweist, wobei ein erstes Raddrehzahlsensorelement zum Erfassen von ersten physikalischen Messgrößen auf der ersten Oberfläche des Leitungsträgers angeordnet ist, und wobei ein zweites Raddrehzahlsensorelement zum Erfassen von zweiten physikalischen Messgrößen auf der zweiten Oberfläche des Leitungsträgers angeordnet ist, wobei ferner an der Fahrzeugachse ein Geberrad mit einer magnetischen Lesespur angeordnet ist, und wobei das Befestigungssystem einen Befestigungsadapter umfasst, welcher an der Fahrzeugachse montierbar ist, wobei der Befestigungsadapter eine Aufnahme zum Aufnehmen des Sensorgehäuses umfasst, wobei die Aufnahme ausgebildet ist, das erste Raddrehzahlsensorelement und das zweite Raddrehzahlsensorelement zum Erfassen der jeweiligen physikalischen Messgrößen in Richtung der magnetischen Lesespur auszurichten. Dadurch wird der Vorteil erreicht, dass eine effiziente Befestigung des Raddrehzahlsensors an der Fahrzeugsachse und eine Ausrichtung auf die magnetische Lesespur erfolgen können.
  • Gemäß einer Ausführungsform ist die Aufnahme als Aussparung oder Durchbruch in dem Befestigungsadapter geformt, wobei das Sensorgehäuse in die Aussparung oder den Durchbruch einsetzbar ist.
  • Gemäß einer Ausführungsform umfasst der Befestigungsadapter einen Flansch zur Montage, insbesondere zur Schraubmontage, des Befestigungsadapters an der Fahrzeugachse, insbesondere an einem Achsschenkel. Dadurch wird der Vorteil erreicht, dass der Befestigungsadapter effizient an dem Fahrzeug angebracht werden kann. Der Befestigungsadapter kann beispielsweise an einem Radlager des Fahrzeugs erfolgen.
  • Die Erfindung kann in Hardware und/oder Software realisiert werden.
  • BESCHREIBUNG DER FIGUREN
  • Weitere Ausführungsbeispiele werden bezugnehmend auf die beiliegenden Figuren näher erläutert. Es zeigen:
  • 1 eine schematische Darstellung eines Raddrehzahlsensors;
  • 2a eine schematische Darstellung eines Raddrehzahlsensors an einem Geberrad;
  • 2b eine schematische Darstellung eines Raddrehzahlsensors an einem Geberrad; und
  • 3 eine schematische Darstellung eines Befestigungssystems für einen Raddrehzahlsensor.
  • DETAILIERTE BESCHREIBUNG DER FIGUREN
  • In der folgenden ausführlichen Beschreibung wird auf die beiliegenden Zeichnungen Bezug genommen, die einen Teil hiervon bilden und in denen als Veranschaulichung spezifische Ausführungsformen gezeigt sind, in denen die Erfindung ausgeführt werden kann. Es versteht sich, dass auch andere Ausführungsformen genutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Konzept der vorliegenden Erfindung abzuweichen. Die folgende ausführliche Beschreibung ist deshalb nicht in einem beschränkenden Sinne zu verstehen. Ferner versteht es sich, dass die Merkmale der verschiedenen hierin beschriebenen Ausführungsbeispiele miteinander kombiniert werden können, sofern nicht spezifisch etwas anderes angegeben ist.
  • Die Aspekte und Ausführungsformen werden unter Bezugnahme auf die Zeichnungen beschrieben, wobei gleiche Bezugszeichen sich im Allgemeinen auf gleiche Elemente beziehen. In der folgenden Beschreibung werden zu Erläuterungszwecken zahlreiche spezifische Details dargelegt, um ein eingehendes Verständnis von einem oder mehreren Aspekten der Erfindung zu vermitteln. Für einen Fachmann kann es jedoch offensichtlich sein, dass ein oder mehrere Aspekte oder Ausführungsformen mit einem geringeren Grad der spezifischen Details ausgeführt werden können. In anderen Fällen werden bekannte Strukturen und Elemente in schematischer Form dargestellt, um das Beschreiben von einem oder mehreren Aspekten oder Ausführungsformen zu erleichtern. Es versteht sich, dass andere Ausführungsformen genutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Konzept der vorliegenden Erfindung abzuweichen.
  • Wenngleich ein bestimmtes Merkmal oder ein bestimmter Aspekt einer Ausführungsform bezüglich nur einer von mehreren Implementierungen offenbart worden sein mag, kann außerdem ein derartiges Merkmal oder ein derartiger Aspekt mit einem oder mehreren anderen Merkmalen oder Aspekten der anderen Implementierungen kombiniert werden, wie für eine gegebene oder bestimmte Anwendung erwünscht und vorteilhaft sein kann. Weiterhin sollen in dem Ausmaß, in dem die Ausdrücke „enthalten", „haben", „mit" oder andere Varianten davon entweder in der ausführlichen Beschreibung oder den Ansprüchen verwendet werden, solche Ausdrücke auf eine Weise ähnlich dem Ausdruck „umfassen" einschließend sein. Die Ausdrücke „gekoppelt" und „verbunden" können zusammen mit Ableitungen davon verwendet worden sein. Es versteht sich, dass derartige Ausdrücke dazu verwendet werden, um anzugeben, dass zwei Elemente unabhängig davon miteinander kooperieren oder interagieren, ob sie in direktem physischem oder elektrischem Kontakt stehen oder nicht in direktem Kontakt miteinander stehen. Außerdem ist der Ausdruck „beispielhaft" lediglich als ein Beispiel aufzufassen anstatt der Bezeichnung für das Beste oder Optimale. Die folgende Beschreibung ist deshalb nicht in einem einschränkenden Sinne zu verstehen.
  • 1 zeigt eine schematische Darstellung eines Raddrehzahlsensors 100 gemäß einer Ausführungsform.
  • Der Raddrehzahlsensor 100 umfasst ein Sensorgehäuse 101, und einem Leitungsträger 103, welcher in dem Sensorgehäuse 101 angeordnet ist, wobei der Leitungsträger 103 eine erste Oberfläche 105-1 und eine von der ersten Oberfläche 105-1 abgewandte zweite Oberfläche 105-2 aufweist, wobei ein erstes Raddrehzahlsensorelement 107-1 zum Erfassen von ersten physikalischen Messgrößen auf der ersten Oberfläche 105-1 des Leitungsträgers 103 angeordnet ist, und wobei ein zweites Raddrehzahlsensorelement 107-2 zum Erfassen von zweiten physikalischen Messgrößen auf der zweiten Oberfläche 105-2 des Leitungsträgers 103 angeordnet ist.
  • Ein solcher Raddrehzahlsensor 100 entspricht den Sicherheitsanforderungen des autonomen Fahrens, da er zwei Raddrehzahlsensorelemente 107-1, 107-2 umfasst, wobei einer der beiden als redundanter Sensor fungieren kann. Ferner ist er aufgrund der beidseitigen Anordnung der Raddrehzahlsensorelemente 107-1, 107-2 auf einem Leitungsträger 103 ausreichend kompakt aufgebaut, so dass er nur wenig mehr Platz einnimmt als ein System mit einem einzigen Raddrehzahlsensorelement und damit einfach an der Fahrzeugachse eines Fahrzeugs angebracht werden kann, um dort die Drehzahl des entsprechenden Rades zu bestimmen und beispielsweise an ein Steuergerät weiterzuleiten.
  • Das erste Raddrehzahlsensorelement 107-1 und das zweite Raddrehzahlsensorelement 107-2 können ein erstes magnetisches Sensorelement 109-1 bzw. ein zweites magnetisches Sensorelement 109-2 zum Erfassen der physikalischen Messgrößen umfassen. Das erste magnetische Sensorelement 109-1 und das zweite magnetische Sensorelement 109-2 können jeweils ein AMR-Sensorelement, ein GMR-Sensorelement, ein TMR-Sensorelement oder ein Hall-Sensorelement umfassen. Die magnetischen Sensorelemente 109-1, 109-2 können aktive oder passive elektronisches Bauteile sein.
  • Somit können zur Erfassung der physikalischen Messgrößen gängige physikalische Messprinzipien wie AMR (anisotroper magnetoresistiver Effekt), GMR (giant magnetoresitive effect), TMR (tunnel magnetoresistance effect) und Hall angewendet werden.
  • Das erste Raddrehzahlsensorelement 107-1 und das zweite Raddrehzahlsensorelement 107-2 können ferner einen ersten elektrischen Schalkreis 111-1 bzw. einen zweiten elektrischen Schaltrkeis 111-2 zur Aufbereitung der physikalischen Messgrößen umfassen.
  • Die elektrischen Schalkreise 111-1, 111-2 können die physikalischen Messgrößen der Raddrehzahlsensorelemente 107-1, 107-2 aufbereitet und beispielsweise in ein digitales Messsignal umwandeln. Ferner können elektrischen Schalkreise 111-1, 111-2 die Messgrößen an eine Schnittstelle mit einem Steuergerät anpassen. Die elektrischen Schalkreise 111-1, 111-2 können auch eine entsprechende EMV-Verträglichkeit des Messsignals liefern, so dass entsprechende EMV-Richtlinien eingehalten werden.
  • Die elektrischen Schalkreise 111-1, 111-2 können als integrierte Schaltung auf dem Leitungsträger 103 ausgebildet sein.
  • Gemäß einer Ausführungsform sind das magnetische Sensorelement 109-1, 109-2 und der elektrische Schaltkreis 111-1, 111-2 eines jeden Raddrehzahlsensorelements 107-1, 107-2 als separate bauliche Komponenten auf dem Leitungsträger 103 montiert.
  • Die Raddrehzahlsensorelemente 107-1, 107-2 können auf diese Art und Weise mit verschiedenen elektrischen Schaltkreisen 111-1, 111-2 und/oder Sensorelementen 109-1, 109-2 mit unterschiedlichen Funktionalitäten betrieben werden. Änderungen in der Ausführung der magnetischen Sensorelemente 109-1, 109-2 sind damit bei der Fertigung des Raddrehzahlsensors 100 leichter zu implementieren.
  • Gemäß einer weiteren Ausführungsform sind das magnetische Sensorelement 109-1, 109-2 und der zugehörige elektrische Schaltkreis 111-1, 111-2 eines jeden Raddrehzahlsensors 107-1, 107-2 auf einem gemeinsamen Chip integriert bzw. als gemeinsamer Chip implementiert.
  • Gemäß einer Ausführungsform ist das erste Raddrehzahlsensorelement 107-1 baugleich zu dem zweiten Raddrehzahlsensorelement 107-2 ausgeführt, um ein redundantes Sensorsystem zu schaffen. Bei Ausfall des ersten Raddrehzahlsensorelements 107-1 kann das zweite Raddrehzahlsensorelement 107-2 übernehmen. Alternativ können auch beide Raddrehzahlsensorelemente 107-1, 107-2 parallel betrieben werden, um eine genauere Messung durch Mittelwertbildung zu erzielen.
  • Gemäß einer weiteren Ausführungsform können jedoch auch das magnetische Sensorelement 109-1 des ersten Raddrehzahlsensorelements 107-1 und das magnetische Sensorelement 109-2 des zweiten Raddrehzahlsensorelements 107-2 unterschiedlich ausgebildet sein.
  • Somit können verschiedene Detektionsprinzipien (beispielsweise AMR-GMR, GMR-Hall) in einem Raddrehzahlsensor 100 verwendet werden, um das Auftreten von Fehlern, welche auf einem der Detektionsprinzipien beruhen, zu verringern oder zu verhindern.
  • Gemäß einer Ausführungsform sind das erste Raddrehzahlsensorelement 107-1 und das zweite Raddrehzahlsensorelement 107-2 jeweils an einer Stirnseite des Leitungsträgers 103 angeordnet, insbesondere einer Stirnseite, die einer magnetischen Lesespur zugewandt ist.
  • Der Leitungsträger 103 kann ein Leadframe umfassen. Das Leadframe kann kamm- oder rahmenförmig sein und kann aus einem Metall, insbesondere Kupfer, geformt sein.
  • Das Sensorgehäuse 101 kann ein Spritzgussgehäuse aus einem Kunststoff wie PBT umfassen. Die Raddrehzahlsensorelemente 107-1, 107-2, insbesondere die magnetischen Sensorelemente 109-1, 109-2 und die elektrischen Schaltkreise 111-1, 111-2 können in eine Epoxidschicht bedeckt sein bzw. von einer Epoxidschicht umgeben sein. Das Sensorgehäuse 101 kann mittels eines Spritzgussverfahrens hergestellt werden und kann stoffschlüssig mit dem Leitungsträger 103 verbunden sein.
  • 2a zeigt eine schematische Darstellung eines Raddrehzahlsensors 100 an dem Geberrad 200 gemäß einer Ausführungsform.
  • Das Geberrad 200 kann einen Multipolring umfassen, in welchem Magnete mit wechselnder Polrichtung eingesetzt sind. Die von der Achse abgewandte Oberfläche des Multipolrings kann die Lesespur 201 bilden. Der Multipolring kann in einem Dichtring eines Radlagers des Fahrzeugs eingesetzt sein.
  • In 2a ist der Raddrehzahlsensor 100 über eine erste Leiteranordnung 203-1 mit einer ersten Steuerung 205-1 und über eine zweite Leiteranordnung 203-2 mit einer zweiten Steuerung 205-2 verbunden.
  • Das erste Raddrehzahlsensorelement 107-1 kann einen ersten elektrischen Anschluss zur Übertragung der ersten physikalischen Messgrößen aufweisen, und das zweite Raddrehzahlsensorelement 107-2 kann einen zweiten elektrischen Anschluss zur Übertragung der zweiten physikalischen Messgrößen aufweisen.
  • Der erste elektrische Anschluss kann über die erste Leiteranordnung 203-1 zur Übertragung der ersten physikalischen Messgrößen mit der ersten Steuerung 205-1 verbunden sein. Ferner kann der zweite elektrische Anschluss über die zweite Leiteranordnung 203-2 zur Übertragung der zweiten physikalischen Messgrößen mit der zweiten Steuerung 205-2 verbunden sein.
  • Die erste Steuerung 205-1 und die zweite Steuerung 205-2 können jeweils einen Prozessor bzw. einen Mikroprozessor umfassen. Die erste Steuerung 205-1 und die zweite Steuerung 205-2 können zur Energieversorgung mit einer ersten Energiequelle 207-1 bzw. einer zweiten Energiequelle 207-2, oder mit einer gemeinsamen Energiequelle, insbesondere einer Fahrzeugbatterie, verbunden sein.
  • Die erste Leiteranordnung 203-1 und die zweite Leiteranordnung 203-2 können jeweils ein zweipoliges elektrisches Anschlusskabel mit einer Spannungsversorgungsleitung und einer weiteren Leitung umfassen. Die weitere Leitung kann als Sensormasse dienen. Über die Spannungsversorgungsleitung kann gleichzeitig ein Sensorsignal bzw. Messsignal, insbesondere die physikalischen Messgrößen, an die entsprechende Steuerung 205-1, 205-2 übermittelt werden.
  • Gemäß einer Ausführungsform sind die erste Leiteranordnung 203-1 und die zweite Leiteranordnung 203-2 zumindest abschnittsweise von einem gemeinsamen Mantel ummantelt. Somit können die erste Leiteranordnung 203-1 und die zweite Leiteranordnung 203-2 platzsparend in einem gemeinsamen Radsensorkabel in dem Fahrzeug angeordnet bzw. verlegt werden. Die Raddrehzahlsensorelemente 107-1, 107-2 können auf beiden Oberflächen 105-1, 105-2 des Leitungsträgers 103 getrennt voneinander mit dem Radsensorkabel verbunden werden.
  • Die erste Steuerung 205-1 kann ausgebildet sein, auf der Basis der ersten physikalischen Messgrößen eine erste Raddrehzahl zu erfassen. Ferner kann die zweite Steuerung 205-2 ausgebildet sein, auf der Basis der zweiten physikalischen Messgrößen eine zweite Raddrehzahl zu erfassen.
  • Die erste Steuerung 205-1 und die zweite Steuerung 205-2 können Teil eines Steuergeräts des Fahrzeugs sein. Das Steuergerät kann einem Sicherheitssysteme wie beispielsweise einem Antiblockiersystem (ABS) oder einer Elektronischen Stabilitätskontrolle (ESP) zugeordnet sein. Das Steuergerät kann die erste Raddrehzahl und die zweite Raddrehzahl erfassen und beispielsweise einen Mittelwert der Raddrehzahlen bilden. Ferner kann das Steuergerät bei Ausfall eines Raddrehzahlsensorelements 107-1, 107-2 und/oder der zugehörigen Steuerung 205-1, 205-2 die Raddrehzahl auf der Basis des Messsignals des anderen Raddrehzahlsensorelements 107-1, 107-2 erfassen.
  • 2b zeigt eine schematische Darstellung des Raddrehzahlsensors 100 an dem Geberrad 200 gemäß einer weiteren Ausführungsform.
  • In 2b ist nur eine Leiteranordnung 209 gezeigt, welche den Raddrehzahlsensor 100 mit einer Steuerung 211 mit angeschlossener Energiequelle 213 verbindet. Über die Leiteranordnung 209 wird ein Messsignal 215 von dem Raddrehzahlsensor 100 zur Steuerung 211 übertragen.
  • Bei der Drehung des Geberrades 200 können die Raddrehzahlsensorelemente 107-1, 107-2 des Raddrehzahlsensors 100 ein wechselndes Magnetfeld erfassen. Die physikalischen Messgrößen können physikalische Messgrößen umfassen, welche beim Vorbeilaufen von Abschnitten der Lesespur 201 mit wechselnder magnetischer Polrichtung von den Raddrehzahlsensorelementen 107-1, 107-2 erfasst werden. Dieses Wechselsignal kann von einer Elektronik in den Raddrehzahlsensorelementen 107-1, 107-2 (beispielsweise einem ASIC) in ein Messsignal 215, insbesondere ein digitales Messsignal, umgewandelt werden. Die Übertragung des Messsignals 215 zur Steuerung 211 kann als Stromsignal, beispielsweise im Pulsweitenmodulationsverfahren, im Zwei-Pegel-Verfahren oder gemäß einem seriellen Datenprotokoll, oder als Spannungssignal erfolgen.
  • 3 zeigt eine schematische Darstellung eines Befestigungssystems 300 für den Raddrehzahlsensor 100 mit einem Befestigungsadapter 301 gemäß einer Ausführungsform.
  • Das Befestigungssystem 300 in 3 ist an einer Fahrzeugachse eines Fahrzeugs montiert, wobei an der Fahrzeugachse ein Geberrad 200 mit einer magnetischen Lesespur 201 angeordnet ist.
  • Das Befestigungssystem 300 umfasst einen, einem Befestigungsadapter 301, welcher an einem Achsschenkel 307 an der Fahrzeugachse montierbar ist, wobei der Befestigungsadapter 301 eine Aufnahme zum Aufnehmen des Sensorgehäuses (nicht gezeigt in 3) umfasst, und wobei die Aufnahme ausgebildet ist, den Raddrehzahlsensor senkrecht zu der magnetischen Lesespur 201 auszurichten.
  • Die Aufnahme kann als Aussparung oder Durchbruch in dem Befestigungsadapter 301 geformt sein. Das Sensorgehäuse 101 kann in die Aussparung oder den Durchbruch einsetzbar sein.
  • Der Befestigungsadapter 301 in 3 umfasst einen Flansch 305 zur Montage des Befestigungsadapters an dem Achsschenkel 307. Der Flansch kann dabei mittels einer Befestigungsschraube 303 an dem Achsschenkel 307 befestigt sein.
  • Der Raddrehzahlsensor 309 umfasst ein erstes und ein zweites Raddrehzahlsensorelement auf zwei gegenüberliegenden Oberflächen des Leitungsträgers des Raddrehzahlsensors 309, wobei in 3 nur ein Raddrehzahlsensorelement 311 auf einer Oberflächenseite gezeigt ist. Das erste und das zweite Raddrehzahlsensorelement können derjenigen Stirnseite des Raddrehzahlsensors 309 angeordnet sein, welche bei einer Befestigung des Raddrehzahlsensors 309 in dem Befestigungsadapter 301 der magnetischen Lesespur 201 zugewandt ist.
  • Ein wesentlicher Vorteil des hier vorgestellten Konzepts eines redundanten Raddrehzahlsensors 100 ist, dass sich der Raumbedarf des Raddrehzahlsensors 100 trotz redundanter Ausführung der Radrehzahlsensorelemente nicht oder nur wesentlich vergrößert, so dass bestehende Verbaukonzepte weiter verfolgt werden können.
  • Insbesondere wird durch die redundante Anbringung der Raddrehzahlsensorelemente 107-1, 107-2 auf dem Leitungsträger 103 die Anbringung des Raddrehzahlsensors 100 in einem applikationsspezifischen Halter zur korrekten Positionierung der Messelemente im Vergleich zu einem konventionellen Raddrehzahlsensor nicht zusätzlich erschwert.
  • Ferner entsteht durch die redundante Anbringung der Raddrehzahlsensorelemente 107-1, 107-2 in dem Raddrehzahlsensor 100 kein erhöhter Platzbedarf des Raddrehzahlsensors 100 im Vergleich zu einem konventionellen Raddrehzahlsensor mit einem Raddrehzahlsensorelement. Somit kann der Raddrehzahlsensor 100 mit den redundanten Raddrehzahlsensorelementen 107-1, 107-2 an der gleichen Verbauposition im Fahrzeug verbaut werden wie ein konventioneller Raddrehzahlsensor mit nur einem Raddrehzahlsensorelement.
  • Bezugszeichenliste
  • 100
    Raddrehzahlsensor
    101
    Sensorgehäuse
    103
    Leitungsträger
    105-1
    erste Oberfläche
    105-2
    zweite Oberfläche
    107-1
    erstes Raddrehzahlsensorelement
    107-2
    zweites Raddrehzahlsensorelement
    109-1
    erstes magnetisches Sensorelement
    109-2
    zweites magnetisches Sensorelement
    111-1
    erster elektrischer Schalkreise
    111-2
    zweiter elektrischer Schalkreise
    200
    Geberrad
    201
    magnetische Lesespur
    203-1
    erste Leiteranordnung
    203-2
    zweite Leiteranordnung
    205-1
    erste Steuerung
    205-2
    zweite Steuerung
    207-1
    erste Energiequelle
    207-2
    zweite Energiequelle
    209
    Leiteranordnung
    211
    Steuerung
    213
    Energiequelle
    215
    Messsignal
    300
    Befestigungssystem
    301
    Befestigungsadapter
    303
    Befestigungsschraube
    305
    Flansch
    307
    Achsschenkel
    309
    Raddrehzahlsensor
    311
    Raddrehzahlsensorelement

Claims (15)

  1. Raddrehzahlsensor (100) zur Montage an einer Fahrzeugachse, mit: einem Sensorgehäuse (101); und einem Leitungsträger (103), welcher in dem Sensorgehäuse (101) angeordnet ist, wobei der Leitungsträger (103) eine erste Oberfläche (105-1) und eine von der ersten Oberfläche (105-1) abgewandte zweite Oberfläche (105-2) aufweist; wobei ein erstes Raddrehzahlsensorelement (107-1) zum Erfassen von ersten physikalischen Messgrößen auf der ersten Oberfläche (105-1) des Leitungsträgers (103) angeordnet ist, und wobei ein zweites Raddrehzahlsensorelement (107-2) zum Erfassen von zweiten physikalischen Messgrößen auf der zweiten Oberfläche (105-2) des Leitungsträgers (103) angeordnet ist.
  2. Raddrehzahlsensor (100) nach Anspruch 1, wobei die Raddrehzahlsensorelemente (107-1, 107-2) ausgebildet sind, die physikalischen Messgrößen auf der Basis eines wechselnden Magnetfelds einer magnetischen Lesespur (201) zu erfassen, wobei die magnetische Lesespur (201) von einem Geberrad (200) ausgebildet wird, welches an der Fahrzeugachse angeordnet ist.
  3. Raddrehzahlsensor (100) nach Anspruch 1 oder 2, wobei das erste Raddrehzahlsensorelement (107-1) und das zweite Raddrehzahlsensorelement (107-2) jeweils ein magnetisches Sensorelement (109-1, 109-2), insbesondere ein AMR-Sensorelement, ein GMR-Sensorelement, ein TMR-Sensorelement oder ein Hall-Sensorelement, zum Erfassen der physikalischen Messgrößen umfassen.
  4. Raddrehzahlsensor (100) nach einem der vorstehenden Ansprüche, wobei das erste Raddrehzahlsensorelement (107-1) und das zweite Raddrehzahlsensorelement (107-2) jeweils einen elektrischen Schalkreis (111-1, 111-2) zur Aufbereitung der physikalischen Messgrößen umfassen.
  5. Raddrehzahlsensor (100) nach Anspruch 3 und 4, wobei das magnetische Sensorelement (109-1, 109-2) und der elektrische Schaltkreis (111-1, 111-2) eines jeden Raddrehzahlsensorelements (107-1, 107-2) als separate bauliche Komponenten auf dem Leitungsträger (103) montiert sind.
  6. Raddrehzahlsensor (100) nach einem der vorstehenden Ansprüche, wobei das erste Raddrehzahlsensorelement (107-1) baugleich zu dem zweiten Raddrehzahlsensorelement (107-2) ausgeführt ist, oder wobei das magnetische Sensorelement (109-1) des ersten Raddrehzahlsensorelements (107-1) und das magnetische Sensorelement (109-2) des zweiten Raddrehzahlsensorelements (107-2) unterschiedlich ausgebildet sind.
  7. Raddrehzahlsensor (100) nach einem der vorstehenden Ansprüche, wobei das erste Raddrehzahlsensorelement (107-1) und das zweite Raddrehzahlsensorelement (107-2) an einer Stirnseite des Leitungsträgers (103) angeordnet sind.
  8. Raddrehzahlsensor (100) nach einem der vorstehenden Ansprüche, wobei der Leitungsträger (103) ein Leadframe umfasst, wobei das Leadframe aus einem Metall, insbesondere Kupfer, geformt ist.
  9. Raddrehzahlsensor (100) nach einem der vorstehenden Ansprüche, wobei das erste Raddrehzahlsensorelement (107-1) einen ersten elektrischen Anschluss zur Übertragung der ersten physikalischen Messgrößen aufweist, und wobei das zweite Raddrehzahlsensorelement (107-2) einen zweiten elektrischen Anschluss zur Übertragung der zweiten physikalischen Messgrößen aufweist.
  10. Raddrehzahlsensor (100) nach Anspruch 9, wobei der erste elektrischen Anschluss über eine erste Leiteranordnung (203-1) zur Übertragung der ersten physikalischen Messgrößen mit einer ersten Steuerung (205-1) verbindbar ist, und wobei der zweite elektrische Anschluss über eine zweite Leiteranordnung (203-2) zur Übertragung der zweiten physikalischen Messgrößen mit einer zweiten Steuerung (205) verbindbar ist.
  11. Raddrehzahlsensor (100) nach Anspruch 10, wobei die erste Steuerung (205-1) ausgebildet ist, auf der Basis der ersten physikalischen Messgrößen eine erste Raddrehzahl zu erfassen, und wobei die zweite Steuerung (205-2) ausgebildet ist, auf der Basis der zweiten physikalischen Messgrößen eine zweite Raddrehzahl zu erfassen.
  12. Raddrehzahlsensor (100) nach Anspruch 10 oder 11, wobei die erste Leiteranordnung (203-1) und die zweite Leiteranordnung (203-2) zumindest abschnittsweise von einem gemeinsamen Mantel ummantelt sind.
  13. Raddrehzahlsensor (100) nach einem der vorstehenden Ansprüche, wobei das Sensorgehäuse (101) ein Kunststoffgehäuse, insbesondere ein Spritzgussgehäuse, ist.
  14. Befestigungssystem (300) zur Montage eines Raddrehzahlsensors (100) an einer Fahrzeugachse eines Fahrzeugs, wobei der Raddrehzahlsensor (100) ein Sensorgehäuse (101) und einen Leitungsträger (103) umfasst, welcher in dem Sensorgehäuse (101) angeordnet ist, wobei der Leitungsträger (103) eine erste Oberfläche (105-1) und eine von der ersten Oberfläche (105-1) abgewandte zweite Oberfläche (105-2) aufweist, wobei ein erstes Raddrehzahlsensorelement (107-1) zum Erfassen von ersten physikalischen Messgrößen auf der ersten Oberfläche (105-1) des Leitungsträgers (103) angeordnet ist, und wobei ein zweites Raddrehzahlsensorelement (107-2) zum Erfassen von zweiten physikalischen Messgrößen auf der zweiten Oberfläche (105-2) des Leitungsträgers (103) angeordnet ist, wobei ferner an der Fahrzeugachse ein Geberrad (200) mit einer magnetischen Lesespur (201) angeordnet ist; und wobei das Befestigungssystem (300) einen Befestigungsadapter (301) umfasst, welcher an der Fahrzeugachse montierbar ist, wobei der Befestigungsadapter (301) eine Aufnahme zum Aufnehmen des Sensorgehäuses (101) umfasst, wobei die Aufnahme ausgebildet ist, das erste Raddrehzahlsensorelement (107-1) und das zweite Raddrehzahlsensorelement (107-2) zum Erfassen der jeweiligen physikalischen Messgrößen in Richtung der magnetischen Lesespur (201) auszurichten.
  15. Befestigungssystem (300) nach Anspruch 14, wobei die Aufnahme als Aussparung oder Durchbruch in dem Befestigungsadapter (301) geformt ist, und wobei das Sensorgehäuse (101) in die Aussparung oder den Durchbruch einsetzbar ist.
DE102016206389.8A 2016-04-15 2016-04-15 Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors Pending DE102016206389A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102016206389.8A DE102016206389A1 (de) 2016-04-15 2016-04-15 Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors
PCT/EP2017/057190 WO2017178215A1 (de) 2016-04-15 2017-03-27 Raddrehzahlsensor und befestigungssystem zur montage eines raddrehzahlsensors
KR1020187029551A KR102253423B1 (ko) 2016-04-15 2017-03-27 휠 회전 속도 센서 및 휠 회전 속도 센서를 조립하기 위한 체결 시스템
EP17713661.1A EP3443359A1 (de) 2016-04-15 2017-03-27 Raddrehzahlsensor und befestigungssystem zur montage eines raddrehzahlsensors
US16/086,912 US10890597B2 (en) 2016-04-15 2017-03-27 Wheel rotational-speed sensor and fastening system for mounting a wheel rotational-speed sensor
CN201780023555.XA CN109073670A (zh) 2016-04-15 2017-03-27 车轮转速传感器及用于组装车轮转速传感器的紧固系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016206389.8A DE102016206389A1 (de) 2016-04-15 2016-04-15 Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors

Publications (1)

Publication Number Publication Date
DE102016206389A1 true DE102016206389A1 (de) 2017-10-19

Family

ID=58413114

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016206389.8A Pending DE102016206389A1 (de) 2016-04-15 2016-04-15 Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors

Country Status (6)

Country Link
US (1) US10890597B2 (de)
EP (1) EP3443359A1 (de)
KR (1) KR102253423B1 (de)
CN (1) CN109073670A (de)
DE (1) DE102016206389A1 (de)
WO (1) WO2017178215A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053600A1 (de) * 2020-09-14 2022-03-17 Zf Friedrichshafen Ag ERFASSUNGSVORRICHTUNG ZUR BEFESTIGUNG AN ODER IN EIN FAHRZEUGBAUTEIL UND ZUR ERFASSUNG VON PHYSIKALISCHEN UND/ODER CHEMISCHEN GRÖßEN

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712281B (zh) * 2016-02-18 2017-08-04 国家纳米科学中心 一种锥形纳米碳材料功能化针尖及其制备方法
DE102018218837B4 (de) * 2018-11-05 2020-06-18 Mando Corporation Radgeschwindigkeitssensorsystem, ein das Radgeschwindigkeitssensorsystem enthaltendes Fahrzeug und Verfahren zum Verarbeiten von Radgeschwindigkeitssignalen
DE102019115397A1 (de) * 2019-06-06 2020-12-10 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Raddrehzahlsensor für ein Nutzfahrzeug
US10942227B2 (en) * 2019-06-25 2021-03-09 Nxp B.V. Dual sensor assembly and method of fabrication
KR20210015251A (ko) * 2019-08-01 2021-02-10 주식회사 만도 휠 속도센서 조립체
CN114624637B (zh) * 2022-04-21 2023-07-14 西南交通大学 一种永磁轨道三维磁场扫描装置及其扫描方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022596A1 (de) * 2005-05-17 2006-11-23 Continental Teves Ag & Co. Ohg Anordnung zur eigensicheren Raddrehzahlerfassung
US20070172163A1 (en) * 2004-02-17 2007-07-26 Ntn Corporation Bearing device with a sensor
US8089233B2 (en) * 2007-08-30 2012-01-03 Hitachi, Ltd. Physical quantity conversion sensor and motor control system using the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019086A (en) 1998-05-28 2000-02-01 Cummins Engine Co. Inc. Redundant sensor apparatus for determining engine speed and timing values
KR20010097649A (ko) 2000-04-25 2001-11-08 조영석 디지털 신호 발생용 휠 스피드 센서
US7116101B1 (en) 2005-12-20 2006-10-03 Honeywell International Inc. Specific location of hall chips for sensing redundant angular positions
KR100872091B1 (ko) * 2007-04-26 2008-12-05 에스앤티대우(주) 상대변위 측정 센서모듈 및 이를 이용한 이동방향 감지방법
JP4942821B2 (ja) * 2007-12-07 2012-05-30 三菱電機株式会社 車速検知ユニット及び車輪装着ユニット
WO2010007068A1 (de) * 2008-07-14 2010-01-21 Continental Teves Ag & Co. Ohg Drehmomentsensoranordnung mit drehwinkel-index-erfassung
KR101022253B1 (ko) * 2008-10-30 2011-03-21 주식회사 일진글로벌 휠속도센서 및 그 제조방법
KR101405263B1 (ko) * 2010-05-13 2014-06-10 주식회사 만도 휠 속도 감지 장치 및 그 감지 방법
DE102010047128A1 (de) * 2010-09-30 2012-04-05 Infineon Technologies Ag Hallsensoranordnung zum redundanten Messen eines Magnetfeldes
DE102011080511A1 (de) 2011-08-05 2013-02-07 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zur Plausibilisierung von Sensorsignalen
DE102012002731A1 (de) * 2012-02-10 2013-08-14 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Belagverschleißnachstellvorrichtung für eine Scheibenbremse
CN102645548A (zh) * 2012-05-12 2012-08-22 中国兵器工业集团第七0研究所 一种磁电转速传感器
DE102012012384A1 (de) * 2012-06-21 2013-12-24 Wabco Gmbh Sensorvorrichtung zur Drehzahlmessung an einem Rad eines Fahrzeugs, Bremsanlage und Fahrzeug damit sowie damit durchführbares Messverfahren zur Drehzahlmessung und Bremsverfahren
JP6148592B2 (ja) * 2013-10-15 2017-06-14 ヤマハ発動機株式会社 車速決定システム、安定制御システム及びそれを備えた鞍乗り型車両
DE102013221943A1 (de) * 2013-10-29 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld
JP5983597B2 (ja) * 2013-12-26 2016-08-31 トヨタ自動車株式会社 車両状態推定装置、車両状態推定方法および車両制御装置
US9470552B2 (en) 2014-02-06 2016-10-18 Infineon Technologies Ag Axial and perpendicular angle sensor in single package
DE202014103355U1 (de) * 2014-07-22 2014-08-19 Infineon Technologies Ag Eine Vorrichtung und ein System zum Detektieren einer physikalischen Größe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070172163A1 (en) * 2004-02-17 2007-07-26 Ntn Corporation Bearing device with a sensor
DE102005022596A1 (de) * 2005-05-17 2006-11-23 Continental Teves Ag & Co. Ohg Anordnung zur eigensicheren Raddrehzahlerfassung
US8089233B2 (en) * 2007-08-30 2012-01-03 Hitachi, Ltd. Physical quantity conversion sensor and motor control system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053600A1 (de) * 2020-09-14 2022-03-17 Zf Friedrichshafen Ag ERFASSUNGSVORRICHTUNG ZUR BEFESTIGUNG AN ODER IN EIN FAHRZEUGBAUTEIL UND ZUR ERFASSUNG VON PHYSIKALISCHEN UND/ODER CHEMISCHEN GRÖßEN

Also Published As

Publication number Publication date
EP3443359A1 (de) 2019-02-20
CN109073670A (zh) 2018-12-21
US10890597B2 (en) 2021-01-12
KR20180122421A (ko) 2018-11-12
WO2017178215A1 (de) 2017-10-19
KR102253423B1 (ko) 2021-05-17
US20190101563A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
DE102016206389A1 (de) Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors
EP0922230B1 (de) Anordnung zur erfassung des drehverhaltens eines rades
EP2115413A1 (de) Drehmomentsensor mit verminderter störanfälligkeit
DE60024692T2 (de) Elektrische Servolenkeinrichtung
DE19629934B4 (de) Sensorsystem
DE112017001253T5 (de) Drehungsdetektionsvorrichtung und Kabel mit Sensor
EP1883825A1 (de) Anordnung zur eigensicheren raddrehzahlerfassung
DE102014202276A1 (de) Energieversorgung-Spannungsüberwachungsschaltung, Sensorschaltung für ein Fahrzeug und Servolenkungsvorrichtung
WO2014154446A1 (de) Fremdmagnetfeld-unempfindlicher hallsensor
WO2019185309A1 (de) Sensorvorrichtung
EP3779367A1 (de) Vorrichtung zur messung der winkelstellung einer welle
DE112017004193T5 (de) Positionserfassungsvorrichtung
DE102015224255A1 (de) Raddrehzahlsensorsystem
DE10222204B4 (de) Sensoranordnung und ein Verfahren zu deren Herstellung
WO2017178204A1 (de) Radsensoraufnahme und radsensorsystem zur montage an einer fahrzeugachse
DE19848081A1 (de) Antriebseinrichtung mit einem Stellantrieb
DE112016000903B4 (de) Motorvorrichtung
WO2017178216A1 (de) Raddrehzahlsensor
DE102018124474A1 (de) Drehwinkelerfassungsvorrichtung für eine fahrzeugbremse
DE102017114511A1 (de) Verfahren zur Justierung einer Position eines Magneten zu einem GMR-Sensor
DE102013000145A1 (de) Lenksystem für ein Kraftfahrzeug sowie Kraftfahrzeug mit einem derartigen Lenksystem
EP0233346A1 (de) Drehzahlsensor einer Gleitschutzanlage für Fahrzeuge
EP2457134B1 (de) Pedaleinheit, berührungsfreie sensorik zur erfassung einer bewegung eines pedals, gebereinrichtung, sensorelement und verfahren zur herstellung einer pedaleinheit
DE102013213053A1 (de) Drehwinkelsensorvorrichtung mit redundanten Sensoreinheiten
DE102017218842A1 (de) Sensorvorrichtung und elektrische Maschine

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL TEVES AG & CO. OHG, 60488 FRANKFURT, DE

R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, 30165 HANNOVER, DE