DE102016112915A1 - System und Verfahren zum Umwandeln von zwei Diagnosezuständen einer Steuerung zu drei Diagnosezuständen. - Google Patents

System und Verfahren zum Umwandeln von zwei Diagnosezuständen einer Steuerung zu drei Diagnosezuständen. Download PDF

Info

Publication number
DE102016112915A1
DE102016112915A1 DE102016112915.1A DE102016112915A DE102016112915A1 DE 102016112915 A1 DE102016112915 A1 DE 102016112915A1 DE 102016112915 A DE102016112915 A DE 102016112915A DE 102016112915 A1 DE102016112915 A1 DE 102016112915A1
Authority
DE
Germany
Prior art keywords
status
state
components
vehicle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102016112915.1A
Other languages
English (en)
Other versions
DE102016112915B4 (de
Inventor
John W. Siekkinen
Daniel W. Jecks
Junhong Dai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102016112915A1 publication Critical patent/DE102016112915A1/de
Application granted granted Critical
Publication of DE102016112915B4 publication Critical patent/DE102016112915B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/30Control related aspects of engine starting characterised by the use of digital means
    • F02N2300/302Control related aspects of engine starting characterised by the use of digital means using data communication
    • F02N2300/304Control related aspects of engine starting characterised by the use of digital means using data communication with other systems inside the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Ein Steuersystem für ein Fahrzeug beinhaltet ein erstes Fahrzeugsystem einschließlich einer Vielzahl von Komponenten und eine Steuerung. Die Steuerung überwacht Diagnosedaten für die Vielzahl von Komponenten des ersten Fahrzeugsystems und gibt eine Zwei-Zustände-Anzeige für jede der Komponenten des ersten Fahrzeugsystems aus. Zustände der Zwei-Zustände-Anzeige beinhalten einen Status „Misslungen” und einen Zustand „Nicht Misslungen”. Ein Steuermodul ist ausgebildet, um die Zwei-Zustände-Statusanzeige und die Diagnosedaten vom ersten Fahrzeugsystem zu empfangen und um die Zwei-Zustände-Statusanzeige in eine Drei-Zustände-Statusanzeige umzuwandeln. Die Drei-Zustände-Statusanzeige beinhaltet einen Status „Bestanden”, einen Status „Misslungen” Status einen und ”unbestimmt”. Das Steuermodul ist ferner so konfiguriert, dass es einen Motorbetriebsparameter basierend auf der Drei-Zustände-Statusanzeige ändert.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Offenbarung betrifft Steuersysteme für Fahrzeuge und insbesondere Systeme und Verfahren zum Umwandeln von zwei Diagnosezuständen einer Steuerung zu drei Zuständen.
  • HINTERGRUND
  • Die vorliegende Hintergrundbeschreibung dient dazu, den Kontext der Offenbarung im Allgemeinen darzustellen. Die Arbeit der gegenwärtig genannten Erfinder – im in diesem Hintergrundabschnitt beschriebenen Umfang – sowie Aspekte der Beschreibung, die zum Zeitpunkt der Anmeldung nicht anderweitig als Stand der Technik gelten, gelten gegenüber der vorliegenden Offenbarung weder ausdrücklich noch konkludent als Stand der Technik.
  • Verbrennungsmotoren verbrennen ein Luft/Kraftstoffgemisch in Zylindern zur Bewegung der Kolben zur Erzeugung des Antriebsmoments. Der Luftstrom in Benzinmotoren wird über eine Drosselklappe geregelt. Genauer gesagt regelt die Drosselvorrichtung die Drosselfläche, die die Luftzufuhr in den Motor erhöht oder senkt. Wenn sich die Drosselfläche vergrößert, steigt auch die Luftzufuhr in den Motor. Ein Kraftstoffregelsystem regelt die Kraftstoffeinspritzmenge, um die Zylinder mit einem erwünschten Kraftstoff-/Luft-Mischungsverhältnis zu versorgen. Eine erhöhte Versorgung der Zylinder mit Kraftstoff und Luft erhöht die Drehmomentabgabe des Motors.
  • Ein Fahrzeug kann ein Auto-Start-Stopp-System beinhalten, das die Kraftstoffeffizienz des Fahrzeugs steigert. Das Auto-Start-Stopp-System erhöht die Kraftstoffeffizienz durch das selektive Ausschalten des Motors und das Deaktivieren des Kraftstoffflusses zum Motor während das Zündsystem des Motors eingeschaltet ist. Wenn der Motor ausgeschaltet ist, startet das Auto-Start-Stopp-System automatisch den Motor, wenn eine oder mehrere Motorstartbedingungen erfüllt sind.
  • Unter gewissen Umständen bricht die Batteriespannung während eines Autostartereignisses nach einem Autostoppereignis ein. Während einige Systeme, wie etwa eine Motorsteuerung zum Handhaben von Batteriespannungseinbrüchen, konzipiert sein können, sind andere Fahrzeugsysteme, wie etwa eine Getriebesteuerung oder andere Steuerungen, möglicherweise nicht so robust. Bei einem Batteriespannungseinbruch während eines Autostartereignisses können diese anderen Steuerungen in einen Resetbetriebsmodus übergehen und/oder zu anderen Fahrbarkeitsproblemen führen.
  • Bestehende Steuerungen für Ultrakondensatorsysteme, die für Auto-Start-Stopp-Systeme verwendet werden, bedienen sich eines Zwei-Zustände-Diagnosecodes für Komponenten innerhalb des Systems. Der erste Status entspricht einem „Nicht misslungen” und der zweite Status entspricht „Misslungen”. Derzeitige integrierte Diagnose-(„OBD”)-Regelungen erfordern, dass Diagnosesysteme bei den Meldungen Diagnosestatus, einschließlich „Bestanden”, „Misslungen” und „Unbestimmt”, verwenden. Der Status „Nicht misslungen” ist unzureichend, da er sowohl den Status „Bestanden” als auch den Status „Unbestimmt” beinhaltet.
  • ZUSAMMENFASSUNG
  • Ein Steuersystem für ein Fahrzeug beinhaltet ein erstes Fahrzeugsystem einschließlich einer Vielzahl von Komponenten und eine Steuerung. Die Steuerung überwacht Diagnosedaten für die Vielzahl von Komponenten des ersten Fahrzeugsystems und gibt eine Zwei-Zustände-Statusanzeige für jede der Komponenten des ersten Fahrzeugsystems aus. Zustände der Zwei-Zustände-Statusanzeige beinhalten einen Status „Misslungen” und einen Status „Nicht misslungen”. Ein Steuermodul ist ausgebildet, um die Zwei-Zustände-Statusanzeige und die Diagnosedaten vom ersten Fahrzeugsystem zu empfangen und um die Zwei-Zustände-Statusanzeige in eine Drei-Zustände-Statusanzeige umzuwandeln. Die Drei-Zustände-Statusanzeige beinhaltet einen Status „Bestanden”, einen Status „Misslungen” und einen Status „Unbestimmt”. Das Steuermodul ist ferner ausgebildet, um einen Motorbetriebsparameter basierend auf der Drei-Zustände-Statusanzeige zu ändern.
  • In anderen Merkmalen initialisiert das Steuermodul die Drei-Zustände-Statusanzeige für sämtliche Komponenten des ersten Fahrzeugsystems im Status „Unbestimmt”. Das Steuermodul ist ausgebildet, um die Diagnosedaten zu überprüfen, um zu identifizieren, wenn ein Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird. Falls der Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird und ein Ergebnis des Diagnosetests gleich einem Status „Bestanden” ist, wird das Steuermodul ausgebildet, um die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems vom Status „Unbestimmt” in den Status „Bestanden” zu ändern. Falls der Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird und ein Ergebnis des Diagnosetests gleich einem Status „Misslungen” ist, wird das Steuermodul ausgebildet, um die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems vom Status „Unbestimmt” in den Status „Misslungen” zu ändern.
  • In anderen Merkmalen beinhaltet das erste Fahrzeugsystem einen Ultrakondensator und ein Batteriesystem. Der Ultrakondensator und das Batteriesystem umfassen eine Batterie, einen Ultrakondensator, einen DC/DC-Wandler, einen Temperatursensor, einen Schalter und eine Steuerung. Das Steuermodul beinhaltet ein Auto-Stopp/Startmodul, das ausgebildet ist, um einen Motor eines Fahrzeugs selektiv anzuhalten und den Motor des Fahrzeugs neu zu starten während ein Zündsystem eingeschaltet ist. Das Steuermodul deaktiviert das Auto-Stopp/Startmodul selektiv basierend auf der Drei-Zustände-Statusanzeige.
  • In anderen Merkmalen ist das Steuermodul ausgebildet, um das Auto-Stopp/Startmodul zu deaktivieren, wenn die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems gleich dem Status „Misslungen” ist, und um das Auto-Stopp/Startmodul selektiv zu aktivieren, wenn die Drei-Zustände-Statusanzeige für die gesamte Vielzahl von Komponenten des ersten Fahrzeugsystems entweder gleich dem Status „Bestanden” oder dem Status „Unbestimmt” ist.
  • Ein Steuerverfahren zum Überwachen des Betriebs eines Fahrzeugs beinhaltet das Überwachen der Diagnosedaten für eine Vielzahl von Komponenten eines ersten Fahrzeugsystems und der Ausgabe einer Zwei-Zustände-Statusanzeige für die gesamte Vielzahl von Komponenten des ersten Fahrzeugsystems. Zustände der Zwei-Zustände-Statusanzeige beinhalten einen Status „Misslungen” und einen Status „Nicht misslungen”. Das Steuerverfahren beinhaltet das Empfangen der Zwei-Zustände-Statusanzeige und der Diagnosedaten vom ersten Fahrzeugsystem und das Umwandeln der Zwei-Zustände-Statusanzeige in eine Drei-Zustände-Statusanzeige für die gesamte Vielzahl von Komponenten des ersten Fahrzeugsystems. Die Drei-Zustände-Statusanzeige beinhaltet einen Status „Bestanden”, einen Status „Misslungen” und einen Status „Unbestimmt”. Das Steuerverfahren beinhaltet das Ändern eines Motorbetriebsparameters basierend auf der Drei-Zustände-Statusanzeige.
  • In anderen Merkmalen beinhaltet das Steuerverfahren das Initialisieren der Drei-Zustände-Statusanzeige auf den Status „Unbestimmt” für sämtliche der Vielzahl von Komponenten des ersten Fahrzeugsystems. Das Steuerverfahren beinhaltet das Überwachen der Diagnosedaten, um zu identifizieren, wenn ein Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird.
  • Falls der Diagnosetest in anderen Merkmalen für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird und ein Ergebnis des Diagnosetests gleich einem Status „Bestanden” ist, beinhaltet das Steuerverfahren das Ändern der Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems vom Status „Unbestimmt” in den Status „Bestanden”.
  • Falls der Diagnosetest in anderen Merkmalen für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird und ein Ergebnis des Diagnosetests gleich einem Status „Misslungen” ist, beinhaltet das Steuerverfahren das Ändern der Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems vom Status „Unbestimmt” in den Status „Misslungen”.
  • In anderen Merkmalen beinhaltet das erste Fahrzeugsystem einen Ultrakondensator und ein Batteriesystem. Der Ultrakondensator und das Batteriesystem umfassen eine Batterie, einen Ultrakondensator, einen DC/DC-Wandler, einen Temperatursensor, einen Schalter und eine Steuerung. Das Verfahren beinhaltet das selektive Durchführen eines Auto-Stopp/Starts durch das Stoppen des Motors eines Fahrzeugs und einem späteren Wiederstarten des Motors des Fahrzeugs, während ein Zündsystem eingeschaltet ist. Das Verfahren beinhaltet das selektive Deaktivieren des Auto-Stopp/Starts basierend auf der Drei-Zustände-Statusanzeige.
  • In anderen Merkmalen beinhaltet das Verfahren, das selektive Deaktivieren des Auto-Stopp/Starts wenn die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems gleich dem „misslungen” Status ist; Und das selektive Aktivieren des Auto-Stopp/Starts, wenn die Drei-Zustände-Statusanzeige für die gesamte Vielzahl von Komponenten des ersten Fahrzeugsystems entweder gleich dem „bestanden” Status oder dem „unbestimmt” Status ist.
  • Weitere Anwendungsbereiche der vorliegenden Offenbarung ergeben sich aus der detaillierten Beschreibung, den Ansprüchen und den Zeichnungen. Die detaillierte Beschreibung und die spezifischen Beispiele dienen lediglich der Veranschaulichung und schränken den Umfang der Offenbarung nicht ein.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Die vorliegende Erfindung wird verständlicher unter Zuhilfenahme der detaillierten Beschreibung und der beigefügten Zeichnungen, worin:
  • 1 ein Funktionsblockdiagramm für ein Beispiel eines Motorsteuersystems einschließlich eines Auto-Stopp/Startsystems und einer Batterie und eines Ultrakondensatorsystems gemäß der vorliegenden Offenbarung ist;
  • 2 ein Funktionsblockdiagramm eines Beispiels der Batterie und des Ultrakondensatorsystems aus 1 ist; und
  • 35 Flussdiagramme sind, die ein Beispiel eines Verfahrens zum Umwandeln der Zwei-Diagnosezustandausgabe mittels einer Ultrakondensatorsteuerung in drei Diagnosezustände zu veranschaulichen, um ein Auto-Stopp/Startsystem gemäß der vorliegenden Offenbarung zu steuern.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Ein Motorsteuermodul und Anlasser starten und stoppen einen Motor eines Fahrzeugs selektiv als Antwort auf die Fahrzeugeinschalt- und Ausschaltbefehle vom Bediener (z. °B., der Übergang eines Zündschlüssels oder Startknopfs zu „EIN” oder „AUS”). Das Steuermodul kann auch Autostoppereignisse und Autostartereignisse zwischen dem Motoreinschaltbefehl und dem Motorabschaltbefehl initiieren, während der Zündschlüssel sich auf „EIN” befindet.
  • Das Steuermodul kann ein Autostoppereignis und ein Abschalten des Motors beispielsweise initiieren, wenn das Fahrzeug angehalten wird, während der Fahrer das Bremspedal drückt und/oder andere Aktivierungsbedingungen vorliegen. Das Steuermodul kann ein Autostartereignis selektiv initiieren und einen Motor neu starten, wenn der Fahrer das Bremspedal weniger stark drückt und/oder andere Aktivierungsbedingungen vorliegen.
  • Während des Betriebs ist der Ultrakondensator aufgeladen, um Energie zu speichern. Sobald der Ladungsvorgang beendet ist, sind Autostoppereignisse zugelassen. Wenn ein Autostartereignis erfolgt, setzt der Ultrakondensator die gespeicherte Energie frei, um Batteriespannungseinbrüche zu reduzieren. Das Reduzieren der Batteriespannungseinbrüche ermöglicht das Betreiben des Auto-Start-Stopp-Systems in zusätzlichen Situationen. Zum Beispiel ermöglicht das Verwenden des Ultrakondensators es dem Auto-Start-Stopp-System bei niedrigeren Temperaturen betrieben zu werden. Infolge der verstärkten Nutzung des Auto-Start-Stopp-Systems wird die Kraftstoffökonomie verbessert.
  • Bestehende Steuerungen für Ultrakondensatorsysteme, die für Auto-Start-Stopp-Systeme verwendet werden, bedienen sich einer Zwei-Zustände-Diagnosecode für Komponenten innerhalb des Systems. Der erste Status entspricht einem „Nicht fehlerhaft” und der zweite Status entspricht „Misslungen”. Derzeitige integrierte Diagnose-Regelungen erfordern, dass Diagnosesysteme bei den Meldungen Diagnosestatus, einschließlich „Bestanden”, „Misslungen” und „Unbestimmt”, verwenden. Der Status „Nicht misslungen” ist unzureichend, da er sowohl den Status „Bestanden” als auch den Status „Unbestimmt” beinhaltet.
  • Die hier beschriebenen Systeme und Verfahren wandeln die Zwei-Zustände-Diagnosemeldungen für Komponenten des Ultrakondensatorsystems in ein mit OBT-Systemen kompatibles Drei-Diagnosezustandsystem um. Das Motorsteuermodul aktiviert und deaktiviert das Auto-Start-Stopp-System basierend auf den drei Diagnosezuständen der Komponenten des Ultrakondensatorsystems.
  • Unter Bezugnahme auf 1 wird ein Funktionsblockdiagramm eines exemplarischen Motorsystems 100 präsentiert. Das Motorsystem 100 beinhaltet einen Motor 102, der ein Luft-/Kraftstoffgemisch verbrennt, um ein Drehmoment für ein Fahrzeug zu erzeugen. Die Luft wird durch eine Drosselklappe 106 in einen Ansaugkrümmer 104 eingesogen. Das Drosselklappenventil 106 reguliert den Luftfluss in den Ansaugkrümmer 104. Die Luft vom Ansaugkrümmer 104 wird in einen oder mehrere Zylinder des Motors 102, wie etwa Zylinder 108, eingesaugt.
  • Eine oder mehrere Kraftstoffeinspritzdüsen 110 spritzen Kraftstoff ein, der sich mit Luft vermischt, um ein Kraftstoff-/Luftgemisch zu bilden. Bei unterschiedlichen Implementierungen kann eine Kraftstoffeinspritzvorrichtung für jeden Zylinder des Motors 102 bereitgestellt werden. Die Kraftstoffeinspritzvorrichtungen können mit einem elektronischen oder einem mechanischen Kraftstoffeinspritzsystem, einer Düse oder einem Einlasskanal eines Vergasers oder einem anderen Kraftstoffeinspritzsystem in Verbindung stehen. Die Kraftstoffeinspritzvorrichtungen können gesteuert werden, um ein erwünschtes Kraftstoff-/Luft-Mischungsverhältnis für die Verbrennung bereitzustellen, wie etwa ein stöchiometrisches Kraftstoff-/Luft-Mischungsverhältnis.
  • Ein Einlassventil 112 öffnet sich, um Luft in den Zylinder 108 hineinzulassen. Ein Kolben komprimiert (nicht dargestellt) das Luft-/Kraftstoffgemisch innerhalb des Zylinders 108. In manchen Motorsystemen initiiert eine Zündkerze 114 die Verbrennung des Luft-/Kraftstoffgemischs innerhalb des Zylinders 108. In anderen Arten von Motorsystemen, wie etwa Dieselmotorsystemen, kann die Verbrennung ohne die Zündkerze 114 initiiert werden.
  • Die Verbrennung des Luft-/Kraftstoffgemischs übt auf den Kolben, der eine Kurbelwelle drehbar antreibt (nicht dargestellt), Druck aus. Der Motor 102 gibt Drehmoment über die Kurbelwelle ab. Ein Schwungrad 120 ist an die Kurbelwelle gekoppelt ist und dreht sich mit der Kurbelwelle. Das vom Motor 102 erzeugte Antriebsdrehmoment wird über eine Drehmomentübertragungsvorrichtung 124 selektiv auf ein Getriebe 122 übertragen. Genauer gesagt koppelt die Drehmomentübertragungsvorrichtung 124 das Getriebe 122 selektiv an den Motor 102 und entkoppelt das Getriebe 122 vom Motor 102. Die Drehmomentübertragungsvorrichtung 124 kann beispielsweise einen Drehmomentwandler und/oder ein oder mehrere Kupplungen beinhalten. Das Getriebe 122 kann beispielsweise ein Handschaltgetriebe, ein automatisches Getriebe, ein halbautomatisches Getriebe, ein automatisches Handschaltgetriebe, und/oder eine sonstige geeignete Art von Getriebe beinhalten.
  • Die durch die Verbrennung des Luft-/Kraftstoffgemischs erzeugten Abgase werden vom Zylinder 108 über ein Auslassventil 126 ausgestoßen. Das Abgas wird von den Zylindern an ein Abgassystem 128 ausgestoßen. Das Abgassystem 128 kann die Abgase behandeln bevor die Abgase vom Abgassystem 128 ausgestoßen werden. Obwohl ein Einlass- und Auslassventil gezeigt werden und als mit dem Zylinder 108 in Verbindung stehend beschrieben werden, können mehr als ein Einlass- und/oder Auslassventil mit jedem Zylinder des Motors 102 in Verbindung gebracht werden.
  • Ein Motorsteuergerät (ECM) 130 steuert die Drehmomentausgabe des Motors 102. Nur als Beispiel kann das ECM 130 die Momentabgabe des Motors 102 über verschiedene Stellglieder steuern. Die Stellglieder können beispielsweise ein Drosselklappenstellgliedmodul 132, ein Kraftstoffstellgliedmodul 134, und ein Zündfunkenstellgliedmodul 136 beinhalten. Das Motorsystem 100 kann auch andere Stellglieder beinhalten, und das ECM 130 kann die anderen Stellglieder steuern.
  • Jedes Stellglied steuert einen Betriebsparameter basierend auf einem Signal vom ECM 130. Nur als Beispiel kann das Drosselklappenstellgliedmodul 132 die Öffnung der Drosselklappe 106 steuern, das Kraftstoffstellgliedmodul 134 kann die Menge und den Zeitpunkt der Kraftstoffeinspritzung steuern, und das Zündfunkenstellgliedmodul 136 kann den Zündzeitpunkt steuern.
  • Das ECM 130 kann die Drehmomentausgabe des Motors 102 regeln, ausgehend von, beispielsweise Fahrereingaben und verschiedenen anderen Eingaben. Die anderen Eingaben können beispielsweise Eingaben von einem Getriebesystem, Eingaben von einem Hybridsteuersystem, Eingaben von einem Stabilitätskontrollsystem, Eingaben von einem Fahrwerksteuersystem oder andere geeignete Fahrzeugsysteme beinhalten.
  • Die Fahrereingaben können beispielsweise eine Gaspedalstellung (APP), eine Bremspedalstellung (BPP) und Fahrzeugbetriebsbefehle beinhalten. Ein APP-Sensor 142 misst die Stellung eines Gaspedals (nicht dargestellt) und generiert die APP ausgehend von der realen Stellung. Ein BPP-Sensor 144 überwacht die Betätigung eines Bremspedals (nicht dargestellt) und generiert die BPP dementsprechend. Die Fahrzeugbetriebsbefehle können beispielsweise über die Betätigung eines Zündschlüssels, eines oder mehreren Tasten/Schaltern und einer oder mehreren geeigneten Zündsystemeingaben 148 des Fahrzeugs eingegeben werden. In Fahrzeugen mit einem Handschaltgetriebe können die in das ECM 130 eingegebenen Fahrereingaben auch eine Kupplungspedalstellung (CPP) beinhalten. Ein CPP-Sensor 150 überwacht die Betätigung eines Kupplungspedals (nicht dargestellt) und generiert die CPP dementsprechend.
  • In einigen Implementierungen kann der APP-Sensor 142, der BPP-Sensor 144, und der CPP-Sensor 150 die Lage des jeweils zugeordneten Pedals messen und die APP-, die BPP- und die CPP-Signale dementsprechend basierend auf der gemessenen Lage des zugeordneten Pedals generieren. In anderen Implementierungen können der APP Sensor 142, der BPP Sensor 144, und der CPP Sensor 150 je einen oder mehrere Schalter beinhalten und die APP, die BPP, und die CPP dementsprechend generieren und dabei angeben, ob das zugeordnete Pedal von der vorbestimmten Ruheposition weg betätigt wird. Obwohl der APP-Sensor 142, der BPP-Sensor 144 und der CPP-Sensor 150 hier dargestellt und beschrieben wird, können ein oder mehrere zusätzliche APP-, BPP- und/oder CPP-Sensoren vorhanden sein.
  • Die Fahrereingaben können auch einen oder mehrere Geschwindigkeitsregelungseingaben beinhalten. Ein Geschwindigkeitssteuermodul 154 kann Geschwindigkeitsregelungseingaben an das ECM 130 bereitstellen basierend auf Nutzereingaben und Fahrzeugumfeldeingaben. Die Nutzereingaben beinhalten beispielsweise eine Geschwindigkeitseinstellungseingabe, eine Ein/Aus-Eingabe für die Geschwindigkeitsregelung, eine Eingabe für eine Wiederaufnahme der Geschwindigkeit, und/oder ein oder mehrere geeignete Nutzereingaben.
  • Das ECM 130 Kann selektiv Steuerentscheidungen für das Motorsystem 100 treffen basierend auf ein oder mehrere Parameter. Ein Fahrzeuggeschwindigkeitssensor 152 misst die Geschwindigkeit des Fahrzeugs und generiert ein Fahrzeuggeschwindigkeitssignal. Nur als Beispiel kann der Fahrzeuggeschwindigkeitssensor 152 die Fahrzeuggeschwindigkeit generieren basierend auf einer Getriebeausgangswellendrehzahl (TOSS), eine oder mehrere Raddrehzahlen, und/oder eine andere geeignete Messung der Fahrzeuggeschwindigkeit. Das ECM 130 kann auch Betriebsparameter empfangen, die von anderen Sensoren 155 gemessen wurden, wie etwa Sauerstoffgehalte in den Abgasen, Motordrehzahl, Motorkühlmitteltemperatur, Ansauglufttemperatur, Massenluftstromrate, Öltemperatur, Krümmerabsolutdruck, und/oder sonstige geeignete Parameter.
  • Das ECM 130 schaltet den Motor 102 selektiv ab, wenn ein Motorabschaltbefehl empfangen wird. Nur als Beispiel kann das ECM 130 die Kraftstoffeinspritzung deaktivieren, die Bereitstellung der Zündung deaktivieren und sonstige Motorabschaltvorgänge durchführen, um den Motor 102 abzuschalten, wenn ein Fahrzeugabschaltbefehl empfangen wird.
  • Während der Motor 102 nach dem Empfang des Fahrzeugstartbefehls angelassen wird (z. B. der Zündschlüssel ist in die EIN-Position übergegangen), wird ein Startermotor 160 selektiv mit dem Motor 102 verbunden, um den Motor anzulassen und ein Startereignis zu initiieren. Nur als Beispiel kann der Startermotor 160 mit dem Motor 102 verbunden werden, wenn ein Fahrzeugstartbefehl empfangen wird. Der Startermotor 160 kann das Schwungrad 120 oder eine andere geeignete Komponente(n) verbinden, die die Drehung der Kurbelwelle antreiben können.
  • Ein Startermotorstellglied 162, wie etwa ein Solenoid, verbindet den Startermotor 160 selektiv mit dem Motor 102. Ein Starterstellgliedmodul 164 steuert das Startermotorstellglied 162 und daher den Startermotor 160 basierend auf Signalen vom ECM 130. Nur als Beispiel kann das ECM 130 die Verbindung des Startermotors 160 befehlen, wenn das Fahrzeugstartbefehl empfangen wird.
  • Das Starterstellgliedmodul 164 legt selektiv Strom an den Startermotor 160 an, wenn der Startermotor 160 mit dem Motor 102 verbunden ist. Nur als Beispiel kann das Starterstellgliedmodul 164 einen Starterrelais beinhalten. Das Anlegen von Strom an den Startermotor 160 treibt die Drehung des Startermotors 160 an und der verbundene Abschnitt des Startermotors 160 treibt die Drehung der Kurbelwelle an. Die Antriebsdrehung der Kurbelwelle, um den Motor 102 zu starten und kann als Anlassen des Motors bezeichnet werden.
  • Sobald der Motor 102 nach dem Startereignis des Motors als laufend betrachtet wird, kann der Startermotor 160 vom Motor 102 gelöst werden und der Stromfluss zum Startermotor 160 kann eingestellt werden. Der Motor 102 kann zum Beispiel als laufend betrachtet werden, wenn die Motordrehzahl eine vorgegebene Geschwindigkeit übersteigt, wie etwa eine vorgegebene Leerlaufdrehzahl. Nur als Beispiel kann die zuvor festgelegte Leerlaufdrehzahl ungefähr 700 rpm betragen. Das Anlassen des Motors kann als beendet betrachtet werden, wenn der Motor 102 als laufend betrachtet wird. Der Strom mit dem der Startermotor 160 versorgt wird, kann beispielsweise von einer Batterie und einem Ultrakondensatorsystem 190 bereitgestellt werden.
  • Mit der Ausnahme eines befohlenen Fahrzeughochlaufs und Fahrzeugabschaltung kann das ECM 130 ein Auto-Stopp/Startmodul 180 beinhalten, das Autostoppereignisse und Autostartereignisse des Motors 102 selektiv initiiert. Ein Autostoppereignis beinhaltet das Abschalten des Motors 102, wenn ein oder mehrere zuvor festgelegte Autostoppkriterien erfüllt werden, wenn die Fahrzeugabschaltung noch nicht befohlen wurde (z. °B. während der Zündschlüssel sich in der Ein-Position befindet). Der Motor 102 kann abgeschaltet werden und das Bereitstellen von Kraftstoff an den Motor 102 kann deaktiviert werden, z. °B. um die Kraftstoffökonomie zu verbessern (durch eine Verringerung des Kraftstoffverbrauchs).
  • Wenn der Motor 102 während des Autostoppereignisses abgeschaltet wird, kann das Auto-Stopp/Startmodul 180 das Auto-Startereignis selektiv initiieren. Ein Autostartereignis kann beispielsweise das Versorgen des Motors 102 mit Kraftstoff, das Bereitstellen von Zündfunken, das Verbinden des Startermotors 160 mit dem Motor 102, und das Anlegen von Strom an den Startermotor 160 um den Motor 102 zu starten, beinhalten.
  • Das Auto-Stopp/Startmodul 180 kann die Autostoppereignisse und Autostartereignisse selektiv initiieren, beispielsweise basierend auf der APP, der BPP, der Fahrzeuggeschwindigkeit, der CPP, dem Spannungszustand der Batterie, dem Ladezustand des Ultrakondensators und/oder einem oder mehreren anderen geeigneten Parametern. Nur als Beispiel kann das Auto-Stopp/Startmodul 180 ein Autostoppereignis initiieren wenn das Bremspedal niedergedrückt wird und die Fahrzeuggeschwindigkeit weniger als eine vorgegebene Geschwindigkeit beträgt. Wenn der Motor 102 für das Autostoppereignis abgeschaltet wird, kann das Auto-Stopp/Startmodul 180 ein Auto-Startereignis selektiv initiieren wenn das Bremspedal losgelassen wird.
  • Ein Zwei-Zustände-in-Drei-Zustände-Wandlermodul 182 kommuniziert mit einer Steuerung im Batterie- und Ultrakondensatorsystem 190 und wandelt Zwei-Zustände-Diagnosemeldungen von der Steuerung im Ultrakondensatorsystem in Drei-Zustände-Diagnosemeldungen um. Das Motorsteuermodul 130 aktiviert und deaktiviert das Auto-Start-Stopp-System basierend auf den Drei-Zustände-Diagnosemeldungen für Komponenten des Ultrakondensatorsystems 190.
  • Unter Bezugnahme auf 2 beinhaltet das Batterie- und Ultrakondensatorsystem 190 eine Batterie 200, eine Ultrakondensatorsteuerung 204, einen DC/DC-Wandler 208, Schalter 210 und 212, einen Ultrakondensator 214 und Temperatursensoren 218, 220 und 222. Das Motorsteuermodul 130 kann über einen Bus 206 an die Ultrakondensatorsteuerung 204 verbunden werden. In einigen Beispielen beinhaltet der Bus 206 einen Local-Interconnect-Network-(LIN)-Bus (lokales Kopplungsstrukturnetzwerk), obwohl andere Busarten verwendet werden können.
  • Der DC/DC-Wandler 208 beinhaltet einen ersten Anschluss der mit einem ersten Anschluss der Batterie 201 verbunden ist und einen zweiten Anschluss, der zwischen dem Schalter und dem Ultrakondensator 214 verbunden ist. Der Schalter 210 ist zwischen einem zweiten Anschluss der Batterie 200 und einem ersten Anschluss des Ultrakondensators 214 verbunden. Der Schalter 212 ist zwischen dem negativen Anschluss der Batterie 200 und dem Fahrgestellboden verbunden. Der zweite Anschluss des Ultrakondensators 214 ist zum Fahrgestellboden verbunden. Die Ultrakondensatorsteuerung 204 ist zum DC/DC-Wandler 208, den Temperatursensoren 218, 220 und 222 und den Schaltern 210 und 212 verbunden. Darüber hinaus kommuniziert die Ultrakondensatorsteuerung 204 mit dem Motorsteuermodul 206.
  • Während des Betriebs ist der Schalter 212 in der Regel geschlossen, um die Batterie 200 zum Fahrgestellboden zu verbinden und der Schalter 210 ist geöffnet. Während Autostartereignissen ist der Schalter 210 selektiv geschlossen und der Schalter 212 ist geöffnet, um Hilfestellung vom Ultrakondensator 214 zur Batterie 200 zu leisten, um Spannungseinbrüche zu verhindern. Während des Ladevorgangs versorgt der DC/DC-Wandler 208 den Ultrakondensator 214 mit Strom von der Batterie 200, um den Ultrakondensator 214 aufzuladen. Die Temperatursensoren 218, 220 und 222 überwachen die jeweiligen Temperaturen des DC/DC-Wandlers 208, des Schalters 212 und des Ultrakondensators 214.
  • In 3 wird anhand eines hohen Durchflussniveaus der Betrieb des Zwei-Zustände-in-drei-Zustände-Wandlermoduls veranschaulicht. In 4A5 wird der Betrieb des Zwei-Zustände-in-drei-Zustände-Wandlermoduls näher veranschaulicht.
  • Unter Bezugnahme auf 3 beginnt das Steuerverfahren mit 252, wo das Motorsteuermodul bestätigt, dass es sich bei den Daten von der Ultrakondensatorsteuerung um gültige und aktuelle Daten handelt. Bei 254 beginnt das Steuerungsverfahren jede Fahrt mit allen Diagnosecodes im Status „Unbestimmt”. Bei 258 überwacht das Zwei-Zustände-in-drei-Zustände-Wandlermodul für jede von der Ultrakondensatorsteuerung überwachten Diagnose Diagnosewerte, um zu prüfen, ob ein Diagnosetest durchgeführt wurde.
  • Bei 260 bestimmt das Zwei-Zustände-in-drei-Zustände-Wandlermodul, ob ein Diagnosetest durchgeführt wurde. In manchen Beispielen überwacht die Ultrakondensatorsteuerung Diagnosewerte und identifiziert Statusänderungen bei den Diagnosewerten. Falls 260 richtig ist, ändert das Steuerungsverfahren je nach Ergebnis den Status von „Unbestimmt” entweder in „Bestanden” oder in „Misslungen”, und kehrt zu 260 zurück. Falls 260 falsch ist, fährt das Steuerungsverfahren mit 268 fort und bestimmt, ob Diagnosetests sich in einem Status „Misslungen” befinden. Falls 268 richtig ist, deaktiviert das Steuerungsverfahren die Auto-Stopp/Starts für die Fahrt bei 270 und fährt mit 272 fort.
  • Bei 272 bestimmt das Steuerungsverfahren, ob sämtliche Diagnosetests sich in entweder einem „bestanden” oder einem Status „Unbestimmt” befinden. Falls 272 richtig ist, aktiviert das Steuerungsverfahren die Auto-Stopp/Starts für die Fahrt. Diese Schritte ermöglichen das Erfolgen einer Heilung während einer Fahrt falls der Status „Misslungen” beendet wird. Das Steuerungsverfahren fährt von 272 und 274 mit 278 fort, wo das Steuerungsverfahren bestimmt, ob das Motorsteuermodul Übergängen unterzogen wird. Falls 278 falsch ist, fährt die Steuerung mit 260 fort. Andernfalls wird das Steuerungsverfahren beendet.
  • Unter Bezugnahme auf 4A5 wird ein Steuerungsverfahren zum Umwandeln von Zwei-Zustände-Diagnosemeldungen zu Drei-Zustände-Diagnosemeldungen veranschaulicht, das von der Ultrakondensatorsteuerung für das Verwenden durch das Steuermodul durchgeführt wird. In 4A und 4B werden unterschiedliche Schritte durchgeführt, um vor der Durchführung der Diagnose sicherzustellen, dass die Daten aktuell sind. Bei 310 beginnt das Steuerungsverfahren, wenn das Motorsteuergerät (ECM) aufwacht. Bei 312 bestimmt das Steuerungsverfahren, ob sich am Zubehör-(ACC), Nachlauf- oder Anlassschalter ein Leistungsmodus befindet. Falls dies nicht der Fall ist, kehrt das Steuerungsverfahren zu 312 zurück. Falls 312 richtig ist, bestimmt das Steuerungsverfahren, ob Busvariablen bei 316 initialisiert werden. Falls dies nicht der Fall ist, werden die Busvariablen bei 318 initialisiert. Bei 320 wird ein mit der nächsten Nachricht empfangener Merker auf falsch eingestellt und das Steuerungsverfahren kehrt zu 312 zurück.
  • Wenn 316 richtig ist überwacht das Steuerungsverfahren den empfangenen Status der Busmeldung. Die mit der nächsten Meldung empfangenen Merker ändern sich zu richtig wenn der nächste Rahmen über dem Bus ankommt. Bei 326 bestimmt das Steuerungsverfahren ob der Bus-Awake-Merker auf gleich mit richtig eingestellt ist. Falls 326 falsch ist, fährt das Steuerungsverfahren mit 328 fort und bestimmt, ob eine neue Busmeldung empfangen wurde. Falls 328 falsch ist, fährt das Steuerungsverfahren mit 320 fort. Falls 328 richtig ist, fährt das Steuerungsverfahren mit 330 fort und stellt den Bus-Awake-Merker auf richtig ein und fährt mit 320 fort. Falls 326 richtig ist, fährt das Steuerungsverfahren mit 334 fort und bestimmt, ob eine Nachlaufzeitverzögerung der Ultrakondensatorsteuerung größer als eine zuvor festgelegte Nachlaufzeitspanne ist. Falls 334 falsch ist erhöht das Steuerungsverfahren die Nachlaufzeitverzögerung der Ultrakondensatorsteuerung bei 326 und fährt mit 320 fort.
  • Falls 334 richtig ist, bestimmt das Steuerungsverfahren, ob der mit der nächsten Nachricht empfangene Merker richtig ist (entsprechend einem neuen vom Bus empfangenen Datensatz). Diese und die nachfolgenden Schritte in 4A erfolgen für sämtliche der Datensatzrahmen. Bei 342 bestimmt das Steuerungsverfahren, ob der Bus-Rahmenstatus auf gleich warten ist. Falls dies nicht der Fall ist, fährt das Steuerungsverfahren mit 344 fort und stellt den Busrahmenstatus auf gleich mit bereit ein. Falls 342 richtig ist, fährt das Steuerungsverfahren mit 350 fort und stellt den Busmeldungsstatus für die gesamte Anordnung der Busschaltpläne auf gleich mit bereit ein.
  • In 4B bestimmt das Steuerungsverfahren bei 400, ob die Ultrakondensatorsteuerung wach ist. Falls dies nicht der Fall ist, kehrt das Steuerungsverfahren zu 400 zurück. Falls 400 richtig ist, fährt das Steuerungsverfahren mit 404 fort und erhöht eine Zeitspanne seit der die Ultrakondensatorsteuerung wach ist. Bei 408 überwacht das Steuerungsverfahren die zu überwachenden Parameter der mit der internen Schaltkreisdiagnose in Beziehung stehenden Ultrakondensatorsteuerung. Beispiele beinhalten eine Zeit seit das Ultrakondensatorsystem wach ist, den Status des Ultrakondensatorsystems, den Status des Ladungsschalters, den Status des Kondensatorschalters, den assistenzaktivierten Ultrakondensator, das Ladungsniveau des Kondensators, ein aktives Zellgleichgewicht, den Ladungs-/Entladungszustand, die Busversorgungsspannung, die Nachlauf-/Anlassspannung des Fahrzeugs, den sich im Gang befindlichen assistierten Start, den Status der Selbsttestdiagnose des Ultrakondensators, Rückschaltereignisse des Kondensators, usw.
  • Bei 412 bestimmt das Steuerverfahren, ob Aktivierungsbedingungen vorliegen. Falls 412 falsch ist, kehrt das Steuerungsverfahren zu 404 zurück. Falls 412 richtig ist, stellt das Steuerungsverfahren die erfüllten Merk-Bedingungen auf gleich mit richtig bei 416 ein.
  • In 5 beginnt das Steuerungsverfahren mit 420. Die Schritte von 5 werden je von den überwachten Komponenten im Ultrakondensatorsteuerungssystem durchgeführt. Bei 424 bestimmt das Steuerungsverfahren, ob die Zeit seit dem die Ultrakondensator Steuerung wach ist, größer als die ursprüngliche Verzögerungszeit ist und der Busrahmenstatus ist gleich mit bereit. Falls 424 richtig ist, fährt die Steuerungsmethode mit 428 fort und bestimmt, ob es eine Statusänderung in einem entsprechenden Fehlerbit seit dem letzten Softwareloop gegeben hat (die nicht auf Code-Clearing zurückzuführen ist).
  • Falls 424 oder 428 falsch sind, fährt das Steuerungsverfahren mit 430 fort. Bei 430 bestimmt das Steuerungsverfahren, ob ein gemeldeter Diagnose-Merker gleich mit richtig ist. Falls 430 richtig ist, fährt das Steuerungsverfahren mit 420 fort. Falls 430 falsch ist, fährt das Steuerungsverfahren mit 434 fort und bestimmt, ob ein Code-Clearing stattgefunden hat. Falls 434 richtig ist, fährt das Steuerungsverfahren mit 420 fort. Falls 434 falsch ist, fährt das Steuerungsverfahren mit 438 fort und bestimmt, ob ein Laufzeitmerker auf gleich mit richtig eingestellt wurde. Falls 438 falsch ist, fährt das Steuerungsverfahren mit 442 fort und bestimmt, ob ein Bedingungen-erfüllt-Merker gleich mit richtig ist. Falls 442 falsch ist fährt das Steuerungsverfahren mit 444 fort, stellt einen schnellen Zeitgeber neu ein und fährt mit 420 fort. Falls 442 richtig ist, erhöht das Steuerungsverfahren einen schnellen Zeitgeber bei 448 und fährt mit 450 fort. Bei 450 bestimmt das Steuerungsverfahren, ob der schnelle Zeitgeber größer als eine Laufzeitkalibrierung und eine Busverzögerungszeit ist. Falls 450 falsch ist, fährt das Steuerungsverfahren mit 420 fort. Falls 450 richtig ist, fährt das Steuerungsverfahren mit 460 fort und stellt einen Laufzeitmerker auf „Gleich mit richtig”, einen Busmeldezustand auf „Gleich mit warten” ein und fährt mit 420 fort.
  • Falls 438 richtig ist, fährt das Steuerungsverfahren mit 464 fort und bestimmt, ob der Busmeldezustand „Gleich mit bereit” ist. Falls 464 falsch ist, fährt das Steuerungsverfahren mit 420 fort. Falls 464 oder 428 richtig sind, fährt das Steuerungsverfahren mit 468 fort unbestimmt, ob der Fehler bitte gleich mit misslungen ist. Als 468 richtig ist, berichtet das Steuerungsverfahren ein einen Testfehler und deaktiviert den Auto-Stopp/Start für die Fahrt. Falls 468 falsch ist, berichtet das Steuerungsverfahren ein Testbestehen bei 474. Ein Steuerungsverfahren fährt von 472 und 474 mit 478 fort und stellt DiagReported auf gleich mit richtig ein und fährt mit 420 fort.
  • Die vorhergehende Beschreibung ist rein illustrativ und soll die vorliegende Offenbarung sowie ihre Anwendungen oder Verwendungen keineswegs einschränken. Die umfassenden Lehren der Offenbarung können in zahlreichen Formen umgesetzt werden. Obwohl die vorliegende Offenbarung also bestimmte Beispiele beinhaltet, ist der eigentliche Umfang der Offenbarung hierdurch in keiner Weise eingeschränkt, und weitere Modifikationen gehen aus dem Studium der Zeichnungen, der Beschreibung und den folgenden Ansprüchen hervor. Es sei darauf hingewiesen, dass einer oder mehrere Schritte innerhalb eines Verfahrens in anderer Reihenfolge (oder gleichzeitig) ausgeführt werden können, ohne die Prinzipien der vorliegenden Offenbarung zu verändern. Ferner, obwohl jede der Ausführungsformen oben dahingehend beschrieben ist, dass sie bestimmte Merkmale aufweist, kann/können eines oder mehrere dieser Funktionen, die in Bezug auf jede Ausführungsform der Offenbarung beschrieben sind, in jeder der anderen Ausführungsformen implementiert und/oder kombiniert werden, selbst wenn diese Kombination nicht explizit beschrieben wird. Mit anderen Worten ausgedrückt schließen sich die beschriebenen Ausführungsformen nicht gegenseitig aus, und Permutationen von einer oder mehreren Ausführungsformen gegeneinander bleiben innerhalb des Schutzumfangs dieser Offenbarung.
  • Räumliche und funktionale Beziehungen zwischen Elementen (z. B. zwischen Modulen, Schaltungselementen, Halbleiterschichten usw.) werden unter Verwendung von verschiedenen Begriffen beschrieben, einschließlich „verbunden”, „in Eingriff stehend”,” „gekoppelt”, „benachbart”, „neben”, „oben auf”, „über”, „unter” und „angeordnet”. Sofern nicht ausdrücklich als „direkt” beschrieben, kann eine Beziehung eine direkte Beziehung sein, wenn eine Beziehung zwischen einem ersten und zweiten Element in der oben genannten Offenbarung beschrieben wird, wenn keine anderen intervenierenden Elemente zwischen dem ersten und zweiten Element vorhanden sind, kann jedoch auch eine indirekte Beziehung sein, wenn eines oder mehrere intervenierende Elemente (entweder räumlich oder funktional) zwischen dem ersten und zweiten Element vorhanden ist/sind. Wie hierin verwendet, sollte der Satz von mindestens einem von A, B und C so zu verstehen sein, dass damit eine Logik gemeint ist (A ODER B ODER C), unter Verwendung eines nicht ausschließlichen logischen ODER, und sollte nicht dahingehend zu verstehen sein, dass gemeint ist „mindestens einer von A, mindestens einer von B und mindestens einer von C.”
  • In dieser Anwendung, einschließlich der folgenden Definitionen, kann der Begriff „Modul” oder der Begriff „Steuerung” ggf. durch den Begriff „Schaltung” ersetzt werden. Der Begriff „Modul” kann auf Folgendes verweisen bzw. Teil von Folgendem sein oder Folgendes beinhalten: eine anwendungsspezifische integrierte Schaltung (ASIC); eine digitale, analoge oder gemischt analog/digitale diskrete Schaltung; eine digitale, analoge oder gemischt analog/digitale integrierte Schaltung; eine kombinatorische Logikschaltung; ein feldprogrammierbares Gate-Array (FPGA); einen Prozessor (gemeinsam genutzt, dediziert oder Gruppe), der Code ausführt; einen Speicher (gemeinsam genutzt, dediziert oder Gruppe), der einen von einem Prozessor ausgeführten Code speichert; andere geeignete Hardware-Komponenten, die die beschriebene Funktionalität bereitstellen; oder eine Kombination von einigen oder allen der oben genannten, wie zum Beispiel in einem System-on-Chip.
  • Das Modul kann ebenfalls eine oder mehrere Schnittstellenschaltungen beinhalten. In einigen Beispielen können die Schnittstellen-Schaltkreise kabelgebundene oder -lose Schnittstellen beinhalten, die mit einem lokalen Netzwerk (LAN), dem Internet, einem Weitverkehrsnetz (WAN) oder Kombinationen hieraus verbunden sind. Die Funktionalität der in dieser Offenbarung genannten Module kann auf mehrere Module verteilt werden, die mit Schnittstellen-Schaltkreisen verbunden sind. Beispiel: Mehrere Module können einen Lastenausgleich zulassen. In einem anderen Beispiel können von einem Servermodul (z. °B. Remote-Server oder Cloud) bestimmte Funktionen eines Client-Moduls übernommen werden.
  • Der Begriff Code, wie oben verwendet, kann Software, Firmware und/oder Mikrocode beinhalten, und auf Programme, Routinen, Funktionen, Klassen, Datenstrukturen und/oder Objekte verweisen. Der Begriff „gemeinsamer Prozessor-Schaltkreis” umfasst einen einzelnen Prozessor-Schaltkreis, der bestimmten oder vollständigen Code von mehreren Modulen ausführt. Der Begriff „gruppierter Prozessor-Schaltkreis” umfasst einen Prozessor-Schaltkreis, der in Kombination mit zusätzlichen Prozessor-Schaltkreisen, bestimmten oder vollständigen Code von ggf. mehreren Modulen ausführt. Verweise auf mehrere Prozessor-Schaltungen umfassen mehrere Prozessor-Schaltungen auf getrennten Matrizen, mehrere Prozessor-Schaltungen auf einem einzelnen Die, mehrere Kerne einer Einzelprozessor-Schaltung, mehrere Threads einer Einzelprozessor-Schaltung oder eine Kombination der oben genannten. Der Begriff „gemeinsamer Speicherschaltkreis” umfasst einen einzelnen Speicher, der bestimmten oder vollständigen Code von mehreren Modulen speichert. Der Begriff „gruppierter Speicherschaltkreis” umfasst eine Speicher-Schaltung, die in Kombination mit zusätzlichen Speichern bestimmten oder vollständigen Code von ggf. mehreren Modulen speichert.
  • Der Ausdruck „Speicherschaltkreis” ist dem Ausdruck „computerlesbares Medium” untergeordnet. Der Begriff „computerlesbares Medium”, wie er hier verwendet wird, bezieht sich nicht auf transitorische elektrische oder elektromagnetische Signale, die sich in einem Medium ausbreiten (z. B. im Falle einer Trägerwelle); der Ausdruck „computerlesbares Medium” ist daher als greifbar und nicht-transitorisch zu verstehen. Nicht einschränkende Beispiele eines nicht vorübergehenden, konkreten computerlesbaren Datenträgers sind nicht-flüchtige Speicher-Schaltungen (z. B. eine Flashspeicher-Schaltung, eine löschbare programmierbare Lesespeicher-Schaltung oder eine Mask-Lesespeicher-Schaltung), flüchtige Speicher-Schaltungen (z. B. eine statische RAM-Schaltung oder eine dynamische RAM-Schaltung), magnetische Speichermedien (z. B. ein analoges oder digitales Magnetband oder eine Festplatte) und optische Speichermedien (z. B. eine CD, DVD oder Blu-Ray Disc).
  • Die im Rahmen dieser Anmeldung beschriebenen Vorrichtungen und Verfahren können teilweise oder vollständig mit einem speziell hierfür vorgesehenen Computer, der für die Ausführung bestimmter Computerprogrammfunktionen konfiguriert ist, implementiert werden. Die oben beschriebenen Funktionsblöcke, Flussdiagramm-Komponenten und anderen Elemente dienen als Softwarespezifikationen, die von entsprechend geschulten Technikern oder Programmierern in Computerprogramme umgesetzt werden können.
  • Die Computerprogramme beinhalten prozessorausführbare Anweisungen, die auf mindestens einem nicht-transitorischen, greifbaren, computerlesbaren Medium gespeichert sind. Die Computerprogramme können auch gespeicherte Daten beinhalten und/oder auf gespeicherten Daten basieren. Die Computerprogramme können ein Basic Input Output System (BIOS) umfassen, das mit der Hardware des Spezialcomputers zusammenwirkt, Vorrichtungstreiber, die mit bestimmten Vorrichtungen des Spezialcomputers, einem oder mehreren Betriebssystemen, Benutzeranwendungen, Hintergrunddiensten, im Hintergrund laufenden Anwendungen usw. zusammenwirken.
  • Die Computerprogramme können Folgendes beinhalten: (i) beschreibenden Text, der gegliedert wird, wie z. B. HTML (Hypertext Markup Language) oder XML (Extensible Markup Language), (ii) Assembler Code, (iii) Objektcode, der von einem Quellcode durch einen Compiler erzeugt wurde, (iv) Quellcode für die Ausführung von einem Dolmetscher, (v) Quellcode für die Kompilierung und Ausführung von einem Just-in-Time-Compiler usw. Nur exemplarisch kann der Quellcode unter Verwendung von Syntax aus Sprachen, wie C, C++, C#, Objective C, Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal, Curl, OCaml, Javascript®, HTML5, Ada, ASP (Active Server Pages), PHP, Scala, Eiffel, Smalltalk, Erlang, Ruby, Flash®, Visual Basic®, Lua und Python®, geschrieben werden.
  • Keines der in den Patentansprüchen genannten Elemente ist als „Mittel für eine Funktion” (sog. „means plus function”) gemäß 35 U.S.C. § 112(f) zu verstehen, es sei denn ein Element wird ausdrücklich unter Verwendung des Ausdrucks „means for” (Mittel für) beschrieben oder falls in einem Verfahrensanspruch die Ausdrücke „Operation für” oder „Schritt für” verwendet werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • 35 U.S.C. § 112(f) [0072]

Claims (10)

  1. Steuerungssystem für ein Fahrzeug, das Folgendes umfasst: ein erstes Fahrzeugsystem einschließlich einer Vielzahl von Komponenten und eine Steuerung, worin die Steuerung Diagnosedaten für die Vielzahl von Komponenten des ersten Fahrzeugsystems überwacht und eine Zwei-Zustände-Statusanzeige für jede der Komponenten des ersten Fahrzeugsystems ausgibt, worin die Zustände der Zwei-Zustände-Statusanzeige einen Status „Misslungen” und einen Status „Nicht misslungen” beinhalten; und worin ein Steuermodul ausgebildet ist, um die Zwei-Zustände-Statusanzeige und die Diagnosedaten vom ersten Fahrzeugsystem zu empfangen und um die Zwei-Zustände-Statusanzeige in eine Drei-Zustände-Statusanzeige umzuwandeln, worin die Drei-Zustände-Statusanzeige einen Status „Bestanden”, einen Status „Misslungen” und einen Status „Unbestimmt” beinhaltet, und worin das Steuermodul ist ferner ausgebildet, um einen Motorbetriebsparameter basierend auf der Drei-Zustände-Statusanzeige zu ändern.
  2. Steuerungssystem nach Anspruch 1, worin das Steuermodul die Drei-Zustände-Statusanzeige für sämtliche Komponenten des ersten Fahrzeugsystems im Status „Unbestimmt” initialisiert.
  3. Steuerungssystem nach Anspruch 2, worin das Steuermodul ausgebildet ist, um die Diagnosedaten zu überprüfen, um zu identifizieren, wenn ein Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird.
  4. Steuerungssystem nach Anspruch 3, worin falls der Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird und ein Ergebnis des Diagnosetests gleich einem Status „Bestanden” ist, das Steuermodul ausgebildet wird, um die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems vom Status „Unbestimmt” in den Status „Bestanden” zu ändern.
  5. Steuerungssystem nach Anspruch 3, worin falls der Diagnosetest für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems durchgeführt wird und ein Ergebnis des Diagnosetests gleich einem Status „Misslungen” ist, das Steuermodul ausgebildet wird, um die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems vom Status „Misslungen” in den Status „Bestanden” zu ändern.
  6. Steuerungssystem nach Anspruch 1, worin das erste Fahrzeugsystem einen Ultrakondensator und ein Batteriesystem beinhaltet.
  7. Steuerungssystem nach Anspruch 6, worin der Ultrakondensator und das Batteriesystem eine Batterie, einen Ultrakondensator, einen DC/DC-Wandler, einen Temperatursensor, einen Schalter und eine Steuerung umfassen.
  8. Steuerungssystem nach Anspruch 7, worin das Steuerungsmodul ein Auto-Stopp/Startmodul beinhaltet, das ausgebildet ist, um einen Motor eines Fahrzeugs selektiv anzuhalten und den Motor des Fahrzeugs neu zu starten während ein Zündsystem eingeschaltet ist.
  9. Steuerungssystem nach Anspruch 8, worin das Steuerungsmodul das Auto-Stopp/Startmodul selektiv basierend auf der Drei-Zustände-Statusanzeige deaktiviert.
  10. Steuerungssystem nach Anspruch 8, worin das Steuerungsmodul ausgebildet ist um: das Auto-Stopp/Startmodul selektiv zu deaktivieren wenn die Drei-Zustände-Statusanzeige für eine der Vielzahl von Komponenten des ersten Fahrzeugsystems gleich dem Status „Misslungen” ist; und das Auto-Stopp/Startmodul selektiv zu aktivieren, wenn die Drei-Zustände-Statusanzeige für die gesamte Vielzahl von Komponenten des ersten Fahrzeugsystems entweder gleich dem Status „Bestanden” oder dem Status „Unbestimmt” ist.
DE102016112915.1A 2015-07-15 2016-07-13 Steuerungssystem für ein Fahrzeug zum Umwandeln von zwei Diagnosezuständen einer Steuerung zu drei Diagnosezuständen Active DE102016112915B4 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562192827P 2015-07-15 2015-07-15
US62/192,827 2015-07-15
US14/835,892 2015-08-26
US14/835,892 US10026238B2 (en) 2015-07-15 2015-08-26 System and method for converting two diagnostic states of a controller to three diagnostic states

Publications (2)

Publication Number Publication Date
DE102016112915A1 true DE102016112915A1 (de) 2017-01-19
DE102016112915B4 DE102016112915B4 (de) 2021-05-12

Family

ID=57630083

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016112915.1A Active DE102016112915B4 (de) 2015-07-15 2016-07-13 Steuerungssystem für ein Fahrzeug zum Umwandeln von zwei Diagnosezuständen einer Steuerung zu drei Diagnosezuständen

Country Status (3)

Country Link
US (1) US10026238B2 (de)
CN (1) CN106351751B (de)
DE (1) DE102016112915B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421641B2 (en) * 2019-02-15 2022-08-23 Kold-Ban International Ltd. Supplemental starting system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026238B2 (en) 2015-07-15 2018-07-17 GM Global Technology Operations LLC System and method for converting two diagnostic states of a controller to three diagnostic states
US10202958B2 (en) * 2015-07-15 2019-02-12 GM Global Technology Operations LLC System and method for controlling ultra-capacitor charge and discharge in vehicles with auto start/stop systems
US10060985B2 (en) 2015-07-15 2018-08-28 GM Global Technology Operations LLC System and method for monitoring temperatures of components of an ultra-capacitor system used with an auto start/stop system

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866059A (en) * 1973-11-12 1975-02-11 Automatic Switch Co Engine starting control system
US5349931A (en) 1993-06-28 1994-09-27 Design Tech International, Inc. Automatic vehicle starter
JPH1018900A (ja) * 1996-07-03 1998-01-20 Nissan Motor Co Ltd 検出手段の診断装置およびエンジンの失火診断装置
JP3458773B2 (ja) * 1998-08-24 2003-10-20 トヨタ自動車株式会社 ブースタ異常判定装置
DE10002204B4 (de) * 2000-01-19 2013-10-02 Robert Bosch Gmbh Verfahren zum Schutz eines Mikrorechners eines Steuergeräts gegen Manipulation eines Programmes und Vorrichtung zur Durchführung des Verfahrens
JP2002349404A (ja) * 2001-05-29 2002-12-04 Suzuki Motor Corp エンジン自動始動装置
US20060017328A1 (en) * 2003-02-10 2006-01-26 Bryde Jan H Control system for distributed power generation, conversion, and storage system
CN101175917B (zh) 2005-05-17 2010-12-15 松下电器产业株式会社 发动机起动装置
US8065022B2 (en) 2005-09-06 2011-11-22 General Electric Company Methods and systems for neural network modeling of turbine components
JP4333690B2 (ja) * 2006-05-12 2009-09-16 株式会社デンソー エンジン始動制御システム
JP2007309100A (ja) 2006-05-16 2007-11-29 Matsushita Electric Ind Co Ltd エンジン始動用蓄電池の劣化判別方法および劣化判別装置
FR2903057B1 (fr) 2006-06-30 2009-02-20 Valeo Equip Electr Moteur Dispositif compact d'alimentation electrique pour un vehicule automobile comportant des moyens de refroidissement a effet peltier
US20100031911A1 (en) 2006-09-22 2010-02-11 Bertrand Gessier Device for starting an internal combustion engine, particularly a diesel engine
US8994336B2 (en) 2007-02-26 2015-03-31 Black & Decker Inc. Portable alternating current inverter having reduced impedance losses
GB2452246B (en) 2007-07-19 2012-01-11 Ford Global Tech Llc A micro-hybrid motor vehicle
JP4459997B2 (ja) 2007-11-06 2010-04-28 株式会社日本自動車部品総合研究所 車載バッテリの状態推定装置、内燃機関の自動停止始動装置、及び内燃機関の自動停止始動システム
JP5234590B2 (ja) 2008-01-30 2013-07-10 ダイハツ工業株式会社 車両用電源制御装置
US8159078B2 (en) 2008-04-21 2012-04-17 Black & Decker Inc. Portable power driven equipment with internal combustion engine combined battery charging and starting circuit where the battery is a removable battery pack
US8598852B2 (en) 2008-11-12 2013-12-03 American Axle & Manufacturing, Inc. Cost effective configuration for supercapacitors for HEV
CN101761404A (zh) * 2008-12-25 2010-06-30 上海通用汽车有限公司 一种发动机自动停机和自动启动的控制方法
FR2941102B1 (fr) 2009-01-12 2016-04-15 Valeo Equip Electr Moteur Procede de pilotage d'une unite de stockage d'energie dans un systeme micro-hybride pour vehicule
FR2941103B1 (fr) 2009-01-12 2015-07-17 Valeo Equip Electr Moteur Procede de pilotage d'une unite de stockage d'energie dans un systeme micro-hybride pour vehicule
EP2383862A4 (de) 2009-01-28 2017-11-22 Sumitomo Heavy Industries, LTD. Hybridarbeitsmaschine und vorrichtung zur stromspeicherungssteuerung
KR101399300B1 (ko) * 2009-08-12 2014-05-30 크라운 이큅먼트 코포레이션 산업용 차량들에 대한 정보 시스템
US8467929B2 (en) * 2009-08-24 2013-06-18 Robert Bosch Gmbh Good checking for vehicle wheel speed sensors
US8935037B2 (en) * 2009-08-24 2015-01-13 Robert Bosch Gmbh Good checking for vehicle steering angle sensor
JP5499568B2 (ja) 2009-08-28 2014-05-21 株式会社オートネットワーク技術研究所 車両用電源装置
US8494711B2 (en) * 2010-01-04 2013-07-23 GM Global Technology Operations LLC Automated start-stop systems and methods for internal combustion engines
WO2012008124A1 (ja) 2010-07-15 2012-01-19 パナソニック株式会社 車両用電源装置
CN102069721A (zh) 2010-12-30 2011-05-25 西安交通大学苏州研究院 一种基于超级电容的电动汽车混合动力控制系统
JP5834759B2 (ja) 2011-02-28 2015-12-24 富士通株式会社 行列生成プログラム、方法及び装置、並びにプラント制御プログラム、方法及び装置
JPWO2013027337A1 (ja) 2011-08-24 2015-03-05 パナソニック株式会社 車両用電源装置
US9239017B2 (en) * 2011-11-01 2016-01-19 GM Global Technology Operations LLC Stop-start control systems for engines with fully flexible valve actuation system
JP5677362B2 (ja) 2012-04-27 2015-02-25 本田技研工業株式会社 電源劣化判定装置
JP5983197B2 (ja) 2012-08-31 2016-08-31 マツダ株式会社 車両用電源装置およびその制御方法
US20160146173A1 (en) 2013-06-28 2016-05-26 Cap-Xx Limited Control System for an Automotive Engine and a Method of Controlling an Automotive Engine
CN104276044B (zh) 2013-07-01 2017-11-03 本田技研工业株式会社 车辆用电源装置
DE112013000188B4 (de) 2013-07-23 2020-06-04 Komatsu Ltd. Hybride Arbeitsmaschine und Verfahren zum Steuern eines Auto-Stopps eines Motors für diese
US9581981B2 (en) 2014-03-06 2017-02-28 Mitsubishi Electric Corporation Method and apparatus for preconditioned continuation model predictive control
CN204089238U (zh) 2014-07-26 2015-01-07 江西清华泰豪三波电机有限公司 一种发动机上超级电容低温快速启动装置
US10026238B2 (en) 2015-07-15 2018-07-17 GM Global Technology Operations LLC System and method for converting two diagnostic states of a controller to three diagnostic states
US10060985B2 (en) 2015-07-15 2018-08-28 GM Global Technology Operations LLC System and method for monitoring temperatures of components of an ultra-capacitor system used with an auto start/stop system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
35 U.S.C. § 112(f)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421641B2 (en) * 2019-02-15 2022-08-23 Kold-Ban International Ltd. Supplemental starting system
US20220341384A1 (en) * 2019-02-15 2022-10-27 Kold-Ban International, Ltd. Supplemental starting system
US11585309B2 (en) * 2019-02-15 2023-02-21 Kold-Ban International Ltd. Supplemental starting system

Also Published As

Publication number Publication date
DE102016112915B4 (de) 2021-05-12
US20170018126A1 (en) 2017-01-19
US10026238B2 (en) 2018-07-17
CN106351751B (zh) 2019-09-10
CN106351751A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
DE102016112860B4 (de) System und ein Verfahren zum Überwachen der Temperaturen der Komponenten eines Ultrakondensatorsystems, das mit einem Auto-Start-Stopp-System verwendet wird
DE102010055390B4 (de) Systeme zum automatisierten Starten/Stoppen für Verbrennungsmotoren
DE102015100971B4 (de) Verfahren zum Bewerten eines Startermotors für eine Brennkraftmaschine
DE102016112856A1 (de) System und Verfahren zur Steuerung der Ultrakondensator-Ladung und -Entladung bei Fahrzeugen mit Autostart-/-Stoppsystemen
DE102017114099B4 (de) Audioanlage für die klangverstärkung bei elektrischen fahrzeugen
DE102014204229A1 (de) Hybridfahrzeugabgasdiagnostik
DE102016112915B4 (de) Steuerungssystem für ein Fahrzeug zum Umwandeln von zwei Diagnosezuständen einer Steuerung zu drei Diagnosezuständen
DE102018120484A1 (de) Steuersysteme und -verfahren für superkondensatoren
DE102014118627A1 (de) Fahrzeug und Verfahren zum Steuern des automatischen Anhaltens und Neustartens eines Verbrennungsmotors
DE102018120481A1 (de) Systeme und verfahren zur überwachung einer hybriden energiespeichervorrichtung
DE112014005144B4 (de) Steuervorrichtung für ein Fahrzeug
DE102018111469A1 (de) Steuerung und diagnose eines fahrzeugleistungsrelais beim anlassen
DE102014217074A1 (de) Verfahren zum Steuern des Stoppens und Startens einer Kraftmaschine eines Kraftfahrzeugs
DE112011102914T5 (de) Steuerung zur Regeneration einer Nachbehandlungseinrichtung in einem Fahrzeug mit Hybridantrieb
DE102014211326A1 (de) Verfahren und System zur Zylinderkompressionsdiagnostik
DE102012001559B4 (de) Systeme und Verfahren zum Steuern eines Anlassers bei einem Rückschlag eines Motors
DE102016200072A1 (de) Integration von stopp-start und aktiver vorderradlenkung
DE102019115044A1 (de) Systeme und verfahren für diagnosefehler im zusammenhang mit der verwendung einer primären stromversorgung und einer backup-stromversorgung
DE102012204095A1 (de) Verfahren und System zur Steuerung eines Motors
DE102013215021A1 (de) Einleiten von vorbereitungen für einen automatischen motorstopp vor dem anhalten des fahrzeugs
DE102009006664A1 (de) Verfahren zum Starten einer Brennkraftmaschine
DE102013217032A1 (de) Steuereinrichtung für Hybridfahrzeuge mit einem abgasgetriebenen Generator und Verfahren zum Steuern eines Hybridfahrzeugs mit abgasgetriebenem Generator
DE102019114861A1 (de) System und verfahren zum steuern eines stopp-start-motors
DE102019131501A1 (de) Vorrichtung und Verfahren zum Steuern des Startens eines Fahrzeugverbrennungsmotors
DE102016209048A1 (de) Boot-steuersysteme und verfahren für fahrzeuge

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: MANITZ FINSTERWALD PATENT- UND RECHTSANWALTSPA, DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final