DE102015201931A1 - Antriebssystem für ein Hybridfahrzeug - Google Patents
Antriebssystem für ein Hybridfahrzeug Download PDFInfo
- Publication number
- DE102015201931A1 DE102015201931A1 DE102015201931.4A DE102015201931A DE102015201931A1 DE 102015201931 A1 DE102015201931 A1 DE 102015201931A1 DE 102015201931 A DE102015201931 A DE 102015201931A DE 102015201931 A1 DE102015201931 A1 DE 102015201931A1
- Authority
- DE
- Germany
- Prior art keywords
- drive system
- combustion engine
- internal combustion
- coupling element
- electric motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D11/00—Clutches in which the members have interengaging parts
- F16D11/14—Clutches in which the members have interengaging parts with clutching members movable only axially
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D13/00—Friction clutches
- F16D13/22—Friction clutches with axially-movable clutching members
- F16D13/24—Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D13/00—Friction clutches
- F16D13/22—Friction clutches with axially-movable clutching members
- F16D13/24—Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches
- F16D13/32—Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches in which two or more axially-movable members are pressed from one side towards an axially-located member
- F16D13/34—Friction clutches with axially-movable clutching members with conical friction surfaces cone clutches in which two or more axially-movable members are pressed from one side towards an axially-located member with means for increasing the effective force between the actuating sleeve or equivalent member and the pressure member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D23/00—Details of mechanically-actuated clutches not specific for one distinct type
- F16D23/02—Arrangements for synchronisation, also for power-operated clutches
- F16D23/04—Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D25/00—Fluid-actuated clutches
- F16D25/08—Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
- F16D25/082—Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members co-inciding with the axis of rotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D11/00—Clutches in which the members have interengaging parts
- F16D2011/006—Locking or detent means, i.e. means to keep the clutch in engaged condition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D23/00—Details of mechanically-actuated clutches not specific for one distinct type
- F16D23/02—Arrangements for synchronisation, also for power-operated clutches
- F16D23/04—Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
- F16D23/06—Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
- F16D2023/0693—Clutches with hydraulic actuation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Antriebssystem (1) für ein Hybridfahrzeug aufweisend einen Verbrennungsmotor (3), einen Elektromotor (5), und eine Kupplungsvorrichtung (9), welche ein Reibkraftschlusselement (13) und ein Formschlusselement (15), welches parallel zu dem Reibkraftschlusselement (13) geschaltet ist, aufweist, wobei die Kupplungsvorrichtung (9) zur Einkopplung des Verbrennungsmotors (3) in das Antriebssystem (1) eingerichtet ist und in wenigstens folgende Zustände schaltbar ist: geöffnetes Formschlusselement (15) und geschlossenes Reibkraftschlusselement (13) zum Starten und/oder Synchronisieren des Verbrennungsmotors (3), geschlossenes Formschlusselement (15) und geschlossenes Reibkraftschlusselement (13) bei laufendem, synchronisierten Verbrennungsmotor (3) zum Erzeugen eines verbrennungsmotorischen Abtriebs und geöffnetes Formschlusselement (15) und geöffnetes Reibkraftschlusselement (13) bei stehendem Verbrennungsmotor (3) zum rein elektromotorischen Antrieb des Fahrzeugs.
Description
- Die vorliegende Erfindung betrifft ein Antriebssystem für ein Hybridfahrzeug. Unter Hybridfahrzeug wird im Folgenden ein Kraftfahrzeug verstanden, das ein Antriebssystem mit mindestens einem Elektromotor und mindestens einem Verbrennungsmotor zum Antrieb des Hybridfahrzeugs aufweist. Je nach Konzept kann dabei das Hybridfahrzeug phasenweise vom Elektromotor oder Verbrennungsmotor alleine oder von beiden gemeinsam angetrieben werden, wobei eine Kupplungsvorrichtung zur Einkopplung des Verbrennungsmotors in das Antriebssystem vorhanden ist.
- Verbreitet werden Kupplungen eingesetzt, um den Verbrennungsmotor antriebstechnisch von dem Antriebssystem abzutrennen oder dessen Drehmoment für Antriebszwecke einzukoppeln. Beispielsweise werden dazu Reibkupplungen eingesetzt. Aufgrund des großen zu übertragenden Drehmomentes laufen die Reibkupplungen bei diesen Anwendungen im Allgemeinen in Öl. Dies bietet unter anderem den Vorteil einer guten Wärmeabfuhr der entstehenden Reibwärme von der Kupplung, um diese in dem erforderlichen Leistungsspektrum kompakt, insbesondere in Hinblick auf deren Außendurchmesser, gestalten zu können. In Öl laufende Systeme erlauben dabei zwar eine gute Wärmeabfuhr, erfordern jedoch die Interaktion mit Systemen für Öltransport und Ölaufnahme. Ferner besteht ein möglicher systembedingter Energiebedarf durch Planschverluste bewegter Teile im Öl und den Energieverbrauch einer Ölpumpe sowie Reibungsverluste an eine Ölturbine.
- Die
DE 10 2007 010 307 B3 offenbart eine Schaltkupplungsanordnung für vorgelegige Getriebe in Kraftfahrzeugen zur drehfesten Verbindung einer Welle mit einem daran gelagerten Drehglied, wobei die Schaltkupplungsanordnung aufweisend eine Schaltmuffe, die mit der Welle drehfest verbunden, in Bezug auf die Welle axial verschieblich gelagert und mit einer ersten Verzahnung versehen ist, ein Kupplungskörper, der mit einem Drehglied drehfest verbunden und mit einer zweiten Verzahnung versehen ist, die zur drehfesten Verbindung von Welle und Drehglied mit der ersten Verzahnung in Eingriff bringbar ist, und eine Sperr-Synchronisierungseinrichtung, die einen Synchronring mit einer Reibfläche aufweist, mittels dessen die Drehzahl der Welle und des Drehgliedes synchronisierbar sind, bevor die erste und die zweite Verzahnung in Eingriff gebracht werden, wobei die Sperr-Synchronisierungseinrichtung ferner ein Sperrglied aufweist, das mit der Schaltmuffe über eine Rastierung gekoppelt ist und das mit dem Synchronring in Drehrichtung über eine Sperrflächenpaarung gekoppelt ist, aufweist, wobei die Sperrflächenpaarung zwischen dem Sperrglied und einem Synchronglied ausgebildet ist, das in axialer Richtung mit dem Sperrglied und in Drehrichtung mit dem Synchronring gekoppelt ist. - Zum Starten des Verbrennungsmotors kommen im Allgemeinen spezielle elektrische Startermotoren zum Einsatz.
- Es ist eine Aufgabe der vorliegenden Erfindung, ein verbessertes Antriebssystem für ein Hybridfahrzeug und ein Verfahren zum Antreiben eines Hybridfahrzeugs mit dem Antriebssystem zur Verfügung zu stellen.
- Diese Aufgabe wird durch ein Antriebssystem für ein Kraftfahrzeug gemäß dem unabhängigen Anspruch 1 und dem auf ein Verfahren gerichteten unabhängigen Anspruch 13 gelöst. Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
- Gemäß einem Aspekt der vorliegenden Erfindung weist ein Antriebssystem für ein Hybridfahrzeug einen Verbrennungsmotor, einen Elektromotor, und eine Kupplungsvorrichtung, welche ein Reibkraftschlusselement und ein Formschlusselement, welches parallel zu dem Reibkraftschlusselement geschaltet ist, auf. Die Kupplungsvorrichtung ist zur Einkopplung des Verbrennungsmotors in des Antriebssystem eingerichtet und in wenigstens folgende Zustände schaltbar: geöffnetes Formschlusselement und geschlossenes Reibkraftschlusselement zum Starten und/oder Synchronisieren des Verbrennungsmotors; geschlossenes Formschlusselement und geschlossenes Reibkraftschlusselement oder geschlossenes Formschlusselement und geöffnetes Reibkraftschlusselement bei laufendem, synchronisierten Verbrennungsmotor zum Erzeugen eines verbrennungsmotorischen Abtriebs und geöffnetes Formschlusselement und geöffnetes Reibkraftschlusselement bei stehendem Verbrennungsmotor zum rein elektromotorischen Antrieb des Fahrzeugs.
- Das Antriebssystem weist somit einen Elektromotor und einen Verbrennungsmotor auf, die eingerichtet sind, das Hybridfahrzeug anzutreiben. Das Antriebssystem kann das Hybridfahrzeug aber auch ausschließlich durch den Elektromotor oder den Verbrennungsmotor antreiben. Beispielsweise kann das Hybridfahrzeug bei einer geringen geforderten Antriebsleistung, bei geringeren geforderten Reichweiten, im Stadtbetrieb oder dergleichen mit dem Elektromotor angetrieben werden. Der Verbrennungsmotor kann für diese Betriebsart mittels der Kupplungsvorrichtung abgekoppelt und ausgeschaltet werden, im abgekoppelten Zustand des Verbrennungsmotors kann eine Abtriebswelle des Verbrennungsmotors sich im Hinblick auf Drehzahl und Drehmoment im Wesentlichen einflussfrei von der Drehzahl und dem Drehmoment einer Abtriebswelle zur Übertragung des Drehmoments von dem Elektromotor und dem Verbrennungsmotor drehen. Wird die Antriebsleistung des Verbrennungsmotors benötigt, beispielsweise zum Beschleunigen oder für das Fahren mit hohen Geschwindigkeiten, kann der Verbrennungsmotor zugestartet und eingekoppelt werden. Das Antriebssystem kann ohne einen gesonderten elektrischen Startermotor für den Verbrennungsmotor auskommen. Der Verbrennungsmotor kann daher durch den Elektromotor gestartet werden. Um den Verbrennungsmotor zu starten, bzw. bei laufendem Betrieb des Antriebssystems auf die erforderliche Drehzahl zu synchronisieren ist ein Reibkraftschlusselement vorgesehen, das die drehzahlflexible Übertragung eines Drehmomentes von dem Elektromotor auf den Verbrennungsmotor ermöglicht. Ist der Verbrennungsmotor gestartet, kann dessen Antriebsmoment zum Antrieb des Hybridfahrzeugs genutzt werden. Um das Reibkraftschlusselement kompakt zu halten, ist es eher zum Starten und Synchronisieren des Verbrennungsmotors als zum permanenten Übertragen des vollen potentiellen Antriebsdrehmomentes des Verbrennungsmotors ausgelegt. Daher ist im Antriebssystem dem Reibkraftschlusselement ein Formschlusselement parallel geschaltet vorgesehen, so dass die Antriebsleistung des Verbrennungsmotors auch durch das Formschlusselement übertragen werden kann. Das Reibkraftschlusselement und das Formschlusselement sind demnach getriebetechnisch, was ihre Drehmomentübertragung anbetrifft, parallel geschaltet angeordnet. Bei gestartetem und synchronisiertem Verbrennungsmotor kann das Formschlusselement, beispielsweise eine Verzahnung oder Verriegelung oder jedes anderes geeignete Mittel, geschlossen werden, so dass das Drehmoment des Verbrennungsmotors dann zunächst parallel von dem Formschlusselement und dem Reibkraftschlusselement übertragbar ist. Das Reibkraftschlusselement kann schließlich auch entlastet oder geöffnet werden, so dass dann das Drehmoment des Verbrennungsmotors lediglich über das Formschlusselement übertragen wird. Des spart Energie für die Kupplungsaktuatorik da diese in dem Zustand inaktiv ist.
- Die Erfindung beruht auf dem Prinzip, mittels eines Reibkraftschlusses einen Synchronlauf zwischen Bauteilen mit (Anfangs-)Relativdrehzahl herzustellen. Ist der Synchronlauf erreicht, kann das Formschlusselement, insbesondere eine Verzahnung, einspuren, und somit einen Formschluss herstellen, womit das volle Drehmoment formschlüssig übertragen werden kann. Das Prinzip der Synchronisierung wird hier genutzt, um die Anforderungen an die Schleppstartfähigkeit zu realisieren, der Formschluss wird dazu genutzt, das volle Drehmoment des Verbrennungsmotors zu übertragen. Hierbei soll das Drehmoment für den Schleppstart vergleichsweise klein bleiben, um die Reibpaarung entsprechend nicht für das volle Drehmoment auszulegen zu müssen. Sobald Formschluss in der Kupplungsvorrichtung hergestellt ist, kann das volle Drehmomentpotenzial des Verbrennungsmotors über das Formschlusselement genutzt werden.
- Die geringere geforderte Drehmomentübertragung durch das Reibkraftschlusselement auf Grund der Drehmomentübertragung des laufenden Verbrennungsmotors durch das Formschlusselement ermöglicht eine kompaktere Gestaltung des Reibkraftschlusselementes und der Kupplungsvorrichtung insgesamt. Die ”X-Maß-Kette” kann dadurch verringert werden, auch, indem die Kupplungsvorrichtung so kompakt dimensioniert werden kann, dass sie innerhalb eines Rotorträgers des Elektromotors platziert werden kann. Ferner kann durch die Aufteilung der Kupplungsvorrichtung mit einer Trennung in kompaktes Reibkraftschlusselement und Formschlusselement der Energieeintrag von der Kupplungsvorrichtung in den Bereich des Elektromotors reduziert werden, was mehr Flexibilität hinsichtlich der konstruktiven Gestaltung ermöglicht. Durch die optimale Ausnutzung des vorhandenen Bauraumes ist auch die Umsetzung zusätzlicher Systemfunktionen, wie z. B. eine Rotorkühlung am Elektromotor basierend auf einem wassergekühlten Gehäusesteg, radial und axial möglich.
- Gemäß einer vorteilhaften Ausgestaltung läuft die Kupplung trocken, d. h. ist Öltauchbadfrei, vorgesehen. Mittels dieser konstruktiven Gestaltung können Planschverluste, die beim Bewegen von Komponenten im Öl und der damit verbundenen Reibung entstehen würden, vermieden werden. Ferner kann die Antriebsenergie für eine zugeordnete Ölpumpe eingespart werden. Der Wirkungsgrad des Antriebssystems kann auf diese Weise verbessert werden. Durch die Übertragung des Drehmoments des Verbrennungsmotors im Fahrbetrieb mittels des Formschlusselementes kann das Reibschlusselement auch ohne das Vorsehen eines Ölbades mit der dabei durch das Öl gegebenen Wärmeabführung vorteilhaft kompakt gestaltet werden.
- Gemäß einer Ausführungsform ist so ein Teil eines Rotors des Elektromotors indirekt wassergekühlt. Das im Antriebssystem vorgesehene Formschlusselement zur Übertragung des Drehmomentes des Verbrennungsmotors ermöglicht eine kompakte Ausführung des Reibkraftschlusselementes, welches lediglich zum Übertragen des verhältnismäßig geringen Anschleppmoments zum Starten des Verbrennungsmotors ausgelegt zu werden braucht. Der damit frei werdende Bauraum kann genutzt werden, um zusätzliche Funktionen des Antriebssystems vorzusehen. Es kann zum Beispiel eine indirekte Rotorkühlung, insbesondere basierend auf einem wassergekühlten Gehäusesteg, vorgesehen werden. Die Wasserkühlung ermöglicht eine besonders kompakte Gestaltung, da der Wärmeübergang zum Fluid groß ist. Räumlich große Kühlrippen, die bei einer Luftkühlung verbreitet vorgesehen werden, können entfallen, was zur weiteren Kompaktheit des Systems und einem kostengünstigen Aufbau beiträgt.
- Gemäß einer weiteren vorteilhaften Ausgestaltung verläuft die Kupplungsvorrichtung wenigstens teilweise innerhalb eines Rotors des Elektromotors oder ist sogar darin angeordnet. Unter Rotor wird hier auch ein Rotorträger eingeschlossen. Dadurch kann die Erstreckung des Antriebssystems in Richtung der Achse des Rotors verringert werden. Die ”X-Maß-Kette” betreffend das Antriebssystem kann reduziert werden, was vorteilhaft im Hinblick auf geringe Abmessungen des Antriebssystems und dessen Bauraumbedarf ist.
- Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Reibkraftschlusselement mit einem ersten rotatorischen Kupplungselement und einem zweiten rotatorischen Kupplungselement gebildet, die koaxial zueinander angeordnet und aufeinander zu und voneinander weg verlagerbar vorgesehen sind, wobei das erste Kupplungselement einen Außenkonus und das zweite Kupplungselement einen Innenkonus aufweist, die miteinander zur Drehmomentübertragung in Kontakt bringbar sind.
- Im Folgenden wird zur Verbesserung des Textflusses teilweise des erste rotatorische Kupplungselement als erstes Kupplungselement und das zweite rotatorische Kupplungselement als zweites Kupplungselement bezeichnet.
- Sind das erste Kupplungselement und das zweite Kupplungselement voneinander beabstandet, ist der Reibschluss zur Übertragung eines Drehmomentes getrennt. Wenn sich das erste Kupplungselement und das zweite Kupplungselement berühren, kann ein Drehmoment per Reibschluss zwischen beiden übertragen werden. Je starker beide Kupplungselemente beispielsweise durch einen entsprechenden Aktor gegeneinander gepresst werden, desto höher wird das reibschlüssig übertragbare Drehmoment. Die konusförmige Ausführung ermöglicht dabei eine Erhöhung der Reibfläche zwischen beiden Kupplungselementen bei einem bestimmten Durchmesser, was für eine Bauraumreduzierung und eine geringe Massenträgheit im Hinblick auf das dynamische Systemverhalten vorteilhaft ist. Ferner können dadurch die Anpresskräfte zwischen den Kupplungselementen entsprechend dem Steigungswinkel von dem Außenkonus und Innenkonus über die Druckkraft des Aktors hinaus erhöht werden. Die Gestaltung der Kupplungselemente mit Innenkonus und Außenkonus als Reibpaarung ermöglicht ferner einen kleinen Kupplungsdurchmesser im Vergleich zu einem Aufbau mit kreisscheibenartig gestalteten Reibflächen, was vorteilhaft im Hinblick auf eine kompakte Gestaltung des Antriebssystems ist. Das erste rotatorische Kupplungselement kann zur Übertragung des Drehmomentes von dem Verbrennungsmotor und dem Elektromotor mit einer Welle gekoppelt sein.
- Am ersten rotatorischen Kupplungselement oder am zweiten rotatorischen Kupplungselement kann eine Verzahnung und dem jeweils anderen Kupplungselement drehfest zugeordnet eine Sperrklinke zum Arretieren in der Verzahnung vorgesehen sein. Damit kann ein Formschluss zwischen dem ersten rotatorischen Kupplungselement und dem zweiten rotatorischen Kupplungselement gebildet werden. Der Formschluss wird bevorzugt dann gebildet, wenn beide Kupplungselemente im Wesentlichen synchronisiert sind, um einen Verschleiß an den Reibflächen der Synchronisationseinheit, insbesondere an der Verzahnung bzw. an der Sperrklinke, gering zu halten sowie ungewollten Schlupf zu unterbinden. Das Synchronisieren kann durch die Drehmomentübertragung mittels des Innenkonus und Außenkonus erfolgen. Ist die formschlüssige Verbindung zwischen dem ersten rotatorischen Kupplungselement und dem zweiten rotatorischen Kupplungselement direkt gebildet oder eine formschlüssige Verbindung des zweiten rotatorischen Kupplungselementes mit einer Welle zur Übertragung des Drehmomentes von dem Elektromotor und dem Verbrennungsmotor, sind die formschlüssige und die reibkraftschlüssige Verbindung beider Kupplungselemente parallel geschaltet. Nun kann beispielsweise die reibkraftschlüssige Verbindung durch Trennen des Innenkonus von dem Außenkonus oder eine geeignete Kupplung gelöst werden und ein zugeordneter Aktor kann dann entlastet werden. Das Abschalten des Aktors ermöglicht Energieeinsparungen. Ein weiterer Vorteil des Antriebssystems kann realisiert werden, wenn die formschlüssige Verbindung für größere zu übertragende Drehmomente ausgelegt wird als die reibkraftschlüssige Verbindung. Beispielsweise kann die reibkraftschlüssige Verbindung für das Starten des Verbrennungsmotors des Hybridfahrzeugs zum Einsatz kommen. Ist der Verbrennungsmotor gestartet, kann die formschlüssige Verbindung hergestellt werden und die im Betrieb des Verbrennungsmotors auftretenden höheren Drehmomente können dann von der formschlüssigen Verbindung übertragen werden. Dies ermöglicht es, die reibkraftschlüssige Verbindung kompakt, abgestimmt lediglich für das kleine Drehmoment, das beim Starten des Verbrennungsmotors auftritt, auszulegen. Der Bauraum kann damit reduziert und die Kosten des Antriebssystems des Hybridfahrzeugs gesenkt werden.
- Gemäß einer weiteren vorteilhaften Ausgestaltung ist die Sperrklinke achsparallel zu den rotatorischen Kupplungselementen verfahrbar angeordnet. Dadurch können Zentrifugalkrafteinwirkungen resultierend aus der Drehung der Kupplungselemente auf die Stellung der Sperrklinke minimiert werden, was deren Arretierung in einer Stellung und Verfahrbarkeit erleichtert.
- Gemäß einer weiteren vorteilhaften Ausgestaltung ist ein Aktor vorgesehen, der eingerichtet ist, das erste Kupplungselement und das zweite Kupplungselement gegeneinander zu pressen. Dadurch kann auf einen zweiten Aktor zum Lösen des ersten Kupplungselementes von dem zweiten Kupplungselement, der dem ersten Aktor entgegenwirkt, verzichtet werden, wenn ein aktives Trennen beider Kupplungselemente gewünscht ist und nicht alleine durch eine Rückstellfeder realisiert ist. Durch die entsprechende Geometrie, z. B. des Winkels der Phase am ersten oder zweiten Kupplungselement, kann die notwendige Aktorkraft auf ein Minimum reduziert werden. Die Reduzierung der notwendigen Aktorkraft, wie auch die Reduzierung des notwendigen Bauraumes für die Kupplungsvorrichtung führen zu einer großen Freiheit hinsichtlich der Aktorauswahl.
- Gemäß einer weiteren vorteilhaften Ausgestaltung ist der Aktor eingerichtet, das erste Kupplungselement und das zweite Kupplungselement auch voneinander weg zu ziehen. Dies dient zum Trennen der Kupplungselemente. Ebenso ist es möglich, dass die Kupplungselemente durch eine Feder oder dergleichen dem Aktor entgegenwirkend auseinander verlagert werden, wenn der Aktor die Kupplungselemente nicht oder mit einer Kraft unter einem bestimmten Kraftwert zusammendrückt. Zum auseinander Verlagern der Kupplungselemente kann ebenso ein zweiter Aktor vorgesehen sein, der dem ersten Aktor entgegenwirkt.
- Gemäß einer weiteren vorteilhaften Ausgestaltung ist der Aktor als elektromotorischer Aktor oder als hydraulischer Aktor ausgeführt. Eine hydraulische Ausführung ermöglicht besonders hohe Stellkräfte. Mittels einer elektromechanischen Ausführung lässt sich eine hohe Dynamik im Hinblick auf ein schnelles Stellverhalten besonders gut realisieren. Bei der elektromechanischen Ausführung kann ein Elektromotor mit einem geeigneten Getriebe zur Umsetzung der Rotationsbewegung des Elektromotors in eine lineare Stellbewegung vorgesehen sein. Ferner ist eine Ausführung des Aktors als pneumatisch arbeitender Aktor möglich, was Vorteile im Hinblick auf einen technisch sehr einfachen Aufbau bieten kann.
- Gemäß einer weiteren vorteilhaften Ausgestaltung ist die Sperrklinke so vorgesehen, dass sie bei einer festgelegten Kraft des Aktors oder festgelegten axialen Kraft des ersten rotatorischen Kupplungselements oder des zweiten rotatorischen Kupplungselementes verrastet. Eine verrastbare Ausführung der Sperrklinke bietet den Vorteil, dass die Stellkraft des Aktors reduziert oder sogar auf Null gesetzt werden kann, wobei die beiden Kupplungselemente bei Reibschluss verrastet bleiben. Auf Grund der niedrigeren daraus resultierenden Belastung des Aktors kann dieser damit kompakter, d. h. platzsparender, mit einer geringeren Leistung und kostengünstiger ausgeführt werden. Insgesamt wird auf diese Weise der Energieverbrauch durch den Aktor reduziert. Ferner wird die Betriebssicherheit des Antriebssystems erhöht.
- Beispielsweise ist ein Federelement, insbesondere ein Federring vorgesehen, das bei Überschreiten der festgelegten axialen Kraft von einer Phase an dem ersten rotatorischen Kupplungselement oder zweiten rotatorischen Kupplungselement so verlagert wird, dass die Sperrklinke in eine Verrastungsposition kommen kann. Das Federelement weist beispielsweise federgelagerte Stifte oder einen Federring auf. Im Falls der Ausführung als Federring kann dieser elastisch in eine ihn aufnehmende Wellennut hineingedrückt werden. Die Sperrklinke schiebt sich dabei mit über das Federelement. Die im Vorhergehenden erläuterten Weiterbildungen und Vorteile in Bezug auf eine erfindungsgemäße Vorrichtung sind auch auf ein erfindungsgemäßes Verfahren anzuwenden.
- Gemäß einem Aspekt der Erfindung weist ein Verfahren zum Antreiben eines Hybridfahrzeugs unter Nutzung eines erfindungsgemäßen Antriebssystems die Schritte des Antreibens des Hybridfahrzeugs mittels des Elektromotors bei Übertragung des Drehmomentes des Elektromotors; Antreiben des Hybridfahrzeugs mittels des Elektromotors und gleichzeitiges Zustarten des Verbrennungsmotors bei Übertragung des Drehmomentes durch Reibschluss mittels des Reibkraftschlusselementes und des Antreibens des Hybridfahrzeugs mittels des Elektromotors und Verbrennungsmotors bei Übertragung des Drehmomentes des Verbrennungsmotors durch Formschluss mittels des Formschlusselementes auf.
- Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt im Verfahrensschritt (b) eine wenigstens temporäre Drehmomentüberhöhung des Elektromotors. Dabei wird das Drehmoment des Elektromotors an dessen Abtriebswelle im Nennpunkt für eine kurze Dauer von beispielsweise 0,5 bis 3 Sekunden um einen Betrag von beispielsweise 20 bis 70 Prozent über das Nenndrehmoment erhöht. Eine relativ kurze Dauer kombiniert mit einer verhältnismäßig geringen Drehmomentüberhöhung lassen die Temperatur des Elektromotors im unkritischen Bereich verbleiben, so dass dieser keinen Schaden nimmt.
- Weitere mögliche Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform des Antriebssystems hinzufügen.
- Weitere vorteilhafte Ausgestaltungen und Aspekte der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele der Erfindung. Im Weiteren wird die Erfindung anhand von bevorzugten Ausführungsformen unter Bezugnahme auf die beigelegten Figuren näher erläutert. in den Figuren bezeichnen dieselben Bezugszeichen gleiche oder funktionsgleiche Komponenten, soweit nichts Gegenteiliges angegeben ist.
- Von den Figuren zeigen:
-
1 ein Antriebssystem für ein Hybridfahrzeug gemäß einem ersten Ausführungsbeispiel in einer schematischen Darstellung; -
2 einen Ausschnitt des Antriebssystems für ein Hybridfahrzeug gemäß dem ersten Ausführungsbeispiel in einer schematischen Schnittdarstellung; und -
3 einen Ausschnitt des Antriebssystems für ein Hybridfahrzeug gemäß dem ersten Ausführungsbeispiel in einer schematischen räumlichen Schnittdarstellung. -
1 zeigt ein Antriebssystem1 für ein Hybridfahrzeug gemäß einem ersten Ausführungsbeispiel in einer schematischen Darstellung. Des Antriebssystem1 weist bei diesem Ausführungsbeispiel einen Verbrennungsmotor3 und einen Elektromotor5 auf, die im Bild beide schematisch als Rechtecke dargestellt sind. Es können im Sinne der vorliegenden Erfindung mehr als ein Verbrennungsmotor3 und ein Elektromotor5 im Antriebssystem1 vorgesehen sein. Der Verbrennungsmotor3 und der Elektromotor5 sind eingerichtet, ihre Drehmomente zum Antrieb des Hybridfahrzeugs an einer im Bild rechts als Linie dargestellten Abtriebswelle7 zur Verfügung zu stellen. Eine Kupplungsvorrichtung9 ist im Antriebssystem1 dem Verbrennungsmotor3 und dem Elektromotor5 zwischengeschaltet vorgesehen, so dass sie eine rotatorische und drehmomentmäßige Entkopplung der Abtriebswelle des Verbrennungsmotors3 von dem Elektromotor5 und der Abtriebswelle7 ermöglicht. - Bei diesem Ausführungsbeispiel ist ferner ein automatisiertes Vorgelegegetriebe
11 dem Elektromotor5 nachgeschaltet vorgesehen, das eine Drehzahl- bzw. Drehmomentanpassung der von dem Verbrennungsmotor3 und dem Elektromotor5 an einer Welle43 bereitgestellten Antriebsleistung zur Abtriebswelle7 ermöglicht. - Die Kupplungsvorrichtung
1 weist ein Reibkraftschlusselement13 und ein Formschlusselement15 , welches parallel zu dem Reibkraftschlusselement13 geschaltet ist, auf. Dies wird anhand der nachfolgenden Figuren mehr im Detail dargestellt. Die Kupplungsvorrichtung1 mit dem Reibkraftschlusselement13 und dem Formschlusselement15 ermöglicht es, mittels Reibschluss am Reibkraftschlusselement13 den Verbrennungsmotor3 , beispielsweise aus dem Stillstand heraus, zu beschleunigen. Ist der Verbrennungsmotor3 auf eine geeignete Drehzahl herauf beschleunigt, kann dann das Formschlusselement15 zur formschlüssigen Einkupplung des Verbrennungsmotors3 in Eingriff gebracht werden. Das Formschlusselement15 ermöglicht dann die Übertragung auch von großen Drehmomenten des Verbrennungsmotors3 . Dadurch kann das Reibkraftschlusselement13 für ein geringeres zu übertragendes Drehmoment ausgelegt werden und vorteilhaft mit geringem Bauraumbedarf dimensioniert werden. Ferner wird die am Reibkraftschlusselement13 entstehende Reibungswärme gering gehalten und damit insbesondere auch der Bereich des Elektromotors5 wenig durch das Reibkraftschlusselement13 erwärmt. -
2 zeigt einen Ausschnitt des Antriebssystems1 für ein Hybridfahrzeug gemäß dem ersten Ausführungsbeispiel in einer schematischen Schnittdarstellung. Dargestellt ist ein oberhalb einer Symmetrielinie19 angeordneter Ausschnitt des Antriebssystems1 . Die Symmetrielinie19 zeigt die Rotationsachse für das Gesamtsystem eines Rotors17 mit einem Rotorträger des Elektromotors5 und der Kupplungsvorrichtung9 . Der Rotor17 soll hier den Rotorträger mit einschließen. Die Kupplungsvorrichtung9 ist im Bild unterhalb des dargestellten Abschnitts des Rotors17 dargestellt und verläuft hier demnach innerhalb des Rotors17 des Elektromotors5 . - Die Kupplungsvorrichtung
9 weist ein erstes rotatorisches Kupplungselement21 und ein zweites rotatorisches Kupplungselement23 auf, die koaxial zueinander angeordnet und aufeinander zu und voneinander weg verlagerbar vorgesehen sind. Am ersten Kupplungselement21 ist ein Außenkonus25 vorgesehen und am zweiten Kupplungselement23 ist ein Innenkonus27 vorgesehen. Die Anordnung der Konen25 ,27 in Bezug auf die Kupplungselemente21 ,23 kann dabei vorzugsweise auch anders herum sein. In der Schnittdarstellung von2 ist das erste Kupplungselement21 schräg rechts unterhalb des zweiten Kupplungselementes23 erkennbar. Außenkonus25 und Innenkonus27 verlaufen dabei im Bild schräg nach rechts oben. Werden Außenkonus25 und Innenkonus27 gegeneinander gepresst, kann mittels Reibschluss ein Drehmoment über das erste Kupplungselement21 und das zweite Kupplungselement23 ein Drehmoment per Reibschluss übertragen werden. Dabei kann, je nach Drehmoment und je nach Anpresskraft, ein rotatorischer Schlupf zwischen den beiden Kupplungselementen21 ,23 möglich sein. - Am zweiten rotatorischen Kupplungselement
23 ist eine Verzahnung29 vorgesehen. Eine bei diesem Ausführungsbeispiel hülsenförmig gestaltete Sperrklinke31 ist zum Arretieren in der Verzahnung29 und zum Ausbildung des Formschlusses zwischen dem zweiten rotatorischen Kupplungselement23 und der Welle43 vorgesehen. Dazu ist eine Hülse35 drehfest an der Welle43 angeordnet und mit der Sperrklinke31 an deren Innendurchmesser verzahnt. - Zur axialen Verlagerung des ersten rotatorischen Kupplungselementes
21 in Richtung auf das zweite rotatorische Kupplungselement23 zu ist ein Aktor33 vorgesehen. Der Aktor33 arbeitet bei diesem Ausführungsbeispiel hydraulisch und ist in der Lage insbesondere eine hohe Druckkraft koaxial zu dem ersten rotatorischen Kupplungselement21 auszuüben. Die Kraft des Aktors33 wird über eine vorgesehene Hülse35 drehentkoppelt durch eine vorgesehene Wälzlagerung37 übertragen. - Die Sperrklinke
31 ist bei diesem Ausführungsbeispiel so vorgesehen, dass sie bei einer festgelegten Kraft des Aktors33 verrastet. Dazu ist ein Federelement39 an der Sperrklinke31 vorgesehen, das mit dem ersten rotatorischen Kupplungselement21 verrastet, wenn die Sperrklinke31 über eine bestimmte Position in Richtung auf das erste rotatorische Kupplungselement21 verlagert wird. - Das Antriebssystem
1 ermöglicht eine flexible Übertragung des Drehmomentes eines Verbrennungsmotors3 und eine Elektromotors5 wahlweise per Reibschluss oder per Formschluss auf eine Welle43 . Dabei kann für die großen Drehmomente des Verbrennungsmotors3 der Formschluss genutzt werden, was eine insgesamt kompakte Dimensionierung erlaubt. -
3 zeigt einen Ausschnitt des Antriebssystems1 für ein Hybridfahrzeug gemäß dem ersten Ausführungsbeispiel in einer schematischen räumlichen Schnittdarstellung. Durch die räumliche Darstellung lässt sich der schon anhand von2 dargestellte Aufbau des Antriebssystems1 , insbesondere der Kupplungsvorrichtung9 leichter im Detail erfassen. - Wie in
2 ist das erste Kupplungselement21 schräg rechts unterhalb des zweiten Kupplungselementes23 erkennbar. In dieser Darstellung kann man nun am im Bild rechten Rand des zweiten Kupplungselementes23 die Verzahnung29 erkennen. Die Sperrklinke31 ist hülsenförmig gestaltet und kann von dem Aktor33 im Bild nach links in einen Eingriff mit dem Kupplungselement23 verschoben werden. Der Träger40 koppelt bei diesem Ausführungsbeispiel die Sperrklinke31 mit der Welle43 . Dazu ist die Sperrklinke31 mit dem Träger40 verzahnt und der Träger40 über ein Vielzahnprofil drehfest mit der Welle43 gekoppelt. Dadurch, dass die Sperrklinke31 mit dem Träger40 verzahnt ist, kann die Sperrklinke31 das Antriebsmoment, dass von dem zweiten rotatorischen Kupplungselement23 auf sie übertragen wird, unabhängig von ihrer Verschiebungsstellung entlang des Trägers40 und damit auch entlang der Welle43 auf den Träger40 übertragen. Das erste rotatorische Kupplungselement21 kann ebenfalls beispielsweise über den Träger40 mit der Welle43 gekoppelt sein. Dazu kann beispielsweise ein Einschieben der Sperrklinke31 , welche sich auf dem Träger40 in einem sogenannten Vielzahnprofil verschieben lässt, in das erste rotatorische Kupplungselement21 bei Ausbildung einer Klemmung zwischen der Sperrklinke31 und dem ersten rotatorischen Kupplungselement21 eine kraftschlüssige Verbindung realisiert werden. - Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorliegend beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.
- Bezugszeichenliste
-
- 1
- Antriebssystem
- 3
- Verbrennungsmotor
- 5
- Elektromotor
- 7
- Abtriebswelle
- 9
- Kupplungsvorrichtung
- 11
- Vorgelegegetriebe
- 13
- Reibkraftschlusselement
- 15
- Formschlusselement
- 17
- Rotor
- 19
- Symmetrielinie
- 21
- Erstes rotatorisches Kupplungselement
- 23
- Zweites rotatorisches Kupplungselement
- 25
- Außenkonus
- 27
- Innenkonus
- 29
- Verzahnung
- 31
- Sperrklinke
- 33
- Aktor
- 35
- Hülse
- 37
- Wälzlagerung
- 39
- Federelement
- 40
- Träger
- 41
- Fase
- 42
- Gehäuse
- 43
- Welle
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- DE 102007010307 B3 [0003]
Claims (15)
- Antriebssystem (
1 ) für ein Hybridfahrzeug aufweisend einen Verbrennungsmotor (3 ), einen Elektromotor (5 ), und eine Kupplungsvorrichtung (9 ), welche ein Reibkraftschlusselement (13 ) und ein Formschlusselement (15 ), welches parallel, insbesondere koaxial, zu dem Reibkraftschlusselement (13 ) geschaltet ist, aufweist, wobei die Kupplungsvorrichtung (9 ) eingerichtet ist, den Verbrennungsmotor (3 ) in das Antriebssystem (1 ) einzukuppeln und in wenigstens folgende Zustände geschaltet zu werden: a) geöffnetes Formschlusselement (15 ) und geschlossenes Reibkraftschlusselement (13 ) zum Starten und/oder Synchronisieren des Verbrennungsmotors (3 ), b) geschlossenes Formschlusselement (15 ) und geschlossenes Reibkraftschlusselement (13 ) oder geschlossenes Formschlusselement (15 ) und geöffnetes Reibkraftschlusselement (13 ) bei laufendem, synchronisierten Verbrennungsmotor (3 ) zum Erzeugen eines verbrennungsmotorischen Abtriebs und c) geöffnetes Formschlusselement (15 ) und geöffnetes Reibkraftschlusselement (13 ) bei stehendem Verbrennungsmotor (3 ) zum rein elektromotorischen Antrieb des Fahrzeugs. - Antriebssystem (
1 ) nach Anspruch 1, wobei die Kupplungsvorrichtung (9 ) trocken läuft. - Antriebssystem (
1 ) nach Anspruch 1 oder 2, wobei ein Teil eines Rotors (17 ) des Elektromotors (5 ), insbesondere indirekt, wassergekühlt ist. - Antriebssystem (
1 ) nach einem der vorhergehenden Ansprüche, wobei die Kupplungsvorrichtung (9 ) wenigstens teilweise innerhalb des Rotors (17 ) verläuft, insbesondere darin angeordnet ist. - Antriebssystem (
1 ) nach einem der vorhergehenden Ansprüche, wobei das Reibkraftschlusselement (13 ) mit einem ersten rotatorischen Kupplungselement (21 ) und einem zweiten rotatorischen Kupplungselement (23 ) gebildet ist, die koaxial zueinander angeordnet und aufeinander zu und voneinander weg verlagerbar vorgesehen sind, wobei das erste rotatorische Kupplungselement (21 ) einen Außenkonus (25 ) und das zweite rotatorische Kupplungselement (23 ) einen Innenkonus (27 ) aufweist, die miteinander zur Drehmomentübertragung in Kontakt bringbar sind. - Antriebssystem (
1 ) nach Anspruch 5 wobei am ersten rotatorischen Kupplungselement (21 ) oder am zweiten rotatorischen Kupplungselement (23 ) eine Verzahnung (29 ) vorgesehen und dem jeweils anderen Kupplungselement (21 ,23 ) drehfest zugeordnet eine Sperrklinke (31 ) zum Arretieren in der Verzahnung (29 ) und damit zur Ausbildung des Formschlusses zwischen dem ersten rotatorischen Kupplungselement (21 ) und dem zweiten rotatorischen Kupplungselement (23 ) oder dem zweiten rotatorischen Kupplungselement (23 ) und einer Welle (43 ) zur Übertragung des Drehmomentes von dem Verbrennungsmotor (3 ) und dem Elektromotor (5 ) vorgesehen ist. - Antriebssystem (
1 ) nach Anspruch 6, dass die Sperrklinke (31 ) achsparallel zu den rotatorischen Kupplungselementen (21 ,23 ) verfahrbar angeordnet ist. - Antriebssystem (
1 ) nach einem der Ansprüche 5 bis 7, wobei ein Aktor (33 ) vorgesehen ist, der eingerichtet ist, das erste Kupplungselement (21 ) und das zweite Kupplungselement (23 ) gegeneinander zu pressen. - Antriebssystem (
1 ) nach Anspruch 8, wobei der Aktor (33 ) eingerichtet ist, das erste Kupplungselement (21 ) und das zweite Kupplungselement (23 ) auch voneinander weg zu ziehen. - Antriebssystem (
1 ) nach Anspruch 8 oder 9, wobei der Aktor (33 ) als elektromotorischer Aktor oder als hydraulischer Aktor ausgeführt ist. - Antriebssystem (
1 ) nach einem der Ansprüche 5 bis 10, wobei die Sperrklinke (31 ) so vorgesehen ist, dass sie bei einer festgelegten Kraft des Aktors (33 ) oder festgelegten axialen Kraft des ersten rotatorischen Kupplungselements (21 ) oder des zweiten rotatorischen Kupplungselementes (23 ) verrastet. - Antriebssystem (
1 ) nach Anspruch 11, wobei ein Federelement (39 ) vorgesehen ist, das bei Überschreiten der festgelegten axialen Kraft von einer Fase (41 ) an dem ersten rotatorischen Kupplungselement (21 ), an dem zweiten rotatorischen Kupplungselement (23 ) oder einer verschiebbar angeordneten Hülse (35 ) so verlagert wird, dass die Sperrklinke (31 ) in eine Verrastungsposition kommen kann. - Verfahren zum Antreiben eines Hybridfahrzeugs unter Nutzung eines Antriebssystems (
1 ) nach einem der vorhergehenden Ansprüche mit den Schritten: (a) Antreiben des Hybridfahrzeugs mittels des Elektromotors (5 ) bei Übertragung des Drehmomentes des Elektromotors (5 ); (b) Antreiben des Hybridfahrzeugs mittels des Elektromotors (5 ) und gleichzeitiges Zustarten des Verbrennungsmotors (3 ) bei Übertragung des Drehmomentes durch Reibschluss mittels des Reibkraftschlusselementes (13 ); (c) Antreiben des Hybridfahrzeugs mittels des Elektromotors (5 ) und Verbrennungsmotors (3 ) bei Übertragung des Drehmomentes des Verbrennungsmotors (5 ) durch Formschluss mittels des Formschlusselementes (15 ). - Verfahren nach Anspruch 13, wobei im Verfahrensschritt (b) eine wenigstens temporäre Drehmomentüberhöhung des Elektromotors (
5 ) erfolgt. - Hybridfahrzeug mit einem Antriebssystem (
1 ) nach einem der Ansprüche 1 bis 12.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015201931.4A DE102015201931A1 (de) | 2015-02-04 | 2015-02-04 | Antriebssystem für ein Hybridfahrzeug |
PCT/EP2016/050905 WO2016124383A1 (de) | 2015-02-04 | 2016-01-18 | Antriebssystem für ein hybridfahrzeug |
CN201680003643.9A CN107000567B (zh) | 2015-02-04 | 2016-01-18 | 用于混合动力车辆的驱动系统 |
US15/668,433 US10569637B2 (en) | 2015-02-04 | 2017-08-03 | Drive system for a hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015201931.4A DE102015201931A1 (de) | 2015-02-04 | 2015-02-04 | Antriebssystem für ein Hybridfahrzeug |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102015201931A1 true DE102015201931A1 (de) | 2016-08-04 |
Family
ID=55177939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102015201931.4A Pending DE102015201931A1 (de) | 2015-02-04 | 2015-02-04 | Antriebssystem für ein Hybridfahrzeug |
Country Status (4)
Country | Link |
---|---|
US (1) | US10569637B2 (de) |
CN (1) | CN107000567B (de) |
DE (1) | DE102015201931A1 (de) |
WO (1) | WO2016124383A1 (de) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016220712A1 (de) | 2016-10-21 | 2018-04-26 | Zf Friedrichshafen Ag | Kupplungsanordnung für ein Hybridfahrzeug |
DE102016220711A1 (de) | 2016-10-21 | 2018-04-26 | Zf Friedrichshafen Ag | Kupplungsanordnung für ein Hybridfahrzeug mit einer Reibungskupplung und einer Fliehkraftkupplung |
DE102016221491A1 (de) | 2016-11-02 | 2018-05-03 | Zf Friedrichshafen Ag | Kupplungsanordnung für einen Antriebsstrang eines Kraftfahrzeugs |
WO2018161993A1 (de) * | 2017-03-06 | 2018-09-13 | Schaeffler Technologies AG & Co. KG | Hybridmodul für einen antriebsstrang eines hybridfahrzeugs sowie ein solcher antriebsstrang |
WO2018184826A1 (de) | 2017-04-06 | 2018-10-11 | Bayerische Motoren Werke Aktiengesellschaft | Antriebsvorrichtung mit einer kupplungseinrichtung, antriebssystem mit dieser antriebsvorrichtung und verfahren zum betrieb des antriebsystems |
WO2018219596A1 (de) | 2017-06-02 | 2018-12-06 | Zf Friedrichshafen Ag | Koppelvorrichtung zur übertragung eines drehmoments von einer schwungmasse auf eine antriebseinrichtung und entsprechendes verfahren |
WO2018219594A1 (de) * | 2017-06-02 | 2018-12-06 | Zf Friedrichshafen Ag | Schwungstartkupplungsanordnung sowie antriebsstrangeinheit |
DE102017210295A1 (de) | 2017-06-20 | 2018-12-20 | Zf Friedrichshafen Ag | Koppelvorrichtung zur Übertragung eines Drehmoments von einer Schwungmasse auf eine Antriebseinrichtung und entsprechendes Verfahren |
DE102017210658A1 (de) | 2017-06-23 | 2018-12-27 | Zf Friedrichshafen Ag | Reibeinrichtung zur Übertragung eines Drehmoments von einer Schwungmasse auf eine Antriebseinrichtung und entsprechendes Verfahren |
WO2019007618A1 (de) * | 2017-07-03 | 2019-01-10 | Zf Friedrichshafen Ag | Torsionsdämpfungsanordnung sowie kraftfahrzeug |
WO2019007617A1 (de) * | 2017-07-03 | 2019-01-10 | Zf Friedrichshafen Ag | Schwungstartkupplungsanordnung, torsionsdämpferanordnung sowie kraftfahrzeug |
EP3431795A1 (de) * | 2017-07-21 | 2019-01-23 | Ge Avio S.r.l. | Zahnradgetriebe für aeronautische anwendungen |
WO2020099626A1 (de) * | 2018-11-16 | 2020-05-22 | Zf Friedrichshafen Ag | Konuselement als kupplung im k0-bauraum |
WO2020115259A1 (en) * | 2018-12-06 | 2020-06-11 | Borgwarner Sweden Ab | A hybrid drive module |
DE102019219185B3 (de) * | 2019-12-09 | 2020-10-15 | Magna powertrain gmbh & co kg | Vorrichtung für einen Kraftfahrzeugantriebsstrang |
DE102019208162A1 (de) * | 2019-06-05 | 2020-12-10 | Zf Friedrichshafen Ag | Kupplungsanordnung mit parallel geschalteten Kupplungen |
WO2021165060A1 (de) * | 2020-02-19 | 2021-08-26 | Magna Pt B.V. & Co. Kg | Doppelkupplungssystem sowie verfahren zum betrieb eines solchen |
DE102020117459A1 (de) | 2020-07-02 | 2022-01-05 | Schaeffler Technologies AG & Co. KG | Hybridmodul |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109565218B (zh) * | 2016-08-02 | 2020-09-15 | 三菱电机株式会社 | 扭矩限制机构、驱动装置及机器人装置 |
DE102018103064A1 (de) * | 2018-02-12 | 2019-08-14 | Schaeffler Technologies AG & Co. KG | Kupplungseinheit mit Torsionsschwingungsdämpfer als Kupplungsträger, Hybridmodul mit Kupplungseinheit |
DE102018103336A1 (de) * | 2018-02-14 | 2019-08-14 | Schaeffler Technologies AG & Co. KG | Hybridmodul und Antriebsanordnung für ein Kraftfahrzeug |
DE102018119199A1 (de) * | 2018-08-07 | 2020-02-13 | Hoerbiger Antriebstechnik Holding Gmbh | Antriebsstrang eines elektrisch angetriebenen Fahrzeugs und elektrisch angetriebenes Fahrzeug |
DE102019215833A1 (de) * | 2019-10-15 | 2021-04-15 | Zf Friedrichshafen Ag | Kupplungseinrichtung für eine Hybridmodul |
US10982723B1 (en) * | 2019-11-18 | 2021-04-20 | GM Global Technology Operations LLC | Friction clutch assemblies with low-drag disconnect clutch pack having cone clutch synchronizer |
CN114103776B (zh) * | 2021-11-15 | 2022-09-02 | 宁波大学 | 一种户外休息用的移动车 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10018926A1 (de) * | 1999-04-26 | 2000-11-02 | Luk Lamellen & Kupplungsbau | Antriebsstrang |
DE102007010307B3 (de) | 2007-02-22 | 2008-06-05 | Hoerbiger Synchrontechnik Gmbh & Co. Kg | Schaltkupplungsanordnung |
DE102007050235A1 (de) * | 2007-10-20 | 2009-04-23 | Zf Friedrichshafen Ag | Antriebssystem für ein Fahrzeug |
DE102009045562A1 (de) * | 2009-10-12 | 2011-04-14 | Zf Friedrichshafen Ag | Kupplungsanordnung und Ankopplungsverfahren für ein Fahrzeug mit einer ersten und einer zweiten Antriebsvorrichtung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990004274A1 (fr) * | 1988-10-13 | 1990-04-19 | Fanuc Ltd | Oscillateur pour lasers a gaz |
DE4323602A1 (de) | 1993-07-09 | 1995-01-12 | Mannesmann Ag | Antriebsanordnung für ein Hybridfahrzeug |
DE19901052A1 (de) * | 1999-01-14 | 2000-07-27 | Mannesmann Sachs Ag | Drehmomentübertragungseinrichtung |
AU2011299058B2 (en) * | 2010-09-10 | 2015-04-23 | Allison Transmission, Inc. | Hybrid system |
DE102011078110A1 (de) * | 2011-06-27 | 2012-12-27 | Zf Friedrichshafen Ag | Antriebselement eines Getriebes |
DE102011053832A1 (de) * | 2011-09-21 | 2013-03-21 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Antriebsstrang für ein Parallel-Hybridfahrzeug |
-
2015
- 2015-02-04 DE DE102015201931.4A patent/DE102015201931A1/de active Pending
-
2016
- 2016-01-18 CN CN201680003643.9A patent/CN107000567B/zh active Active
- 2016-01-18 WO PCT/EP2016/050905 patent/WO2016124383A1/de active Application Filing
-
2017
- 2017-08-03 US US15/668,433 patent/US10569637B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10018926A1 (de) * | 1999-04-26 | 2000-11-02 | Luk Lamellen & Kupplungsbau | Antriebsstrang |
DE102007010307B3 (de) | 2007-02-22 | 2008-06-05 | Hoerbiger Synchrontechnik Gmbh & Co. Kg | Schaltkupplungsanordnung |
DE102007050235A1 (de) * | 2007-10-20 | 2009-04-23 | Zf Friedrichshafen Ag | Antriebssystem für ein Fahrzeug |
DE102009045562A1 (de) * | 2009-10-12 | 2011-04-14 | Zf Friedrichshafen Ag | Kupplungsanordnung und Ankopplungsverfahren für ein Fahrzeug mit einer ersten und einer zweiten Antriebsvorrichtung |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016220711A1 (de) | 2016-10-21 | 2018-04-26 | Zf Friedrichshafen Ag | Kupplungsanordnung für ein Hybridfahrzeug mit einer Reibungskupplung und einer Fliehkraftkupplung |
WO2018072944A1 (de) | 2016-10-21 | 2018-04-26 | Zf Friedrichshafen Ag | Kupplungsanordnung für ein hybridfahrzeug mit einer reibungskupplung und einer fliehkraftkupplung |
WO2018072946A1 (de) | 2016-10-21 | 2018-04-26 | Zf Friedrichshafen Ag | Kupplungsanordnung für ein hybridfahrzeug |
DE102016220712A1 (de) | 2016-10-21 | 2018-04-26 | Zf Friedrichshafen Ag | Kupplungsanordnung für ein Hybridfahrzeug |
DE102016221491A1 (de) | 2016-11-02 | 2018-05-03 | Zf Friedrichshafen Ag | Kupplungsanordnung für einen Antriebsstrang eines Kraftfahrzeugs |
CN110431031A (zh) * | 2017-03-06 | 2019-11-08 | 舍弗勒技术股份两合公司 | 用于混合动力车辆的驱动系的混合动力模块以及这种驱动系 |
WO2018161993A1 (de) * | 2017-03-06 | 2018-09-13 | Schaeffler Technologies AG & Co. KG | Hybridmodul für einen antriebsstrang eines hybridfahrzeugs sowie ein solcher antriebsstrang |
US11110791B2 (en) | 2017-03-06 | 2021-09-07 | Schaeffler Technologies AG & Co. KG | Hybrid module for a drive train of a hybrid vehicle and such a drive train |
US10889177B2 (en) | 2017-04-06 | 2021-01-12 | Bayerische Motoren Werke Aktiengesellschaft | Drive apparatus having a clutch device, drive system having said drive apparatus and method for operating the drive system |
DE102017205942A1 (de) | 2017-04-06 | 2018-10-11 | Bayerische Motoren Werke Aktiengesellschaft | Antriebsvorrichtung mit einer Kupplungseinrichtung, Antriebssystem mit dieser Antriebsvorrichtung und Verfahren zum Betrieb des Antriebsystems |
CN110505969A (zh) * | 2017-04-06 | 2019-11-26 | 宝马股份公司 | 具有离合器装置的驱动装置、具有该驱动装置的驱动系统和用于运行驱动系统的方法 |
WO2018184826A1 (de) | 2017-04-06 | 2018-10-11 | Bayerische Motoren Werke Aktiengesellschaft | Antriebsvorrichtung mit einer kupplungseinrichtung, antriebssystem mit dieser antriebsvorrichtung und verfahren zum betrieb des antriebsystems |
DE102017209455A1 (de) | 2017-06-02 | 2018-12-06 | Zf Friedrichshafen Ag | Koppelvorrichtung zur Übertragung eines Drehmoments von einer Schwungmasse auf eine Antriebseinrichtung und entsprechendes Verfahren |
WO2018219594A1 (de) * | 2017-06-02 | 2018-12-06 | Zf Friedrichshafen Ag | Schwungstartkupplungsanordnung sowie antriebsstrangeinheit |
WO2018219596A1 (de) | 2017-06-02 | 2018-12-06 | Zf Friedrichshafen Ag | Koppelvorrichtung zur übertragung eines drehmoments von einer schwungmasse auf eine antriebseinrichtung und entsprechendes verfahren |
DE102017210295A1 (de) | 2017-06-20 | 2018-12-20 | Zf Friedrichshafen Ag | Koppelvorrichtung zur Übertragung eines Drehmoments von einer Schwungmasse auf eine Antriebseinrichtung und entsprechendes Verfahren |
DE102017210658A1 (de) | 2017-06-23 | 2018-12-27 | Zf Friedrichshafen Ag | Reibeinrichtung zur Übertragung eines Drehmoments von einer Schwungmasse auf eine Antriebseinrichtung und entsprechendes Verfahren |
WO2019007618A1 (de) * | 2017-07-03 | 2019-01-10 | Zf Friedrichshafen Ag | Torsionsdämpfungsanordnung sowie kraftfahrzeug |
WO2019007617A1 (de) * | 2017-07-03 | 2019-01-10 | Zf Friedrichshafen Ag | Schwungstartkupplungsanordnung, torsionsdämpferanordnung sowie kraftfahrzeug |
CN110832215A (zh) * | 2017-07-03 | 2020-02-21 | Zf腓特烈斯哈芬股份公司 | 扭转减振器组件以及机动车 |
US11280375B2 (en) | 2017-07-03 | 2022-03-22 | Zf Friedrichshafen Ag | Torsion damping assembly and motor vehicle |
EP3431795A1 (de) * | 2017-07-21 | 2019-01-23 | Ge Avio S.r.l. | Zahnradgetriebe für aeronautische anwendungen |
US11371590B2 (en) | 2017-07-21 | 2022-06-28 | Ge Avio S.R.L. | Gear transmission for aeronautical applications |
CN113039118A (zh) * | 2018-11-16 | 2021-06-25 | 采埃孚股份公司 | 在k0结构空间中作为离合器的锥形元件 |
WO2020099627A1 (de) * | 2018-11-16 | 2020-05-22 | Zf Friedrichshafen Ag | Konuselement als kupplung im k0-bauraum |
WO2020099626A1 (de) * | 2018-11-16 | 2020-05-22 | Zf Friedrichshafen Ag | Konuselement als kupplung im k0-bauraum |
US11518232B2 (en) | 2018-11-16 | 2022-12-06 | Zf Friedrichshafen Ag | Cone element acting as a clutch in a K0 installation space |
US11524565B2 (en) | 2018-11-16 | 2022-12-13 | Zf Friedrichshafen Ag | Cone element acting as a clutch in a K0 installation space |
WO2020115259A1 (en) * | 2018-12-06 | 2020-06-11 | Borgwarner Sweden Ab | A hybrid drive module |
DE102019208162A1 (de) * | 2019-06-05 | 2020-12-10 | Zf Friedrichshafen Ag | Kupplungsanordnung mit parallel geschalteten Kupplungen |
DE102019219185B3 (de) * | 2019-12-09 | 2020-10-15 | Magna powertrain gmbh & co kg | Vorrichtung für einen Kraftfahrzeugantriebsstrang |
WO2021165060A1 (de) * | 2020-02-19 | 2021-08-26 | Magna Pt B.V. & Co. Kg | Doppelkupplungssystem sowie verfahren zum betrieb eines solchen |
DE102020117459A1 (de) | 2020-07-02 | 2022-01-05 | Schaeffler Technologies AG & Co. KG | Hybridmodul |
Also Published As
Publication number | Publication date |
---|---|
US10569637B2 (en) | 2020-02-25 |
US20170326962A1 (en) | 2017-11-16 |
CN107000567B (zh) | 2020-02-21 |
CN107000567A (zh) | 2017-08-01 |
WO2016124383A1 (de) | 2016-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015201931A1 (de) | Antriebssystem für ein Hybridfahrzeug | |
DE19941705A1 (de) | Antriebsstrang | |
DE102009002805A1 (de) | Parallel-Hybridantrieb für Kraftfahrzeuge | |
EP2841203B1 (de) | Antriebseinrichtung und arbeitsmaschineneinrichtung | |
DE102015223559B3 (de) | Kupplungsanordnung für ein Fahrzeug sowie Fahrzeug mit der Kupplungsanordnung | |
DE102010039445A1 (de) | Vorrichtung zum formschlüssigen drehfesten Verbinden von mindestens zwei Bauelementen mit zwei Schaltelementhälften | |
AT507523A2 (de) | Parallelhybridantrieb für ein kraftfahrzeug | |
WO2018086716A1 (de) | Kupplungsanordnung und antriebsanordnung | |
AT510966B1 (de) | Getriebe, insbesondere doppelkupplungsgetriebe | |
DE112014000411T5 (de) | Getriebe für ein Fahrzeug und Fahrzeug, das ein derartiges Getriebe einschließt | |
DE112014000378T5 (de) | Getriebe für ein Fahrzeug und Fahrzeug mit einem derartigen Getriebe | |
DE102015209791B3 (de) | Kupplungssystem | |
EP2861445B1 (de) | Übersetzungs- und ausgleichsgetriebe sowie motor- und getriebeeinheit | |
DE102015100906B4 (de) | Synchronisiereinrichtung, Kupplungsanordnung und Antriebsanordnung | |
DE102016215268A1 (de) | Hybridantriebssystem für ein Transportmittel, insbesondere für ein Kraftfahrzeug | |
DE102016212993A1 (de) | Hybridmodul, Antriebsstrang sowie Verfahren zum Betreiben des Antriebsstrangs | |
DE102016212994A1 (de) | Kupplungseinheit, Hybridmodul und Antriebsstrang für ein Kraftfahrzeug | |
DE102016204282B3 (de) | Bremseinrichtung für Getriebezahnräder | |
WO2017207122A1 (de) | Ölpumpenantrieb für ein getriebe eines kraftfahrzeugs | |
DE102012204470A1 (de) | Getriebestufe und Verfahren zum Betrieb einer Getriebestufe | |
WO2014177147A1 (de) | Vorrichtung zur antriebsanbindung eines nebenaggregatetriebs eines fahrzeugs | |
WO2012075974A2 (de) | Antriebsbaugruppe | |
DE102016220711A1 (de) | Kupplungsanordnung für ein Hybridfahrzeug mit einer Reibungskupplung und einer Fliehkraftkupplung | |
DE102014220126B4 (de) | Hybridkupplung für eine Doppelgetriebeeinheit eines Kraftfahrzeugs und Verfahren zum verlustarmen Übertragen eines Drehmoments mittels der Hybridkupplung | |
DE102012011688A1 (de) | Übersetzungs- und Ausgleichsgetriebe sowie Motor- und Getriebeeinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R012 | Request for examination validly filed |