DE102012207348A1 - Staubsauger - Google Patents

Staubsauger Download PDF

Info

Publication number
DE102012207348A1
DE102012207348A1 DE102012207348A DE102012207348A DE102012207348A1 DE 102012207348 A1 DE102012207348 A1 DE 102012207348A1 DE 102012207348 A DE102012207348 A DE 102012207348A DE 102012207348 A DE102012207348 A DE 102012207348A DE 102012207348 A1 DE102012207348 A1 DE 102012207348A1
Authority
DE
Germany
Prior art keywords
vacuum cleaner
component
cooled
constriction
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012207348A
Other languages
English (en)
Inventor
Florian Balling
Dieter Manger
Florian Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Priority to DE102012207348A priority Critical patent/DE102012207348A1/de
Priority to EP13165260.4A priority patent/EP2659823B1/de
Publication of DE102012207348A1 publication Critical patent/DE102012207348A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/0072Mechanical means for controlling the suction or for effecting pulsating action
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/26Incorporation of winding devices for electric cables
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2889Safety or protection devices or systems, e.g. for prevention of motor over-heating or for protection of the user

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

Ein Staubsauger (100) umfasst ein zu kühlendes Bauteil (110) und einen Nebenluftkanal (120). Der Nebenluftkanal (120) erstreckt sich in Luftströmungsrichtung von einer Gehäuseöffnung des Staubsaugers über das zu kühlende Bauteil (110) bis zu einem Hauptluftkanal (102) oder bis zu einem Gebläse (104) des Staubsaugers. Ferner weist der Nebenluftkanal (120) luftstromaufwärts von dem zu kühlenden Bauteil (110) eine Verengung (130) auf. Die Verengung (130) ist angeordnet und ausgebildet, sodass im Betrieb des Staubsaugers ein Luftstrom, der durch die Verengung (130) strömt, in Richtung des zu kühlenden Bauteils (110) ausgerichtet ist. Durch die Verengung (130) im Nebenluftkanal (120) können am Austritt der Verengung (130) hohe Luftgeschwindigkeiten erreicht werden. In Kombination mit der Ausrichtung des Luftstroms auf das zu kühlende Bauteil (110) kann eine sehr effiziente Kühlung des zu kühlenden Bauteils (110) erfolgen.

Description

  • Ausführungsbeispiele der Erfindung beziehen sich auf das Gebiet von Reinigungsmaschinen und im Speziellen auf einen Staubsauger.
  • Sehr viele Staubsauger haben eine Regelvorrichtung um die Saugleistung zu regulieren. Dies ist nötig, da Nutzer unterschiedliche Teppiche und auch Hartboden zu reinigen haben. Eine solche Regulierung kann über Nebenluft oder über die elektrische Aufnahmeleistung des Motors gemacht werden. Die meisten Staubsauger haben deshalb eine Elektronik im Einsatz; welche die Aufnahmeleistung reguliert. Dies kann über ein elektronisches Bauteil, dem sogenannten Triac (Triode for Alternating Current, Triode für Wechselstrom, auch Zweirichtungs-Thyristortriode oder Symistor genannt), erfolgen. Es handelt sich um ein elektronisches Bauteil mit Halbleiterschichtstruktur, das vom Prinzip her eine Antiparallelschaltung von zwei Thyristoren darstellt. Das ermöglicht es, in beide Richtungen Strom zu führen, wohingegen ein einzelner Thyristor nur in einer Richtung leiten kann und somit im eingeschalteten Zustand wie eine Diode wirkt. Im Prinzip steuert er die Aufnahmeleistung über den Phasenanschnitt. Da durch den Triac der komplette Aufnahmestrom fließt erhitzt der Triac sich sehr stark. Da das elektronische Bauteil aber nicht so große Temperaturen verträgt muss es gekühlt werden.
  • Die Kühlung kann auf unterschiedlichste Arten erfolgen. Die Kühlung des Triacs kann z.B. durch ein großes Kühlblech, durch Nebenluft (eine Absaugung) oder durch einen Bypass (vorbeiströmende Luft) gelöst werden.
  • Die DE 4310747 A1 bezieht sich auf einen Staubsauger mit einem Sauggebläse, dessen Gebläsemotor mittels eines Halbleiterschaltelementes drehzahlsteuerbar ist, das durch die Saugluft des Staubsaugers gekühlt ist.
  • Ferner zeigt die DE 2016194 einen Staubsauger der einen Triac als elektronisches Steuerelement im Unterdruckraum des Gerätes angeordnet hat. Der Triac ist in einem etwa hohlzylindrischen, in den Unterdruckraum ragenden und gegen diesen verschlossenen Ansatz der Trennwand zwischen Unterdruck- und Überdruckraum positioniert.
  • Des Weiteren beschreibt die DE 7108642 einen Staubsauger, bei dem sich eine Schaltplatine mit den für die Steuerung eines Leistungshalbleiters vorgesehenen Schaltelementen in dem den Motorgebläse nachgeschalteten Überdruckraum befindet. Die Anordnung der Schaltplatine mit dem Leistungshalbleiter ist auch vor der Einlassöffnung des Motorgebläses möglich, wobei wegen der kalten Ansaugluft Kühlungsprobleme für den Leistungshalbleiter nicht eintreten können.
  • Allgemein verursacht ein Kühlblech Kosten und muss meist noch mit Luft gekühlt werden, da die Fläche nicht ausreicht. Nebenluft verursacht Undichtigkeiten im System und damit Verluste. Die Nebenluft wird meist mit einem Unterdruckschlauch realisiert, welcher dann zusätzlich Montage- und Materialkosten verursacht. Bei Bypasskühlungen (Nebenleitungskühlung) wird z.B. der Triac über einen Nebenluftbypass gekühlt. Der Bypass ist zwar verlustfrei, hat aber andere Nachteile. Die Verluste dieser Ausführungen liegen zwischen 1 l/s–4 l/s.
  • Es besteht daher weiterhin Bedarf ein Konzept für Staubsauger zu schaffen, dass es ermöglicht zu kühlende Bauteile möglichst effizient zu kühlen.
  • Dies wird durch einen Staubsauger gemäß Anspruch 1 ermöglicht.
  • Ein Staubsauger umfasst ein zu kühlendes Bauteil und einen Nebenluftkanal. Der Nebenluftkanal erstreckt sich in Luftströmungsrichtung von einer Gehäuseöffnung des Staubsaugers über das zu kühlende Bauteil bis zu einem Hauptluftkanal oder bis zu einem Gebläse des Staubsaugers. Ferner weist der Nebenluftkanal luftstromaufwärts von dem zu kühlenden Bauteil eine Verengung auf. Die Verengung ist angeordnet und ausgebildet, sodass im Betrieb des Staubsaugers ein Luftstrom, der durch die Verengung strömt, in Richtung des zu kühlenden Bauteils ausgerichtet ist.
  • Ausführungsbeispiele basieren auf der Erkenntnis, dass durch eine Verengung im Nebenluftkanal am Austritt der Verengung hohe Luftgeschwindigkeiten erreicht werden. Wird dieser schnelle Luftstrom durch eine entsprechende Anordnung und Ausbildung der Verengung auf das zu kühlende Bauteil ausgerichtet, kann eine sehr effiziente Kühlung des zu kühlenden Bauteils erfolgen. Gleichzeitig bewirken diese hohen Luftgeschwindigkeiten eine Luftverwirbelung um das zu kühlende Bauteil. Durch diese gute Luftverwirbelung am zu kühlenden Bauteil kann eine extrem gute Wärmeabführung erfolgen. Ferner kann die entsprechende Positionierung der Verengung in Bezug auf das zu kühlende Bauteil in einem Nebenluftkanal mit geringem Aufwand realisiert werden. Der Verlust an Saugkraft des Staubsaugers durch den Nebenluftkanal kann gering gehalten werden, da eine sehr kleine Verengung zur Kühlung reicht, sodass insgesamt wenig Luftvolumen durch die Verengung tritt.
  • Bei einigen Ausführungsbeispielen ist das zu kühlende Bauteil ein elektronisches Bauelement. Beispielsweise kann es sich dabei um eine Triac zur Motorsteuerung des Staubsaugers handeln. Der Triac kann durch die Ausrichtung des Luftstroms effizient gekühlt werden.
  • Bei weiteren Ausführungsbeispielen führt der Nebenluftkanal auch über die Kabeltrommel des Staubsaugers. Dadurch kann neben dem zu kühlenden Bauteil (zum Beispiel elektronisches Bauteil) über denselben Nebenluftkanal auch die Kabeltrommel (als zweites zu kühlendes Bauteil) gekühlt werden, so dass kein zusätzlicher Leistungsverlust entsteht.
  • Einige Ausführungsbeispiele realisieren die Verengung als Lochkanal durch eine Wand in den Nebenluftkanal oder als Düse. Durch die Geometrie der Verengung und in die Lage Bezug auf das zu kühlende Bauteil kann die Ausrichtung des Luftstroms auf das zu kühlende Bauteil erreicht werden.
  • Die Verengung, beispielsweise realisiert durch einen Lochkanal, hat bei einigen Ausführungsbeispielen eine maximale Querschnittabmessung zwischen 0,5 mm bis 2 mm. Durch diese geringe Abmessung der Verengung können hohe Luftgeschwindigkeiten beim Durchgang der Luft durch die Verengung erreicht werden.
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend, bezugnehmend auf die beiliegenden Figuren, näher erläutert. Es zeigen:
  • 1 eine Schnittansicht durch einen Staubsauger mit eingezeichnetem Haupt- und Nebenluftkanal; und
  • 2 einen Detailquerschnitt durch den Nebenluftkanal eines Staubsaugers passend zu dem in 1 gezeigten Staubsauger.
  • Im Folgenden können in unterschiedlichen Ausführungsbeispielen oder Figuren teilweise für Objekte und Funktionseinheiten, die gleiche oder ähnliche funktionelle Eigenschaften aufweisen, gleiche Bezugszeichen verwendet werden. Des Weiteren können optionale Merkmale der verschiedenen Ausführungsbeispiele miteinander kombinierbar oder zueinander austauschbar sein.
  • 1 zeigt eine Schnittansicht durch einen Staubsauger 100 als ein Ausführungsbeispiel. Der Staubsauger 100 umfasst ein zu kühlendes Bauteil 110 (oder Bauelement) und einen Nebenluftkanal 120. Der Nebenluftkanal 120 erstreckt sich in Luftströmungsrichtung von einer Gehäuseöffnung des Staubsaugers über das zu kühlende Bauteil 110 bis zu einem Hauptluftkanal 102 oder bis zu einem Gebläse 104 des Staubsaugers. Der Nebenluftkanal 120 befindet sich also auf der Unterdruckseite des Staubsaugers. Ferner weist der Nebenluftkanal 120 luftstromaufwärts von dem zu kühlenden Bauteil 110 eine Verengung 130 auf. Die Verengung 130 ist angeordnet und ausgebildet, sodass im Betrieb des Staubsaugers ein Luftstrom, der durch die Verengung 130 strömt, in Richtung des zu kühlenden Bauteils 110 ausgerichtet ist.
  • Ferner zeigt 1 zur Veranschaulichung einer möglichen Lage des Nebenluftkanals 120 und des Hauptluftkanals 102 in einem Staubsauger weitere Teile des Staubsaugers 100, insbesondere Gehäuseteile, das Gebläse 104, ein Nebenluftventil 150 und einen Motorschutzfilter 160. Dies stellt nur ein Beispiel für eine mögliche Führung der Luftkanäle und die Lage der restlichen Bauteile des Staubsaugers 100 dar, welche jedoch auch auf zahlreiche andere Arten realisierbar sind.
  • Durch die Verengung 130 im Nebenluftkanal 120 können am Austritt der Verengung 130 hohe Luftgeschwindigkeiten erreicht werden. In Kombination mit der Ausrichtung des Luftstroms auf das zu kühlende Bauteil 110 kann eine sehr effiziente Kühlung des zu kühlenden Bauteils 110 erfolgen. Gleichzeitig bewirken diese hohen Luftgeschwindigkeiten eine Luftverwirbelung um das zu kühlende Bauteil 110. Durch diese gute Luftverwirbelung am zu kühlenden Bauteil 110 kann eine extrem gute Wärmeabführung erfolgen. Ferner kann die entsprechende Positionierung der Verengung 130 in Bezug auf das zu kühlende Bauteil 110 in einem Nebenluftkanal 120 mit geringem Aufwand realisiert werden. Der Verlust an Saugkraft des Staubsaugers 100 durch den Nebenluftkanal 120 kann gering gehalten werden, da eine sehr kleine Verengung 130 zur Kühlung reicht, sodass insgesamt wenig Luftvolumen durch die Verengung 130 tritt.
  • Bei dem zu kühlenden Bauteil 110 kann es sich um ein Halbleiterschaltelement, wie z.B. einen Triac oder einen Leistungstransistor, oder um ein stromführendes Element oder ein mit einem solchen in Verbindung stehendes Element, wie z.B. die Kabeltrommel oder das Kabel auf der Kabeltrommel, handeln. Das zu kühlende Bauteil 110 kann ein- oder mehrteilig sein. Beispielsweise kann ein Halbleiterschaltelement direkt für den Luftstrom zur Kühlung zugänglich sein. Oft sind solche Halbleiterschaltelemente (als temperaturkritisches Bauteil) jedoch auch mit Kühlkörpern versehen. In anderen Worten, das zu kühlende Bauteil 110 kann einen Kühlkörper in Verbindung mit einem temperaturkritischen Bauteil aufweisen. Der im Betrieb des Staubsaugers 100 erzeugte Luftstrom, der durch die Verengung 130 strömt, kann dann in Richtung des Kühlkörpers ausgerichtet sein.
  • Der Nebenluftkanal 120 erstreckt sich in Luftströmungsrichtung von einer Gehäuseöffnung bis zu einem Hauptluftkanal 102 oder bis zu dem Gebläse 104 des Staubsaugers 100. Der Hauptluftkanal 102 ist jener Luftkanal im Staubsauger 100, der an eine Anschlussöffnung für einen Saugschlauch des Staubsaugers (also jener, der für das tatsächliche Staubsaugen im Betrieb genutzt wird) führt. Hingegen führt der Nebenluftkanal 120 nicht (zum Beispiel ist die Gehäuseöffnungen, bei der der Nebenluftkanal beginnt, in einer Außenwand des Staubsaugers angeordnet) oder nicht direkt (zum Beispiel ist die Gehäuseöffnung, bei der der Nebenluftkanal beginnt, in einer Wand des Hauptluftkanal angeordnet) zu der Anschlussöffnung für den Saugschlauch des Staubsaugers. Der Nebenluftkanal 120 kann dabei über einen oder mehrere Hohlräume im Inneren des Staubsaugers 100 geführt sein. Im Normalbetrieb eines Staubsaugers ist die Luftströmungsrichtung für die Unterdruckseite des Staubsaugers 100 von einer Gehäuseöffnung (Anschlussöffnung für Saugschlauch im Hauptluftkanal oder eine andere Gehäuseöffnung für Nebenluftkanal) bis zum Gebläse 104 und für die Überdruckseite des Staubsaugers 100 von dem Gebläse 104 bis zu einer Abluftöffnung definiert. Der Nebenluftkanal 120, der über das zu kühlende Bauteil 110 führt, befindet sich also an der Unterdruckseite des Staubsaugers 100. Der Nebenluftkanal 120 kann in den Hauptluftkanal 102 des Staubsaugers 100 einmünden, wie es auch in dem Ausführungsbeispiel von 1 gezeigt ist. Alternativ kann der Nebenluftkanal 120 aber auch direkt zu dem Gebläse 104 des Staubsaugers 100 führen, ohne vorher in den Hauptluftkanal 102 zu münden.
  • Der Nebenluftkanal 120 weist luftstromaufwärts von dem zu kühlenden Bauteil 110 eine Verengung 130 auf. Dabei ist unter einer luftstromaufwärtigen Anordnung eines ersten Bauteils in Bezug zu einem zweiten Bauteil zu verstehen, dass das zweite Bauteil in Luftströmungsrichtung näher zu dem Gebläse angeordnet ist als das erste Bauteil, wenn die Bauteile im Unterdruckteil (also jenem Teil, über welchen das Gebläse im normalen Gebrauch Luft ansaugt) des Staubsaugers angeordnet sind. Für eine luftstromabwärtigen Anordnung gilt dies entsprechend umgekehrt. Umgekehrtes gilt im Überdruckteil (also jenem Teil, über welchen das Gebläse im normalen Gebrauch die angesaugte Luft wieder abgibt) des Staubsaugers, also in Luftströmungsrichtung nach dem Gebläse des Staubsaugers.
  • Die Verengung 130 ist angeordnet und ausgebildet, so dass im Betrieb des Staubsaugers ein Luftstrom, der durch die Verengung 130 strömt, in Richtung des zu kühlenden Bauteils 110 ausgerichtet ist. Ein Luftstrom ist beispielsweise dann auf das zu kühlende Bauteil 110 ausgerichtet, wenn die Richtung (ein Richtungsvektor) der maximalen Geschwindigkeit, der durch die Verengung tretenden Luft, auf das zu kühlende Bauteil 110 weist (auf das zu kühlende Bauteil ausgerichtet ist). Alternativ kann ein Luftstrom auch als auf das zu kühlende Bauteil 110 ausgerichtet angesehen werden, wenn mehr als 30 % (oder mehr als 50 %, 70 % oder 90 %) der durch die Verengung tretenden Luft auf das zu kühlende Bauteil 110 trifft. Allgemein ausgedrückt ist der Luftstrom beispielsweise auf das zu kühlende Bauteil 110 ausgerichtet, wenn der Luftstrom, der durch die Verengung 130 tritt, eine Hauptluftströmungsrichtung (Luftströmungsrichtung, in welcher sich im Betrieb durchschnittlich die meisten Luftmoleküle bewegen) aufweist, die direkt auf das zu kühlende Bauteil 110 gerichtet ist. Beispielsweise kann die Verengung 130 in Bezug auf das zu kühlende Bauteil 110 so ausgebildet und angeordnet sein, dass das zu kühlende Bauteil 110 auf einer Geraden liegt (zum Beispiel liegt das zu kühlende Bauteil direkt auf der Geraden, so dass die Luft von der Verengung entlang der Geraden direkt an das zu kühlende Bauteil gelangen kann), die orthogonal zu einem Austrittsquerschnitt (der Austrittsquerschnitt ist beispielsweise als Querschnitt orthogonal zu der Hauptluftströmungsrichtung definiert) der Verengung 130 durch einen Flächenschwerpunkt des Austrittsquerschnitts verläuft. Zum Beispiel ist bei einem kreisförmigen Querschnitt der Flächenschwerpunkt gleich dem Mittelpunkt des Kreises und bei einem quadratischen Querschnitt ist der Flächenschwerpunkt gleich dem Schnittpunkt der Diagonalen des Quadrats. Eine solche Ausgestaltung und Anordnung der Verengung 130 ist eine Möglichkeit, um den Luftstrom, der durch die Verengung 130 strömt, auf das zu kühlende Bauteil 110 auszurichten.
  • Um die Ausrichtung des Luftstroms auf das zu kühlende Bauteil 110 zu erreichen, kann die Verengung 130 unterschiedlich ausgebildet und angeordnet sein. Beispielsweise kann die Verengung 130 durch einen Lochkanal durch eine Wand in dem Nebenluftkanal 120 gebildet werden. Ein Lochkanal in einer Wand kann beispielsweise eine Bohrung oder eine Aussparung in einem Gehäuseteil des Staubsaugers 100 sein. Die Wand des Nebenluftkanals 120 durch die der Lochkanal führt ist beispielsweise keine Seitenwand (zu welcher die Luftströmungsrichtung im Nebenluftkanal im Wesentlichen parallel ist) sondern eine Querwand (zu welcher die Luftströmungsrichtung im Nebenluftkanal im Wesentlichen orthogonal ist).
  • Wird die Verengung 130 als Lochkanal ausgebildet, kann der Lochkanal beispielsweise so dimensioniert werden, dass der Nebenluftkanal 120 in einem Bereich des zu kühlenden Bauteils 110 (zum Beispiel ein Querschnitt durch den Nebenluftkanal, der auch einen Querschnitt des zu kühlenden Bauteils enthält) eine Querschnittsfläche aufweist, die größer als das 20-fache einer minimale Querschnittsfläche des Lochkanals ist. Dadurch kann im Lochkanal ein Luftstrom mit hoher Luftgeschwindigkeit erzeugt werden, der in einen Teil des Nebenluftkanals 120 mit größerem Querschnitt strömt, in welchem das zu kühlende Bauteil 110 angeordnet ist. In ähnlichen Worten, bei einigen Ausführungen ist ein minimaler Querschnitt der Verengung 130 kleiner als das zu kühlende Bauteil (zum Beispiel kleiner als ein Querschnitt des zu kühlenden Bauteils).
  • Unabhängig von dem Querschnittflächenverhältnis (oder in Kombination dazu) zwischen dem Lochkanal und dem das zu kühlende Bauteil 110 aufnehmende Teil des Nebenluftkanals 120 kann der Lochkanal beispielsweise eine maximale Querschnittabmessung zwischen 0,5 mm und 2 mm (oder 0,3 mm bis 3 mm), insbesondere 1,5 mm (oder 0,5 mm, 1 mm oder 2 mm), aufweisen.
  • Die Verengung 130 kann z.B. auch als Düse ausgebildet sein. Dabei kann beispielsweise ein Prinzip ähnlich einer Venturie-Düse genützt werden.
  • Alternativ oder zusätzlich zu den vorherigen Ausführungen kann die Verengung 130 (zum Beispiel in Form eines Lochkanal oder einer Düse) ausgebildet sein, so dass im Betrieb des Staubsaugers eine Luftgeschwindigkeit im Bereich der Verengung 130 (beim Durchtritt der Luft durch die Verengung) höher als das 2-fache einer durchschnittlichen Luftgeschwindigkeit in dem restlichen Nebenluftkanal 120 ist. Dies kann beispielsweise dadurch erreicht werden, dass die Verengung 130 einen Querschnitt aufweist, der deutlich geringer ist als ein Querschnitt des restlichen oder eines großen Teiles des restlichen Nebenluftkanals 120.
  • Optional kann die Verengung 130 in der Wand des Nebenluftkanals 120 durch ein Material gebildet werden, dass einen (hohen) Wärmeausdehnungskoeffizienten (größer als 50, 80, 100 oder 120·10–6/K) aufweist, so dass sich der Querschnitt der Verengung 130 bei zunehmender Temperatur vergrößert. Umgekehrt verkleinert sich der Querschnitt der Verengung 130 bei abnehmenden Temperaturen. Dadurch kann der Luftstrom durch die Verengung 130 automatisch erhöht werden, wenn zusätzliche Kühlung für das zu kühlende Bauteil 110 notwendig ist, da das zu kühlende Bauteil 110 durch seine Nähe zu der Verengung 130 die Verengung 130 erwärmt, wenn das zu kühlende Bauteil 110 warm wird. Umgekehrt nimmt die Temperatur dann auch wieder ab, wenn das zu kühlende Bauteil 110 ausreichend gekühlt wird und dadurch kälter wird. Dadurch kann gewährleistet werden, dass immer nur so viel Luft über den Nebenluftkanal 120 zur Kühlung des zu kühlenden Bauteils 110 bereitgestellt wird, wie auch notwendig ist, wodurch die Kühlung noch effizienter erfolgen kann (im Gegenzug jedoch unter Umständen die Kosten steigen).
  • Zusätzlich kann der Staubsauger 100 in einigen Ausführungsbeispielen ein Nebenluftventil 150 zur Zuleitung eines zusätzlichen Luftstroms in den Nebenluftkanal 120 aufweisen. Die Zuleitung des zusätzlichen Luftstroms ist dabei durch das Nebenluftventil 150 regelbar. Das Nebenluftventil kann beispielsweise luftstromabwärts von dem zu kühlenden Bauteil 110 angeordnet sein.
  • In einigen Ausführungsbeispielen kann die Verengung 130 direkt durch die Gehäuseöffnung (bei der der Nebenluftkanal 120 beginnt) in einer Außenwand des Staubsaugers gebildet werden. Beispielsweise kann dafür in der Außenwand des Staubsaugers ein Loch vorgesehen sein, hinter welchem sich das zu kühlende Bauteil 110 befindet. Luft wird dann über das Loch in der Außenwand eingesaugt und direkt auf das zu kühlende Bauteil 110 geführt. Alternativ ist die Verengung 130 nicht direkt durch die Gehäuseöffnung in einer Außenwand des Staubsaugers gebildet, sondern ist, wie beispielsweise in 1 gezeigt, in einer innenliegenden Wand (zum Beispiel eine Querwand) des Nebenluftkanals 120 ausgebildet.
  • Ferner können optional weitere zu kühlende Bauteile in dem Nebenluftkanal 120 angeordnet sein, so dass für diese nicht ein zusätzlicher Nebenluftkanal notwendig ist, durch den die Nutzsaugleistung des Staubsaugers reduziert werden würde. Das oder die weiteren zu kühlenden Bauteile können sowohl luftstromaufwärts als auch luftstromabwärts von der Verengung 130 angeordnet sein.
  • Beispielsweise kann ein zweites zu kühlendes Bauteil 140 luftstromaufwärts von der Verengung 130 in dem Nebenluftkanal 120 angeordnet sein. Bei dem zweiten zu kühlenden Bauteil 140 kann es sich beispielsweise um die Kabeltrommel des Staubsaugers 100 handeln. In diesem Fall kann zum Beispiel die Gehäuseöffnung des Staubsaugers, bei der der Nebenluftkanal 120 beginnt, zusätzlich dazu verwendet werden ein Kabel (das Kabel zur Stromversorgung des Staubsaugers) von der Kabeltrommel nach außen zu führen, so dass es mit einer Steckdose verbunden werden kann. Der Nebenluftkanal 120 führt dann von der Gehäuseöffnung über dem Raum zur Aufnahme der Kabeltrommel zu der Verengung 130. Dazu kann die Verengung 130 direkt in einer Wand des Kabeltrommelraums (Raums zur Aufnahme der Kabeltrommel) angeordnet sein oder, wie im Beispiel von 1 gezeigt, der Nebenluftkanal 120 kann zwischen der Verengung 130 und dem Kabeltrommelraum weitere Hohlräume innerhalb des Staubsaugers 100 durchlaufen. Alternativ zum Verlauf durch weitere Hohlräume des Staubsaugers kann die Verengung 130 luftstromaufwärts über einen Unterdruckschlauch mit einem Kern der Kabeltrommel verbunden sein (in diesem Teil wird der Nebenluftkanal dann durch den Unterdruckschlauch gebildet). So kann der Luftstrom im Nebenluftkanal 120 gezielt den Kern der Kabeltrommel kühlen bevor er über den Unterdruckschlauch und die Verengung 130 zu dem (ersten) zu kühlenden Bauteil 110 gelangt. Durch den Verlauf des Nebenluftkanals 120 über die Kabeltrommel muss dieser nicht noch extra über zusätzliche Nebenluft gekühlt werden, was zusätzliche Verluste zur Folge hätte. Eine Kühlung der Kabeltrommel ist oft notwendig, da sie sonst zu heiß ist für die VDE Messungen (Isolationswiderstandsmessung).
  • 2 zeigt einen Detailquerschnitt durch den Nebenluftkanal 120 eines Staubsaugers passend zu dem in 1 gezeigten Staubsauger 100. Wie zu sehen ist, ist in diesem Ausführungsbeispiel die Verengung 130 durch einen Lochkanal in einer Querwand das Nebenluftkanals 120 gebildet, die einen minimalen Querschnitt aufweist, der kleiner als das zu kühlende Bauteil 110 ist. Für sonstige mögliche Ausgestaltungen oder Varianten des Staubsaugers gelten die Ausführungen zu 1.
  • Einige Ausführungsbeispiele beziehen sich allgemein auf eine effiziente Kühlung eines Bauteils eines Staubsaugers und insbesondere eine energieeffiziente Triac-Kühlung über eine Düse.
  • Dabei kann es sich um eine Luftdüse in Form von einem kleinen Loch (ähnlich einer Venturie-Düse) handeln. Der Kanal in dem sich der Triac befindet ist fest mit dem Staubraum des Staubsaugers verbunden. Das Loch ist genau dort angebracht, dass die Luft der Düse direkt über den Triac strömen kann, und dann über den Kanal (Nebenluftkanal) und den Staubraum (Hauptluftkanal) direkt ins Gebläse. Das Loch (Verengung) kann direkt mit dem Kabeltrommelraum verbunden sein und kühlt dann deshalb auch gleichzeitig die Kabeltrommel (Absaugung). Das Loch hat beispielsweise einen Durchmesser von 0,5–2,0 mm (Dimensionierung der Düse) und erzeugt deshalb sehr hohe Luftgeschwindigkeiten. Diese hohen Luftgeschwindigkeiten treffen (exakt) auf den Triac. Gleichzeitig bewirken diese hohen Luftgeschwindigkeiten eine Luftverwirbelung um den Triac. Durch diese gute Luftverwirbelung am Triac erfolgt somit eine extrem gute Wärmeabführung.
  • Durch das Loch von z. B. 1,5 mm strömt z.B. lediglich eine Luftmenge von ca. 0,5 l/s (Kühlluftstrommenge) und ist somit effizienter als bekannte Kühlkonzepte. Dadurch hat der Staubsauger auch mehr Luftmengenstrom (nutzbare Saugleistung) und weniger Verluste. Die Menge an Luftvolumenstrom steht in direktem Zusammenhang mit der gemessenen Staubaufnahme. Je mehr Luft (über den Hauptluftkanal) eingesaugt wird, desto höher ist die Staubaufnahme. Es ist auch denkbar die Düse (Verengung) direkt über einen Unterdruckschlauch mit dem Kern der Kabeltrommel zu verbinden, um eine noch effizientere Kühlung zu erreichen.
  • Aufgrund der hohen Geschwindigkeit (der Luft) die durch die Düse stattfindet und die (exakt) richtige Position (Ausrichtung auf das zu kühlende Bauteil) kann eine extrem gute Wärmeabfuhr ermöglicht werden. Gleichzeitig kann auf eine Kabeltrommelkühleinrichtung wie z. B. eine (zusätzliche) Absaugung vermieden werden. Es können Kosten für das Material von Absaugschläuchen und auch Montagekosten für die Schläuche oder auch andere Bauteile eingespart werden. Der Staubsauger hat am Ende durch das vorgeschlagene Konzept zudem eine bessere Energieeffizienz und einen besseren Wirkungsgrad, da er in Summe weniger Undichtigkeiten hat. Er kann den Triac und auch die Kabeltrommel mit nur einer Düse kühlen.
  • In anderen Worten, durch ein definiertes Anblasen kann eine optimierte Kühlung eines Triacs ermöglicht werden. Ferner kann eine Reduzierung einer Bypass-/Nebenluftöffnung erfolgen sowie eine Steigerung der Energieeffizienz erreicht werden. Das Anblasen der Kühlfläche (des zu kühlenden Bauteils) kann über eine Düse (Verengung) erfolgen. Das elektronische Bauteil kann in einem Kühlluftstrom (Nebenluftkanal) mit einer Öffnung (Verengung) angeordnet werden. Es kann eine Düse die den Kühlluftstrom direkt an/auf die Kühlfläche des elektronischen Bauteils heranführt bei gleichzeitig minimaler Nebenluft verwendet werden. Die Düse kann auch als Schlauch ausgebildet sein.
  • Desweitern kann der Querschnitt der Düse temperaturabhängig sein. Bei warmer Umgebungsluft kann ein großer Querschnitt und bei kalter Umgebungsluft kann ein kleiner Querschnitt erreicht werden. Dies ist beispielsweise erreichbar durch ein Material mit hohem Wärmeausdehnungskoeffizient.
  • Die in der vorstehenden Beschreibung, den nachfolgenden Ansprüchen und in den Zeichnungen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.
  • Obwohl manche Aspekte der vorliegenden Erfindung im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung eines entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschritts, beispielsweise einem Verfahren zum Herstellen oder Betreiben einer Filterkassette, zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details bzw. Merkmals einer entsprechenden Vorrichtung dar.
  • Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele präsentiert wurden, beschränkt ist.
  • Bezugszeichenliste
  • 100
    Staubsauger
    102
    Hauptluftkanal
    104
    Gebläse
    110
    zu kühlendes Bauteil, z.B. Triac
    120
    Nebenluftkanal
    130
    Verengung, z.B. Lochkanal, Düse
    140
    zweites zu kühlendes Bauteil, z.B. Kabeltrommel
    150
    Nebenluftventil
    160
    Motorschutzfilter
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 4310747 A1 [0004]
    • DE 2016194 [0005]
    • DE 7108642 [0006]

Claims (15)

  1. Staubsauger (100) mit folgenden Merkmalen: einem zu kühlenden Bauteil (110); und einem Nebenluftkanal (120), der sich in Luftströmungsrichtung von einer Gehäuseöffnung des Staubsaugers über das zu kühlende Bauteil (110) bis zu einem Hauptluftkanal (102) oder bis zu einem Gebläse (104) des Staubsaugers erstreckt, wobei der Nebenluftkanal (120) luftstromaufwärts von dem zu kühlenden Bauteil (110) eine Verengung (130) aufweist, wobei die Verengung (130) angeordnet und ausgebildet ist, sodass im Betrieb des Staubsaugers ein Luftstrom, der durch die Verengung (130) strömt, in Richtung des zu kühlenden Bauteils (110) ausgerichtet ist.
  2. Staubsauger gemäß Anspruch 1, wobei das zu kühlende Bauteil (110) ein elektronisches Bauteil, insbesondere ein Triac zur Motorsteuerung des Staubsaugers, ist.
  3. Staubsauger gemäß Anspruch 1 oder 2, mit einem zweiten zu kühlenden Bauteil (140), wobei das zweite zu kühlende Bauteil (140) luftstromaufwärts von der Verengung (130) in dem Nebenluftkanal (120) angeordnet ist.
  4. Staubsauger gemäß Anspruch 3, wobei das zweite zu kühlende Bauteil (140) eine Kabeltrommel des Staubsaugers ist und die Gehäuseöffnung des Staubsaugers, bei der der Nebenluftkanal (120) beginnt, zusätzlich dazu verwendet wird ein Kabel von der Kabeltrommel nach außen zu führen.
  5. Staubsauger gemäß Anspruch 4, wobei die Verengung (130) luftstromaufwärts über einen Unterdruckschlauch mit einem Kern der Kabeltrommel verbunden ist.
  6. Staubsauger gemäß Anspruch 1 oder 2, wobei die Verengung (130) durch die Gehäuseöffnung in einer Außenwand des Staubsaugers gebildet wird.
  7. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei die Verengung (130) ein Lochkanal durch eine Wand in dem Nebenluftkanal (120) ist, wobei der Nebenluftkanal (120) in einem Bereich des zu kühlenden Bauteils (110) eine Querschnittsfläche aufweist, die größer als 10 mal eine minimale Querschnittsfläche des Lochkanals ist.
  8. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei die Verengung (130) ein Lochkanal durch eine Wand in dem Nebenluftkanal (120) mit einer maximalen Querschnittsabmessung zwischen 0,5mm bis 2mm, insbesondere 1,5mm, ist.
  9. Staubsauger gemäß Anspruch 6 oder 7, wobei die Verengung (130) in der Wand des Nebenluftkanals (120) durch ein Material gebildet wird, dass einen Wärmeausdehnungskoeffizienten aufweist, sodass sich der Querschnitt der Verengung (130) bei zunehmender Temperatur vergrößert.
  10. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei über ein Nebenluftventil (150) eine Zuleitung eines zusätzlichen Luftstroms in den Nebenluftkanal (120) regelbar ist, wobei das Nebenluftventil (150) luftstromabwärts von dem zu kühlenden Bauteil (110) angeordnet ist.
  11. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei die Verengung (130) ausgebildet ist, sodass im Betrieb des Staubsaugers eine Luftgeschwindigkeit der Luft bei einem Durchgang durch die Verengung (130) höher ist als das 2-fache einer durchschnittlichen Luftgeschwindigkeit in dem restlichen Nebenluftkanal (120).
  12. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei die Verengung (130) in Bezug auf das zu kühlende Bauteil (110) ausgebildet und angeordnet ist, sodass das zu kühlende Bauteil (110) auf einer Geraden liegt, die orthogonal zu einem Austrittquerschnitt der Verengung (130) durch einen Flächenschwerpunkt des Austrittsquerschnitts verläuft.
  13. Staubsauger gemäß Anspruch 12, wobei der Austrittsquerschnitt der Verengung (130) kreisförmig ist und die Gerade durch den Kreismittelpunkt verläuft.
  14. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei ein minimaler Querschnitt der Verengung (130) kleiner als das zu kühlende Bauelement (110) ist.
  15. Staubsauger gemäß einem der vorhergehenden Ansprüche, wobei das zu kühlende Bauteil (110) einen Kühlkörper in Verbindung mit einem temperaturkritischen Bauelement aufweist, wobei die Verengung (130) angeordnet und ausgebildet ist, sodass im Betrieb des Staubsaugers der Luftstrom, der durch die Verengung (130) strömt, in Richtung des Kühlkörpers ausgerichtet ist.
DE102012207348A 2012-05-03 2012-05-03 Staubsauger Withdrawn DE102012207348A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012207348A DE102012207348A1 (de) 2012-05-03 2012-05-03 Staubsauger
EP13165260.4A EP2659823B1 (de) 2012-05-03 2013-04-25 Staubsauger mit Nebenluftkanal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012207348A DE102012207348A1 (de) 2012-05-03 2012-05-03 Staubsauger

Publications (1)

Publication Number Publication Date
DE102012207348A1 true DE102012207348A1 (de) 2013-11-07

Family

ID=48145525

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012207348A Withdrawn DE102012207348A1 (de) 2012-05-03 2012-05-03 Staubsauger

Country Status (2)

Country Link
EP (1) EP2659823B1 (de)
DE (1) DE102012207348A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208968A1 (de) 2017-05-29 2018-11-29 BSH Hausgeräte GmbH Staubsauger mit abluftbetriebener Strahlpumpe
DE102021121707A1 (de) 2021-08-20 2023-02-23 Festool Gmbh Sauggerät

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7108642U (de) 1971-08-19 Licentia Gmbh Anordnung eines gesteuerten Leistungs halbleiters in einem Staubsauger
DE2016194A1 (de) 1970-04-04 1971-10-21 Siemens Elektrogeraete Gmbh Staubsauger
DE1703970A1 (de) * 1967-08-09 1972-03-09 Matsushita Electric Ind Co Ltd Elektrischer Staubsauger
DE9100815U1 (de) * 1990-02-05 1991-04-11 Siemens Ag, 8000 Muenchen, De
DE9003938U1 (de) * 1990-04-04 1991-08-08 Siemens Ag, 8000 Muenchen, De
JPH04152921A (ja) * 1990-10-17 1992-05-26 Matsushita Electric Ind Co Ltd 電気掃除機の安全装置
DE4310747A1 (de) 1993-04-01 1994-10-06 Siemens Ag Staubsauger mit einem Sauggebläse
DE102007001757A1 (de) * 2007-01-11 2008-07-17 BSH Bosch und Siemens Hausgeräte GmbH Nebenluftblende für Staubsauger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307000A1 (de) * 1993-03-05 1994-09-08 Siemens Ag Staubsauger mit einem Sauggebläse
DE102006030227B3 (de) * 2006-06-30 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Nebenluftventil
DE102008041228A1 (de) * 2008-08-13 2010-02-18 BSH Bosch und Siemens Hausgeräte GmbH Staubsauger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7108642U (de) 1971-08-19 Licentia Gmbh Anordnung eines gesteuerten Leistungs halbleiters in einem Staubsauger
DE1703970A1 (de) * 1967-08-09 1972-03-09 Matsushita Electric Ind Co Ltd Elektrischer Staubsauger
DE2016194A1 (de) 1970-04-04 1971-10-21 Siemens Elektrogeraete Gmbh Staubsauger
DE9100815U1 (de) * 1990-02-05 1991-04-11 Siemens Ag, 8000 Muenchen, De
DE9003938U1 (de) * 1990-04-04 1991-08-08 Siemens Ag, 8000 Muenchen, De
JPH04152921A (ja) * 1990-10-17 1992-05-26 Matsushita Electric Ind Co Ltd 電気掃除機の安全装置
DE4310747A1 (de) 1993-04-01 1994-10-06 Siemens Ag Staubsauger mit einem Sauggebläse
DE102007001757A1 (de) * 2007-01-11 2008-07-17 BSH Bosch und Siemens Hausgeräte GmbH Nebenluftblende für Staubsauger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208968A1 (de) 2017-05-29 2018-11-29 BSH Hausgeräte GmbH Staubsauger mit abluftbetriebener Strahlpumpe
DE102017208968B4 (de) * 2017-05-29 2020-04-16 BSH Hausgeräte GmbH Staubsauger mit abluftbetriebener Strahlpumpe
DE102021121707A1 (de) 2021-08-20 2023-02-23 Festool Gmbh Sauggerät

Also Published As

Publication number Publication date
EP2659823A2 (de) 2013-11-06
EP2659823A3 (de) 2018-03-07
EP2659823B1 (de) 2022-03-30

Similar Documents

Publication Publication Date Title
DE112016005683T5 (de) Kühlvorrichtung
DE102010037449B4 (de) Heiz- und Kühlsystem für Fahrzeugsitz
AT515828B1 (de) Kühlvorrichtung und Wechselrichtergehäuse mit einer solchen Kühlvorrichtung
DE102008044956B4 (de) Beleuchtungsvorrichtung zum Einbau in eine Platte
DE112017002430B4 (de) Luftkonditioniereinheit für ein Fahrzeug
CH704462A1 (de) Flüssigkeit-Luft-Wärmeaustauschgerät mit Peltierelementen.
DE102008060777B4 (de) Anordnung zur Kühlung von wärmeentwickelnden Computerkomponenten
EP2844927B1 (de) Heizvorrichtung für ein fahrzeug und verfahren zum kühlen einer elektronischen steuereinrichtung der heizvorrichtung
DE60317179T2 (de) Beheiztes und gekühltes Lenkrad
DE112007002035T5 (de) Motorsteuervorrichtung
DE212010000217U1 (de) Netzgerät fur Computer
DE102016115352A1 (de) Ladeluftkühlervorrichtung
EP2659823B1 (de) Staubsauger mit Nebenluftkanal
EP2839724B1 (de) Kühlgerät für die schaltschrankkühlung
DE602006000099T2 (de) Kühlungssystem und Verfahren für ein elektronisches Gerät
DE10218343B4 (de) Elektrische Temperiervorrichtung für Fahrzeuge
DE202014104040U1 (de) Temperiereinrichtung zum Regulieren der Temperatur in einem Raum und Schaltschrank mit einer derartigen Temperiereinrichtung
DE102007017624B4 (de) Thermoelektrische Temperiervorrichtung
DE102006003372A1 (de) Anordnung und Verfahren zum Kühlen einer Maschinenkomponente
DE202017103134U1 (de) Luftführungsaufbau der Kühleinrichtung für Grafikkarten
DE102009054374A1 (de) Belastungswiderstandsanordnung
DE112015002176T5 (de) Kühlvorrichtung eines Hybridfahrzeugs
EP2740383A2 (de) Haartrockner
DE102004001849A1 (de) Anbaustruktur für eine Halbleitervorrichtung an einer Hilfs-Heizeinrichtung
EP2282335A1 (de) Kühlvorrichtung und Verfahren

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150413

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee