-
Die vorliegende Erfindung ist auf die Verwendung bestimmter Thioverbindungen in einem Verfahren zur elektrolytischen Abscheidung von Gold und Goldlegierungen gerichtet. Das Verfahren zeichnet sich dabei dadurch aus, dass durch derartige Additive, welche dem Elektrolyten beigegeben werden, eine höhere Goldabscheidung in Bereichen niedriger Stromdichte zu erreichen ist.
-
Der Einsatz von speziellen Additiven im Bereich galvanotechnischer Goldabscheidungen ist hinlänglich bekannt. In Bezug auf Gold und Goldlegierungen, insbesondere so genanntes Hartgold (z. B. AuNi, AuCo, AuFe) gibt es eine Reihe von Zusätzen sowohl für stromlose als auch für elektrolytisch arbeitende Verfahren. Handelsübliche galvanische Goldbäder enthalten daher neben Gold und gegebenenfalls einem oder mehreren Legierungselementen in gelöster Form auch weiterhin in der Regel Leit- und Puffersalze sowie diverse anorganische und/oder organische Substanzen zur Regelung der Metallabscheidung und des Schichtaufbaues, als Glanzbildner oder für sonstige Hilfszwecke.
-
Aus der
GB1400492 A2 ist eine Methode zur Gold-Nickel-Abscheidung bekannt, welche mit cyanidischen Elektrolyten bei einem pH-Berich von 9–11 arbeitet. Als Additive werden hier u. a. Sulphonsäuren, Thiocyanate und Thioacetamide als Glanzbildner eingesetzt. Ebensolches wird für ein saures Goldbad in der
US3075899 A berichtet.
-
Die
EP304315 A1 richtet sich auf die elektrolytische Abscheidung von Au-Cu-Zn-Legierungen. In dem beschriebenen cyanidischen Elektrolyten werden bei einem pH-Wert von 7 bis 12 Thioverbindungen wie Thioschwefelsäure, Thiomalonsäure oder Thiocarbonsäuren sowie sulfonierte Thioalkane als Depolarisierungsagenzien eingesetzt.
-
Der Einsatz verschiedener organischer Thioverbindugen bei der Goldabscheidung wird auch in der
US20040069641 A1 propagiert. In dem hier beschriebenen nichtcyanidischen Goldelektrolyten dienen die Thioverbindungen als Komplexierungsmittel. Gleiches ist in der
WO9803700 A1 beschrieben.
-
Als Glanzmittel eignet sich u. a. auch Thiomilchsäure, welche laut der
EP2014801 A2 in einem cyanidischen Goldelektrolyten bei einem pH-Wert von 3–6 zum Einsatz kommt.
-
Fein- und Hartgoldüberzüge werden im großen Maßstab neben dekorativen auch für technische Anwendung eingesetzt, bei denen es insbesondere auf Abriebfestigkeit, chemische Beständigkeit, auf Bondbarkeit, Lötbarkeit oder Verschleißverhalten ankommt. Bei der elektrolytischen Goldabscheidung und Goldlegierungsabscheidung kommt es häufig zu einem inhomogenen Verlauf der Abscheiderate und der Abscheidegeschwindigkeit.
-
Im niederen Stromdichtebereich finden sich deutlich niedrigere Abscheideraten als im mittleren und hohen Stromdichtebereich. Dies führt bei der elektrolytischen Beschichtung zu unterschiedlichen Schichtdicken im Bereich von niedrigen und hohen Schichtdicken. Bei einzelnen Bauteilen wird dieser Effekt als „Knocheneffekt” bezeichnet (Kanani, N: Galvanotechnik; Hanser Verlag, München Wien, 2000; Seite 141 ff). Tritt dieser Effekt bei der Massengalvanisierung von Schüttgut auf, kommt es zur inhomogenen Verteilung der Schichtdicke innerhalb der einzelnen Beschichtungscharge. Bedingt durch diesen Effekt entsteht bei einer geforderten Mindestschichtdicke der Goldbeschichtung ein Mehrverbrauch an teurem Gold.
-
Bisherige Erfindungen beruhen darauf, durch inhibierend wirkende Zusätze die Abscheiderate im hohen und mittleren Stromdichtebereich zu verringern und dadurch die Abscheiderate zu homogenisieren (Kanani, N: Galvanotechnik; Hanser Verlag, München Wien, 2000; Seite 81 ff).
-
Wünschenswert wäre es ebenfalls, einen Zusatz zu besitzen, der im niederen Stromdichtebereich die Abscheiderate erhöht. Dadurch wird die Verteilung der Abscheiderate und Abscheidegeschwindigkeit über die einzelnen Stromdichtebereiche geringer. Die Abscheiderate im hohen Stromdichtebereich sollte durch einen solchen Zusatz hingegen nicht bzw. nur unwesentlich beeinflusst werden. Das neue Verfahren sollte vom ökologischen wie ökonomischen Standpunkt aus vergleichbaren Verfahren des Standes der Technik überlegen sein.
-
Diese und weitere sich für den Fachmann aus dem Stand der Technik in nahe liegender Weise ergebenden Aufgaben werden durch eine Verwendung mit den Merkmalen des gegenständlichen Anspruch 1 gelöst. Bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens finden sich in den von Anspruch 1 abhängigen Unteransprüchen.
-
Dadurch, dass man organische Thioharnstoffverbindungen zur Erhöhung der galvanischen Abscheiderate von Gold und Goldlegierungen auf Substraten im Stromdichtebereich unterhalb von etwa 1 A/dm2 verwendet, wobei die Abscheidung aus einem wässrigen Elektrolyten durch Eintauchen des Substrates als Kathode in den Elektrolyten und Einstellen eines Stromflusses zwischen einer mit dem Elektrolyten in Kontakt stehenden Anode und der Kathode bei einem pH-Wert von 3–6 erfolgt und der Elektrolyt folgende Bestandteile aufweist:
- – Goldionen in Form eines cyanidischen Komplexes;
- – ggf. weitere Ionen ausgewählt aus der Gruppe bestehend aus Kobalt, Nickel, Eisen oder Mischungen davon;
- – Puffersubstanzen
- – ein Glanzbildnersystem;
- – ggf. ein Netzmittel,
gelangt man völlig überraschend, dafür aber nicht minder vorteilhaft zur Lösung der gestellten Aufgabe. Erst nach der hier dargestellten erfindungsgemäßen Verwendung der Thioharnstoffverbindungen in Kombination mit den weiteren Merkmalen ist es möglich, die Abscheidung von Gold oder Goldlegierungen im niedrigen Stromdichtebereich von unter 1 A/dm2 um mind. 5%, vorzugsweise mind. 10% und ganz besonders bevorzugt mind. 15% heraufzusetzen (gemessen bei einer Stromdichte von 0,2 A/dm2), ohne dabei die Abscheidung im mittleren und hohen Stromdichtebereich (> 1 A/dm2) über die Maßen negativ zu beeinflussen. Dies führt zu einem Einsparungspotenzial des eingesetzten Goldes von ca. 5%–30%.
-
Das Gold wird in Form seiner Ionen im Elektrolyten gelöst vorliegen. Als einzusetzende Goldquelle können alle dem Fachmann für diesen Zweck in Frage kommenden cyanidischen Goldkomplexe eingesetzt werden. Bekannte Goldverbindungen sind der folgenden Literatur zu entnehmen (Krusenstern, A.; Edelmetall Galvanotechnik, 1. Auflage 1970, Leuze Verlag, S. 201 f). Bevorzugt werden cyanidische Aurat-(I)-komplexe diesbezüglich herangezogen. Ganz besonders bevorzugt ist das Kaliumsalz des Goldcyanidkomplexes in diesem Zusammenhang (K[Au(CN)2]). Die Goldverbindung wird im zu verwendenden Elektrolyten in einer Konzentration von 2,5–100 mmol/l, bevorzugt 5–50 mmol/l und ganz besonders bevorzugt 10–20 mmol/l eingesetzt. Es sei angemerkt, dass der Elektrolyt darüberhinaus möglichst kein freies Cyanid enthält. Alles eingesetzte Cyanid wird in Form des oben angegebenen Komplexes in den Elektrolyten eingeführt.
-
Die erfindungsgemäß erzeugte Abscheidung kann ebenfalls aus einer Goldlegierung bestehen. Als Legierung hat sich diesbezüglich Hartgold als geeignet erwiesen. Unter Hartgold wird gemeinhin eine Legierung aus Gold und einem der Metalle ausgewählt aus der Gruppe bestehend aus Eisen, Kobalt, Nickel oder Mischungen davon verstanden. Letztere liegen ebenfalls vorteilhafter Weise im Elektrolyten in Form ihrer gelösten Ionen vor. Als Verbindungen, aus denen die entsprechenden Ionen im Elektrolyten in Lösung gehen können, sind insbesondere deren leicht wasserlösliche Salze mit Anionen ausgewählt aus der Gruppe bestehend aus Chlorid, Bromid, Carbonat, Hydrogencarbonat, Hydroxid, Phosphat, Hydrogenphosphat, Sulfat, Nitrat, Methansulfonat, Citrat, Formiat, Maleat, Tartrat, Oxalat erwähnt. Die hier genannten Salze werden im Elektrolyten vorteilhafter Weise in einer Konzentration von 0,1–100 mmol/l, besonders bevorzugt 2,5–20 mmol/l und ganz besonders bevorzugt 5–15 mmol/l eingesetzt.
-
Es sei angemerkt, dass es erfindungsgemäß nicht ausgeschlossen ist, dass im Elektrolyten weitere Ionen anderer Metalle und Nichtmetalle vorhanden sein können. Nichtsdestotrotz sollte der Elektrolyt jedoch aus Kostengründen so einfach wie möglich gehalten werden. Vor diesem Hintergrund kann auf die Zugabe weiterer Salze oder anderer anorganischer Verbindungen verzichtet werden.
-
Die im Elektrolyten einsetzbaren Thioharnstoffverbindungen sind solche, die einerseits im Elektrolyten selbst in dem bevorzugten pH-Bereich löslich sind und nicht zu einer anderweitigen negativen Beeinflussung der Goldabscheidung oder der Goldlegierungsabscheidung beitragen. Vorteilhafte Thioharnstoffverbindungen sind Verbindungen, in denen folgendes Strukturelement vorhanden ist: -N(R1R2)-C(SR3)-NR4- (I) worin
R1 bis R4 unabhängig voneinander H, ggf. ein oder mehrfach substituiertes (C1-C8)-Alkyl, (C3-C6)-Cycloalkyl, (C7-C19)-Alkylaryl, (C6-C18)-Aryl, (C7-C19)-Aralkyl, (C3-C18)-Heteroaryl, (C4-C19)-Alkylheteroaryl, (C4-C19)-Heteroaralkyl, Amin sein kann. Zwei der Reste können auch einen Kohlenstoffatome oder ggf. Heteroatome, wie Sauerstoff, Schwefel oder Stickstoff, enthaltenden 5- oder 6-Ring bilden. Als Substituenten für R1 bis R4 kommen im Prinzip alle dem Fachmann für diesen Zweck in Betracht zu ziehende Gruppen von Resten in Frage. Dieses sind vor allem solche ausgewählt aus der Gruppe bestehend aus Aminresten, Nitrogruppen, Hydroxylresten, Halogenidresten, Säureresten wie Carbonsäuren, Sulfonsäuren und Phosphonsäuren. Dies gilt entsprechend für die unter diesen Voraussetzungen in Frage kommenden korrespondierenden Salze, insbesondere mit Kationen der Alkali- oder Erdalkalimetalle oder anorganischen Säureanionen sowie für die entsprechenden Ester mit (C1-C8)-Alkylalkoholen. Besonders bevorzugt sind solche Thioharnstoffverbindungen ausgewählt aus der Gruppe bestehend aus Thiobarbitursäure, Phenyl-1H-tetrazol-5-thiol, 3-[(Aminoiminomethyl)thio]-1-propansulfonsäure.
-
Die Thioharnstoffverbindungen kommen unter der Berücksichtigung der Löslichkeit im Elektrolyten gemeinhin in einem Konzentrationsbereich zwischen 0,005–5 mmol/l, bevorzugt 0,05–0,5 mmol/l und ganz bevorzugt zwischen 0,05–0,25 mmol/l zum Einsatz. Ggf. kann die Löslichkeit der Substanzen mit Hilfe von Emulgatoren im angegebenen Rahmen herbeigeführt oder verbessert werden
-
Typischerweise werden als geeignete Puffersubstanzen schwache organische Säuren oder andere geeignete Substanzen verwendet, wie sie z. B. in
DE 2355581 A1 beschrieben werden. Als bevorzugte Verbindungen sind hierbei zu nennen: Citronensäure. Essigsäure und Weinsäure sowie deren Salze und Derivate. Weiterhin können auch geeignete Alkaliphosphatverbindungen gewählt werden. [siehe auch: Deutsche Gesellschaft für Galvano- und Oberflächentechnik e. V [Hrsg.], Galvaniseur-Fortbildung Galvanische Abscheidung von Gold, Sonderdruck aus Heft Nr. 3/98, 3/99, 4/99, Band 89/90 (1998/1999) der Fachzeitschrift „Galvanotechnik”, S. 7 ff.]
-
Als Netzmittel können typischer Weise anionische Tenside und nichtionische Tenside eingesetzt werden, wie z. B. Polyethylenglykol-Addukte, Fettalkoholsulfate, Alkylsulfonate, Arylsulfonate, Alkylarylsulfonate und Heteroarylsulfate und deren Salze und Derivate eingesetzt werden (Kanani, N: Galvanotechnik; Hanser Verlag, München Wen, 2000; Seite 84 ff.).
-
Als geeignete Glanzbildnersysteme werden z. B. in
DE 2355581 D1 Pyridinsulfonsäure und deren Derivate beschrieben. Weiterhin können auch Glanzzusätze wie z. B. Nicotinsäure, Nicotinsäureamid, 3-(3-Pyridyl)-Acrylsäure, 3-(4-Imidazolyl)-Acrylsäure, 3-Pyridylhydroxymethansulfonsäure, Pyridin, Chinolinsulfonsäure, 3-Aminopyridin, 2,3-Diaminopyridin, 2,3-Di-(2-Pyridyl)Pyrazin 2-(Pyridyl)-4-Ethansulfonsäure, 1-(3-Sulfopropyl)-Pyridiniumbetain, 1-(3-Sulfopropyl)-Isochinoliniumbetain und ihre Salze und Derivate im Elektrolyten Verwendung finden.
-
Die Stromdichte, die während des Abscheidungsverfahrens im Elektrolyten zwischen der Kathode und der Anode etabliert wird, kann vom Fachmann nach Maßgabe der Effizienz und Güte der Abscheidung gewählt werden. Vorteilhafterweise wird im Elektrolyten die Stromdichte auf 0,1 bis 25 A/dm2 eingestellt. Besonders bevorzugt ist ein Stromdichtebereich von 0,3 bis 20 A/dm2 und ganz besonders bevorzugt von 0,3 bis 5 A/dm2. Die Abscheidungsrate sollte durch diese Maßnahmen im bevorzugten Bereich von 20–80 mg/Amin liegen. Gegebenenfalls sind die Stromdichten durch Anpassung der Spannung zwischen Anode und Kathode zu erhöhen oder zu senken.
-
Der pH-Wertebereich kann vom Fachmann im eingangs genannten Umfang eingestellt werden. Vorteilhaft ist ein pH-Wert des Elektrolyten von etwa 4 bis 5, besonders bevorzugt um 4,5.
-
Bei Verwendung des Elektrolyten können verschiedene Anoden eingesetzt werden. Es sind lösliche oder unlösliche Anoden ebenso geeignet, wie die Kombination von löslichen und unlöslichen Anoden.
-
Als unlösliche Anoden werden bevorzugt solche aus einem Material ausgewählt aus der Gruppe bestehend aus platiniertem Titan, Graphit, Iridium-Übergangsmetall-Mischoxid und speziellem Kohlenstoffmaterial („Diamond Like Carbon” DLC) oder Kombinationen dieser Anoden eingesetzt. Besonders bevorzugt werden Mischoxid-Anoden aus Iridium-Ruthenium-Mischoxid, Iridium-Ruthenium-Titan-Mischoxid oder Iridium-Tantal-Mischoxid. Weitere können bei Cobley, A. J. et al. (The use uf insoluble Anodes in Acid Sulphate Copper Electrodeposition Solutions, Trans IMF, 2001, 79(3), S. 113 und 114) gefunden werden.
-
Kommen unlösliche Anoden zum Einsatz, so handelt es sich um eine besonders bevorzugte Ausgestaltung des Verfahrens, wenn die mit der Gold- oder Goldlegierungsschicht zu versehenden Substrate, die die Kathode darstellen, in der Weise durch eine Ionenaustauschermembran von der unlöslichen Anode getrennt werden, dass sich ein Kathodenraum und ein Anodenraum ausbilden. In einem solchen Falle wird nur der Kathodenraum mit dem erfindungsgemäßen nicht giftigen Elektrolyt befüllt. Im Anodenraum liegt bevorzugt eine wässrige Lösung vor, die nur ein Leitsalz, wie z. B. Kaliumpyrophosphat, Kaliumcarbonat, Kaliumhydroxid, Kaliumhydrogencarbonat oder Mischung derselben enthält. Als Ionenaustauschermembranen können kationische oder anionische Austauschermembranen eingesetzt werden. Vorzugsweise werden Membranen aus Nafion verwendet, die eine Dicke von 50 bis 200 μm aufweisen. In einer ganz besonders bevorzugten Ausführungsform kann jedoch auch eine Direktkontaktmembrananode, wie sie in der
DE 102010055143 A1 dargestellt ist, verwendet werden.
-
Die Temperatur an die während der Abscheidung der Gold bzw. Goldlegierung vorherrscht kann vom Fachmann nach Belieben gewählt werden. Er wird sich dabei an einer ausreichenden Abscheidungsrate und auf der anderen Seite ökonomischen Gesichtspunkten orientieren. Vorteilhaft ist das Einstellen einer Temperatur von 10°C bis 70°C im Elektrolyten. Besonders bevorzugt scheint der Einsatz des Elektrolyten bei Temperaturen von 20–60°C und ganz besonders bevorzugt von um die 20–40°C.
-
Mithilfe der Verwendung der anspruchsgemäßen Thioharnstoffverbindungen in einem elektrolytischen Verfahren zur Gold- oder Goldlegierungsabscheidung auf z. B. Schüttgut ist es möglich, Goldabscheidungen herbeizuführen, welche eine wesentlich einheitlichere Schichtdicke aufweisen. Bei der Vergoldung von Schüttgut bzw. von kompliziert geformten Teilen kommt es durch die Geometrie der Teile bedingt zu örtlich unterschiedlichen Stromdichten an der Oberfläche. Diese würden ohne entsprechende Maßnahme zu einer unregelmäßigen Schichtdicke der Goldschicht auf dem Bauteil führen. Im sehr niedrigen Stromdichtebereich wird eine geringere Schichtdicke erreicht als im hohen Stromdichtebereich. Dadurch muss bei geforderten Mindestschichtdicken im niederen Stromdichtebereich auch eine deutlich höhere Schichtdicke im hohen Stromdichtebereich abgeschieden werden. Durch die Zugabe von Thioharnstoffverbindungen in den Goldelektrolyten wird die Abscheidungsrate im niederen Stromdichtebereich erhöht und somit die Schichtdickenverteilung verbessert. Dabei ist es beispielsweise möglich, die Abscheidungsrate bei Stromdichten von 0,2 A/dm2 um bis zu ca. 30% zu steigern. Dass die eingesetzten Thioverbindungen im Elektrolyten eine derartige Wirkung entfalten können, wird durch den bekannten Stand der Technik in keinster Weise vorbeschrieben oder nahe gelegt.
-
Im Rahmen der Erfindung wird unter (C1-C8)-Alkyl ein Alkyl-Rest mit 1 bis 8 C-Atomen verstanden. Dieser kann beliebig verzweigt oder im Falle von (C3-C6)-Cycloalkyl zyklisch ausgeformt sein. Insbesondere sind dies Reste wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, sec-Butyl, Isobutyl, Pentyl, Hexyl, Cyclopropyl, Cyclopentyl, Cyclohexyl etc. verstanden.
-
Unter (C6-C18)-Aryl wird ein aromatisches System, welches vollständig aus 6 bis 18 C-Atomen aufgebaut ist, verstanden. Insbesondere sind dies solche ausgewählt aus der Gruppe bestehend aus Phenyl, Naphthyl, Anthracenyl etc.
-
(C7-C19)-Alkylaryl-Reste sind solche, welche einen (C1-C8)-Alkyl-Rest am (C6-C18)-Aryl-Rest tragen.
-
(C7-C19)-Aralkyl-Reste sind solche, welche einen (C6-C18)-Aryl-Rest an einem (C1-C8)-Alkyl-Rest besitzen, über den der Rest an das betreffende Molekül gebunden ist.
-
Unter (C3-C18)-Heteroaryl-Resten wird erfindungsgemäß ein aromatisches System verstanden, welches mindestens drei C-Atome aufweist. Zusätzlich sind weitere Heteroatome im aromatischen System vorhanden. Vorzugsweise sind dies Stickstoff und/oder Schwefel. Derartige Heteroaromaten können zum Beispiel dem Buch Bayer-Walter, Lehrbuch der Organischen Chemie, S. Hirzel Verlag, 22. Auflage, S. 703 ff. entnommen werden.
-
(C4-C19)-Alkylheteroaryl bedeutet im Rahmen der Erfindung ein (C3-C18)-Heteroaryl-Rest, welcher mit einem (C1-C8)-Alkyl-Substituenten ergänzt ist. Die Anbindung an das betrachtete Molekül ist hier über den Heteroaromaten geknüpft.
-
(C4-C19)-Heteroaralkyl im Gegenzug ist ein (C3-C18)-Heteroaryl-Rest, der über einen (C1-C8)-Alkyl-Substituenten an das betreffende Molekül gebunden ist.
-
Halogenid umfasst im Rahmen der Erfindung Chlorid, Bromid und Fluorid.
-
Alkyl(hetero)aryl steht für Alkylaryl und Alkylheteroaryl.
-
Die nachfolgend beschriebenen Beispiele und das Vergleichsbeispiel sollen die Erfindung näher erläutern.
-
Allgemeine Versuchsbeschreibung:
-
In einem Becherglas wird 1 Liter Elektrolyt auf Betriebstemperatur gebracht. Der Elektrolyt wird mittels Magnetrührstab bewegt (200 rpm). Zusätzlich dazu wird das zu beschichtende Substrat mit einer Warenbewegung (5 cm/s) bewegt. Als Substrat werden vorvernickelte Messingbleche mit einer Fläche von 0,2 dm2 verwendet. Die Substrate werden jeweils bei 0,2 A/dm2/0,5 A/dm2/1 A/dm2/2 A/dm2 und 4 A/dm2 beschichtet. Die abgeschiedene Schichtdicke wird durch Wägung ermittelt und daraus Abscheidegeschwindigkeit und Abscheiderate rechnerisch ermittelt.
-
Beispiel 1:
-
- Grundansatz:
Citratbasierter, schwach saurer Hartgoldelektrolyt
120 g/l Mischung aus Citronensäure und Citrat
8 g/l Gold als Kaliumgold(I)cyanid
3 g/l Pyridin-3-sulfonsäure
- Baddichte: 1,14 kg/dm3
- pH = 4,4
- Temperatur: 45°C
- Zusatz:
5 g/l Phenyl-1H-tetrazol-5-thion werden unter Zugabe von Kaliumhydroxid in Wasser gelöst. Der pH-Wert wird auf pH > 12 eingestellt.
-
Von dieser Lösung wird dem Grundansatz zugegeben, damit eine Wirkstoffkonzentration von 40 mg/l bzw. 100 mg/l erreicht wird. Der pH-Wert des Elektrolyten wird durch die Zugabe nicht bzw. nur unwesentlich verändert. Betrachtung der Abscheiderate: Tabelle 1: Einfluss von Phenyl-1H-tetrazol-5-thion auf die Abscheiderate bei unterschiedlichen Stromdichten
-
Einfluss von Phenyl-1H-tetrazol-5-thion auf die Abscheiderate bei unterschiedlichen Stromdichten Betrachtung der Abscheidegeschwindigkeit Tabelle 2: Einfluss von Phenyl-1H-tetrazol-5-thion auf die Abscheiderate bei unterschiedlichen Stromdichten
-
: Prozentuale Änderung der Abscheidegeschwindigkeit bei Zugabe von Phenyl-1H-tetrazol-5-thion (Daten berechnet aus Tabelle 2)
-
In entsprechender Weise wurden die Verbindungen Thiobarbitursäure:
3-[(Amino-iminomethyl)thio]-1-propansulfonsäure
sowie als Vergleichsverbindung 3-(2-Benzthiazolylthio)-1-propanesulfonsäure, Natriumsalz
eingesetzt (
–
).
-
Es ist deutlich zu sehen, dass die Thioharnstoffverbindungen deutlich bessere Ergebnisse liefern als z. B. die nahe verwandten Dithioharnstoffverbindungen.