DE102011118210A1 - Flüssigkristallines Medium - Google Patents

Flüssigkristallines Medium Download PDF

Info

Publication number
DE102011118210A1
DE102011118210A1 DE102011118210A DE102011118210A DE102011118210A1 DE 102011118210 A1 DE102011118210 A1 DE 102011118210A1 DE 102011118210 A DE102011118210 A DE 102011118210A DE 102011118210 A DE102011118210 A DE 102011118210A DE 102011118210 A1 DE102011118210 A1 DE 102011118210A1
Authority
DE
Germany
Prior art keywords
compounds
liquid
atoms
formulas
crystalline medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011118210A
Other languages
English (en)
Inventor
Dr. Hirschmann Harald
Michael Wittek
Dr. Czanta Markus
Brigitte Schuler
Volker Reiffenrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE102011118210A priority Critical patent/DE102011118210A1/de
Publication of DE102011118210A1 publication Critical patent/DE102011118210A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft in flüssigkristallinen Medien enthaltend mindestens eine Verbindung der Formel I,worin R0, R0*, und Ring A die in Anspruch 1 angegebenen Bedeutungen haben, sowie elektrooptischen Flüssigkristallanzeigen, insbesondere für TN-TFT-, OCB-, IPS-, PS-IPS, FFS-, PS-FFS und positiv VA-Anwendungen.

Description

  • Die vorliegende Erfindung betrifft ein flüssigkristallines Medium (FK-Medium), dessen Verwendung für elektrooptische Zwecke und dieses Medium enthaltende FK-Anzeigen.
  • Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflusst werden können. Elektrooptische Vorrichtungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens bekannt und können auf verschiedenen Effekten beruhen. Derartige Vorrichtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP-Zellen (Deformation aufgerichteter Phasen), Gast/Wirt-Zellen, TN-Zellen mit verdrillt nematischer (”twisted nematic”) Struktur, STN-Zellen (”super-twisted nematic”), SBE-Zellen (”superbirefringence effect”) und OMI-Zellen (”optical mode interference”). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nematische Struktur. Daneben gibt es auch Zellen, die mit einem elektrischen Feld parallel zur Substrat- und Flüssigkristallebene arbeiten, wie beispielsweise die IPS-Zellen („in-plane switching”). Vor allem die TN-, STN-, FFS-(Fringe Field Switching)- und IPS-Zellen, sind derzeit kommerziell interessante Einsatzgebiete für die erfindungsgemäßen Medien.
  • Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien niedere Viskosität aufweisen und in den Zellen kurze Ansprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.
  • Weiterhin sollten sie bei üblichen Betriebstemperaturen, d. h., in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssigkristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, dass die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genügen. Beispielsweise sollten Materialien für Zellen mit verdrillt nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elektrische Leitfähigkeit aufweisen.
  • Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nichtlinearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzeigen) Medien mit großer positiver dielektrischer Anisotropie, breiten nematischen Phasen, relativ niedriger Doppelbrechung, sehr hohem spezifischen Widerstand, guter UV- und Temperaturstabilität und geringem Dampfdruck erwünscht.
  • Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d. h. Transistoren) verwendet werden. Man spricht dann von einer ”aktiven Matrix”, wobei man zwei Typen unterscheiden kann:
    • 1. MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium-Wafer als Substrat.
    • 2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
  • Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.
  • Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet. Man unterscheidet zwei Technologien: TFT's aus Verbindungshalbleitern wie z. B. CdSe oder TFT's auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet.
  • Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filter derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.
  • Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet.
  • Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d. h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).
  • Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z. B. Taschenfernseher) oder für hochinformative Displays für Rechneranwendungen (Laptop) und im Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch einen nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige und es kann das Problem der ”after image elimination” auftreten. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig, um akzeptable Standzeiten zu erhalten. Insbesondere bei low-volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, dass der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nachteilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, dass auch bei tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Temperaturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforderungen.
  • Neben Flüssigkristallanzeigen, die eine Hintergrundbeleuchtung verwenden, also transmissiv und gegebenenfalls transflektiv betrieben werden, sind besonders auch reflektive Flüssigkristallanzeigen interessant. Diese reflektiven Flüssigkristallanzeigen benutzen das Umgebungslicht zur Informationsdarstellung. Somit verbrauchen sie wesentlich weniger Energie als hintergrundbeleuchtete Flüssigkristallanzeigen mit entsprechender Größe und Auflösung. Da der TN-Effekt durch einen sehr guten Kontrast gekennzeichnet ist, sind derartige reflektive Anzeigen auch bei hellen Umgebungsverhältnissen noch gut abzulesen. Dies ist bereits von einfachen reflektiven TN-Anzeigen, wie sie in z. B. Armbanduhren und Taschenrechnern verwendet werden, bekannt. Jedoch ist das Prinzip auch auf hochwertige, höher auflösende Aktiv-Matrix angesteuerte Anzeigen wie z. B. TFT-Displays anwendbar. Hier ist wie bereits bei den allgemeinen üblichen transmissiven TFT-TN-Anzeigen die Verwendung von Flüssigkristallen mit niedriger Doppelbrechung (Δn) nötig, um eine geringe optische Verzögerung (d·Δn) zu erreichen. Diese geringe optische Verzögerung führt zu einer meist akzeptablen geringen Blickwinkelabhängigkeit des Kontrastes (vgl. DE 30 22 818 ). Bei reflektiven Anzeigen ist die Verwendung von Flüssigkristallen mit kleiner Doppelbrechung noch wichtiger als bei transmissiven Anzeigen, da bei reflektiven Anzeigen die effektive Schichtdicke, die das Licht durchquert, ungefähr doppelt so groß ist wie bei transmissiven Anzeigen mit derselben Schichtdicke.
  • Für TV- und Videoanwendungen werden Displays mit schnellen Schaltzeiten benötigt, um Multimedia-Inhalte, wie z. B. Filme und Videospiele, realitätsnah wiedergeben zu können. Solche geringen Schaltzeiten lassen sich besonders dann realisieren, wenn Flüssigkristallmedien mit geringen Werten für die Viskosität, insbesondere der Rotationsviskosität γ1 und mit einer hohen optischen Anisotropie (Δn) verwendet werden.
  • Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.
  • Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende Vorteile in den Zellen ermöglichen:
    • – erweiterter nematischer Phasenbereich (insbesondere zu tiefen Temperaturen)
    • – Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use, Automobil, Avionik)
    • – erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebensdauer)
    • – kleine Schwellenspannung.
  • Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren.
  • Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannungen und/oder breitere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.
  • Moderne LCD-Flachbildschirme erfordern immer schnellere Schaltzeiten, um Multimedia-Inhalte, wie z. B. Filme, Videospiele, etc., realitätsnah wiedergeben zu können. Diese wiederum erfordert nematische Flüssigkristallmischungen, die eine sehr kleine Rotationsviskosität γ1 mit einer hohen optischen Anisotropie Δn aufweisen. Um die geforderten Rotationsviskositäten der Flüssigkristallmischungen zu erhalten, müssen die eingesetzten Konzentrationen einzelner Komponenten häufig maximiert werden. Dies führt wiederum häufig dazu, dass die LC-Mischungen bei tiefen Temperaturen nicht stabil sind, d. h. zum Beispiel auskristallisieren, und in eine unerwünschte smektische Phase übergehen. Sofern diese Probleme in einem Display auftreten, führt dies in der Regel zu einem Ausfall des Displays und damit zu einem irreparablen Schaden des LCD-Flachbildschirms.
  • Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für derartige MFK-, TN-, STN-, OCB-, posititve VA-, FFS- oder IPS-Anzeigen bereitzustellen, welche die oben angegebenen gewünschten Eigenschaften besitzen und die oben angegebenen Nachteile nicht oder nur in geringerem Maße zeigen. Insbesondere sollten die FK-Medien schnelle Schaltzeiten und niedrige Rotationsviskositäten bei gleichzeitig hoher Doppelbrechung aufweisen. Darüber hinaus sollten die FK-Medien einen hohen Klärpunkt, eine hohe dielektrische Anisotropie und eine niedrige Schwellenspannung aufweisen.
  • Es wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn man Flüssigkristallmischungen enthaltend eine oder mehrere Verbindungen der Formel I verwendet. Die Verbindungen der Formel I unterdrücken bereits in geringen Konzentrationen in der LC-Mischung den Übergang zu smektischen Phasen.
  • Gegenstand der Erfindung ist ein flüssigkristallines Medium, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formel I,
    Figure 00060001
    worin
    R0 und R0* jeweils unabhängig voneinander einen Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CF2O-, -CH=CH-,
    Figure 00070001
    -O-, -CO-O-, -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch Halogen ersetzt sein können,
    Ring A einen 1,4-Cyclohexylenring oder 1,4-Cyclohexenylenring, worin auch eine oder zwei CH2-Gruppen durch -O- und/oder -S- ersetzt sein können,
    bedeuten,
    enthält.
  • Überraschenderweise wurde gefunden, dass FK-Medien enthaltend Verbindungen der Formel I ein sehr gutes Verhältnis von Rotationsviskosität γ1 und Klärpunkt, einen hohen Wert für die optische Anisotropie Δε und eine hohe Doppelbrechung Δn, sowie schnelle Schaltzeiten, eine niedrige Schwellenspannung, einen hohen Klärpunkt, eine hohe positive dielektrische Anisotropie und einen breiten nematischen Phasenbereich aufweisen und sehr stabil bei tiefen Temperaturen (≤ –20°C) sind. Weiterhin sind die Verbindungen der Formel I sehr gut in flüssigkristallinen Medien löslich. Die Verbindungen der Formel I sind beispielsweise bekannt aus der EP 122389 .
  • Die Verbindungen der Formel I besitzen einen breiten Anwendungsbereich. In Abhängigkeit von der Auswahl der Substituenten können sie als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch den Verbindungen der Formel I flüssigkristalline Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.
  • Falls in den oben- und untenstehenden Formeln R0 und/oder R0* einen Alkylrest und/oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, ferner Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradedoxy.
  • Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxymethyl), 2-(= Ethoxymethyl) oder 3-Oxabutyl (= 2-Methoxyethyl), 2-, 3- oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxahexyl, 2-, 3-, 4-, 5- oder 6-Oxaheptyl, 2-, 3-, 4-, 5-, 6-, oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadexyl.
  • Falls R0 und/oder R0* einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -CH=CH- ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1-, oder Prop-2-enyl, But-1-, 2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl. Diese Reste können auch ein- oder mehrfach halogeniert sein.
  • In den Verbindungen der Formel I bedeuten R0 vorzugsweise einen Alkenlyrest, insbesondere CH2=CH, CH3CH=CH, CH2=CHC2H4, C2H5CH=CH, insbesondere CH3CH=CH oder CH2=CHC2H4.
  • R0* bedeutet in den Verbindungen der Formel I vorzugsweise geradkettiges Alkyl, geradkettiges Alkoxy und geradkettiges Alkenyl, vorzugsweise mit 1–3 C-Atomen bzw. 2–3 C-Atomen. Ganz besonders bevorzugt bedeutet R0* OCH3, CH3, C2H5, C2H4CH=CH2.
  • Die Ring A bedeutet in der Formel I vorzugsweise einen 1,4-Cylclohexylenring, ferner einen Dioxan- oder Pyranring.
  • Bevorzugte Verbindungen der Formel I werden nachfolgend genannt,
    Figure 00090001
    worin
    Alkenyl und Alkenyl* jeweils unabhängig voneinander einen geradkettigen Alkenylrest mit 2 bis 6 C-Atomen, vorzugsweise einen Alkenylrest mit maximal 3 C-Atomen,
    Alkoxy einen geradkettigen Alkoxyrest mit 1 bis 6 C-Atomen
    und
    Alkyl einen geradkettigen Alkylrest mit 1 bis 6 C-Atomen
    bedeuten.
  • Insbesondere bevorzugt sind die folgenden Verbindungen:
    Figure 00090002
    Figure 00100001
  • Besonders bevorzugte Verbindungen sind die Verbindungen der Formeln I2-2, I2-3 und I2-4.
  • Insbesondere bevorzugt sind Mischungen enthaltend die Verbindung der Formel I2-3.
  • Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch, thermisch und gegen Licht sind sie stabil. Die Verbindungen zeichnen sich aber insbesondere dadurch aus, dass sie in den flüssigkristallinen Medien die smektischen Phasen unterdrücken.
  • Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
  • Weitere bevorzugte Ausführungsformen sind im Folgenden angegeben:
    • – Das Medium enthält zusätzlich eine oder mehrere neutrale Verbindungen der Formeln II und/oder III,
      Figure 00110001
      worin A 1,4-Phenylen oder trans-1,4-Cyclohexylen bedeutet, a 0 oder 1 ist, wobei im Fall a = 0 Ring A trans-1,4-Cyclohexylen bedeutet, R3 Alkenyl mit 2 bis 9 C-Atomen bedeutet, und R4 die für R0 in Formel I angegebene Bedeutung besitzt und vorzugsweise Alkyl mit 1 bis 12 C-Atomen oder Alkenyl mit 2 bis 9 C-Atomen bedeutet.
    • – Die Verbindungen der Formel II sind vorzugsweise ausgewählt aus folgenden Formeln,
      Figure 00120001
      worin R3a und R4a jeweils unabhängig voneinander H, CH3, C2H5 oder C3H7 bedeuten, und ”alkyl” eine geradkettige Alkylgruppe mit 1 bis 8 C-Atomen bedeutet. Besonders bevorzugt sind Verbindungen der Formeln IIa und IIf, insbesondere worin R3a H oder CH3 bedeutet, und Verbindungen der Formel IIc, insbesondere worin R3a und R4a H, CH3 oder C2H5 bedeuten. Weiterhin sind Verbindungen der Formel II bevorzugt, die eine nicht-endständige Doppelbindung in der Alkenylseitenkette aufweisen:
      Figure 00130001
      Figure 00140001
      Ganz besonders bevorzugte Verbindungen der Formel II sind die Verbindungen der Formeln
      Figure 00140002
      Figure 00150001
      Figure 00160001
      Besonders bevorzugt enthalten die erfindungsgemäßen flüssigkristallinen Medien neben einer oder mehrerer Verbindungen der Formel 15–70 Gew.% an Verbindungen der Formel
      Figure 00160002
      und/oder
      Figure 00160003
    • – Die Verbindungen der Formel III sind vorzugsweise ausgewählt aus den folgenden Formeln,
      Figure 00170001
      worin ”alkyl” und R3a die oben angegebenen Bedeutungen haben und R3a vorzugsweise H oder CH3 bedeutet. Besonders bevorzugt sind Verbindungen der Formel IIIb;
    • – Das Medium enthält vorzugsweise zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Formeln IV bis VIII,
      Figure 00170002
      Figure 00180001
      worin R0 die in Formel I angegebenen Bedeutungen besitzt, X0 F, Cl, ein- oder mehrfach fluorierter Alkyl- oder Alkoxyrest mit jeweils 1 bis 6 C-Atomen, ein- oder mehrfach fluorierter Alkenyl- oder Alkenyloxyrest mit jeweils 2 bis 6 C-Atomen, Y1-6 jeweils unabhängig voneinander H oder F, Z0 -C2H4-, -(CH2)4-, -CH=CH-, -CF=CF-, -C2F4-, -CH2CF2-, -CF2CH2-, -CH2O-, -OCH2-, -COO-, -CF2O- oder -OCF2-, in den Formeln V und VI auch eine Einfachbindung, und r 0 oder 1 bedeuten. In den obenstehenden Formeln ist X0 vorzugsweise F, Cl oder ein ein- oder mehrfach fluorierter Alkyl- oder Alkoxyrest mit 1, 2 oder 3 C-Atomen oder ein ein- oder mehrfach fluorierter Alkenylrest bzw. Alkenyloxyrest mit 2 oder 3 C-Atomen. X0 ist besonders bevorzugt F, Cl, CF3, CHF2, OCF3, OCHF2, OCFHCF3, OCFHCHF2, OCFHCHF2, OCF2CH3, OCF2CHF2, OCF2CHF2, OCF2CF2CHF2, OCF2CF2CH2F, OCFHCF2CF3, OCFHCF2CHF2, OCH=CF2, OCF=CF2, OCF2CHFCF3, OCF2CF2CF3, OCF2CF2CClF2, OCClFCF2CF3, CF=CF2, CF=CHF, OCH=CF2, OCF=CF2, oder CH=CF2. Ganz besonders bevorzugt bedeutet X0 F oder OCF3. In den Verbindungen der Formel IV bis VIII bedeutet X0 vorzugsweise F oder OCF3, ferner OCHF2, CF3, CF2H, Cl, OCH=CF2. R0 ist vorzugsweise geradkettiges Alkyl oder Alkenyl mit bis zu 6 C-Atomen.
    • – Die Verbindungen der Formel IV sind vorzugsweise ausgewählt aus den folgenden Formeln,
      Figure 00190001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel IV R0 Alkyl mit 1 bis 8 C-Atomen und X0 F, Cl, OCHF2 oder OCF3, ferner OCH=CF2. In der Verbindung der Formel IVb bedeutet R0 vorzugsweise Alkyl oder Alkenyl. In der Verbindung der Formel IVd bedeutet X0 vorzugsweise Cl, ferner F.
    • – Die Verbindungen der Formel V sind vorzugsweise ausgewählt aus den Formeln Va bis Vj,
      Figure 00200001
      Figure 00210001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel V R0 Alkyl mit 1 bis 8 C-Atomen und X0 F;
    • – Das Medium enthält eine oder mehrere Verbindungen der Formel VI-1,
      Figure 00210002
      besonders bevorzugt solche ausgewählt aus den folgenden Formeln,
      Figure 00220001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel VI R0 Alkyl mit 1 bis 8 C-Atomen und X0 F, ferner OCF3.
    • – Das Medium enthält eine oder mehrere Verbindungen der Formel VI-2,
      Figure 00220002
      besonders bevorzugt solche ausgewählt aus den folgenden Formeln,
      Figure 00230001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel VI R0 Alkyl mit 1 bis 8 C-Atomen und X0 F;
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formel VII, worin Z0 -CF2O-, -CH2CH2 oder -COO-, bedeutet, besonders bevorzugt solche ausgewählt aus folgenden Formeln,
      Figure 00240001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel VII R0 Alkyl mit 1 bis 8 C-Atomen und X0 F, ferner OCF3. Die Verbindungen der Formel VIII sind vorzugsweise ausgewählt aus den folgenden Formeln,
      Figure 00250001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel VIII R0 einen geradkettigen Alkylrest mit 1 bis 8 C-Atomen. X0 bedeutet vorzugsweise F.
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen der folgenden Formel,
      Figure 00260001
      worin R0, X0, Y1 und Y2 die oben angegebene Bedeutung besitzen, und
      Figure 00260002
      jeweils unabhängig voneinander
      Figure 00260003
      bedeuten, wobei die Ringe A und B nicht beide gleichzeitig 1,4-Cyclohexylen bedeuten;
    • – Die Verbindungen der Formel IX sind vorzugsweise ausgewählt aus folgenden Formeln,
      Figure 00260004
      Figure 00270001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet in Formel IX R0 Alkyl mit 1 bis 8 C-Atomen und X0 F. Besonders bevorzugt sind Verbindungen der Formel IXa;
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus den folgenden Formeln,
      Figure 00270002
      Figure 00280001
      worin R0, X0 und Y14 die in Formel I angegebene Bedeutung besitzen, und
      Figure 00280002
      jeweils unabhängig voneinander
      Figure 00280003
      bedeuten;
    • – Die Verbindungen der Formeln X und XI sind vorzugsweise ausgewählt aus den folgenden Formeln,
      Figure 00280004
      Figure 00290001
      Figure 00300001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und X0 F. Besonders bevorzugte Verbindungen sind solche, worin Y1 F und Y2 H oder F, vorzugsweise F, bedeuten;
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen der folgenden Formel,
      Figure 00300002
      worin R1 und R2 jeweils unabhängig voneinander n-Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen bedeuten, und vorzugsweise jeweils unabhängig voneinander Alkyl mit 1 bis 8 C-Atomen bedeuten. Y1 bedeutet H oder F. Bevorzugte Verbindungen der Formel XII sind die Verbindungen der Formel,
      Figure 00300003
      Figure 00310001
      worin Alkyl und Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1 bis 6 C-Atomen, und Alkenyl und Alkenyl* jeweils unabhängig voneinander einen geradkettigen Alkenylrest mit 2 bis 6 C-Atomen bedeuten. Besonders bevorzugt sind die Verbindungen der Formeln XII-1 und XII-3. Eine besonders bevorzugte Verbindung der Formel XII-3 ist die Verbindung der Formel XII-3a:
      Figure 00310002
      Die Verbindungen der Formel XII werden vorzugsweise in Mengen von 3–30 Gew.% eingesetzt.
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus folgenden Formeln,
      Figure 00320001
      worin R0, X0, Y1 und Y2 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und X0 F oder Cl;
    • – Die Verbindungen der Formeln XIII und XIV sind vorzugsweise ausgewählt aus den Verbindungen der Formeln,
      Figure 00320002
      Figure 00330001
      worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen. In den Verbindungen der Formel XIII bedeutet X0 vorzugsweise F oder Cl.
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen der Formeln D1, D2 und/oder D3
      Figure 00330002
      worin Y1, Y2, R0 und X0 die oben angegebene Bedeutung besitzen. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und X0 F. Besonders bevorzugt sind Verbindungen der Formeln,
      Figure 00340001
      worin R0 die oben angegebenen Bedeutungen hat und vorzugsweise geradkettiges Alkyl mit 1 bis 6 C-Atomen, insbesondere C2H5, n-C3H7 oder n-C5H11 bedeutet.
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen der folgenden Formel,
      Figure 00340002
      Figure 00350001
      worin Y1, R1 und R2 die oben angegebenen Bedeutungen besitzen. R1 und R2 bedeuten vorzugsweise jeweils unabhängig voneinander Alkyl mit 1 bis 8 C-Atomen; Y1 bedeutet vorzugsweise F;
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen der folgenden Formel,
      Figure 00350002
      worin X0, Y1 und Y2 die oben angegebenen Bedeutungen besitzen und ”Alkenyl” C2-7-Alkenyl bedeutet. Besonders bevorzugt sind Verbindungen der folgenden Formel,
      Figure 00350003
      worin R3a die oben angegebene Bedeutung hat und vorzugsweise H bedeutet;
    • – Das Medium enthält zusätzlich eine oder mehrere Vierkern-Verbindungen ausgewählt aus den Formeln XIX bis XXVII,
      Figure 00350004
      Figure 00360001
      Figure 00370001
      worin Y1-4, R0 und X0 jeweils unabhängig voneinander eine der oben angegebenen Bedeutungen haben. X0 ist vorzugsweise F, Cl, CF3, OCF3 oder OCHF2. R0 bedeutet vorzugsweise Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 8 C-Atomen.
    • – In den vorstehend und nachfolgend genannten Formeln bedeutet
      Figure 00370002
    • – R0 ist vorzugsweise geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen;
    • – X0 ist vorzugsweise F, ferner OCF3, Cl oder CF3;
    • – Das Medium enthält vorzugsweise eine, zwei oder drei Verbindungen der Formel I; insbesondere mindestens eine Verbindung der Formel I2.
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln I, II, III, V, VI-1, VI-2, XII, XIII, XIV, XVII, XXIII, XXV.
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formel VI-1;
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formel VI-2;
    • – Das Medium enthält vorzugsweise 0,5–25 Gew.%, bevorzugt 1–20 Gew.%, besonders bevorzugt 1–10 Gew.%, an Verbindungen der Formel I;
    • – Der Anteil an Verbindungen der Formeln II–XXVII im Gesamtgemisch beträgt vorzugsweise 20 bis 99 Gew.%;
    • – Das Medium enthält vorzugsweise 25–80 Gew.%, besonders bevorzugt 30–70 Gew.% an Verbindungen der Formel II und/oder III;
    • – Das Medium enthält vorzugsweise 5–40 Gew.%, besonders bevorzugt 10–30 Gew.% an Verbindungen der Formel V;
    • – Das Medium enthält vorzugsweise 3–30 Gew.%, besonders bevorzugt 6–25 Gew.% an Verbindungen der Formel VI-1;
    • – Das Medium enthält vorzugsweise 2–30 Gew.%, besonders bevorzugt 4–25 Gew.% an Verbindungen der Formel VI-2;
    • – Das Medium enthält 5–40 Gew.%, besonders bevorzugt 10–30 Gew.% an Verbindungen der Formel XII;
    • – Das Medium enthält vorzugsweise 1–25 Gew.%, besonders bevorzugt 2–15 Gew.% an Verbindungen der Formel XIII;
    • – Das Medium enthält vorzugsweise 5–45 Gew.%, besonders bevorzugt 10–35 Gew.% an Verbindungen der Formel XIV;
    • – Das Medium enthält vorzugsweise 1–20 Gew.%, besonders bevorzugt 2–15 Gew.% an Verbindungen der Formel XVI.
    • – Das Medium enthält zusätzlich eine oder mehrere Verbindungen der Formeln St-1 bis St-3,
      Figure 00390001
      worin R0, Y1, Y2 und X0 die oben angegebenen Bedeutungen haben. R0 bedeutet vorzugsweise geradkettiges Alkyl, vorzugsweise mit 1–6 C-Atomen. X0 ist vorzugsweise F oder OCF3. Y1 bedeutet vorzugsweise F. Y2 bedeutet vorzugsweise F. Weiterhin sind Verbindungen bevorzugt, worin Y1 = F und Y2 = H bedeuten. Vorzugsweise werden die Verbindungen der Formeln St-1 bis St-3 in Konzentration von 3–30 Gew.% in den erfindungsgemäßen Mischungen eingesetzt, insbesondere von 5–25 Gew.%.
    • – Das Medium enthält zusätzlich eine oder mehrere Pyrimidin- oder Pyridin-Verbindungen den Formeln Py-1 bis Py-5,
      Figure 00400001
      worin R0 vorzugsweise geradkettiges Alkyl mit 2–5 C-Atomen ist. x bedeutet 0 oder 1, vorzugsweise ist x = 1. Bevorzugte Mischungen enthalten 3–30 Gew.%, insbesondere 5–20 Gew.% dieser Pyri(mi)din-Verbindung(en).
  • Es wurde gefunden, dass bereits ein relativ geringer Anteil an Verbindungen der Formel I im Gemisch mit üblichen Flüssigkristallmaterialien, insbesondere jedoch mit einer oder mehreren Verbindungen der Formeln II bis XXVII zu einer beträchtlichen Erhöhung der Lichtstabilität und zu niedrigen Werten für die Doppelbrechung führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch-nematisch beobachtet werden, wodurch die Lagerstabilität verbessert wird.
  • Gleichzeitig zeigen die Mischungen sehr niedrige Schwellenspannungen und sehr gute Werte für die VHR bei UV-Belastung.
  • Der Ausdruck ”Alkyl” bzw. ”Alkyl*” umfasst in dieser Anmeldung geradkettige und verzweigte Alkylgruppen mit 1–7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 1–6 Kohlenstoffatomen sind im allgemeinen bevorzugt.
  • Der Ausdruck ”Alkenyl” bzw. ”Alkenyl*” umfasst in dieser Anmeldung geradkettige und verzweigte Alkenylgruppen mit 2–7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Bevorzugte Alkenylgruppen sind C2-C7-1E-Alkenyl, C4-C7-3E-Alkenyl, C5-C7-4-Alkenyl, C6-C7-5-Alkenyl und C7-6-Alkenyl, insbesondere C2-C7-1E-Alkenyl, C4-C7-3E-Alkenyl und C5-C7-4-Alkenyl. Beispiele besonders bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 1E-Heptenyl, 3-Butenyl, 3E-Pentenyl, 3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z-Heptenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5 Kohlenstoffatomen sind im allgemeinen bevorzugt.
  • Der Ausdruck ”Fluoralkyl” umfasst in dieser Anmeldung geradkettige Gruppen mit mindestens einem Fluoratom, vorzugsweise einem endständigem Fluor, d. h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluorbutyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.
  • Der Ausdruck ”Oxaalkyl” bzw. ”Alkoxy” umfasst in dieser Anmeldung geradkettige Reste der Formel CnH2n+1-O-(CH2)m, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. m kann auch 0 bedeuten. Vorzugsweise ist n = 1 und m 1–6 oder m = 0 und n = 1–3.
  • Durch geeignete Wahl der Bedeutungen von R0 und X0 können die Ansprechzeiten, die Schwellenspannung, die Steilheit der Transmissionskennlinien etc. in gewünschter Weise modifiziert werden. Beispielsweise führen 1E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematischen Tendenzen und einem höheren Verhältnis der elastischen Konstanten k33 (bend) und k11 (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von k33/k11 im Vergleich zu Alkyl- und Alkoxyresten. Die erfindungsgemäßen Mischungen zeichnen sich insbesondere durch hohe K1-Werte aus und besitzen somit deutlich schnellere Schaltzeilen als die Mischungen aus dem Stand der Technik.
  • Das optimale Mengenverhältnis der Verbindungen der oben genannten Formeln hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der oben genannten Formeln und der Wahl weiterer gegebenenfalls vorhandener Komponenten ab.
  • Geeignete Mengenverhältnisse innerhalb des oben angegebenen Bereichs können von Fall zu Fall leicht ermittelt werden.
  • Die Gesamtmenge an Verbindungen der oben genannten Formeln in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die gewünschte Verbesserung der Eigenschaften der Mischung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der oben genannten Formeln ist.
  • In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien Verbindungen der Formel IV bis VIII, worin X0 F, OCF3, OCHF2, OCH=CF2, OCF=CF2 oder OCF2-CF2H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formel I führt zu besonders vorteilhaften Eigenschaften. Insbesondere Mischungen enthaltend Verbindungen der Formeln I und VI, bzw. I und XI, bzw. I und VI und XI zeichnen sich durch ihre niedrigen Schwellenspannungen aus.
  • Die einzelnen Verbindungen der oben genannten Formeln und deren Unterformeln, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
  • Gegenstand der Erfindung sind auch elektrooptische Anzeigen, wie z. B. TN-, STN-, TFT-, OCB-, IPS-, FFS-, positiv VA-, PS-TN, PS-IPS, PS-VA, PS-FFS- oder MFK-Anzeigen, mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte auf den Trägerplatten und einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem spezifischem Widerstand), die derartige Medien enthalten sowie die Verwendung dieser Medien für elektrooptische Zwecke.
  • Weiterhin sind die erfindungsgemäßen Mischungen auch für positiv-VA-Anwendungen geeignet, auch HT-VA-Anwendungen genannt. Hierunter versteht man elektrooptische Anzeigen mit einer In-plane Ansteuerelektroden-Konfiguration und homeotroper Anordnung des Flüssigkristallmediums mit positiver dielektrischer Anisotropie.
  • Insbesondere bevorzugt sind die erfindungsgemäßen Mischungen für TN-TFT-Display-Anwendungen mit kleiner Operationsspannung, d. h. besonders bevorzugt für Notebook-Anwendungen.
  • Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes. Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Temperatur, thermischer und UV-Stabilität und hoher optischer Anisotropie übertreffen bei weitem bisherige Materialien aus dem Stand der Technik.
  • Die erfindungsgemäßen Mischungen sind insbesondere für mobile Anwendungen und high-Δn-TFT-Anwendungen wie z. B. PDAs, Notebooks, LCD-TV und Monitore geeignet.
  • Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es, bei Beibehaltung der nematischen Phase bis –20°C und bevorzugt bis –30°C, besonders bevorzugt bis –40°C, und des Klärpunkts ≥ 70°C, vorzugsweise ≥ 75°C, gleichzeitig Rotationsviskositäten γ1 von ≤ 120 mPa·s, besonders bevorzugt 100 mPa·s zu erreichen, wodurch hervorragende MFK-Anzeigen mit schnellen Schaltzeiten erzielt werden können.
  • Die dielektrische Anisotropie der erfindungsgemäßen Flüssigkristallmischungen Δε ist vorzugsweise ≥ +8, besonders bevorzugt ≥ +12. Die Mischungen sind außerdem durch kleine Operationsspannungen gekennzeichnet. Die Schwellenspannung der erfindungsgemäßen Flüssigkristallmischungen ist vorzugsweise ≤ 1,5 V, insbesondere 1,2 V.
  • Die Doppelbrechung Δn der erfindungsgemäßen Flüssigkristallmischungen ist vorzugsweise ≥ 0,08, insbesondere ≥ 0,10 und ganz besonders bevorzugt ≥ 0,11.
  • Der nematische Phasenbereich der erfindungsgemäßen Flüssigkristallmischungen ist vorzugsweise mindestens 90°, insbesondere mindestens 100° breit. Vorzugsweise erstreckt sich dieser Bereich mindestens von –25°C bis +70°C.
  • Sofern die erfindungsgemäßen Mischungen in FFS-Anwendungen zum Einsatz kommen, besitzen die Mischungen vorzugsweise einen Wert für die dielektrische Anisotropie von 3–12 und einen Wert für die optische Anisotropie von 0,07–0,13.
  • Es versteht sich, dass durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z. B. oberhalb 100°C) bei höheren Schwellenspannungen oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringen Schwellen erhalten werden. Die erfindungsgemäßen MFK-Anzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [C. H. Gooch und H. A. Tarry, Electron. Lett. 10, 2–4, 1974; C. H. Gooch und H. A. Tarry, Appl. Phys., Vol. 8, 1575–1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften, wie z. B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes ( DE-PS 30 22 818 ) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum, eine kleinere dielektrische Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanverbindungen. Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemethoden die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche Doppelbrechung einstellen.
  • Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefasst und umfasst auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM.
  • Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.
  • Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise, beispielsweise indem man eine oder mehrere Verbindungen der Formel I mit einer oder mehreren Verbindungen der Formeln II–XXVII oder mit weiteren flüssigkristallinen Verbindungen und/oder Additiven mischt. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich Lösungen der Komponenten in einem organischen Lösungsmittel, z. B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.
  • Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze, wie z. B. UV-Stabilisatoren wie Tinuvin® der Fa. Ciba Chemicals, Antioxidantien, Radikalfänger, Nanopartikel, etc. enthalten. Beispielsweise können 0–15% pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden. Geeignete Stabilisatoren und Dotierstoffe werden nachfolgend in den Tabellen C und D genannt.
  • Den erfindungsgemäßen Mischungen können weiterhin polymerisierbare Verbindungen, sogenannte reaktive Mesogene (RMs), beispielsweise wie in U.S. 6,861,107 offenbart, in Konzentrationen von bevorzugt 0,12–5 Gew.%, besonders bevorzugt 0,2–2% bezogen auf die Mischung, zugesetzt werden. Optional können diese Mischungen auch einen Initiator enthalten, wie beispielsweise in der U.S 6,781,665 beschrieben. Der Initiator, z. B. Irganox-1076 der Fa. Ciba, wird vorzugsweise der Mischung enthaltend polymerisierbare Verbindungen in Mengen von 0–1 zugesetzt. Derartige Mischungen können für sogenannte Polymer Stabilized VA-Modes (PS-VA) oder PSA (Polymer sustained VA), bei denen eine Polymerisierung der reaktiven Mesogene in der flüssigkristallinen Mischung erfolgen soll, verwendet werden. Voraussetzung hierfür ist, dass die Flüssigkristallmischung selbst keine polymerisierbaren Komponenten enthält.
  • In einer bevorzugten Ausführungsform der Erfindung sind die polymerisierbaren Verbindungen ausgewählt aus den Verbindungen der Formel M RMa-AM1-(ZM1-AM2)m1-RMb M worin die einzelnen Reste folgende Bedeutung haben:
    RMa und RMb jeweils unabhängig voneinander P, P-Sp-, H, Halogen, SF5, NO2, eine Alkyl-, Alkenyl- oder Alkinylgruppe, wobei bevorzugt mindestens einer der Reste RMa und RMb eine Gruppe P oder P-Sp- bedeutet oder enthält,
    P eine polymerisierbare Gruppe,
    Sp eine Abstandsgruppe oder eine Einfachbindung,
    AM1 und AM2 jeweils unabhängig voneinander eine aromatische, heteroaramatische, alicyclische oder heterocyclische Gruppe, vorzugsweise mit 4 bis 25 Ringatomen, bevorzugt C-Atomen, welche auch anellierte Ringe umfasst oder enthalten kann, und die optional ein- oder mehrfach durch L substitutiert sein kann,
    L P, P-Sp-, OH, CH2OH, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(Rx)2, -C(=O)Y1, -C(=O)Rx, -N(Rx)2, optional substituiertes Silyl, optional substituiertes Aryl mit 6 bis 20 C Atomen, oder geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonlyoxy oder Alkoxycarbonyloxy mit 1 bis 25 C-Atomen, worin auch ein oder mehrere H-Atome durch F, Cl, P oder P-Sp- ersetzt sein können, bevorzugt P, P-Sp-, H, OH, CH2OH, Halogen, SF5, NO2, eine Alkyl-, Alkenyl- oder Alkinylgruppe,
    Y1 Halogen,
    ZM1 -O-, -S-, -CO-, -CO-O-, -OCO-, -O-CO-O-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -(CH2)n1-, -CF2CH2-, -CH2CF2-, -(CF2)n1-, -CH=CH-, -CF=CF-, -C≡C-, -CH=CH-, -COO-, -OCO-CH=CH-, CR0R00 oder eine Einfachbindung,
    R0 und R00 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 12 C-Atomen,
    Rx P, P-Sp-, H, Halogen, geradkettiges, verzweigtes oder cyclisches Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, P oder P-Sp- ersetzt sein können, eine optional substituierte Aryl- oder Aryloxygruppe mit 6 bis 40 C-Atomen, oder eine optional substituierte Heteroaryl- oder Heteroaryloxygruppe mit 2 bis 40 C-Atomen,
    m1 0, 1, 2, 3 oder 4 und
    n1 1, 2, 3 oder 4,
    wobei mindestens einer, bevorzugt einer, zwei oder drei, besonders bevorzugt einer oder zwei, aus der Gruppe RMa, RMb und der vorhandenen Substituenten L eine Gruppe P oder P-Sp- bedeutet oder mindestens eine Gruppe P oder P-Sp- enthält.
  • Besonders bevorzugte Verbindungen der Formel M sind solche, worin
    RMa und RMb jeweils unabhängig voneinander P, P-Sp-, H, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, SF5 oder geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(R0)=C(R00)-, -C≡C-, -N(R00)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, Br, I, CN, P oder P-Sp- ersetzt sein können, wobei bevorzugt mindestens einer der Reste RMa und RMb eine Gruppe P oder P-Sp- bedeutet oder enthält,
    AM1 und AM2 jeweils unabhängig voneinander 1,4-Phenylen, Naphthalin-1,4-diyl, Naphthalin-2,6-diyl, Phenanthren-2,7-diyl, Anthracen-2,7-diyl, Fluoren-2,7-dryl, Cumarin, Flavon, wobei in diesen Gruppen auch eine oder mehrere CH-Gruppen durch N ersetzt sein können, Cyclohexan-1,4-diyl, worin auch eine oder mehrere nicht-benachbarte CH2-Gruppen durch 0 und/oder S ersetzt sein können, 1,4-Cyclohexenylen, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Piperidin-1,4-diyl, Decahydronaphthalin-2,6-diyl, 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, Indan-2,5-diyl oder Octahydro-4,7-methano-indan-2,5-diyl, wobei alle diese Gruppen unsubstituiert oder durch L ein- oder mehrfach substituiert sein können,
    L P, P-Sp-, OH, CH2OH, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(Rx)2, -C(=O)Y1, -C(=O)Rx, -N(Rx)2, optional substituiertes Silyl, optional substituiertes Aryl mit 6 bis 20 C Atomen, oder geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonlyoxy oder Alkoxycarbonyloxy mit 1 bis 25 C-Atomen, worin auch ein oder mehrere H-Atome durch F, Cl, P oder P-Sp- ersetzt sein können,
    P eine polymerisierbare Gruppe,
    Y1 Halogen,
    Rx P, P-Sp-, H, Halogen, geradkettiges, verzweigtes oder cyclisches Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, P oder P-Sp- ersetzt sein können, eine optional substituierte Aryl- oder Aryloxygruppe mit 6 bis 40 C-Atomen, oder eine optional substituierte Heteroaryl- oder Heteroaryloxygruppe mit 2 bis 40 C-Atomen,
    bedeuten.
  • Ganz besonders bevorzugt sind Verbindungen der Formel M, worin einer von RMa und RMb oder beide P oder P-Sp- bedeuten.
  • Geeignete und bevorzugte polymerisierbare Verbindungen für die Verwendung in erfindungsgemäßen Anzeigen sind beispielsweise ausgewählt aus den folgender Formeln:
    Figure 00500001
    Figure 00510001
    Figure 00520001
    Figure 00530001
    worin die einzelnen Reste folgende Bedeutung besitzen:
    P1 und P2 jeweils unabhängig voneinander eine polymerisierbare Gruppe, vorzugsweise mit einer der vor- und nachstehend für P angegebenen Bedeutungen, besonders bevorzugt eine Acrylat-, Methacrylat-, Fluoracrylat-, Oxetan-, Vinyloxy- oder Epoxygruppe,
    Sp1 und Sp2 jeweils unabhängig voneinander eine Einfachbindung oder eine Abstandsgruppe, vorzugsweise mit einer der vor- und nachstehend für Spa angegebenen Bedeutungen, und besonders bevorzugt -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-CO-O- oder -(CH2)p1-O-CO-O-, worin p1 eine ganze Zahl von 1 bis 12 ist, und wobei in den letztgenannten Gruppen die Verknüpfung zur benachbarten Ring über das O-Atom erfolgt, wobei auch einer oder mehrere der Reste P1-Sp1- und P2-Sp2- einen Rest Raa bedeuten können, mit der Maßgabe dass mindestens einer der vorhandenen Reste P1-Sp1- und P2-Sp2- nicht Raa bedeutet,
    Raa H, F, Cl, CN oder geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch C(R0)=C(R00)-, -C≡C-, -N(R0)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, CN oder P1-Sp1- ersetzt sein können, besonders bevorzugt geradkettiges oder verzweigtes, optional ein- oder mehrfach fluoriertes, Alkyl, Alkoxy, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, oder Alkylcarbonyloxy mit 1 bis 12 C-Atomen (wobei die Alkenyl- und Alkinylreste mindestens zwei und die verzweigten Reste mindestens drei C-Atome aufweisen),
    R0, R00 jeweils unabhängig voneinander und bei jedem Auftreten gleich oder verschieden H oder Alkyl mit 1 bis 12 C-Atomen,
    Ry und Rz jeweils unabhängig voneinander H, F, CH3 oder CF3,
    Z1 -O-, -CO-, -C(RyRz)-, oder -CF2CF2-,
    Z2 und Z3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, oder -(CH2)n-, wobei n 2, 3 oder 4 ist,
    L bei jedem Auftreten gleich oder verschieden F, Cl, CN, SCN, SF5 oder geradkettiges oder verzweigtes, optional ein- oder mehrfach fluoriertes, Alkyl, Alkoxy, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 12 C-Atomen vorzugsweise F,
    L' und L'' jeweils unabhängig voneinander H, F oder Cl,
    r 0, 1, 2, 3 oder 4,
    s 0, 1, 2 oder 3,
    t 0, 1 oder 2,
    x 0 oder 1.
  • Geeignete polymerisierbare Verbindungen sind beispielsweise in Tabelle E gelistet.
  • Bevorzugt enthalten die flüssigkristallinen Medien gemäß der vorliegenden Anmeldung insgesamt 0,01 bis 10%, bevorzugt 0,2 bis 4,0%, besonders bevorzugt 0,2 bis 2,0%, an polymerisierbaren Verbindungen.
  • Insbesondere bevorzugt sind die polymerisierbaren Verbindungen der Formel M.
  • In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß Tabelle A erfolgt. Alle Reste CnH2n+1 und CmH2m+1 sind geradkettige Alkylreste mit n bzw. m C-Atomen; n, m und k sind ganze Zahlen und bedeuten vorzugsweise 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt von Acronym für den Grundkörper mit einem Strick ein Code für die Substituenten R1*, R2 *, L1* und L2*:
    Code für R1*, R2*, L1*, L2*, L3* R1* R2* L1* L2*
    nm CnH2n+1 CmH2m+1 H H
    nOm CnH2n+1 OCmH2m+1 H H
    nO.m OCnH2n+1 CmH2m+1 H H
    n CnH2n+1 CN H H
    nN.F CnH2n+1 CN F H
    nN.F.F CnH2n+1 CN F F
    nF CnH2n+1 F H H
    nCl CnH2n+1 Cl H H
    nOF OCnH2n+1 F H H
    nF.F CnH2n+1 F F H
    nF.F.F CnH2n+1 F F F
    nOCF3 CnH2n+1 OCF3 H H
    nOCF3.F CnH2n+1 OCF3 F H
    n-Vm CnH2n+1 -CH=CH-CmH2m+1 H H
    nV-Vm CnH2n+1-CH=CH- -CH=CH-CmH2m+1 H H
  • Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B. Tabelle A
    Figure 00560001
    Figure 00570001
    Figure 00580001
    Tabelle B
    Figure 00580002
    Figure 00590001
    Figure 00600001
    Figure 00610001
    Figure 00620001
    Figure 00630001
    Figure 00640001
  • Besonders bevorzugt sind flüssigkristalline Mischungen, die neben den Verbindungen der Formeln I mindestens ein, zwei, drei, vier oder mehr Verbindungen aus der Tabelle B enthalten.
  • Tabelle C
  • In der Tabelle C werden mögliche Dotierstoffe angegeben, die in der Regel den erfindungsgemäßen Mischungen zugesetzt werden. Vorzugsweise enthalten die Mischungen 0–10 Gew.%, insbesondere 0,01–5 Gew.% und besonders bevorzugt 0,01–3 Gew.% an Dotierstoffen.
  • Figure 00650001
  • Figure 00660001
  • Tabelle D
  • Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen in Mengen von 0–10 Gew.% zugesetzt werden können, werden nachfolgend genannt.
    Figure 00660002
    Figure 00670001
    Figure 00680001
    Figure 00690001
    Figure 00700001
  • Tabelle E
  • Polymerisierbare Verbindungen (reaktive mesogene Verbindungen), die beispielsweise den erfindungsgemäßen Mischungen in Mengen von 0,01–5 Gew.% zugesetzt werden können, werden nachfolgend genannt. Gegebenenfalls muss für die Polymerisation noch ein Initiator zugesetzt werden in Mengen von 0–1 Gew.%.
  • Figure 00710001
  • Figure 00720001
  • Figure 00730001
  • Figure 00740001
  • Figure 00750001
  • Figure 00760001
  • Figure 00770001
  • Figure 00780001
  • Figure 00790001
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Tabelle E. Derartige Mischungen sind beispielsweise für PS(polymer stabilized)-TN-, PS-IPS- oder PS-FFS-Anwendungen insbesondere geeignet.
  • Die folgenden Mischungsbeispiele sollen die Erfindung erläutern, ohne sie zu begrenzen.
  • Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt, Kp. = Klärpunkt. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, S = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Weiterhin bedeutet
    • – Δn die optische Anisotropie bei 589 nm und 20°C,
    • – γ1 die Rotationsviskosität (mPa·s) bei 20°C,
    • – V10 die Spannung (V) für 10% Transmission (Blickrichtung senkrecht zur Plattenoberfläche), (Schwellenspannung),
    • – Δε die dielektrische Anisotropie bei 20°C und 1 kHz (Δε = ε|| – ε, wobei ε|| die Dielektrizitätskonstante parallel zu den Moleküllängsachsen und ε die Dielektrizitätskonstante senkrecht dazu bedeutet).
  • Die elektro-optischen Daten werden in einer TN-Zelle im 1. Minimum (d. h. bei einem d·Δn-Wert von 0,5 μm) bei 20°C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Die optischen Daten werden bei 20°C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Alle physikalischen Eigenschaften werden nach "Merck Liquid Crystals, Physical Properties of Liquid Crystals" Status Nov. 1997, Merck KGaA, Deutschland bestimmt und gelten für eine Temperatur von 20°C, sofern nicht explizit anders angegeben. Beispiel M1
    CC-4-V 25,00% Klärpunkt [°C]: 77,0
    CC-3-V1 15,00%
    CCQU-3-F 11,50%
    PUQU-3-F 15,00%
    PGP-2-5 2,00%
    CPGU-3-OT 8,50%
    PGUQU-3-F 5,50%
    APUQU-3-F 8,00%
    CP-1V-01 4,00%
    CCP-30CF3 5,50%
    Beispiel M2
    CC-4-V 25,00% Klärpunkt [°C]: 73,5
    CC-3-V1 15,00%
    CCQU-3-F 11,50%
    PUQU-3-F 15,00%
    PGP-2-5 2,00%
    CPGU-3-OT 8,50%
    PGUQU-3-F 5,50%
    APUQU-3-F 8,00%
    CP-1V-2 4,00%
    CCP-30CF3 5,50%
    Beispiel M3
    CC-4-V 25,00% Klärpunkt [°C]: 74,0
    CC-3-V1 15,00%
    CCQU-3-F 11,50%
    PUQU-3-F 15,00%
    PGP-2-5 2,00%
    CPGU-3-OT 8,50%
    PGUQU-3-F 5,50%
    APUQU-3-F 8,00%
    CP-V2-1 4,00%
    CCP-30CF3 5,50%
    Beispiel M4
    CCH-23 18,00% Klärpunkt [°C]: 76,5
    PCH-301 6,00%
    CP-1V-01 3,00%
    PUQU-3-F 10,00%
    CCQU-3-F 15,00%
    BCH-3F.F.F 10,00%
    CCP-30CF3 8,00%
    CCP-50CF3 7,00%
    PGP-2-5 6,00%
    APUQU-3-F 7,00%
    PGUQU-3-F 7,00%
    CPGU-3-OT 3,00%
    Beispiel M5
    CCH-23 18,00% Klärpunkt [°C]: 74,0
    PCH-301 6,00%
    CP-1V-2 3,00%
    PUQU-3-F 10,00%
    CCQU-3-F 15,00%
    BCH-3F.F.F 10,00%
    CCP-30CF3 8,00%
    CCP-50CF3 7,00%
    PGP-2-5 6,00%
    APUQU-3-F 7,00%
    PGUQU-3-F 7,00%
    CPGU-3-OT 3,00%
    Beispiel M6
    CCH-23 18,00% Klärpunkt [°C]: 74,5
    PCH-301 6,00%
    CP-V2-1 3,00%
    PUQU-3-F 10,00%
    CCQU-3-F 15,00%
    BCH-3F.F.F 10,00%
    CCP-30CF3 8,00%
    CCP-50CF3 7,00%
    PGP-2-5 6,00%
    APUQU-3-F 7,00%
    PGUQU-3-F 7,00%
    CPGU-3-OT 3,00%
    Beispiel M7
    BGH-32 5,00% LTS Bulk [–20°C): 1000 h
    PUQU-3-F 7,50%
    PGP-2-3 6,50%
    PGP-2-4 6,50%
    PGP-2-5 8,00%
    CCQU-2-F 2,00%
    CCQU-3-F 3,00%
    CCQU-5-F 2,50%
    PCH-301 17,50%
    CP-1V-2 4,50%
    CCH-23 13,50%
    CCH-34 7,00%
    CPGU-3-OT 5,50%
    CCGU-3-F 5,50%
    PGUQU-3-F 5,50%
    Beispiel M8
    BCH-32 5,00% Klarpunkt [°C]: 75,0
    PUQU-3-F 7,50%
    PGP-2-3 6,50%
    PGP-2-4 6,50%
    PGP-2-5 8,00%
    CCQU-2-F 2,00%
    CCQU-3-F 3,00%
    CCQU-S-F 2,50%
    PCH-301 17,50%
    CP-V2-1 4,50%
    CCH-23 13,50%
    CCH-34 7,00%
    CPGU-3-OT 5,50%
    CCGU-3-F 5,50%
    PGUQU-3-F 5,50%
    Beispiel M9
    APUQU-3-F 11,50% Klärpunkt [°C]: 74,5
    BCH-3F.F.F 21,00% Δn [589 nm, 20°C] 0,1304
    CC-3-V 19,00%
    CCGU-3-F 3,50%
    CCP-1F.F.F 3,00%
    CCP-2F.F.F 6,00%
    CCP-V-1 2,00%
    CP-V2-1 1,00%
    CPGP-5-2 1,00%
    CPGU-3-OT 8,50%
    PGP-2-4 4,50%
    PP-1-2V1 3,00%
    PPGU-3-F 2,00%
    PUQU-3-F 14,00%
    Beispiel M10
    APUQU-2-F 8,50% Klärpunkt [°C]: 74,7
    APUQU-3-F 8,50% Δn [589 nm, 20°C] 0,1269
    CC-3-V 27,50%
    CCGU-3-F 8,50%
    PGP-2-2V 9,00%
    CCQU-3-F 7,50%
    CCGU-3-OT 4,50%
    PP-1-2V1 3,50%
    PPGU-3-F 0,50%
    PUQU-3-F 19,00%
    CP-V2-1 3,00%
    Beispiel M11
    APUQU-2-F 7,75% Klärpunkt [°C]: 73,9
    APUQU-3-F 7,75% Δn [589 nm, 20°C] 0,1359
    CC-3-V 21,00%
    CCGU-3-F 9,00%
    PGP-2-2V 8,00%
    PGP-2-5 3,50%
    CCQU-3-F 8,00%
    CPGU-3-OT 4,50%
    PP-1-2V1 5,50%
    PPGU-3-F 0,50%
    PUQU-3-F 19,50%
    CP-V2-1 5,00%
    Beispiel M12
    APUQU-2-F 7,50% Klärpunkt [°C]: 80,1
    APUQU-3-F 7,50% Δn [589 nm, 20°C] 0,1351
    CC-3-V 18,50%
    CCGU-3-F 9,00%
    PGP-2-2V 6,50%
    PGP-2-5 4,00%
    CCQU-3-F 8,00%
    CPGU-3-OT 4,50%
    PP-1-2V1 4,00%
    PPGU-3-F 0,50%
    PUQU-3-F 20,00%
    CP-V2-1 5,00%
    CCP-V2-1 5,00%
    Beispiel M13
    APUQU-2-F 7,50% Klärpunkt [°C]: 77,4
    APUQU-3-F 7,50% Δn [589 nm, 20°C] 0,1355
    CC-3-V 21,00%
    CCGU-3-F 8,50%
    PGP-2-2V 7,00%
    PGP-2-5 3,50%
    CCQU-3-F 7,00%
    CPGU-3-OT 5,00%
    PP-1-2V1 3,00%
    PPGU-3-F 0,50%
    PUQU-3-F 18,00%
    CP-V2-1 5,00%
    CPU-3-OXF 6.50%
    Beispiel M14
    APUQU-2-F 8,25% Klärpunkt [°C]: 74,8
    APUQU-3-F 8,25% Δn [589 nm, 20°C] 0,1167
    CC-3-V 32,00%
    CCGU-3-F 5,50%
    PGP-2-2V 6,00%
    CCQU-3-F 12,00%
    CPGU-3-OT 6,00%
    PP-1-2V1 1,50%
    PPGU-3-F 1,00%
    PUQU-3-F 18,00%
    CP-V2-1 1,50%
    Beispiel M15
    APUQU-2-F 7,00% Klärpunkt [°C]: 74,8
    APUQU-3-F 7,25% Δn [589 nm, 20°C] 0,1337
    CC-3-V 24,50%
    CCGU-3-F 8,00%
    PGP-2-2V 6,50%
    PGP-2-5 2,00%
    CPGU-3-OT 5,50%
    PP-1-2V1 1,75%
    PPGU-3-F 0,50%
    PUQU-3-F 18,50%
    CP-V2-1 5,00%
    CPU-3-OXF 13,50%
    Beispiel M16
    APUQU-2-F 7,50% Klärpunkt [°C]: 76,8
    APUQU-3-F 7,50% Δn [589 nm, 20°C] 0,1351
    CC-3-V 22,00%
    CCGU-3-F 8,50%
    PGP-2-2V 8,00%
    PGP-2-5 3,50%
    CCQU-3-F 7,50%
    CPGU-3-OT 6,00%
    PP-1-2V1 3,50%
    PPGU-3-F 0,50%
    PUQU-3-F 19,00%
    CP-V2-1 5,00%
    CPU-3-OXF 1,50%
    Beispiel M17
    APUQU-2-F 7,00%
    APUQU-3-F 7,25%
    CC-3-V 23,25%
    CCGU-3-F 8,00%
    PGP-2-2V 6,50%
    PGP-2-5 2,00%
    CPGU-3-OT 5,50%
    PP-1-2V1 3,00%
    PPGU-3-F 0,50%
    PUQU-3-F 18,50%
    CP-V2-1 5,00%
    CPU-3-OXF 13,50%
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 3022818 [0013, 0060]
    • EP 122389 [0023]
    • US 6861107 [0065]
    • US 6781665 [0065]
  • Zitierte Nicht-Patentliteratur
    • TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris [0012]
    • STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, p. 145 ff, Paris [0012]
    • Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart [0036]
    • C. H. Gooch und H. A. Tarry, Electron. Lett. 10, 2–4, 1974 [0060]
    • C. H. Gooch und H. A. Tarry, Appl. Phys., Vol. 8, 1575–1584, 1975 [0060]
    • ”Merck Liquid Crystals, Physical Properties of Liquid Crystals” Status Nov. 1997, Merck KGaA, Deutschland [0082]

Claims (21)

  1. Flüssigkristallines Medium, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formel I,
    Figure 00900001
    worin R0 und R0* jeweils unabhängig voneinander einen Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CF2O-, -CH=CH-,
    Figure 00900002
    -O-, -CO-O-, -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch Halogen ersetzt sein können, Ring A einen 1,4-Cyclohexylenring oder 1,4-Cyclohexenylenring, worin auch eine oder zwei CH2-Gruppen durch -O- und/oder -S- ersetzt sein können, bedeuten, enthält.
  2. Flüssigkristallines Medium nach Anspruch 1, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formeln
    Figure 00900003
    Figure 00910001
    worin Alkenyl und Alkenyl* jeweils unabhängig voneinander einen geradkettigen Alkenylrest mit 2 bis 6 C-Atomen, Alkoxy einen geradkettigen Alkoxyrest mit 1 bis 6 C-Atomen und Alkyl einen geradkettigen Alkylrest mit 1 bis 6 C-Atomen bedeuten, enthält.
  3. Flüssigkristallines Medium nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formeln,
    Figure 00910002
    Figure 00920001
    enthält.
  4. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es mindestens eine Verbindung aus der Gruppe der Verbindungen der Formeln I2-2, I2-3 und I2-4,
    Figure 00930001
    enthält.
  5. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen der Formeln II und/oder III,
    Figure 00930002
    worin Ring A 1,4-Phenylen oder trans-1,4-Cyclohexylen, a 0 oder 1 ist, wobei im Fall a = 0 Ring A trans-1,4-Cyclohexylen bedeutet, R3 Alkenyl mit 2 bis 9 C-Atomen bedeuten, und R4 die für R0 in Anspruch 1 angegebenen Bedeutungen besitzt, enthält.
  6. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln,
    Figure 00940001
    Figure 00950001
    Figure 00960001
    worin R3a und R4a jeweils unabhängig voneinander H, CH3, C2H5 oder C3H7 bedeuten, und ”alkyl” eine geradkettige Alkylgruppe mit 1 bis 8 C-Atomen bedeuten, enthält.
  7. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln IV bis VIII,
    Figure 00960002
    Figure 00970001
    worin R0 einen Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CF2O-, -CH=CH-,
    Figure 00970002
    -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch Halogen ersetzt sein können, X0 F, Cl, ein- oder mehrfach fluorierter Alkyl- oder Alkoxyrest mit 1 bis 6 C-Atomen, ein oder mehrfach fluorierter Alkenyl- oder Alkenyloxyrest mit 2 bis 6 C-Atomen Y1-6 jeweils unabhängig voneinander H oder F, Z0 -C2H4-, -(CH2)4-, -CH=CH-, -CF=CF-, -C2F4-, -CH2CF2-, -CF2CH2-, -CH2O-, -OCH2-, -COO-, -CF2O- oder -OCF2-, in den Formeln V und VI auch eine Einfachbindung, und r 0 oder 1 bedeuten, enthält.
  8. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln Va bis Vj,
    Figure 00980001
    Figure 00990001
    worin R0 die in Anspruch 1 und X0 die in Anspruch 7 angegebenen Bedeutungen haben, enthält.
  9. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln VI-1a bis VI-1d,
    Figure 00990002
    Figure 01000001
    worin R0 die in Anspruch 1 und X0 die in Anspruch 7 angegebenen Bedeutungen haben, enthält.
  10. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln VI-2a bis VI-2f,
    Figure 01000002
    Figure 01010001
    worin R0 die in Anspruch 1 und X0 die in Anspruch 7 angegebenen Bedeutungen haben, enthält.
  11. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln X und/oder XI,
    Figure 01010002
    Figure 01020001
    worin R0 die in Anspruch 1 und X0 die in Anspruch 7 angegebenen Bedeutungen haben, Y1-4 jeweils unabhängig voneinander H oder F, und
    Figure 01020002
    jeweils unabhängig voneinander
    Figure 01020003
    bedeuten, enthält.
  12. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formel XII,
    Figure 01020004
    worin R1 und R2 jeweils unabhängig voneinander n-Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen und Y1 H oder F bedeuten, enthält.
  13. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus den Verbindungen der Formeln XIII bis XVI,
    Figure 01030001
    worin R0, X0, Y1 und Y2 die in Anspruch 1 und Anspruch 7 angegebenen Bedeutungen haben, enthält.
  14. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Vierkern-Verbindungen ausgewählt aus den Formeln XIX bis XXVII,
    Figure 01040001
    Figure 01050001
    worin Y1-4, R0 und X0 jeweils unabhängig voneinander eine der in Anspruch 1 und in Anspruch 7 angegebenen Bedeutungen haben, enthält.
  15. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass es 1–25 Gew.% an Verbindungen der Formel I enthält.
  16. Flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass es zusätzlich einen oder mehrere UV-Stabilisatoren und/oder Antioxidantien enthält.
  17. Verwendung eines flüssigkristallinen Mediums nach einem oder mehreren der Ansprüche 1 bis 16 für elektrooptische Zwecke.
  18. Verwendung eines flüssigkristallinen Mediums nach Anspruch 17 in TN-TFT-, OCB-, IPS-, FFS-, positiv VA-, PS-TN-TFT, PS-IPS, PS-FFS-Displays.
  19. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristallines Medium nach einem oder mehreren der Ansprüche 1 bis 16.
  20. Verfahren zur Herstellung eines flüssigkristallinen Mediums nach einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man eine oder mehrere Verbindungen der Formel I mit mindestens einer weiteren mesogenen Verbindung und optional ein oder mehreren Additiven und optional mit ein oder mehreren mesogenen Verwendungen mischt.
  21. Verbindungen der Formeln I2-2, I2-3 und I2-4:
    Figure 01060001
DE102011118210A 2010-11-27 2011-11-11 Flüssigkristallines Medium Withdrawn DE102011118210A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102011118210A DE102011118210A1 (de) 2010-11-27 2011-11-11 Flüssigkristallines Medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010052796 2010-11-27
DE102010052796.3 2010-11-27
DE102011118210A DE102011118210A1 (de) 2010-11-27 2011-11-11 Flüssigkristallines Medium

Publications (1)

Publication Number Publication Date
DE102011118210A1 true DE102011118210A1 (de) 2012-05-31

Family

ID=44925479

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011118210A Withdrawn DE102011118210A1 (de) 2010-11-27 2011-11-11 Flüssigkristallines Medium

Country Status (8)

Country Link
US (1) US20130248762A1 (de)
EP (1) EP2643426B1 (de)
JP (1) JP6574548B2 (de)
KR (1) KR102061271B1 (de)
CN (1) CN103249806B (de)
DE (1) DE102011118210A1 (de)
TW (2) TWI621701B (de)
WO (1) WO2012069151A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020940A1 (de) * 2012-10-25 2014-04-30 Merck Patent Gmbh Flüssigkristallines Medium und elektrooptische Flüssigkristallanzeige
EP2792728B1 (de) * 2013-02-18 2018-03-28 DIC Corporation Flüssigkristallzusammensetzung, flüssigkristallanzeigeelement und flüssigkristallanzeige
WO2018104366A1 (en) * 2016-12-09 2018-06-14 Merck Patent Gmbh Liquid crystalline medium
EP2808375B1 (de) * 2012-10-05 2020-01-22 DIC Corporation Flüssigkristallzusammensetzung und daraus hergestelltes flüssigkristallanzeigeelement

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703472B1 (de) * 2012-08-31 2018-07-04 Merck Patent GmbH Flüssigkristallines Medium
TW201432032A (zh) * 2012-11-09 2014-08-16 Dainippon Ink & Chemicals 液晶組成物及使用此之液晶顯示元件
WO2014102971A1 (ja) * 2012-12-27 2014-07-03 Dic株式会社 フルオロビフェニル含有組成物
CN104812871B (zh) * 2013-03-22 2016-08-17 Dic株式会社 液晶组合物和使用该液晶组合物的液晶显示元件
JP5500323B1 (ja) * 2013-03-25 2014-05-21 Dic株式会社 液晶組成物及びこれを用いた液晶表示素子
TWI462994B (zh) * 2013-03-26 2014-12-01 Dainippon Ink & Chemicals 液晶組成物及使用其之液晶顯示元件
JP2015074701A (ja) * 2013-10-08 2015-04-20 Dic株式会社 組成物及びそれを使用した液晶表示素子
CN104163748B (zh) * 2014-05-30 2015-12-02 京东方科技集团股份有限公司 一种化合物及其制备方法、液晶组合物及其制备方法
KR102388345B1 (ko) 2015-05-29 2022-04-19 삼성디스플레이 주식회사 액정 조성물 및 액정 표시 장치
WO2017012700A1 (en) * 2015-07-21 2017-01-26 Merck Patent Gmbh Liquid-crystal medium
EP3127989B1 (de) * 2015-08-07 2020-12-23 Merck Patent GmbH Flüssigkristallines medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3022818A1 (de) 1980-06-19 1982-01-14 Merck Patent Gmbh, 6100 Darmstadt Fluessigkristall-anzeigeelement
EP0122389A2 (de) 1983-03-16 1984-10-24 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Flüssigkristallkomponenten mit einer Alkenylseitenkette
US6781665B2 (en) 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3006666A1 (de) * 1980-02-22 1981-09-17 Merck Patent Gmbh, 6100 Darmstadt Phenylcyclohexenderivate, verfahren zu ihrer herstellung, diese enthaltende fluessigkristalline dielektrika und elektrooptisches anzeieelement
DE3133884A1 (de) * 1981-08-27 1983-03-10 Bayer Ag, 5090 Leverkusen 2,5-disubstituierte-1,3-dithiane, verfahren zu deren herstellung und verwendung
DE3306960A1 (de) * 1983-02-28 1984-08-30 Merck Patent Gmbh, 6100 Darmstadt Tetrahydropyrane
JPS59176221A (ja) * 1983-03-16 1984-10-05 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング アルケニル化合物
JPH061727A (ja) * 1992-06-17 1994-01-11 Seiko Epson Corp フェニルシクロヘキサン誘導体及びそれを含有する液晶組成物及びその液晶組成物を用いた液晶表示素子
TW368517B (en) * 1995-02-23 1999-09-01 Chisso Corp Liquid crystal alkene-cyclohexene derivatives, liquid crystal composite and liquid crystal display component
JPH09125062A (ja) * 1995-11-02 1997-05-13 Chisso Corp 液晶組成物および電気光学表示素子
JPH09151373A (ja) * 1995-11-29 1997-06-10 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置
JPH09157653A (ja) * 1995-12-12 1997-06-17 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置
JP4091982B2 (ja) * 1996-01-23 2008-05-28 チッソ株式会社 ベンジルエーテル誘導体、液晶組成物および液晶表示素子
JP3843480B2 (ja) * 1996-03-07 2006-11-08 チッソ株式会社 液晶組成物および液晶表示素子
CN1110470C (zh) * 1996-03-18 2003-06-04 智索股份有限公司 双烯基衍生物,液晶化合物及液晶组合物
JPH11302651A (ja) * 1998-04-17 1999-11-02 Seimi Chem Co Ltd 液晶組成物および液晶表示素子
JP3740855B2 (ja) * 1998-08-18 2006-02-01 コニカミノルタホールディングス株式会社 液晶組成物及びこれを用いた液晶表示素子
US6416826B1 (en) * 1998-08-18 2002-07-09 Minolta Co., Ltd. Liquid crystal display element
DE10140419A1 (de) * 2000-09-06 2002-03-14 Merck Patent Gmbh Flüssigkristallines Medium mit niedriger Doppelbrechung
JP4802463B2 (ja) * 2004-07-30 2011-10-26 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
DE102007007143A1 (de) * 2006-10-04 2008-04-10 Merck Patent Gmbh Flüssigkristallines Medium
US8114310B2 (en) * 2007-10-22 2012-02-14 Merck Patent Gmbh Liquid-crystal display
JP4856619B2 (ja) * 2007-12-19 2012-01-18 株式会社 日立ディスプレイズ 液晶表示装置
JP2009185175A (ja) * 2008-02-06 2009-08-20 Toshiba Mobile Display Co Ltd 液晶表示装置
US8262930B2 (en) * 2008-03-19 2012-09-11 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystalline medium and liquid crystal display
US8795552B2 (en) * 2008-08-11 2014-08-05 Merck Patent Gmbh Liquid-crystalline medium
WO2010067661A1 (ja) * 2008-12-08 2010-06-17 チッソ株式会社 液晶組成物および液晶表示素子
DE102010006691A1 (de) * 2009-02-06 2010-10-28 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
TWI461513B (zh) * 2009-11-17 2014-11-21 Jnc Corp 液晶組成物及液晶顯示元件
TWI482839B (zh) * 2010-01-26 2015-05-01 Jnc Corp 液晶組成物及液晶顯示元件
TW201144412A (en) * 2010-05-12 2011-12-16 Jnc Corp Liquid crystal composition and liquid crystal display device
JP5928338B2 (ja) * 2010-11-15 2016-06-01 Jnc株式会社 液晶組成物および液晶表示素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3022818A1 (de) 1980-06-19 1982-01-14 Merck Patent Gmbh, 6100 Darmstadt Fluessigkristall-anzeigeelement
EP0122389A2 (de) 1983-03-16 1984-10-24 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Flüssigkristallkomponenten mit einer Alkenylseitenkette
US6781665B2 (en) 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Merck Liquid Crystals, Physical Properties of Liquid Crystals" Status Nov. 1997, Merck KGaA, Deutschland
C. H. Gooch und H. A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975
C. H. Gooch und H. A. Tarry, Electron. Lett. 10, 2-4, 1974
Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart
STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, p. 145 ff, Paris
TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808375B1 (de) * 2012-10-05 2020-01-22 DIC Corporation Flüssigkristallzusammensetzung und daraus hergestelltes flüssigkristallanzeigeelement
DE102012020940A1 (de) * 2012-10-25 2014-04-30 Merck Patent Gmbh Flüssigkristallines Medium und elektrooptische Flüssigkristallanzeige
DE102012020940B4 (de) * 2012-10-25 2014-12-11 Merck Patent Gmbh Flüssigkristallines Medium und seine Verwendung in einer elektrooptischen Flüssigkristallanzeige
US10106741B2 (en) 2012-10-25 2018-10-23 Merck Patent Gmbh Liquid-crystalline medium and electro-optical liquid-crystal display
EP2792728B1 (de) * 2013-02-18 2018-03-28 DIC Corporation Flüssigkristallzusammensetzung, flüssigkristallanzeigeelement und flüssigkristallanzeige
WO2018104366A1 (en) * 2016-12-09 2018-06-14 Merck Patent Gmbh Liquid crystalline medium

Also Published As

Publication number Publication date
TWI621701B (zh) 2018-04-21
KR20140001959A (ko) 2014-01-07
KR102061271B1 (ko) 2019-12-31
JP6574548B2 (ja) 2019-09-11
JP2014503615A (ja) 2014-02-13
TW201226538A (en) 2012-07-01
TW201708516A (zh) 2017-03-01
CN103249806B (zh) 2016-03-02
EP2643426B1 (de) 2016-11-09
US20130248762A1 (en) 2013-09-26
EP2643426A1 (de) 2013-10-02
WO2012069151A1 (de) 2012-05-31
TWI686463B (zh) 2020-03-01
CN103249806A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
EP2652087B1 (de) Flüssigkristallines medium
EP2242819B1 (de) Flüssigkristallines medium
EP2643426B1 (de) Flüssigkristallines medium
EP1908811B1 (de) Flüssigkristallines Medium
EP2057251B1 (de) Flüssigkristallines medium
EP2250235B1 (de) Flüssigkristallines medium
EP3127989B1 (de) Flüssigkristallines medium
EP2837671B1 (de) Flüssigkristallines Medium
EP2909286B1 (de) Flüssigkristallines medium
EP1908812B1 (de) Flüssigkristallines Medium
EP2725083B1 (de) Flüssigkristallines Medium
DE102011016189A1 (de) Flüssigkristallines Medium
DE102011009337A1 (de) Flüssigkristallines Medium
EP2516589B1 (de) Flüssigkristallines medium
EP2646525B1 (de) Flüssigkristallines medium
EP3331965B1 (de) Flüssigkristallines medium
EP2935514B1 (de) Flüssigkristallines medium
DE102007042414A1 (de) Flüssigkristallines Medium

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination