DE102011108276A1 - Flüssigkristallines Medium und Flüssigkristallanzeigen - Google Patents

Flüssigkristallines Medium und Flüssigkristallanzeigen Download PDF

Info

Publication number
DE102011108276A1
DE102011108276A1 DE201110108276 DE102011108276A DE102011108276A1 DE 102011108276 A1 DE102011108276 A1 DE 102011108276A1 DE 201110108276 DE201110108276 DE 201110108276 DE 102011108276 A DE102011108276 A DE 102011108276A DE 102011108276 A1 DE102011108276 A1 DE 102011108276A1
Authority
DE
Germany
Prior art keywords
component
group
atoms
independently
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201110108276
Other languages
English (en)
Inventor
Dr. Archetti Graziano
Dr. Czanta Markus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE201110108276 priority Critical patent/DE102011108276A1/de
Publication of DE102011108276A1 publication Critical patent/DE102011108276A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Abstract

Die vorliegende Erfindung betrifft flüssigkristalline Medien und diese enthaltende Flüssigkristallanzeigen (FK-Anzeigen) mit homöotroper (vertikaler) Ausrichtung des flüssigkristallinen Mediums (FK-Medium). Das erfindungsgemäße FK-Medium mit positiver dielektrischer Anisotropie enthält Teilchen mit einer Masse von mindestens 450 Da, die durch eine polare, organische Ankergruppe funktionalisiert sind. Vorzugsweise wird es durch eine polymerisierbare Komponente stabilisiert.

Description

  • Die vorliegende Erfindung betrifft flüssigkristalline Medien und diese enthaltende Flüssigkristallanzeigen (FK-Anzeigen) mit homöotroper (vertikaler) Ausrichtung des flüssigkristallinen Mediums (FK-Medium). Das erfindungsgemäße FK-Medium mit positiver dielektrischer Anisotropie enthält Teilchen mit einer Masse von mindestens 450 Da, die durch eine polare, organische Ankergruppe funktionalisiert sind. Vorzugsweise wird es durch eine polymerisierbare Komponente stabilisiert.
  • Das Prinzip der elektrisch kontrollierten Doppelbrechung, der ECB-Effekt (electrically controlled birefringence) oder auch DAP-Effekt (Deformation aufgerichteter Phasen) wurde erstmals 1971 beschrieben (M. F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912). Es folgten Arbeiten von J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) und G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869).
  • Die Arbeiten von J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30), J. Duchene (Displays 7 (1986), 3) und H. Schad (SID 82 Digest Techn. Papers (1982), 244) haben gezeigt, dass flüssigkristalline Phasen hohe Werte für das Verhältnis der elastischen Konstanten K3/K1, hohe Werte für die optische Anisotropie Δn und Werte für die dielektrische Anisotropie von Δε ≤ –0,5 aufweisen müssen, um für hochinformative Anzeigeelemente basierend auf dem ECB-Effekt eingesetzt werden zu können. Auf dem ECB-Effekt basierende elektrooptische Anzeigeelemente weisen eine homöotrope Randorientierung auf (VA-Technologie = Vertical Aligned).
  • Anzeigen, die den ECB-Effekt verwenden, haben sich als sogenannte VAN-(Vertically Aligned Nematic)Anzeigen beispielsweise in den Bauformen MVA (Multi-Domain Vertical Alignment, z. B.: Yoshide, H. et al., Vortrag 3.1: "MVA LCD for Notebook or Mobile PCs ..., SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9 und Liu, C. T. et al., Vortrag 15.1: "A 46-inch TFT-LCD HDTV Technnology ..., SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753), PVA (Patterned Vertical Alignment, z. B.: Kim, Sang Soo, Vortrag 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763), ASV-(Advanced Super View, z. B.: Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757) Anzeigen, neben IPS (In Plane Switching) (z. B.: Yeo, S. D., Vortrag 15.3: "A LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 & 759) und den lange bekannten TN-(Twisted Nematic)Anzeigen, als eine der drei zur Zeit wichtigsten neueren Typen von Flüssigkristallanzeigen, insbesondere für Fernsehanwendungen, etabliert. In allgemeiner Form werden die Technologien z. B. in Souk, Jun, SIDSeminar 2004, Seminar M-6: "Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SIDSeminar 2004, Seminar M-7: "LCD-Television", Seminar Lecture Notes, M-7/1 bis M-7/32, verglichen. Obwohl die Schaltzeiten moderner ECB-Anzeigen durch Ansteuerungsmethoden mit Übersteuerung (overdrive) bereits deutlich verbessert wurden, z. B.: Kim, Hyeon Kyeong et al., Vortrag 9.1: "A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109, ist die Erzielung von videotauglichen Schaltzeiten, insbesondere beim Schalten von Graustufen, immer noch ein noch nicht zufriedenstellend gelöstes Problem.
  • VA-Anzeigen die FK-Medien mit positiver dielektrischer Anisotropie enthalten, werden in S. H. Lee et al. Appl. Phys. Lett. (1997), 71, 2851–2853 beschrieben. Diese Anzeigen verwenden auf eine Substratoberfläche angeordnete Interdigitalelektroden (In-plane Ansteuerelektroden-Konfiguration kammförmiger Struktur), wie sie unter anderem bei den kommerziell erhältlichen IPS-(in-plane switching)Anzeigen zum Einsatz kommen (wie z. B. in DE 40 00 451 und EP 0 588 568 offenbart), und weisen eine homöotrope Anordnung des Flüssigkristallmediums auf, die zu einer planaren Anordnung beim Anlegen einer elektrischen Feldes wechselt.
  • Weiterentwicklungen der obengenannte Anzeige sind zum Beispiel in K. S. Hun et al. J. Appl. Phys. (2008), 104, 084515 (DSIPS: 'double-side in-plane switching' für Verbesserungen von Treiberspannung und Transmission), M. Jiao et al. App. Phys. Lett (2008), 92, 111101 (DFFS: 'dual fringe field switching für verbesserte Schaltzeiten) und Y. T. Kim et al. Jap. J. App. Phys. (2009), 48, 110205 (VAS: 'viewing angle switchable' LCD) zu finden. Darüberhinaus sind VA-IPS-Anzeigen auch unter dem Namen Positiv-VA und HT-VA bekannt.
  • Bei allen solche Anzeigen (hier nachfolgend allgemein als VA-IPS-Anzeigen bezeichnet) ist auf beiden Substratoberflächen eine Orientierungsschicht zur homöotropen Ausrichtung des FK-Mediums aufgebracht, deren Erzeugung bisher mit einem beträchtlichen Aufwand verbunden ist.
  • Ein Ziel dieser Erfindung ist es, die Herstellprozesse selbst zu vereinfachen, ohne die Vorteile der VA-IPS-Technik, wie relativ schnelle Schaltzeiten, gute Blickwinkelabhängigkeit und hohen Kontrast aufzugeben.
  • Für die technische Anwendung dieses Effektes in elektrooptischen Anzeigeelementen werden FK-Phasen benötigt, die einer Vielzahl von Anforderungen genügen müssen. Besonders wichtig sind hier die chemische Beständigkeit gegenüber Feuchtigkeit, Luft, den Materialien in den Substratoberflächen und physikalischen Einflüssen wie Wärme, Strahlung im infraroten, sichtbaren und ultravioletten Bereich und elektrische Gleich- und Wechselfelder.
  • Ferner wird von technisch verwendbaren FK-Phasen eine flüssigkristalline Mesophase in einem geeigneten Temperaturbereich und eine niedrige Viskosität gefordert.
  • VA-Anzeigen sollen im Allgemeinen einen sehr hohen spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurze Schaltzeiten und niedriger Schwellenspannung, mit deren Hilfe verschiedene Graustufen erzeugt werden können, besitzen.
  • In den herkömmlichen VA-IPS-Displays sorgt eine Polyimidschicht auf den Substratoberflächen für die homöotrope Orientierung des Flüssigkristalls. Die Herstellung einer geeigneten Orientierungsschicht im Display erfordert einen erheblichen Aufwand. Außerdem können Wechselwirkungen der Orientierungsschicht mit dem FK-Medium den elektrischen Widerstand der VA-IPS-Anzeige verschlechtern. Wegen solcher möglichen Wechselwirkungen reduziert sich die Zahl der geeigneten Flüssigkristallkomponenten erheblich. Daher wäre es erstrebenswert die homöotrope Ausrichtung des FK-Mediums ohne Polyimid zu erreichen. Dies würde gleichzeitig die Herstellprozesse der VA-IPS-Anzeige vereinfachen.
  • Der Nachteil der häufig verwendeten TN-Anzeigen (TN: 'twisted nematic') beruht in ihrem vergleichsweise niedrigen Kontrast, der relativ hohen Blickwinkel-abhängigkeit und der Schwierigkeit in diesen Anzeigen Graustufen zu erzeugen.
  • Wesentlich bessere Blickwinkelabhängigkeiten weisen IPS- und VA-Displays auf und werden daher hauptsächlich für Fernseher und Monitore verwendet.
  • Eine Weiterentwicklung stellen die sogenannten PS- bzw. PSA-Anzeigen (”Polymer Sustained” bzw. ”Polymer Sustained Alignment”) dar, für die auch gelegentlich der Begriff ”Polymer Stabilized” verwendet wird. Ohne nennenswerte Einbußen sonstiger Parameter, wie insbesondere der günstigen Blickwinkelabhängigkeit des Kontrastes, zeichnen sich die PSA-Anzeigen durch die Verkürzung der Schaltzeiten aus.
  • In diesen Anzeigen wird dem FK-Medium eine geringe Menge (zum Beispiel 0,3 Gew.-%, typischerweise < 1 Gew.-%) einer oder mehrerer polymerisierbarer Verbindungen) zugesetzt, welche nach Einfüllen in die FK-Zelle mit oder ohne angelegte elektrische Spannung zwischen den Elektroden in situ polymerisiert bzw. vernetzt wird, üblicherweise durch UV-Photopolymerisation. Als besonders geeignet hat sich der Zusatz von polymerisierbaren mesogenen oder flüssigkristallinen Verbindungen, auch als reaktive Mesogene oder ”RM”s bezeichnet, zur FK-Mischung erwiesen. Die PSA-Technik wird bisher hauptsächlich für FK-Medien mit negativer dielektrischer Anisotropie eingesetzt.
  • Nachfolgend wir der Begriff ”PSA”, falls nicht anders angegeben, stellvertretend für PS-Anzeigen und PSA-Anzeigen verwendet.
  • Mittlerweile wird das PSA-Prinzip in diversen klassischen FK-Anzeigen angewendet. So sind beispielsweise PSA-VA-, PSA-OCB-, PSA-IPS-, PSA-FFS- und PSA-TN-Anzeigen bekannt. Die Polymerisation der polymerisierbaren Verbindung(en) erfolgt bei PSA-VA- und PSA-OCB-Anzeigen vorzugsweise bei angelegter elektrischer Spannung, bei PSA-IPS-Anzeigen mit oder ohne angelegte elektrische Spannung. Wie man in Testzellen nachweisen kann, führt das PS(A)-Verfahren zu einem 'pretilt' in der Zelle. Bei PSA-OCB-Anzeigen beispielsweise kann man erreichen, dass die Bend-Struktur stabilisiert wird, so dass man ohne Offset-Spannung auskommt oder diese reduzieren kann.
  • PSA-VA-Anzeigen sind beispielsweise in JP 10-036847 A , EP 1 170 626 A2 , US 6,861,107 , US 7,169,449 , US 2004/0191428 A1 , US 2006/0066793 A1 und US 2006/0103804 A1 beschrieben. PSA-OCB-Anzeigen sind beispielsweise in T.-J-Chen et al., Jpn. J. Appl. Phys. 45, 2006, 2702–2704 und S. H. Kim, L.-C-Chien, Jpn. J. Appl. Phys. 43, 2004, 7643–7647 beschrieben. PSA-IPS-Anzeigen sind zum Beispiel in US 6,177,972 und Appl. Phys. Lett. 1999, 75(21), 3264 beschrieben. PSA-TN-Anzeigen sind zum Beispiel in Optics Express 2004, 12(7), 1221 beschrieben. PSA-VA-IPS Anzeigen sind zum Beispiel in WO 2010/089092 A1 beschrieben.
  • PSA-Anzeigen können ebenso wie die oben beschriebenen konventionellen FK-Anzeigen als Aktivmatrix- oder Passivmatrix-Anzeigen betrieben werden. Bei Aktivmatrix-Anzeigen erfolgt die Ansteuerung einzelner Bildpunkte üblicherweise durch integrierte, nicht-lineare aktive Elemente wie beispielsweise Transistoren (z. B. Dünnfilmtransistoren, engl. ”thin film transistor” bzw. ”TFT”), bei Passivmatrix-Anzeigen üblicherweise nach dem Multiplex-Verfahren, wobei beide Verfahren aus dem Stand der Technik bekannt sind.
  • Im Stand der Technik werden für PSA-VA beispielsweise polymerisierbare Verbindungen der folgenden Formel verwendet
    Figure 00070001
    worin P eine polymerisierbare Gruppe, üblicherweise eine Acrylat- oder Methacrylatgruppe bedeutet, wie beispielsweise in US 7,169,449 beschrieben.
  • Der Aufwand für das Erzeugen einer Polyimidschicht, Behandlung der Schicht und Verbesserung mit Erhebungen oder Polymerschichten, ist relativ groß. Eine vereinfachende Technologie wäre daher wünschenswert, die einerseits die Produktionskosten verringert und andererseits die Bildqualität (Blickwinkelabhängigkeit, Kontrast, Schaltzeiten) zu optimieren hilft.
  • Über eine spontane horizontale bis vertikale Ausrichtung einer Flüssigkristallschicht mit Hilfe von Nanopartikeln basierend auf polyhedralen oligomeren Silsesquioxanen (nachfolgend einfach Silsesquioxane, PSS) berichtet die Druckschrift Shie-Chang Jeng et al. Optics Letters (2009), 34, 455–457. Ab einer Konzentration von ca. 1 Gew.-% wird eine nahezu homöotrope Ausrichtung beobachtet. Der 'pretilt' ist nur durch die Konzentration beeinflussbar.
  • In der Druckschrift US 2008/0198301 A1 ( US 7550094 B2 ) wird ebenfalls PSS als homöotropes Orientierungsmaterial für Flüssigkristallmedien vorgeschlagen. Eine Anwendung auf VA-IPS-Anzeigen wird nicht offenbart.
  • Die Druckschrift JP 2010170090 A offenbart ein Dendrimer als Zusatz zu Flüssigkristallmischungen, das ein vertikale Ausrichtung gegenüber Substraten bewirkt.
  • Shug-June Hwang et al. J. Phys D: Appl. Phys 2009, 42, 025102 offenbaren aminsubstituiertes POSS (1%) zur vertikalen Ausrichtung einer dielektrisch negativen Flüssigkristallmischung.
  • Auf das Problem der Temperaturabhängigkeit des Schaltvorgangs und der fehlenden Passivierungsschicht wird in diesen Druckschriften nicht hingewiesen. In der Tat hat es sich gezeigt, dass der Grad der von PSS induzierten homöotropen Orientierung mit steigender Temperatur rasch abnimmt. Eine Passivierungsschicht ist darüber hinaus besonders wichtig, da die Polyimidschicht nicht nur Orientierung der FK-Medium bietet sondern auch für elektrische Isolierung sorgt. Ohne Passivierungsschicht können Probleme mit der Zuverlässigkeit der Anzeige ('Reliability') wie R-DC ('Residual-DC') erscheinen.
  • Die bestehenden Ansätze um zu Displayanwendungen ohne Polyimidschicht zu gelangen sind daher noch nicht vollständig zufrieden stellend.
  • Ein Gegenstand der vorliegenden Erfindung ist ein FK-Medium enthaltend eine niedermolekulare flüssigkristalline Komponente mit einer positiven dielektrischen Anisotropie vom Wert Δε ≥ 1,5 und eine Komponente (N) enthaltend Teilchen mit einer Masse von mindestens 450 Da, wobei die Teilchen eine oder mehrere organische polare Ankergruppen umfassen.
  • Ein erfindungsgemäßes FK-Medium zeigt eine spontane homäotrope (vertikale) Ausrichtung gegenüber einer üblichen Substratoberfläche, wie z. B. einer Oberfläche aus Glas oder mit ITO oder Polyimid beschichtetem Glas.
  • Bevorzugt enthält das FK-Medium zusätzlich eine polymerisierte oder polymerisierbare Komponente, wobei die polymerisierte Komponente erhältlich ist durch Polymerisation einer polymerisierbaren Komponente.
  • Mit dieser Komponente lässt sich das FK-Medium und insbesondere seine Orientierung stabilisieren und gegebenenfalls ein gewünschter 'pre-tilt' einstellen.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines FK-Mediums indem man eine niedermolekulare flüssigkristalline Komponente mit einer positiven dielektrischen Anisotropie vom Wert Δε ≥ 1,5 mit einer Komponente (N) wie vor und nachstehend beschrieben mischt und optional eine oder mehrere polymerisierbare Verbindungen und/oder Hilfsstoffe zugibt.
  • Ein weiterer Gegenstand der vorliegende Erfindung ist eine Flüssigkristallanzeige (FK-Anzeige) umfassend eine Flüssigkristallzelle (FK-Zelle) mit zwei Substraten und mindestens zwei Elektroden, wobei mindestens ein Substrat lichtdurchlässig ist und mindestens ein Substrat eine oder zwei, bevorzugt zwei, Elektroden aufweist, sowie einer zwischen den Substraten befindlichen Schicht eines Flüssigkristallmediums (FK-Mediums) enthaltend eine niedermolekulare flüssigkristalline Komponente mit einer positiven dielektrischen Anisotropie vom Wert Δε ≥ 1,5 und eine Komponente (N) wie vor und nachstehend definiert, die geeignet ist, eine homöotrope (vertikale) Ausrichtung des FK-Mediums gegenüber den Substratoberflächen herbeizuführen.
  • Bevorzugt enthält das FK-Medium der FK-Anzeige eine polymerisierte oder polymerisierbare Komponente, wobei die polymerisierte Komponente erhältlich ist durch Polymerisation einer oder mehrerer polymerisierbarer Verbindungen in dem FK-Medium zwischen den Substraten der FK-Zelle, optional unter Anlegen einer elektrischen Spannung an die Elektroden der Zelle.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zu Herstellung einer FK-Anzeige, vorzugsweise des PSA-VA-Typs, enthaltend eine FK-Zelle mit zwei Substraten und mindestens zwei Elektroden, wobei mindestens ein Substrat lichtdurchlässig ist und vorzugsweise mindestens ein Substrat eine oder zwei, bevorzugt zwei, Elektroden aufweist, umfassend die Verfahrensschritte:
    • – Befüllen der Zelle mit einem LC-Medium enthaltend ein FK-Medium wie vor und nachstehend oder in den Ansprüchen beschrieben, eine Komponente (N), die geeignet ist, eine homöotrope (vertikale) Ausrichtung des FK-Mediums gegenüber den Substratoberflächen herbeizuführen und optional eine polymerisierbare Komponente, und
    • – optional polymerisieren der polymerisierbaren Komponente, optional unter Anlegen einer Spannung an die Elektroden der Zelle oder unter der Wirkung eines elektrischen Feldes.
  • Die Komponente (N) wird im Flüssigkristall gelöst oder dispergiert. Sie bewirkt eine homöotrope Ausrichtung des Flüssigkristalls gegenüber den Substratoberflächen. Sie umfasst Teilchen mit einer Masse von mindestens 450 Da, wobei die Teilchen eine oder mehrere organische polare Ankergruppen umfassen, bevorzugt mit einem Anteil von 50, 75, 90 Gew.-% oder mehr, besonders bevorzugt besteht die Komponente (N) vollständig aus solchen Teilchen. Die Masse der Teilchen beträgt bevorzugt 600 Da oder mehr, und 2000 Da oder weniger. Die Komponente (N) sollte chemisch inert, alterungsbeständig und bevorzugt lipophil sein, um im Kontakt mit FK-Medien kompatibel und löslich oder dispergierbar zu sein. Geeignete Teilchen der Komponente (N) sind beispielsweise Silsesquioxanverbindungen mit einer polaren Ankergruppe, die sowohl als chemische Verbindungen als auch als Nanopartikel von ca. 1–5 nm Größe aufgefasst werden können. Alternativ kommen hier auch andere große Molekülreste als Teilchen zum Einsatz, die eine molekular definierte Struktur besitzen, und eine polare, organische Ankergruppe aufweisen. Beispiele für solche Reste sind z. B. funktionalisierte Fullerene, Varianten der Silsesquioxane, tetrasubstituierte Methanderivate und andere dreidimensionale molekulare Gerüste mit einer wie oben definierten Masse. Grundsätzlich können die Teilchen organische Moleküle sein oder organisch/anorganische Hybrid-Teilchen. Der anorganische Teil kann eine molekular definierte Struktur (z. B. PSS) aufweisen, oder eine Ansammlung von Atomen sein (Cluster, Metallnanopartikel, Nanokristalle, etc.).
  • Die Teilchen der Komponente (N) besitzen einen Durchmesser größer oder gleich 1 nm, vorzugsweise einen Durchmesser von 1 bis 5 nm. Es ist bevorzugt, dass die Teilchen der Komponente (N) ein Seitenverhältnis dmax/dmin von höchstens 3:1, bevorzugt 2:1 oder weniger besitzen. Dabei bezeichnet dmax die maximale Längenausdehnung und dmin die minimale Längenausdehnung eines nichtsphärischen Teilchens. Bei stäbchenförmigen Teilchen bezeichnet dmax die Länge, und dmin die Breite bzw. den geringsten Durchmesser. Bei plättchenförmigen Teilchen bezeichnet dmax den Durchmesser und dmin die Dicke. Die größte Längenausdehnung sollte bevorzugt 1 nm oder mehr betragen, bevorzugt sind 1–5 nm. Für Teilchen, deren Struktur nicht vollständig beschrieben werden kann, wird der mittlere Durchmesser verwendet in der Annahme, dass das Teilchen annähernd sphärisch ist. In diesem Fall ist der mittlere Durchmesser anstelle der größten Längenausdehnung anzusetzen. Gleiches gilt für statistische Größenverteilungen. Die Größenverhältnisse molekularer Strukturen lassen sich mit Hilfe von einfachen Modellen oder Berechungen der Molekülstruktur abschätzen, indem man gängige Bindungswinkel, Bindungslängen und Van-der-Waals-Radien der beteiligten Atome annimmt. Die Größe und Form von anderen nanopartikulären Stoffen lassen sich durch Streuungsmethoden in Lösung oder Transmissionselektronenmikroskopie (TEM) hinreichend genau bestimmen.
  • Die Teilchen der Komponente (N) werden vorzugsweise in einer Konzentration von weniger als 10 Gew.-%, besonders bevorzugt ≤ 8 Gew.-% und ganz besonders ≤ 5 Gew.-% eingesetzt. Sie werden bevorzugt in einer Konzentration von mindestens 0,1 Gew.-% eingesetzt, bevorzugt mindestens 0,2 Gew.-%. Der Einsatz von 0,1 bis 0,5 Gew.-% der Komponente (N) führt in der Regel schon zu vollständig homöotroper Orientierung der FK-Schicht bei den üblichen Zelldicken (3 bis 4 μm).
  • Die Ankergruppe der Komponente (N) besteht bevorzugt aus einer Gruppe, die eine nicht-kovalente Wechselwirkung mit der Substratoberfläche aus Glas oder Metalloxiden eingeht. Geeignete Gruppen sind polare Gruppen umfassend Gruppen mit Atomen ausgewählt aus N, O, S, und P, die vorzugsweise gleichzeitig gegenüber Luft und Wasser stabil sind. Bevorzugt sind ein oder mehrere, bevorzugt zwei oder mehr, dieser Heteroatome in der Ankergruppe enthalten.
  • Die Ankergruppe besteht bevorzugt aus ein bis zwei separaten Strukturelementen enthaltend Heteroatome, ausgewählt aus N und O, und kovalenten, verknüpfenden Strukturen zwischen den Strukturelementen und zwischen einem oder mehreren der Strukturelemente und dem Rest des Teilchens (= das Teilchen ohne die Ankergruppe). Diese kovalenten Strukturen bestehen aus kettenförmigen oder cyclischen aliphatischen Resten und/oder aromatischen Ringen, bevorzugt aus gesättigten Kohlenwasserstoffketten und/oder aliphatischen Ringen. Aliphatische Ringe umfassen z. B. Cyclohexan und Cyclopentan. Aromatische Ringe umfassen vorzugsweise Benzol, z. B. 1,4-, 1,3- oder 1,2-Phenylen.
  • Geeignete Ankergruppen umfassen daher neben einem Kohlenwasserstoffgerüst als Heteroatome N und O, wie beispielsweise in Strukturelementen wie -NH2, -NH- (sekundäres Amin), tert-N (tertiäres Amin), =N-, -OH, -SH, -CN, -(CO)-, -O-, -S- und Kombinationen aus zwei oder mehreren dieser Gruppen. Bevorzugt sind dabei Gruppen, die mit den FK-Displays und dem FK-Medium kompatibel sind. Weniger bevorzugt sind in der Regel saure Gruppen wie -(CO)OH, -S(O)2OH, -P(O)(OH)2, etc., sowie ionische Gruppen. Eine bevorzugte Komponente (N) ist dadurch gekennzeichnet, dass die Verbindungen oder Partikel der Komponente (N) durch eine Ankergruppe umfassend mindestens eine, zwei oder mehr primäre oder sekundäre Amin-Funktionen (tert-N, -NH-, -NH2), Ether-Gruppen (-O-) oder Hydroxygruppen (-OH) funktionalisiert sind. Bevorzugt sind es zwei oder mehr dieser Funktionen in einer Ankergruppe. Bevorzugt sind dabei zwei Heterofunktionen so zueinander angeordnet, dass sie eine Wechselwirkung mit einem Atom eines Bindungspartners nach Art eines zwei- oder mehrzähnigen Chelat-Liganden aufnehmen können. In einem einfachen, beispielhaften Fall entspricht die Art und Stellung der Aminofunktionen denen eines Ethylendiamins (-NH-CH2CH2-NH2).
  • Teilchen der Komponente (N) haben in einer bevorzugten Ausführungsform die allgemeine Formel O-A* worin
    A* die polare Ankergruppe bedeutet, und
    O für das restliche Teilchen ohne die Ankergruppe steht. Das restliche Teilchen O bestimmt im Wesentlichen die Größe des Teilchens und in der Regel den Hauptanteil (≥ 90%) der Masse.
  • Die Ankergruppe A* bedeutet bevorzugt eine Gruppe der Formel -Sp-[X2-Z2-]kX1 (A1) worin jeweils unabhängig
    Sp eine Einfachbindung oder eine Abstandsgruppe über die eine Verbindung zum Teilchen hergestellt wird, definiert wie Spa wie nachstehend für Formel I definiert, bevorzugt eine Abstandsgruppe -Sp''-X''- wie für Formel I unten definiert, die über die Gruppe X'' mit dem Teilchen verbunden ist, wobei Sp'' ganz besonders eine Einfachbindung oder ein Alkylen mit 1 bis 12 C-Atomen bedeutet,
    X1 eine Gruppe -NH2, -NHR1 -NR1 2, -CN, -OR1, -OH, -(CO)OH, oder eine Gruppe der Formeln
    Figure 00150001
    R0 H oder Alkyl mit 1 bis 12 C-Atomen,
    X2 jeweils unabhängig -NH-, -NR1-, -O- oder eine Einfachbindung
    Z2 jeweils unabhängig eine Alkylengruppe mit 1-15 C-Atomen, carbocyclische Ringe mit 5 oder 6 C-Atomen (z. B. optional substituiertes Benzol, Cyclohexan), oder Kombinationen aus einem oder mehreren Ringen und Alkylengruppen, worin jeweils optional ein oder mehrere Wasserstoffatome durch -OH, OR1, -NH2, -NHR1-, -NR1 2, oder Halogen (bevorzugt F, Cl) ersetzt sind,
    R1 jeweils unabhängig einen halogenierten oder unsubstituierten Alkylrest mit 1 bis 15 C-Atomen, wobei in diesem Rest auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -(CO)O-, -O(CO)-, -(CO)- oder -O- so ersetzt sein können, dass O- und N-Atome nicht direkt miteinander verknüpft sind,
    und wobei die Gruppen R1 optional miteinander zu Ringsystemen verknüpft sein können, und
    k 0 bis 3
    bedeutet. Im Speziellen besteht die Ankergruppe aus diesem Rest und bedeutet A*.
  • Besonders bevorzugt umfasst die Ankergruppe der Komponente (N) einen (N/O)-heteroatomhaltigen Rest der Teilformel (A2)
    Figure 00160001
    worin Sp, X1, X2 und R1 wie oben für Formel (A1) definiert sind, und
    R2 H, F, Cl, CN, -OH, -NH2, oder einen halogenierten oder unsubstituierten Alkylrest mit 1 bis 15 C-Atomen, wobei in diesem Rest auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -(CO)O-, -O(CO)-, -(CO)-, -O-, -NH-, oder -NR1- so ersetzt sein können, dass O- und N-Atome nicht direkt miteinander verknüpft sind, und
    n 1, 2 oder 3,
    bedeutet. Im Speziellen besteht die Ankergruppe aus diesem Rest und bedeutet A*.
  • Besonders bevorzugte stickstoffhaltige Ankergruppen A* sind ausgewählt aus
    -NH2, -NH-(CH2)n3H, -(CH2)n-NH2, -(CH2)n-NH-(CH2)n3H, -NH-(CH2)n-NH2, -NH-(CH2)n-NH-(CH2)n3H, -(CH2)n1-NH-(CH2)n2-NH2, -(CH2)n1-NH-(CH2)n2-NH-(CH2)n3H, -O-(CH2)n-NH2, -(CH2)n1-O-(CH2)n-NH2, -(CH2)n1-NH-(CH2)n2-OH, -O-(CH2)n1-NH-(CH2)n2-NH2, -O-(CH2)n1-NH-(CH2)n2-OH, -(CH2)n1-NH-(CH2)n2-NH-(CH2)n3H,
    worin n, n1, n2 und n3 unabhängig 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12, insbesondere 1, 2, 3 oder 4 bedeuten. Die mehrfach mit Heteroatomen (N, O) ausgestatteten Gruppen besitzen eine besondere Stärke als Ankergruppe. Sie können in kleineren Konzentrationen eingesetzt werden.
  • Besonders bevorzugte stickstofffreie Ankergruppen A* sind ausgewählt aus -OH, -(CH2)n-OH, -O-(CH2)n-OH, -[O-(CH2)n1-]n2-OH, -(CO)OH, -(CH2)n-(CO)OH, -O-(CH2)n-(CO)OH oder -[O-(CH2)n1-]n2-(CO)OH,
    worin n, n1 und n2 unabhängig 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12, insbesondere 1, 2, 3 oder 4 bedeuten. Diese sind sehr gut kompatibel mit flüssigkristallinen Medien.
  • Die verwendeten Teilchen können untereinander gleich oder verschieden sein. Sie können sich entweder durch die molekulare Struktur unterscheiden oder durch eine statistische Massenverteilung eines Nanopartikels oder durch Isotopenverteilungen.
  • In der Regel besitzt ein Teilchen genau eine Ankergruppe. Mehrere Ankergruppen sind jedoch nicht ausgeschlossen. Bei Teilchen, die durch nachfolgende oder vorausgehende Polymerisation zusammenhängen, entstehen übergeordnete Teilchen, die mehrere Ankergruppen aufweisen. Beispiele dieser Art sind Dimere oder Oligomere von polyhedralen Silsesquioxanen, die an jeder PSS-Einheit durch eine Ankergruppe funktionalisiert sind. Der Zusammenschluss von mehreren PSS-Kernen erfolgt über die an die Ecken gebundenen organischen Reste. Der PSS-Kern kann auch aufgebrochen sein und selbst mehrere OH-Gruppen als Anker aufweisen (vgl. Struktur PSS-7 unten). Bevorzugte Teilchen der Komponente (N) besitzen ein polare Ankergruppe, sind aber an der Oberfläche des Teilchens durch Kohlenwasserstoffreste, bevorzugt durch unfunktionalisierte aliphatische Reste passiviert.
  • Bevorzugte Teilchen, die Silsesquioxane sind, haben die allgemeine Struktur PSS-0:
    Figure 00170001
    worin
    A* eine Ankergruppe, wie vor- und nachstehend beschrieben, und
    R4 jeweils unabhängig einen optional halogenierten Kohlenwasserstoffrest, bevorzugt einen unfunktionalisierten oder halogenierten aliphatischen Rest, einen aromatischen Rest (insbesondere Benzolrest) oder Kombinationen davon, besonders bevorzugt einen Alkylrest oder einen Alkenylrest mit jeweils bis zu 15 C-Atomen, der optional durch Phenyl und/oder Halogen ein oder mehrfach substituiert ist,
    bedeuten.
  • Besonders bevorzugte Teilchen als Komponente (N) sind ausgewählt aus den folgenden beispielhaften Verbindungen, welche bevorzugte Substituenten illustrieren:
    Figure 00180001
    Figure 00190001
    Figure 00200001
  • In einer weiteren bevorzugten Ausführungsform der Erfindung werden als Komponente (N) Teilchen verwendet, die als weitere Funktionalisierung neben dem polaren Anker eine oder mehrere polymerisierbare Gruppen aufweisen (vergleiche Gruppe Pa oder Pb unten). Bevorzugte polymerisierbare Gruppen sind Gruppen wie Acrylat-, Methacrylat-, Fluoracrylat-, Oxetan-, Vinyloxy- oder Epoxygruppe, besonders bevorzugt Acrylat und Methacrylat. Durch den Einschluss der Komponente (N) in die Polymerisation werden die Nanopartikel nachhaltig immobilisiert, wodurch sie ihre Funktion beibehalten.
  • Ein Vorteil der erfindungsgemäßen FK-Anzeigen ist, dass die Anzeige ohne die übliche Polyimid-Orientierungsschicht die gewünschte homöotrope Orientierung erreicht. Durch eine Polymerstabilisierung bleibt diese Orientierung auch bei hohen Temperaturen erhalten. Durch die Ankergruppe und die optionale Polymerstabiliseirung wird eine verbesserte Temperaturstabilität des elektrooptischen Schaltens erreicht. Die erfindungsgemäßen polymerstabilierten Anzeigen zeichnen sich durch verbesserte Schaltzeiten und besseres Kontrastverhältnis (Pretilt-Winkel und Temperaturabhängigkeit des Kontrasts) aus. Die polymerisierte Komponente kann gleichzeitig als eine Passivierungsschicht dienen, die die Zuverlässigkeit (die sog. 'reliability') des Displays erhöht. Die kleine Menge an Komponente (N) beeinflusst die Eigenschaften der FK-Medien praktisch unerheblich, daher kann eine breite Vielfalt an Flüssigkristall Komponenten in der FK-Anzeige verwendet werden.
  • Die erfindungsgemäßen FK-Anzeigen besitzen daher bevorzugt keine Orientierungsschicht ('alignment layer') für homöotrope Ausrichtung auf den Oberflächen der FK-Zelle.
  • Die erfindungsgemäßen FK-Anzeigen verwenden ein FK-Medium mit positiver dielektrischer Anisotropie (Δε ≥ 1,5). In der Regel handelt es sich dabei um eine VA-IPS-Anzeige mit mindestens auf einer Seite der FK-Zelle angeordneten Elektroden, bevorzugt mit Elektroden, die so angeordnet sind, dass sie ein überwiegend planar zur Substratoberfläche orientiertes elektrisches Feld erzeugen können, z. B. Interdigitalelektroden.
  • Die FK-Anzeigen sind in der üblichen Art und Weise mit Polarisator(en) versehen, die den Schaltvorgang des FK-Mediums sichtbar machen.
  • Die polymerisierte Komponente der FK-Zelle (Polymer) ist erhältlich durch Polymerisieren einer polymerisierbaren Komponente (Monomere). In der Regel sind die Monomere zunächst in dem FK-Medium gelost und werden in der FK-Zelle polymerisiert nachdem sich eine homöotrope Ausrichtung oder ein hoher Tiltwinkel des FK-Medium eingestellt hat. Zur Unterstützung der gewünschten Ausrichtung kann eine Spannung an die FK-Zelle angelegt werden. Im einfachsten Fall erübrigt sich eine solche Spannung und die gewünschte Ausrichtung stellt sich allein durch die Beschaffenheit des Mediums und der Zellgeometrie ein.
  • Geeignete Monomere (polymerisierbare Komponente) für das FK-Medium sind solche aus dem Stand der Technik, die für PSA-VA-Anzeigen verwendet werden, insbesondere polymerisierbare Verbindungen der unten genannten Formel I und/oder der Formeln M1 bis M29. Die erfindungsgemäßen FK-Medien zur Verwendung in PSA-Anzeigen enthalten vorzugsweise < 5 Gew.-%, besonders bevorzugt < 1 Gew.-% und ganz besonders bevorzugt < 0.5 Gew.-% an polymerisierbaren Verbindungen, insbesondere polymerisierbare Verbindungen der unten genannten Formeln. Um einen ausreichenden Effekt zu erreichen werden bevorzugt 0,2 Gew.-% oder mehr eingesetzt. Die optimale Menge ist abhängig von der Schichtdicke.
  • Geeignete Monomere der polymerisierbaren Komponente des FK-Mediums werden durch die folgende Formel I beschrieben: Pa-(Spa)s1-A2-(Z1-A1)n-(Spb)s2-Pb I worin die einzelnen Reste folgende Bedeutung besitzen:
    Pa, Pb jeweils unabhängig voneinander eine polymerisierbare Gruppe,
    Spa, Spb bei jedem Auftreten gleich oder verschieden eine Abstandsgruppe,
    s1, s2 jeweils unabhängig voneinander 0 oder 1,
    A1, A2, jeweils unabhängig voneinander einen Rest ausgewählt aus folgenden Gruppen
    • a) der Gruppe bestehend aus trans-1,4-Cyclohexylen, 1,4-Cyclohexenylen und 4,4'-Bicyclohexylen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -O- und/oder -S- ersetzt sein können und worin auch ein oder mehrere H-Atome durch F ersetzt sein können,
    • b) der Gruppe bestehend aus 1,4-Phenylen und 1,3-Phenylen, worin auch eine oder zwei CH-Gruppen durch N ersetzt sein können und worin auch ein oder mehrere H-Atome durch L ersetzt sein können,
    • c) der Gruppe bestehend aus Tetrahydropyran-2,5-diyl, 1,3-Dioxan-2,5-diyl, Tetrahydrofuran-2,5-diyl, Cylcobut-1,3-diyl, Piperidin-1,4-diyl, Thiophen-2,5-diyl und Selenophen-2,5-diyl, welche auch ein oder mehrfach durch L substituiert sein können,
    • d) der Gruppe bestehend aus gesättigten, teilweise ungesättigten oder vollständig ungesättigten, und optional substituierten, polycyclischen Resten mit 5 bis 20 cyclischen C-Atomen, von denen auch eines oder mehrere durch Heteroatome ersetzt sein können, vorzugsweise ausgewählt aus der Gruppe bestehend aus Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl,
      Figure 00230001
      Figure 00240001
      wobei in diesen Resten auch ein oder mehrere H-Atome durch L ersetzt sein können, und/oder eine oder mehrere Doppelbindungen durch Einfachbindungen ersetzt sein können, und/oder ein oder mehrere CH-Gruppen durch N ersetzt sein können,
    n 0, 1, 2 oder 3
    Z1 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, oder -(CH2)n-, wobei n 2, 3 oder 4 ist, -O-, -CO-, -C(RyRz)-, -CH2CF2-, -CF2CF2-, oder eine Einfachbindung,
    L bei jedem Auftreten gleich oder verschieden F, Cl, CN, SCN, SF5 oder geradkettiges oder verzweigtes, jeweils optional fluoriertes, Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 12 C-Atomen,
    R0, R00 jeweils unabhängig voneinander H, F oder geradkettiges oder verzweigtes Alkyl mit 1 bis 12 C-Atomen, worin auch ein oder mehrere H-Atome durch F ersetzt sein können,
    M -O-, -S-, -CH2-, -CHY1- oder -CY1Y2-, und
    Y1, und Y2 jeweils unabhängig voneinander eine der oben für R0 angegebenen Bedeutungen, Cl oder CN, und vorzugsweise H, F, Cl, CN, OCF3 oder CF3.
    W1, W2 jeweils unabhängig voneinander -CH2CH2-, -CH=CH-, -CH2-O-, -O-CH2-, -C(RcRd)- oder -O- bedeuten,
    Rc und Rd jeweils unabhängig voneinander H oder Alkyl mit 1 bis 6 C-Atomen, vorzugsweise H, Methyl oder Ethyl, bedeuten,
  • Die polymerisierbare Gruppe Pa,b ist eine Gruppe, die für eine Polymerisationsreaktion, wie beispielsweise die radikalische oder ionische Kettenpolymerisation, Polyaddition oder Polykondensation, oder für eine polymeranaloge Umsetzung, beispielsweise die Addition oder Kondensation an eine Polymerhauptkette, geeignet ist. Besonders bevorzugt sind Gruppen für die Kettenpolymerisation, insbesondere solche enthaltend eine C=C-Doppelbindung oder -C≡C-Dreifachbindung, sowie zur Polymerisation unter Ringöffnung geeignete Gruppen wie beispielsweise Oxetan- oder Epoxygruppen
  • Bevorzugte Gruppen Pa,b sind ausgewählt aus der Gruppe bestehend aus CH2=CW1-CO-O-, CH2=CW1-CO-,
    Figure 00250001
    Figure 00250002
    CH2=CW2-(O)k3-, CW1=CH-CO-(O)k3-, CW1=CH-CO-NH-, CH2=CW1-CO-NH-, CH3-CH=CH-O-, (CH2=CH)2CH-OCO-, (CH2=CH-CH2)2CH-OCO-, (CH2=CH)2CH-O-, (CH2=CH-CH2)2N-, (CH2=CH-CH2)2N-CO-, HO-CW2W3-, HS-CW2W3-, HW2N-, HO-CW2W3-NH-, CH2=CW1-CO-NH-, CH2=CH-(COO)k1-Phe-(O)k2-, CH2=CH-(CO)k1-Phe-(O)k2-, Phe-CH=CH-, HOOC-, OCN-, und W4W5W6Si-, worin W1 H, F, Cl, CN, CF3, Phenyl oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, F, Cl oder CH3 bedeutet, W2 und W3 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, Methyl, Ethyl oder n-Propyl bedeuten, W4, W5 und W6 jeweils unabhängig voneinander Cl, Oxaalkyl oder Oxacarbonylalkyl mit 1 bis 5 C-Atomen bedeuten, W7 und W8 jeweils unabhängig voneinander H, Cl oder Alkyl mit 1 bis 5 C-Atomen bedeuten, Phe 1,4-Phenylen bedeutet, welches optional mit einem oder mehreren, von P-Sp- verschiedenen Resten L wie oben definiert substituiert ist, k1, k2 und k3 jeweils unabhängig voneinander 0 oder 1 bedeuten, k3 vorzugsweise 1 bedeutet, und k4 eine ganze Zahl von 1 bis 10 bedeutet.
  • Besonders bevorzugte Gruppen Pa,b sind ausgewählt aus der Gruppe bestehend aus CH2=CW1-CO-O-, CH2=CW1-CO-,
    Figure 00260001
    CH2=CW2-O-, CW1=CH-CO-(O)k3-, CW1=CH-CO-NH-, CH2=CW1-CO-NH-, (CH2=CH)2CH-OCO-, (CH2=CH-CH2)2CH-OCO-, (CH2=CH)2CH-O-, (CH2=CH-CH2)2N-, (CH2=CH-CH2)2N-CO-, CH2=CW1-CO-NH-, CH2=CH-(COO)k1-Phe-(O)k2-, CH2=CH-(CO)k1-Phe-(O)k2-, Phe-CH=CH- und W4W5W6Si-, worin W1 H, F, Cl, CN, CF3, Phenyl oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, F, Cl oder CH3 bedeutet, W2 und W3 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, Methyl, Ethyl oder n-Propyl bedeuten, W4, W5 und W6 jeweils unabhängig voneinander Cl, Oxaalkyl oder Oxacarbonylalkyl mit 1 bis 5 C-Atomen bedeuten, W7 und W8 jeweils unabhängig voneinander H, Cl oder Alkyl mit 1 bis 5 C-Atomen bedeuten, Phe 1,4-Phenylen bedeutet, k1, k2 und k3 jeweils unabhängig voneinander 0 oder 1 bedeuten, k3 vorzugsweise 1 bedeutet, und k4 eine ganze Zahl von 1 bis 10 bedeutet.
  • Ganz besonders bevorzugte Gruppen Pa,b sind sind ausgewählt aus der Gruppe bestehend aus CH2=CW1-CO-O-, insbesondere CH2=CH-CO-O-, CH2=C(CH3)-CO-O- und CH2=CF-CO-O-, ferner CH2=CH-O-, CH=CH2CH-O-CO-, (CH2=CH)2CH-O-,
    Figure 00270001
    und
    Figure 00270002
  • Ganz besonders bevorzugte Gruppen Pa,b sind daher ausgewählt aus der Gruppe bestehend aus Acrylat-, Methacrylat-, Fluoracrylat-, ferner Vinyloxy-, Chloracrylat-, Oxetan- und Epoxygruppen, und unter diesen bevorzugt eine Acrylat- oder Methacrylatgruppe.
  • Bevorzugte Abstandsgruppen Spa,b sind ausgewählt aus der Formel Sp''-X'', so dass der Rest Pa/b-Spa/b- der Formel Pa/b-Sp''-X''- entspricht, wobei
    Sp'' Alkylen mit 1 bis 20, vorzugsweise 1 bis 12 C-Atomen bedeutet, welches optional durch F, Cl, Br, I oder CN ein- oder mehrfach substituiert ist, und worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander so durch -O-, -S-, -NH-, -N(R0)-, -Si(R00R000)-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -S-CO-, -CO-S-, -N(R00)-CO-O-, -O-CO-N(R00)-, -N(R00)-CO-N(R00)-, -CH=CH- oder -C≡C- ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind,
    X'' -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -CO-N(R00)-, -N(R00)-CO-, -N(R00)-CO-N(R00)-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -CF2CH2-, -CH2CF2-, -CF2CF2-, -CH=N-, -N=CH-, -N=N-, -CH=CR0-, -CY2=CY3-, -C≡C-, -CH=CH-CO-O-, -O-CO-CH=CH- oder eine Einfachbindung bedeutet,
    R00 und R00 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 12 C-Atomen bedeuten, und
    Y2 und Y3 jeweils unabhängig voneinander H, F, Cl oder CN bedeuten.
  • X'' ist vorzugsweise -O-, -S-CO-, -COO-, -OCO-, -O-COO-, -CO-NR0-, -NR0-CO-, -NR0-CO-NR0- oder eine Einfachbindung.
  • Typische Abstandsgruppen Sp'' sind beispielsweise -(CH2)p1-, -(CH2CH2O)q1-CH2CH2-, -CH2CH2-S-CH2CH2-, -CH2CH2-NH-CH2CH2- oder -(SiR00R000-O)p1-, worin p1 eine ganze Zahl von 1 bis 12 ist, q1 eine ganze Zahl von 1 bis 3 ist, und R00 und R000 die oben angegebenen Bedeutungen besitzen.
  • Besonders bevorzugte Gruppen -Sp''-X''- sind -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-O-CO-, -(CH2)p1-O-CO-O-, worin p1 und q1 die oben angegebene Bedeutung haben.
  • Besonders bevorzugte Gruppen Sp'' sind beispielsweise jeweils geradkettiges Ethylen, Propylen, Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen, Undecylen, Dodecylen, Octadecylen, Ethylenoxyethylen, Methylenoxybutylen, Ethylenthioethylen, Ethylen-N-methyl-iminoethylen, 1-Methylalkylen, Ethenylen, Propenylen und Butenylen.
  • Besonders bevorzugte Monomere sind die folgenden:
    Figure 00280001
    Figure 00290001
    Figure 00300001
    Figure 00310001
    Figure 00320001
    worin die einzelnen Reste folgende Bedeutung besitzen:
    P1 und P2 jeweils unabhängig voneinander eine polymerisierbare Gruppe wie für Formel I definiert, bevorzugt eine Acrylat-, Methacrylat-, Fluoracrylat-, Oxetan-, Vinyloxy- oder Epoxygruppe,
    Sp1 und Sp2 jeweils unabhängig voneinander eine Einfachbindung oder eine Abstandsgruppe, vorzugsweise mit einer der vor- und nachstehend für Spa angegebenen Bedeutungen, und besonders bevorzugt -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-CO-O- oder -(CH2)p1-O-CO-O-, worin p1 eine ganze Zahl von 1 bis 12 ist, und wobei in den letztgenannten Gruppen die Verknüpfung zur benachbarten Ring über das O-Atom erfolgt, wobei auch einer oder mehrere der Reste P1-Sp1- und P2-Sp2- einen Rest Raa bedeuten können, mit der Maßgabe dass mindestens einer der vorhandenen Reste P1-Sp1- und P2-Sp2- nicht Raa bedeutet,
    Raa H, F, Cl, CN oder geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch C(R0)=C(R00)-, -C≡C-, -N(R0)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, CN oder P1-Sp1- ersetzt sein können, besonders bevorzugt geradkettiges oder verzweigtes, optional ein- oder mehrfach fluoriertes, Alkyl, Alkoxy, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, oder Alkylcarbonyloxy mit 1 bis 12 C-Atomen (wobei die Alkenyl- und Alkinylreste mindestens zwei und die verzweigten Reste mindestens drei C-Atome aufweisen),
    R0, R00 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 12 C-Atomen,
    Ry und Rz jeweils unabhängig voneinander H, F, CH3 oder CF3,
    Z1 -O-, -CO-, -C(RyRz)-, oder -CF2CF2-,
    Z2 und Z3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, oder -(CH2)n-, wobei n 2, 3 oder 4 ist,
    L bei jedem Auftreten gleich oder verschieden F, Cl, CN, SCN, SF5 oder geradkettiges oder verzweigtes, optional ein- oder mehrfach fluoriertes, Alkyl, Alkoxy, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 12 C-Atomen vorzugsweise F,
    L' und L'' jeweils unabhängig voneinander H, F oder Cl,
    r 0, 1, 2, 3 oder 4,
    s 0, 1, 2 oder 3,
    t 0, 1 oder 2, und
    x 0 oder 1.
  • Vorzugsweise umfasst das FK-Medium oder die polymerisierbare Komponente eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Formeln M1–M21, besonders bevorzugt der Formeln M2–M9, und ganz besonders bevorzugt aus der Gruppe der Formeln M2, M16, M17 und M18. Vorzugsweise umfasst das FK-Medium oder die polymerisierbare Komponente keine Verbindungen der Formel M10, worin Z2 und Z3 -(CO)O- oder -O(CO)- bedeuten.
  • Zur Herstellung von PSA-Anzeigen werden die polymerisierbaren Verbindungen im FK-Medium zwischen den Substraten der FK-Anzeige, optional unter Anlegen einer Spannung, durch in-situ-Polymerisation polymerisiert oder vernetzt (falls eine polymerisierbare Verbindung zwei oder mehr polymerisierbare Gruppen enthält). Die Polymerisation kann in einem Schritt durchgeführt werden. Es ist auch möglich, zunächst in einem ersten Schritt die Polymerisation unter Anlegen einer Spannung durchzuführen, um einen pretilt-Winkel zu erzeugen, und anschließend in einem zweiten Polymerisationsschritt ohne anliegende Spannung die im ersten Schritt nicht abreagierten Verbindungen zu polymerisieren bzw. zu vernetzen (”end curing”).
  • Geeignete und bevorzugte Polymerisationsmethoden sind beispielsweise die thermische oder Photopolymerisation, vorzugsweise Photopolymerisation, insbesondere UV-Photopolymerisation. Dabei können gegebenenfalls auch ein oder mehrere Initiatoren zugesetzt werden. Geeignete Bedingungen für die Polymerisation, sowie geeignete Arten und Mengen der Initiatoren, sind dem Fachmann bekannt und in der Literatur beschrieben. Für die radikalische Polymerisation eignen sich zum Beispiel die kommerziell erhältlichen Photoinitiatoren Irgacure651®, Irgacure184®, Irgacure907®, Irgacure369®, oder Darocure1173® (Ciba AG). Falls ein Initiator eingesetzt wird, beträgt dessen Anteil vorzugsweise 0,001 bis 5 Gew.-%, besonders bevorzugt 0,001 bis 1 Gew.-%.
  • Die erfindungsgemäßen polymerisierbaren Verbindungen eignen sich auch für die Polymerisation ohne Initiator, was erhebliche Vorteile mit sich bringt, wie beispielsweise geringere Materialkosten und insbesondere eine geringere Verunreinigung des FK-Mediums durch mögliche Restmengen des Initiators oder dessen Abbauprodukte. Die Polymerisation kann somit auch ohne Zusatz eines Initiators erfolgen. Somit enthält das FK-Medium in einer bevorzugten Ausführungsform keinen Polymerisationsinitiator.
  • Die polymerisierbare Komponente oder das FK-Medium können auch einen oder mehrere Stabilisatoren enthalten, um eine unerwünschte spontane Polymerisation der RMs, beispielsweise während der Lagerung oder des Transports, zu verhindern. Geeignete Arten und Mengen der Stabilisatoren sind dem Fachmann bekannt und in der Literatur beschrieben. Besonders geeignet sind zum Beispiel die kommerziell erhältlichen Stabilisatoren der Serie Irganox® (Ciba AG), wie beispielsweise Irganox® 1076. Falls Stabilisatoren eingesetzt werden, beträgt deren Anteil, bezogen auf die Gesamtmenge der RMs beziehungsweise der polymerisierbaren Komponente, vorzugsweise 10–10000 ppm, besonders bevorzugt 50–500 ppm.
  • Die FK-Medien zur Verwendung in den erfindungsgemäßen FK-Anzeigen enthalten, neben den oben beschriebenen polymerisierbaren Verbindungen und der Komponente (N) eine FK-Mischung (”Host-Mischung”) enthaltend eine oder mehr, vorzugsweise zwei oder mehr niedermolekulare (d. h. monomere bzw. unpolymerisierte) Verbindungen. Letztere sind stabil bzw. unreaktiv gegenüber einer Polymerisationsreaktion unter den zur Polymerisation der polymerisierbaren Verbindungen verwendeten Bedingungen. Prinzipiell eignet sich als Host-Mischung jede zur Verwendung in herkömmlichen TN-, IPS-, FFS- und VA-IPS-Anzeigen geeignete dielektrisch positive FK-Mischung.
  • Geeignete FK-Mischungen mit positiver dielektrischer Anisotropie, die sich für LCDs und speziell für IPS-Anzeigen eignen, sind z. B. aus JP 07-181 439 (A) , EP 0 667 555 , EP 0 673 986 , DE 195 09 410 , DE 195 28 106 , DE 195 28 107 , WO 96/23 851 und WO 96/28 521 bekannt.
  • Im Folgenden werden bevorzugte Ausführungsformen für das erfindungsgemäße flüssigkristalline Medium angeführt:
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der Formel II und/oder III enthält:
    Figure 00350001
    worin
    Ring A 1,4-Phenylen oder trans-1,4-Cyclohexylen bedeutet,
    a 0 oder 1 ist,
    R3 jeweils unabhängig voneinander Alkyl mit 1 bis 9 C-Atomen oder Alkenyl mit 2 bis 9 C-Atomen bedeutet, vorzugsweise Alkenyl mit 2 bis 9 C-Atomen, und
    R4 jeweils unabhängig voneinander einen unsubstituierten oder halogenierten Alkylrest mit 1 bis 12 C-Atomen, wobei auch eine oder zwei nicht benachbarte CH2-Gruppen durch -O-, -CH=CH-, -CH=CF-, -(CO)-, -O(CO)- oder -(CO)O- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und vorzugsweise Alkyl mit 1 bis 12 C-Atomen oder Alkenyl mit 2 bis 9 C-Atomen bedeutet.
  • Die Verbindungen der Formel II sind vorzugsweise ausgewählt aus der Gruppe bestehend aus folgenden Formeln:
    Figure 00360001
    Figure 00370001
    worin R3a und R4a jeweils unabhängig voneinander H, CH3, C2H5 oder C3H7 bedeuten, und ”alkyl” eine geradkettige Alkylgruppe mit 1 bis 8, vorzugsweise 1, 2, 3, 4 oder 5 C-Atomen bedeutet. Besonders bevorzugt sind Verbindungen der Formel IIa und IIf, insbesondere solche, worin R3a H oder CH3, vorzugsweise H, bedeutet, und Verbindungen der Formel IIc, insbesondere solche, worin R3a und R4a H, CH3 oder C2H5 bedeuten.
  • Die Verbindungen der Formel III sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00370002
    worin ”alkyl” und R3a die oben angegebenen Bedeutungen haben und R3a vorzugsweise H oder CH3 bedeutet. Besonders bevorzugt sind Verbindungen der Formel IIIb;
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den folgenden Formeln enthält:
    Figure 00380001
    worin
    R0 einen Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CF2O-, -CH=CH-,
    Figure 00390001
    -O-, -(CO)O- oder -O(CO)- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch Halogen ersetzt sein können,
    X0 F, Cl, CN, SF5, SCN, NCS, einen halogenierten Alkylrest, halogenierten Alkenylrest, halogenierten Alkoxyrest oder halogenierten Alkenyloxyrest mit jeweils bis zu 6 C-Atomen,
    Y1-6 jeweils unabhängig voneinander H oder F,
    Z0 -C2H4-, -(CH2)4-, -CH=CH-, -CF=CF-, -C2F4-, -CH2CF2-, -CF2CH2-, -CH2O-, -OCH2-, -COO-, -CF2O- oder -OCF2-, in den Formeln V und VI auch eine Einfachbindung, und
    b und c jeweils unabhängig voneinander a oder 1
    bedeuten.
  • In den Verbindungen der Formel IV bis VIII bedeutet X0 vorzugsweise F oder OCF3, ferner OCHF2, CF3, CF2H, Cl, OCH=CF2. R0 ist vorzugsweise geradkettiges Alkyl oder Alkenyl mit jeweils bis zu 6 C-Atomen.
  • Die Verbindungen der Formel IV sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00390002
    Figure 00400001
    worin R0 und X0 die oben angegebenen Bedeutungen haben.
  • Vorzugsweise bedeutet in Formel IV R0 Alkyl mit 1 bis 8 C-Atomen und X0 F, Cl, OCHF2 oder OCF3, ferner OCH=CF2. In der Verbindung der Formel IVb bedeutet R0 vorzugsweise Alkyl oder Alkenyl. In der Verbindung der Formel IVd bedeutet X0 vorzugsweise Cl, ferner F.
  • Die Verbindungen der Formel V sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00400002
    Figure 00410001
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 in Formel V Alkyl mit 1 bis 8 C-Atomen und X0 F;
    • – LC-Medium, welches eine oder mehrere Verbindungen der Formel VI-1 enthält:
    Figure 00420001
    besonders bevorzugt solche ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00420002
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 in Formel VI Alkyl mit 1 bis 8 C-Atomen und X0 F, ferner OCF3.
    • – LC-Medium, welches eine oder mehrere Verbindungen der Formel VI-2 enthält:
    Figure 00430001
    besonders bevorzugt solche ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00430002
    Figure 00440001
    worin R0 und X0 die oben angegebenen Bedeutungen haben.
  • Vorzugsweise bedeutet R0 in Formel VI Alkyl mit 1 bis 8 C-Atomen und X0 F;
    • – LC-Medium, welches vorzugsweise eine oder mehrere Verbindungen der Formel VII, worin Z0 -CF2O-, -CH2CH2 oder -(CO)O- bedeutet, enthält, besonders bevorzugt solche ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00440002
    Figure 00450001
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 in Formel VII Alkyl mit 1 bis 8 C-Atomen und X0 F, ferner OCF3.
  • Die Verbindungen der Formel VIII sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00450002
    Figure 00460001
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 einen geradkettigen Alkylrest mit 1 bis 8 C-Atomen. X0 bedeutet vorzugsweise F.
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der folgenden Formel enthält:
    Figure 00460002
    worin R0, X0, Y1 und Y2 die oben angegebene Bedeutung besitzen, und
    Figure 00460003
    jeweils unabhängig voneinander
    Figure 00460004
    bedeuten, wobei die Ringe A und B nicht beide gleichzeitig Cyclohexylen bedeuten;
    Die Verbindungen der Formel IX sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00460005
    Figure 00470001
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und X0 F. Besonders bevorzugt sind Verbindungen der Formel IXa;
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den folgenden Formeln enthält:
    Figure 00480001
    worin R0, X0 und Y1 die oben angegebenen Bedeutungen besitzen, und
    Figure 00480002
    jeweils unabhängig voneinander
    Figure 00480003
    bedeuten;
    Die Verbindungen der Formeln X und XI sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00480004
    Figure 00490001
    Figure 00500001
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und/oder X0 F. Besonders bevorzugte Verbindungen sind solche, worin Y1 F und Y2 H oder F, vorzugsweise F, bedeuten;
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der folgenden Formel XII enthält:
    Figure 00500002
    worin R5 und R6 jeweils unabhängig voneinander n-Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen bedeuten, und vorzugsweise jeweils unabhängig voneinander Alkyl mit 1 bis 7 C-Atomen oder Alkenyl mit 2 bis 7 C-Atomen bedeuten. Y1 bedeutet H oder F.
  • Bevorzugte Verbindungen der Formel XII sind solche ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00500003
    Figure 00510001
    worin
    Alkyl und Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1 bis 6 C-Atomen, und
    Alkenyl und Alkenyl* jeweils unabhängig voneinander einen geradkettigen Alkenylrest mit 2 bis 6 C-Atomen
    bedeuten.
  • Ganz besonders bevorzugt sind Verbindungen der folgenden Formel
    Figure 00510002
    worin Alkyl die oben angegebene Bedeutung hat und R6a H oder CH3 bedeutet.
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den folgenden Formeln enthält:
    Figure 00510003
    Figure 00520001
    worin R0, X0, Y1 und Y2 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und X0 F oder Cl;
  • Die Verbindungen der Formeln XIII und XIV sind vorzugsweise ausgewählt aus der Gruppe bestehend aus den folgenden Formeln:
    Figure 00520002
    worin R0 und X0 die oben angegebenen Bedeutungen haben. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen. In den Verbindungen der Formel XIII bedeutet X0 vorzugsweise F oder Cl.
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der Formel D1 und/oder D2 enthält:
    Figure 00530001
    worin Y1, Y2, R0 und X0 die oben angegebene Bedeutung besitzen. Vorzugsweise bedeutet R0 Alkyl mit 1 bis 8 C-Atomen und X0 F. Besonders bevorzugt sind Verbindungen der folgenden Formeln:
    Figure 00530002
    worin R0 die oben angegebenen Bedeutungen hat und vorzugsweise geradkettiges Alkyl mit 1 bis 6 C-Atomen, insbesondere C2H5, n-C3H7 oder n-C5H11 bedeutet.
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der folgenden Formeln enthält:
    Figure 00540001
    worin Y1, R1 und R2 die oben angegebene Bedeutung besitzen. R1 und R2 bedeuten vorzugsweise jeweils unabhängig voneinander Alkyl mit 1 bis 8 C-Atomen. Y1 bedeutet vorzugsweise F. Bevorzugte Medien enthalten 1–15 Gew.-%, insbesondere 1–10 Gew.-% dieser Verbindungen.
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der folgenden Formel enthält:
    Figure 00540002
    worin X0, Y1 und Y2 die oben angegebenen Bedeutungen besitzen und ”Alkenyl” C2-7-Alkenyl bedeutet. Besonders bevorzugt sind Verbindungen der folgenden Formel,
    Figure 00540003
    worin R3a die oben angegebene Bedeutung hat und vorzugsweise H bedeutet;
    • – LC-Medium, welches zusätzlich eine oder mehrere Vierkern-Verbindungen ausgewählt aus der Gruppe bestehend aus den Formeln XIX bis XXV enthält:
    Figure 00550001
    Figure 00560001
    worin Y1-4, R0 und X0 jeweils unabhängig voneinander eine der oben angegebenen Bedeutungen haben. X0 ist vorzugsweise F, Cl, CF3, OCF3 oder OCHF2. R0 bedeutet vorzugsweise Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 8 C-Atomen.
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der folgenden Formel enthält:
    Figure 00560002
    worin R0, X0 und Y1-4 die oben angegebenen Bedeutungen besitzen. Besonders bevorzugt sind Verbindungen der folgenden Formel:
    Figure 00560003
    • – LC-Medium, welches zusätzlich eine oder mehrere Verbindungen der folgenden Formel enthält:
    Figure 00570001
    worin R0 und Y1-3 die oben angegebenen Bedeutungen besitzen. Besonders bevorzugt sind Verbindungen der folgenden Formeln:
    Figure 00570002
    worin R0 die oben angegebene Bedeutung besitzt und vorzugsweise Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 8 C-Atomen bedeutet.
    Figure 00570003
    Figure 00580001
    • – R0 ist im Allgemeinen vorzugsweise geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen;
    • – X0 ist vorzugsweise F, ferner OCF3, Cl oder CF3;
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formel II;
    • – Das Medium enthält vorzugsweise eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln VI-2, VII-1a, VII-1b, IX, X, XI und XXVI (CF2O-verbrückte Verbindungen); der Gesamtgehalt an Verbindungen der Formeln VI-2, VII-1a, VII-1b, IX, X, XI und XXVI beträgt bevorzugt 35 Gew.-% oder mehr, besonders bevorzugt 40 Gew.-% oder mehr und ganz besonders bevorzugt 45 Gew.-% oder mehr.
    • – Der Anteil an Verbindungen der Formeln II–XXVII im Gesamtgemisch beträgt vorzugsweise 20 bis 99 Gew.-%;
    • – Das Medium enthält vorzugsweise 25–80 Gew.-%, besonders bevorzugt 30–70 Gew.-% an Verbindungen der Formel II und/oder III;
    • – Das Medium enthält vorzugsweise 20–70 Gew.-%, besonders bevorzugt 25–60 Gew.-% an Verbindungen der Formel IIa;
    • – Das Medium enthält vorzugsweise 2–25 Gew.-%, besonders bevorzugt 3–20 Gew.-% ausgewählt aus der Gruppe der Verbindungen der VI-2;
    • – Das Medium enthält insgesamt 2–30 Gew.-%, besonders bevorzugt 3–20 Gew.-% an Verbindungen der Formeln XI und XXVI zusammen;
    • – Das Medium enthält vorzugsweise 1–20 Gew.-%, besonders bevorzugt 2–15 Gew.-% an Verbindungen der Formel XXIV;
    • – Das Medium enthält insgesamt 15–65 Gew.-%, besonders bevorzugt 30–55 Gew.-% ausgewählt aus den hochpolaren Verbindungen der Formeln VI-2, X, XI und XXV zusammen.
  • In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Akronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste CnH2n+1 und CmH2m+1 sind geradkettige Alkylreste mit n bzw. m C-Atomen; n, m und k sind ganze Zahlen und bedeuten vorzugsweise 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Akronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt von Akronym für den Grundkörper mit einem Strich ein Code für die Substituenten R1*, R2*, L1* und L2*:
    Code für R1*, R2*, L1*, L2*, L3* R1* R2* L1* L2*
    nm CnH2n+1 CmH2m+1 H H
    nOm CnH2n+1 OCmH2m+1 H H
    nO.m OCnH2n+1 CmH2m+1 H H
    n CnH2n+1 CN H H
    nN.F CnH2n+1 CN F H
    nN.F.F CnH2n+1 CN F F
    nF CnH2n+1 F H H
    nCl CnH2n+1 Cl H H
    nOF OCnH2n+1 F H H
    nF.F CnH2n+1 F F H
    nF.F.F CnH2n+1 F F F
    nOCF3 CnH2n+1 OCF3 H H
    nOCF3.F CnH2n+1 OCF3 F H
    n-Vm CnH2n+1 -CH=CH-CmH2m+1 H H
    nV-Vm CnH2n+1-CH=CH -CH=CH-CmH2m+1 H H
  • Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B. Tabelle A
    Figure 00600001
    Figure 00610001
    Figure 00620001
    Tabelle B
    Figure 00620002
    Figure 00630001
    Figure 00640001
    Figure 00650001
    Figure 00660001
    Figure 00670001
    Figure 00680001
    Figure 00690001
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen LC-Medien eine oder mehrere Verbindungen ausgewählt aus der Guppe bestehend aus Verbindungen der Tabelle A und B.
  • Tabelle C
  • In der Tabelle C werden mögliche chirale Dotierstoffe angegeben, die den erfindungsgemäßen FK-Medien zugesetzt werden können.
  • Figure 00690002
  • Figure 00700001
  • Figure 00710001
  • Optional enthalten die FK-Medien 0 bis 10 Gew.-%, insbesondere 0,01 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 3 Gew.-% an Dotierstoffen, vorzugsweise ausgewählt aus der Gruppe bestehend aus Verbindungen der Tabelle C.
  • Tabelle D
  • In der Tabelle D werden mögliche Stabilisatoren angegeben, die den erfindungsgemäßen FK-Medien zugesetzt werden können. (n bedeutet hier eine ganze Zahl von 1 bis 12, vorzugsweise 1, 2, 3, 4, 5, 6, 7 oder 8, endständige Methylgruppen sind nicht gezeigt).
  • Figure 00710002
  • Figure 00720001
  • Figure 00730001
  • Figure 00740001
  • Figure 00750001
  • Figure 00760001
  • Vorzugsweise enthalten die FK-Medien 0 bis 10 Gew.-%, insbesondere 1 ppm bis 5 Gew.-%, besonders bevorzugt 1 ppm bis 1 Gew.-% an Stabilisatoren. Vorzugsweise enthalten die FK-Medien einen oder mehrere Stabilisatoren ausgewählt aus der Gruppe bestehend aus Verbindungen der Tabelle D.
  • Tabelle E
  • In der Tabelle E sind Beispielverbindungen zusammengestellt, die in den FK-Medien gemäß der vorliegenden Erfindung vorzugsweise als reaktive Verbindungen verwendet werden können.
  • Figure 00760002
  • Figure 00770001
  • Figure 00780001
  • Figure 00790001
  • Figure 00800001
  • Figure 00810001
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die mesogenen Medien eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Tabelle E.
  • In der vorliegenden Anmeldung bedeutet der Begriff „Verbindungen”, auch geschrieben als „Verbindung(en)”, sofern nicht explizit anders angegeben, sowohl eine als auch mehrere Verbindungen. Umgekehrt schließt der Begriff ”Verbindung” generell auch mehrere Verbindungen ein, sofern dies laut Definition möglich und nicht anders angegeben ist. Gleiches gilt für die Begriffe FK-Medien und FK-Medium. Der Begriff ”Komponente” umfasst jeweils eine oder mehrere Stoffe, Verbindungen und/oder Teilchen.
  • Außerdem werden folgende Abkürzungen und Symbole verwendet:
  • ne
    außerordentlicher Brechungsindex bei 20°C und 589 nm,
    n0
    ordentlicher Brechungsindex bei 20°C und 589 nm,
    Δn
    optische Anisotropie bei 20°C und 589 nm,
    ε
    dielektrische Permittivität senkrecht zum Direktor bei 20°C und 1 kHz,
    ε||
    dielektrische Permittivität parallel zum Direktor bei 20°C und 1 kHz,
    Δε
    dielektrische Anisotropie bei 20°C und 1 kHz,
    Kp., T(N, I)
    Klärpunkt [°C],
    γ1
    Rotationsviskosität bei 20°C [mPa·s],
    K1
    elastische Konstante, ”splay”-Deformation bei 20°C [pN],
    K2
    elastische Konstante, ”twist”-Deformation bei 20°C [pN],
    K3
    elastische Konstante, ”bend”-Deformation bei 20°C [pN].
  • Soweit nicht explizit anders vermerkt, sind in der vorliegenden Anmeldung alle Konzentrationen in Gewichtsprozent angegeben und beziehen sich auf die entsprechende Gesamtmischung, enthaltend alle festen oder flüssigkristallinen Komponenten, ohne Lösungsmittel.
  • Alle physikalischen Eigenschaften werden und wurden nach ”Merck Liquid Crystals, Physical Properties of Liquid Crystals”, Status Nov. 1997, Merck KGaA, Deutschland bestimmt und gelten für eine Temperatur von 20°C und Δn wird bei 589 nm und Δε bei 1 kHz bestimmt, sofern nicht jeweils explizit anders angegeben.
  • Die polymerisierbaren Verbindungen werden in der Anzeige bzw. Testzelle durch Bestrahlung mit UVA-Licht (üblicherweise 365 nm) einer definierten Intensität für eine vorgegebene Zeit polymerisiert, wobei optional gleichzeitig eine Spannung an die Anzeige angelegt wird (üblicherweise 10 bis 30 V Wechselstrom, 1 kHz). In den Beispielen wird, falls nicht anders angegeben, eine Quecksilberdampflampe mit 100 mW/cm2 verwendet, die Intensität wird mit einem Standard-UV-Meter (Fabrikat Ushio UNI meter) gemessen, der mit einem Bandpassfilter bei 320 nm ausgerüstet ist.
  • Die folgenden Beispiele erläutern die vorliegende Erfindung, ohne sie in irgendeiner Weise beschränken zu sollen. Aus den physikalischen Eigenschaften wird dem Fachmann jedoch deutlich, welche Eigenschaften zu erzielen sind und in welchen Bereichen sie modifizierbar sind. Insbesondere ist also die Kombination der verschiedenen Eigenschaften, die vorzugsweise erreicht werden können, für den Fachmann gut definiert.
  • Weitere Kombinationen der Ausführungsformen und Varianten der Erfindung gemäß der Beschreibung ergeben sich auch aus den Ansprüchen.
  • Beispiele
  • Die eingesetzten Verbindungen, soweit nicht kommerziell erhältlich, werden nach Standard-Laborvorschriften synthetisiert. FK-Medien stammen von der Merck KGaA, Deutschland. PSS-1 (PSS-[3-(2-Aminoethyl)amino]propyl-Heptaisobutyl substituted; CAS Registry-Nr. 444315-16-6) wurde von Aldrich bezogen. Die Strukturen PSS-1 bis PSS-9 und RM-1 sind der vorausgehenden Beschreibung zu entnehmen.
  • Beispiel 1
  • Zu einem nematischen FK-Medium (Δε > 0) gemäß Tabelle 1 werden eine polymerisierbare Verbindung (RM-1, 1,0 Gew.-%) und die Diaminverbindung PSS-1 (0,25 Gew.-%) zugesetzt und homogenisiert. Tabelle 1: Nematisches FK-Medium
    PGU-2-F 3,5% Kp. +77,0
    PGU-3-F 7,0% Δn 0,105
    CC-3-V1 15,0% Δε 7,2
    CC-4-V 18,0% ε|| 10,3
    CC-5-V 20,0% K3/K1 0,88
    CCP-V-1 6,0% γ1 63
    APUQU-3-F 15,0%
    PUQU-3-F 5,5,%
    PGP-2-4 3,0%
    BCH-32 7,0%
    Verwendung in Testzellen ohne Vororientierungsschicht ('alignment layer'):
    Die entstandene Mischung wird in eine Testzelle gefüllt (ohne Polyimid-Orientierungsschicht, Schichtdicke d 10 μm, auf einer Substratoberfläche angeordnete ITO-Interdigitalelektroden, Glas auf der gegenüberliegenden Substratfläche, ohne Passivierungsschicht). Das FK-Medium weist eine spontane homöotrope (vertikale) Orientierung zu den Substratoberflächen auf. Unter Anlegen einer Spannung (5 V) wird die Zelle 6 min mit UV-Licht der Intensität 100 mW/cm2 bestrahlt. Dadurch erfolgt Polymerisation der monomeren Verbindung und der 'pre-tilt' (engl.) der Zelle lässt sich ändern. Diese Orientierung bleibt bis 70°C stabil. Im temperaturstabilen Bereich lässt sich die Zelle durch Anlegen einer Spannung zwischen 0 und 50 V reversibel schalten.
  • Beispiel 2
  • Zu einem nematischen FK-Medium gemäß Tabelle 1 wird nur die zuvor verwendete Diaminverbindung PSS-1 (0,25 Gew.-%) zugesetzt und homogenisiert.
    Verwendung in Testzellen ohne Vororientierungsschicht ('alignment layer'):
    Die entstandene Mischung wird in eine Testzelle gefüllt (ohne Polyimid-Orientierungsschicht, Schichtdicke d ≈ 10 μm, auf einer Substratoberfläche angeordnete ITO-Interdigitalelektroden, Glas auf der gegenüberliegenden Substratfläche, ohne Passivierungsschicht). Das FK-Medium weist eine spontane homöotrope (vertikale) Orientierung zu den Substratoberflächen auf.
  • Die bei Raumtemperatur beobachtete homöotrope Vororientierung verschwindet ab einer Temperatur von ca. 45°C oder mehr. Eine planare Orientierung wird erhalten. Die Zelle ist weiter schaltbar, aber nicht mehr als VA-IPS-, sondern als IPS-Schaltvorgang.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 4000451 [0005]
    • EP 0588568 [0005]
    • JP 10-036847 A [0019]
    • EP 1170626 A2 [0019]
    • US 6861107 [0019]
    • US 7169449 [0019, 0021]
    • US 2004/0191428 A1 [0019]
    • US 2006/0066793 A1 [0019]
    • US 2006/0103804 A1 [0019]
    • US 6177972 [0019]
    • WO 2010/089092 A1 [0019]
    • US 2008/0198301 A1 [0024]
    • US 7550094 B2 [0024]
    • JP 2010170090 A [0025]
    • JP 07-181439 (A) [0077]
    • EP 0667555 [0077]
    • EP 0673986 [0077]
    • DE 19509410 [0077]
    • DE 19528106 [0077]
    • DE 19528107 [0077]
    • WO 96/23851 [0077]
    • WO 96/28521 [0077]
  • Zitierte Nicht-Patentliteratur
    • M. F. Schieckel und K. Fahrenschon, ”Deformation of nematic liquid crystals with vertical orientation in electrical fields”, Appl. Phys. Lett. 19 (1971), 3912 [0002]
    • J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) [0002]
    • G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869) [0002]
    • J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30) [0003]
    • J. Duchene (Displays 7 (1986), 3) und H. Schad (SID 82 Digest Techn. Papers (1982), 244) [0003]
    • Yoshide, H. et al., Vortrag 3.1: ”MVA LCD for Notebook or Mobile PCs ..., SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9 [0004]
    • Liu, C. T. et al., Vortrag 15.1: ”A 46-inch TFT-LCD HDTV Technnology ..., SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753 [0004]
    • Kim, Sang Soo, Vortrag 15.4: ”Super PVA Sets New State-of-the-Art for LCD-TV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763 [0004]
    • Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: ”Development of High Quality LCDTV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757 [0004]
    • Yeo, S. D., Vortrag 15.3: ”A LC Display for the TV Application”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 & 759 [0004]
    • Souk, Jun, SIDSeminar 2004, Seminar M-6: ”Recent Advances in LCD Technology”, Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SIDSeminar 2004, Seminar M-7: ”LCD-Television”, Seminar Lecture Notes, M-7/1 bis M-7/32 [0004]
    • Kim, Hyeon Kyeong et al., Vortrag 9.1: ”A 57-in. Wide UXGA TFT-LCD for HDTV Application”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109 [0004]
    • S. H. Lee et al. Appl. Phys. Lett. (1997), 71, 2851–2853 [0005]
    • K. S. Hun et al. J. Appl. Phys. (2008), 104, 084515 (DSIPS: 'double-side in-plane switching' für Verbesserungen von Treiberspannung und Transmission) [0006]
    • M. Jiao et al. App. Phys. Lett (2008), 92, 111101 (DFFS: 'dual fringe field switching für verbesserte Schaltzeiten) [0006]
    • Y. T. Kim et al. Jap. J. App. Phys. (2009), 48, 110205 (VAS: 'viewing angle switchable' LCD) [0006]
    • T.-J-Chen et al., Jpn. J. Appl. Phys. 45, 2006, 2702–2704 [0019]
    • S. H. Kim, L.-C-Chien, Jpn. J. Appl. Phys. 43, 2004, 7643–7647 [0019]
    • Appl. Phys. Lett. 1999, 75(21), 3264 [0019]
    • Optics Express 2004, 12(7), 1221 [0019]
    • Shie-Chang Jeng et al. Optics Letters (2009), 34, 455–457 [0023]
    • Shug-June Hwang et al. J. Phys D: Appl. Phys 2009, 42, 025102 [0026]

Claims (17)

  1. FK-Medium enthaltend eine niedermolekulare flüssigkristalline Komponente mit einer positiven dielektrischen Anisotropie vom Wert Δε ≥ 1,5 und eine Komponente (N) enthaltend Teilchen mit einer Masse von mindestens 450 Da, wobei die Teilchen eine oder mehrere organische polare Ankergruppen umfassen.
  2. FK-Medium nach Anspruch 1, dadurch gekennzeichnet, dass es eine polymerisierbare oder eine polymerisierte Komponente enthält, wobei die polymerisierte Komponente erhältlich ist durch Polymerisation einer polymerisierbaren Komponente.
  3. FK-Medium nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Komponente (N) aus gelösten oder dispergierten Teilchen besteht.
  4. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Teilchen der Komponente (N) ein Seitenverhältnis dmax/dmin von höchstens 3:1 besitzen.
  5. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Teilchen der Komponente (N) organische Moleküle sind.
  6. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass die Teilchen der Komponente (N) organisch/anorganische Hybrid-Teilchen sind.
  7. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Komponente (N) Silsequioxanverbindungen umfasst.
  8. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass die Teilchen der Komponente (N) durch eine oder mehrere Ankergruppen umfassend mindestens ein oder mehrere Heteroatomen ausgewählt aus den Elementen N, O, S und P funktionalisiert sind.
  9. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Komponente (N) durch eine Ankergruppe umfassend eine Gruppe der Teilformel -Sp-[X2-Z2-]kX1 (A1) funktionalisiert ist, worin jeweils unabhängig Sp eine Abstandsgruppe oder eine Einfachbindung, über die eine Verbindung zum Teilchen hergestellt wird, X1 eine Gruppe -NH2, -NHR1 -NR12, -CN, -OR1, -OH, -(CO)OH, oder eine Gruppe der Formeln
    Figure 00860001
    R0 H oder Alkyl mit 1 bis 12 C-Atomen, X2 jeweils unabhängig -NH-, -NR1-, -O- oder eine Einfachbindung Z2 jeweils unabhängig eine Alkylengruppe mit 1-15 C-Atomen, carbocyclische Ringe mit 5 oder 6 C-Atomen, oder Kombinationen aus einem oder mehreren Ringen und Alkylengruppen, worin jeweils ein oder mehrere Wasserstoffatome durch -OH, OR1, -NH2, -NHR1-, -NR1 2, oder Halogen (bevorzugt F, Cl) ersetzt sein kann R1 jeweils unabhängig einen halogenierten oder unsubstituierten Alkylrest mit 1 bis 15 C-Atomen, wobei in diesem Rest auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -(CO)O-, -O(CO)-, -(CO)- oder -O- so ersetzt sein können, dass O- und N-Atome nicht direkt miteinander verknüpft sind, und wobei die Gruppen R1 miteinander zu Ringsystemen verknüpft sein können, und k 0 bis 3 bedeuten.
  10. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Teilchen der Komponente (N) jeweils genau eine Ankergruppe aufweisen.
  11. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es die Teilchen der Komponente (N) in einer Konzentration von weniger als 10 Gew.-% enthält.
  12. FK-Medium nach einem oder mehreren der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass die polymerisierbare Komponente eine Verbindung der Formel I umfasst: Pa-(Spa)s1-A2-(Z1-A1)n-(Spb)s2-Pb I worin die einzelnen Reste folgende Bedeutung besitzen: Pa, Pb jeweils unabhängig voneinander eine polymerisierbare Gruppe, Spa, Spb bei jedem Auftreten gleich oder verschieden eine Abstandsgruppe, s1, s2 jeweils unabhängig voneinander 0 oder 1, A1, A2 jeweils unabhängig voneinander einen Rest ausgewählt aus folgenden Gruppen a) der Gruppe bestehend aus trans-1,4-Cyclohexylen, 1,4-Cyclohexenylen und 4,4'-Bicyclohexylen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -O- und/oder -S- ersetzt sein können und worin auch ein oder mehrere H-Atome durch F ersetzt sein können, b) der Gruppe bestehend aus 1,4-Phenylen und 1,3-Phenylen, worin auch eine oder zwei CH-Gruppen durch N ersetzt sein können und worin auch ein oder mehrere H-Atome durch L ersetzt sein können, c) der Gruppe bestehend aus Tetrahydropyran-2,5-diyl, 1,3-Dioxan-2,5-diyl, Tetrahydrofuran-2,5-diyl, Cylcobut-1,3-diyl, Piperidin-1,4-diyl, Thiophen-2,5-diyl und Selenophen-2,5-diyl, welche auch ein oder mehrfach durch L substituiert sein können, d) der Gruppe bestehend aus gesättigten, teilweise ungesättigten oder vollständig ungesättigten, und optional substituierten, polycyclischen Resten mit 5 bis 20 cyclischen C-Atomen, von denen auch eines oder mehrere durch Heteroatome ersetzt sein können, vorzugsweise ausgewählt aus der Gruppe bestehend aus Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl,
    Figure 00890001
    wobei in diesen Resten auch ein oder mehrere H-Atome durch L ersetzt sein können, und/oder eine oder mehrere Doppelbindungen durch Einfachbindungen ersetzt sein können, und/oder ein oder mehrere CH-Gruppen durch N ersetzt sein können, n 0, 1, 2 oder 3, Z1 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, oder -(CH2)n-, wobei n 2, 3 oder 4 ist, -O-, -CO-, -C(RyRz)-, -CH2CF2-, -CF2CF2-, oder eine Einfachbindung, L bei jedem Auftreten gleich oder verschieden F, Cl, CN, SCN, SF5 oder geradkettiges oder verzwiegtes, jeweils optional fluoriertes, Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 12 C-Atomen, R0, R00 jeweils unabhängig voneinander H, F oder geradkettiges oder verzweigtes Alkyl mit 1 bis 12 C-Atomen, worin auch ein oder mehrere H-Atome durch F ersetzt sein können, M -O-, -S-, -CH2-, -CHY1- oder -CY1Y2-, und Y1 und Y2 jeweils unabhängig voneinander eine der oben für R0 angegebenen Bedeutungen, Cl oder CN.
  13. FK-Medium nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Komponente (N) Teilchen umfasst, die eine oder mehrere polymerisierbare Gruppen aufweisen.
  14. FK-Anzeige enthaltend eine FK-Zelle mit zwei Substraten und mindestens zwei Elektroden, wobei mindestens ein Substrat lichtdurchlässig ist und mindestens ein Substrat ein oder zwei Elektroden aufweist, sowie einer zwischen den Substraten befindlichen Schicht eines FK-Mediums nach einem oder mehreren der Ansprüche 1 bis 13, wobei die Komponente (N) geeignet ist, eine homöotrope Ausrichtung des FK-Mediums gegenüber den Substratoberflächen herbeizuführen.
  15. FK-Anzeige nach Anspruch 14, dadurch gekennzeichnet, dass die Substrate keine Orientierungsschichten aufweisen.
  16. FK-Anzeige nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass es sich um eine VA-Anzeige mit auf einer oder beiden Seiten der FK-Zelle angeordneten Interdigital-Elektroden handelt.
  17. Verfahren zu Herstellung eines FK-Mediums nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man eine niedermolekulare flüssigkristalline Komponente mit einer positiven dielektrischen Anisotropie vom Wert Δε ≥ 1,5 und eine Komponente (N) enthaltend Teilchen mit einer Masse von mindestens 450 Da, wobei die Teilchen eine oder mehrere organische polare Ankergruppen umfassen, mischt und optional polymerisierbare Verbindungen und/oder Hilfsstoffe zugibt.
DE201110108276 2010-08-19 2011-07-21 Flüssigkristallines Medium und Flüssigkristallanzeigen Withdrawn DE102011108276A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201110108276 DE102011108276A1 (de) 2010-08-19 2011-07-21 Flüssigkristallines Medium und Flüssigkristallanzeigen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010034747.7 2010-08-19
DE102010034747 2010-08-19
DE201110108276 DE102011108276A1 (de) 2010-08-19 2011-07-21 Flüssigkristallines Medium und Flüssigkristallanzeigen

Publications (1)

Publication Number Publication Date
DE102011108276A1 true DE102011108276A1 (de) 2012-02-23

Family

ID=44510857

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201110108276 Withdrawn DE102011108276A1 (de) 2010-08-19 2011-07-21 Flüssigkristallines Medium und Flüssigkristallanzeigen

Country Status (7)

Country Link
US (1) US9234135B2 (de)
EP (1) EP2606101B1 (de)
JP (1) JP6038790B2 (de)
KR (1) KR101869113B1 (de)
DE (1) DE102011108276A1 (de)
TW (1) TWI589683B (de)
WO (1) WO2012022417A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182271A1 (de) * 2012-06-05 2013-12-12 Merck Patent Gmbh Flüssigkristallines medium und flüssigkristallanzeige
EP3112441A1 (de) * 2015-07-03 2017-01-04 Merck Patent GmbH Flüssigkristallines medium und flüssigkristallanzeige
CN109825312A (zh) * 2014-03-10 2019-05-31 默克专利股份有限公司 具有垂面配向的液晶介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201432032A (zh) * 2012-11-09 2014-08-16 Dainippon Ink & Chemicals 液晶組成物及使用此之液晶顯示元件
KR20150100766A (ko) * 2012-12-17 2015-09-02 메르크 파텐트 게엠베하 호메오트로픽 정렬을 갖는 액정 디스플레이 및 액정 매질
WO2014122766A1 (ja) * 2013-02-08 2014-08-14 Dic株式会社 液晶組成物及びそれを使用した液晶表示素子
CN107109233A (zh) * 2015-01-20 2017-08-29 捷恩智株式会社 液晶组合物及液晶显示元件
WO2016170948A1 (ja) 2015-04-23 2016-10-27 Jnc株式会社 液晶組成物および液晶表示素子
US10385269B2 (en) 2015-12-21 2019-08-20 Jnc Corporation Liquid crystal composition and liquid crystal display device
EP3214154B1 (de) 2016-03-01 2019-06-26 Merck Patent GmbH Flüssigkritallines medium und lichtmodulationselement
US11236271B2 (en) 2016-09-07 2022-02-01 Merck Patent Gmbh Liquid-crystal media and light modulation element
JP2019073675A (ja) * 2017-10-12 2019-05-16 Jnc株式会社 液晶組成物および液晶表示素子
CN108300488A (zh) * 2017-10-31 2018-07-20 晶美晟光电材料(南京)有限公司 一种低扩散性液晶混合物及其应用
CN108034434A (zh) * 2017-12-19 2018-05-15 深圳市华星光电技术有限公司 热聚合自取向液晶材料及液晶显示面板的制作方法
JP7131048B2 (ja) * 2018-04-20 2022-09-06 Jnc株式会社 液晶組成物および液晶表示素子

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000451A1 (de) 1990-01-09 1991-07-11 Fraunhofer Ges Forschung Elektrooptisches fluessigkristallschaltelement
EP0588568A2 (de) 1992-09-18 1994-03-23 Hitachi, Ltd. Flüssigkristall-Anzeigevorrichtung
JPH07181439A (ja) 1993-12-24 1995-07-21 Hitachi Ltd アクティブマトリクス型液晶表示装置
EP0667555A1 (de) 1994-02-14 1995-08-16 Hitachi, Ltd. Flüssigkristall-Anzeigevorrichtung mit aktiver Matrix
EP0673986A2 (de) 1994-03-17 1995-09-27 Hitachi, Ltd. Flüssigkristallanzeigegerät mit aktiver Matrix
WO1996023851A1 (de) 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische flüssigkristallanzeige
DE19528106A1 (de) 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
DE19528107A1 (de) 1995-03-17 1996-09-19 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
DE19509410A1 (de) 1995-03-15 1996-09-19 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
JPH1036847A (ja) 1996-07-25 1998-02-10 Seiko Epson Corp 液晶表示素子およびその製造方法
US6177972B1 (en) 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
EP1170626A2 (de) 2000-07-07 2002-01-09 Fujitsu Limited Flüssigkristallanzeigevorrichtung und zugehöriges Herstellungsverfahren
US20040191428A1 (en) 2003-03-26 2004-09-30 Fujitsu Display Technologies Corporation Liquid crystal panel
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium
US20060066793A1 (en) 2004-09-24 2006-03-30 Fujitsu Display Technologies Corporation Liquid crystal display device
US20060103804A1 (en) 2004-11-12 2006-05-18 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacture of the same
US7169449B2 (en) 2002-04-16 2007-01-30 Sharp Kabushiki Kaisha Liquid crystal display device
US20080198301A1 (en) 2007-02-16 2008-08-21 Industrial Technology Research Institute Liquid crystal device
JP2010170090A (ja) 2008-12-26 2010-08-05 Lg Display Co Ltd 液晶表示装置及び液晶組成物
WO2010089092A1 (de) 2009-02-06 2010-08-12 Merck Patent Gmbh Flüssigkristallines medium und flüssigkristallanzeige

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008076A1 (de) * 1990-03-14 1991-09-19 Consortium Elektrochem Ind Organosilsesquioxane mit mindestens einer mesogenen seitengruppe
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
DE10209521B4 (de) 2001-03-08 2004-04-08 Asahi Kasei Kabushiki Kaisha Harzzusammensetzung
JP4411078B2 (ja) * 2001-10-24 2010-02-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半導体液晶組成物及びその製造方法
JP4158457B2 (ja) * 2002-08-27 2008-10-01 チッソ株式会社 ケイ素化合物含有複合材料および記録素子
JP4392186B2 (ja) * 2003-04-14 2009-12-24 大日本印刷株式会社 高速度応答液晶素子および駆動方法
US7719656B2 (en) 2003-09-24 2010-05-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP4610387B2 (ja) * 2005-03-23 2011-01-12 シャープ株式会社 液晶表示装置
JP3942609B2 (ja) 2003-09-24 2007-07-11 シャープ株式会社 液晶表示装置
US7410677B2 (en) 2003-12-12 2008-08-12 Chisso Corporation Organosilicon compound-containing polymerizable liquid-crystal composition
TWI318235B (en) * 2005-08-29 2009-12-11 Univ Chung Yuan Christian Liquid crystal composite material
US7588806B2 (en) * 2005-12-07 2009-09-15 Chisso Corporation Homeotropically aligned liquid crystal film and process for producing the same
JP5007297B2 (ja) * 2006-03-22 2012-08-22 シャープ株式会社 液晶組成物並びに液晶表示素子
JP5019847B2 (ja) * 2006-10-30 2012-09-05 学校法人東京理科大学 液晶相溶性粒子含有液晶及び液晶表示装置
US8114310B2 (en) 2007-10-22 2012-02-14 Merck Patent Gmbh Liquid-crystal display
JP5196401B2 (ja) * 2008-05-02 2013-05-15 学校法人東京理科大学 液晶素子材料とそれを用いた液晶素子と液晶素子材料の製造方法
TW201017295A (en) 2008-10-20 2010-05-01 Univ Nat United Method of modulating pre-tilt angle of LC molecule, making driven LC element of optical-compensation bending-mode without warm-up time, preparing bi-stable bend-splay mode LC element and orientation layer material for LC element
JP2010163588A (ja) * 2008-12-19 2010-07-29 Tokyo Univ Of Science 液晶組成物
JP2010211151A (ja) * 2009-03-12 2010-09-24 Tokyo Univ Of Science 液晶添加剤及びその使用方法ならびに液晶表示素子

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000451A1 (de) 1990-01-09 1991-07-11 Fraunhofer Ges Forschung Elektrooptisches fluessigkristallschaltelement
EP0588568A2 (de) 1992-09-18 1994-03-23 Hitachi, Ltd. Flüssigkristall-Anzeigevorrichtung
JPH07181439A (ja) 1993-12-24 1995-07-21 Hitachi Ltd アクティブマトリクス型液晶表示装置
EP0667555A1 (de) 1994-02-14 1995-08-16 Hitachi, Ltd. Flüssigkristall-Anzeigevorrichtung mit aktiver Matrix
EP0673986A2 (de) 1994-03-17 1995-09-27 Hitachi, Ltd. Flüssigkristallanzeigegerät mit aktiver Matrix
WO1996023851A1 (de) 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische flüssigkristallanzeige
DE19528106A1 (de) 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
DE19509410A1 (de) 1995-03-15 1996-09-19 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
WO1996028521A1 (de) 1995-03-15 1996-09-19 Merck Patent Gmbh Elektrooptische flüssigkristallanzeige
DE19528107A1 (de) 1995-03-17 1996-09-19 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
JPH1036847A (ja) 1996-07-25 1998-02-10 Seiko Epson Corp 液晶表示素子およびその製造方法
US6177972B1 (en) 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
EP1170626A2 (de) 2000-07-07 2002-01-09 Fujitsu Limited Flüssigkristallanzeigevorrichtung und zugehöriges Herstellungsverfahren
US7169449B2 (en) 2002-04-16 2007-01-30 Sharp Kabushiki Kaisha Liquid crystal display device
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium
US20040191428A1 (en) 2003-03-26 2004-09-30 Fujitsu Display Technologies Corporation Liquid crystal panel
US20060066793A1 (en) 2004-09-24 2006-03-30 Fujitsu Display Technologies Corporation Liquid crystal display device
US20060103804A1 (en) 2004-11-12 2006-05-18 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacture of the same
US20080198301A1 (en) 2007-02-16 2008-08-21 Industrial Technology Research Institute Liquid crystal device
US7550094B2 (en) 2007-02-16 2009-06-23 Industrial Technology Research Institute Liquid crystal device
JP2010170090A (ja) 2008-12-26 2010-08-05 Lg Display Co Ltd 液晶表示装置及び液晶組成物
WO2010089092A1 (de) 2009-02-06 2010-08-12 Merck Patent Gmbh Flüssigkristallines medium und flüssigkristallanzeige

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
Appl. Phys. Lett. 1999, 75(21), 3264
G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869)
J. Duchene (Displays 7 (1986), 3) und H. Schad (SID 82 Digest Techn. Papers (1982), 244)
J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193)
J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30)
K. S. Hun et al. J. Appl. Phys. (2008), 104, 084515 (DSIPS: 'double-side in-plane switching' für Verbesserungen von Treiberspannung und Transmission)
Kim, Hyeon Kyeong et al., Vortrag 9.1: "A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109
Kim, Sang Soo, Vortrag 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763
Liu, C. T. et al., Vortrag 15.1: "A 46-inch TFT-LCD HDTV Technnology ..., SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753
M. F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912
M. Jiao et al. App. Phys. Lett (2008), 92, 111101 (DFFS: 'dual fringe field switching für verbesserte Schaltzeiten)
Optics Express 2004, 12(7), 1221
S. H. Kim, L.-C-Chien, Jpn. J. Appl. Phys. 43, 2004, 7643-7647
S. H. Lee et al. Appl. Phys. Lett. (1997), 71, 2851-2853
Shie-Chang Jeng et al. Optics Letters (2009), 34, 455-457
Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757
Shug-June Hwang et al. J. Phys D: Appl. Phys 2009, 42, 025102
Souk, Jun, SIDSeminar 2004, Seminar M-6: "Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SIDSeminar 2004, Seminar M-7: "LCD-Television", Seminar Lecture Notes, M-7/1 bis M-7/32
T.-J-Chen et al., Jpn. J. Appl. Phys. 45, 2006, 2702-2704
Y. T. Kim et al. Jap. J. App. Phys. (2009), 48, 110205 (VAS: 'viewing angle switchable' LCD)
Yeo, S. D., Vortrag 15.3: "A LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 & 759
Yoshide, H. et al., Vortrag 3.1: "MVA LCD for Notebook or Mobile PCs ..., SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182271A1 (de) * 2012-06-05 2013-12-12 Merck Patent Gmbh Flüssigkristallines medium und flüssigkristallanzeige
CN104334688A (zh) * 2012-06-05 2015-02-04 默克专利股份有限公司 液晶介质和液晶显示器
JP2015525267A (ja) * 2012-06-05 2015-09-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体および液晶ディスプレイ
EP3327102A1 (de) * 2012-06-05 2018-05-30 Merck Patent GmbH Flüssigkristallines medium und flüssigkristallanzeige
CN112251242A (zh) * 2012-06-05 2021-01-22 默克专利股份有限公司 液晶介质和液晶显示器
US11312908B2 (en) 2012-06-05 2022-04-26 Merck Patent Gmbh Liquid crystal medium and liquid crystal display
CN109825312A (zh) * 2014-03-10 2019-05-31 默克专利股份有限公司 具有垂面配向的液晶介质
CN109825312B (zh) * 2014-03-10 2022-07-29 默克专利股份有限公司 具有垂面配向的液晶介质
EP3112441A1 (de) * 2015-07-03 2017-01-04 Merck Patent GmbH Flüssigkristallines medium und flüssigkristallanzeige
US10738243B2 (en) 2015-07-03 2020-08-11 Merck Patent Gmbh Liquid-crystalline medium and liquid-crystal display

Also Published As

Publication number Publication date
EP2606101A1 (de) 2013-06-26
US9234135B2 (en) 2016-01-12
TW201221629A (en) 2012-06-01
TWI589683B (zh) 2017-07-01
WO2012022417A1 (de) 2012-02-23
JP6038790B2 (ja) 2016-12-07
US20130148069A1 (en) 2013-06-13
KR20140003396A (ko) 2014-01-09
KR101869113B1 (ko) 2018-06-19
JP2013541028A (ja) 2013-11-07
EP2606101B1 (de) 2016-06-08

Similar Documents

Publication Publication Date Title
EP2606101B1 (de) Flüssigkristallines medium und flüssigkristallanzeigen
EP2593529B1 (de) Flüssigkristalline medien und flüssigkristallanzeigen mit polymerstabilisierter homöotroper ausrichtung
EP2670818B1 (de) Flüssigkristallanzeigen mit homöotroper ausrichtung
EP3323872B1 (de) Verbindungen zur homöotropen ausrichtung von flüssigkristallinen medien
EP3660130B1 (de) Flüssigkristallanzeigen und flüssigkristalline medien mit homöotroper ausrichtung
EP3521401B1 (de) Verbindungen zur homöotropen ausrichtung von flüssigkristallinen medien
EP2393902B1 (de) Flüssigkristallines medium und flüssigkristallanzeige
EP3174955B1 (de) Flüssigkristalline medien mit homöotroper ausrichtung
EP2243812B2 (de) Flüssigkristallanzeige
DE112014006109B4 (de) Nematische Flüssigkristallzusammensetzung und ihre Verwendung zur Herstellung eines Flüssigkristallanzeigeelements
EP2596034A2 (de) Polymerisierbare mischungen und ihre verwendung in flüssigkristallanzeigen
DE112018003930T5 (de) Flüssigkristallmedium
DE102022001602A1 (de) Flüssigkristallmedium enthaltend polymerisierbare Verbindungen

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination