DE102011107692B3 - Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR - Google Patents

Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR Download PDF

Info

Publication number
DE102011107692B3
DE102011107692B3 DE102011107692A DE102011107692A DE102011107692B3 DE 102011107692 B3 DE102011107692 B3 DE 102011107692B3 DE 102011107692 A DE102011107692 A DE 102011107692A DE 102011107692 A DE102011107692 A DE 102011107692A DE 102011107692 B3 DE102011107692 B3 DE 102011107692B3
Authority
DE
Germany
Prior art keywords
engine
catalyst
exhaust gas
reactivation
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102011107692A
Other languages
English (en)
Inventor
Stephan Eckhoff
Stefan Franoschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46384376&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102011107692(B3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to DE102011107692A priority Critical patent/DE102011107692B3/de
Priority to US14/125,692 priority patent/US9587540B2/en
Priority to PCT/EP2012/062138 priority patent/WO2013007497A1/en
Priority to EP12729962.6A priority patent/EP2732141B1/de
Application granted granted Critical
Publication of DE102011107692B3 publication Critical patent/DE102011107692B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Reaktivierung eines Systems aus einem Oxidationskatalysator (DOC) gefolgt von einem ggf. katalytisch beschichteten Partikelfilter (DPF) und ein entsprechend angepasstes Abgasreinigungssystem für Magermotoren. Insbesondere bezieht sich die vorliegende Erfindung auf die Reaktivierung eines derartigen Systems während besonderer Fahrsituationen des Fahrzeugs.

Description

  • Die Erfindung betrifft ein Verfahren zur Reaktivierung eines Systems aus einem Dieseloxidationskatalysator (DOC) gefolgt von einem ggf. katalytisch beschichteten Partikelfilter (DPF) und ein entsprechend angepasstes Abgasreinigungssystem für Magermotoren. Insbesondere bezieht sich die vorliegende Erfindung auf die Reaktivierung eines derartigen Systems während besonderer Fahrsituationen des Fahrzeugs.
  • Die im Abgas eines Kraftfahrzeugs enthaltenen Emissionen können in drei Gruppen unterschieden werden. So bezeichnet der Begriff Primäremission Schadgase, die durch den Verbrennungsprozess des Kraftstoffes im Motor direkt entstehen und im so genannten Rohabgas am Zylinderaustritt vorhanden sind. Das Rohabgas von Magermotoren z. B. enthält neben den üblichen Primäremissionen Kohlenmonoxid (CO), Kohlenwasserstoffe (HC) und Stickoxide (NOx) einen relativ hohen Sauerstoffgehalt von bis zu 15 Vol.-%. Außerdem können noch Partikelemissionen hinzukommen, die überwiegend aus Rußrückständen und gegebenenfalls organischen Agglomeraten bestehen und aus einer partiell unvollständigen Kraftstoffverbrennung im Zylinder herrühren.
  • Die Schadgase Kohlenmonoxid und Kohlenwasserstoffe können aus magerem Abgas durch Oxidation an einem geeigneten edelmetallhaltigen Oxidationskatalysator relativ leicht unschädlich gemacht werden ( DE 10308288 A1 , DE 19614540 A1 , DE 19753738 A1 , DE 3940758 A1 , EP 427970 A2 , DE 4435073 A1 ). Zur Verminderung von Partikeln werden im Bereich der Abgasnachbehandlung von Kraftfahrzeugen häufig Wall-Flow-Filter eingesetzt, bevorzugt bei Dieselfahrzeugen. Solche Filter können unbeschichtet oder mit katalytischer Beschichtung angewendet werden. Üblich sind katalytische Beschichtungen in Form von Oxidationskatalysatoren, die eine Oxidation von Kohlenwasserstoffen und CO hervorrufen und gegebenenfalls Stickstoffmonoxid (NO) zu Stickstoffdioxid (NO2) oxidieren können (Catalytically Activated Diesel Particular Traps, Engler et al., 1985, SAE850007). Allerdings wird zunehmend auch die Beschichtung von Partikelfiltern mit anderen katalytisch aktiven Materialien ins Auge gefasst ( EP 1309775 A1 für oxidationskatalytisch beschichtete Filter; EP 2042225 A1 , EP 2042226 A2 , US 2009093796 für mit TWC-Materialien beschichtete Filter; EP 1837497 A1 oder E P1398069 A2 für mit NOx-Speicherkatalysatoren beschichte Filter; WO 08106523 A2 und EP 1663458 A1 für mit SCR-Katalysatoren beschichtete Filter)
  • Zukünftige Abgasgesetzgebungen limitieren die Menge von Kohlenwasserstoffen und CO im Abgas von Dieselmotoren so weit, dass hohe Edelmetallmengen auf den Dieseloxidationskatalysatoren erforderlich werden. Für europäische Anwendungen wird derzeit zur Abgasnachbehandlung ein System bestehend aus einem motornahen Dieseloxidationskatalysator (DOC) gefolgt von einem oxidationskatalytisch beschichteten Filter (cDPF) benutzt.
  • Ebenfalls vorgesehen ist jedoch zusätzlich eine erhöhte Reduktion von Stickoxiden im Abgas von Dieselmotoren. Diese Anforderung wird entweder durch den Einsatz von Abgasrückführsystemen oder motorischen Maßnahmen erfüllt oder durch den Einsatz von NOx-Nachbehandlungssystemen bzw. durch eine Kombination von den genannten Möglichkeiten.
  • Bei allen externen Abgasrückführsystemen muss ein Druckgefälle von der Abgasseite zur Frischluftseite (Ansaugluft) vorhanden sein, um das Überströmen des Abgases von der Abgasseite zur Ansaugluftseite zu ermöglichen. Das bedeutet, dass nur in den Motordrehzahl/-last Bereichen eine Abgasrückführung möglich ist, bei denen mindestens diese Bedingung erfüllt ist. Bei Hochdruck (HD) AGR Systemen wird das Abgas vor der Turbine des Turboladers entnommen und nach dem Verdichter des Turboladers der Frischluft dem Motor zugeführt. Bei Niederdruck (ND) AGR Systemen wird das Abgas nach der Turbine entnommen und vor dem Verdichter des Turboladers der Frischluft zugeführt ( DE 10 2005 056 955 A1 ). ND-AGR Systeme ermöglichen eine Abgasrückführung in einem breiteren Kennfeldbereich und mit höheren Rückführraten als HD-AGR Systeme. Um die Turbine und den Frischluftpfad bei ND-AGR Systemen vor Ablagerungen von Ruß und Kohlenwasserstoffen zu schützen, wird das Abgas in der Regel nach einem Partikelfilter entnommen. Kombinationen von beiden Systemen (HD und ND) sind ebenfalls bekannt ( JP 6257519 A2 , US 2004050375 , DE 10 2008 015 600 A1 ).
  • Zur NOx-Nachbehandlung stehen NOx-Speicherkatalysatoren und SCR-Katalysatoren zur Auswahl. SCR-Katalysatoren sind dem Fachmann wohl bekannt ( WO 2007/137675 , US 4961917 , DE 10335785 A1 ). Auch NOx-Speicherkatalysatoren sind dem Fachmann hinlänglich geläufig. Die DE 102008048854 A1 zeigt bevorzugt einzusetzende Stickoxidkatalysatoren und die WO 2011/023332 A1 bezieht sich allgemein auf für die Erfindung vorteilhafte Speichermaterialien.
  • Moderne Dieselmotoren sind optimiert auf einen geringen Kraftstoffverbrauch und enthalten häufig einen Turbolader und Abgasrückführsysteme zur motorseitigen Verringerung der NOx-Emissionen. Dadurch wird die Abgastemperatur im Vergleich zu früheren Dieselmotoren erheblich abgesenkt. Niedrige Abgastemperaturen verringern jedoch die Effizienz der Katalysatoren erheblich.
  • Es ist bekannt, dass Oxidationskatalysatoren im mageren Fahrbetrieb an Aktivität einbüßen, besonders bei hohen Abgastemperaturen, wie sie beispielsweise bei der Filterregeneration auftreten können. Dieser Aktivitätsverlusst wird hauptsächlich durch die Sinterung der katalytisch aktiven Edelmetalle (z. B. Pt und Pd) hervorgerufen. Unter reduzierenden Bedingungen (Lambda kleiner/gleich 1) lassen sich diese Katalysatoren jedoch wieder reaktivieren (Untersuchungen zur katalytischen Aktivität eines Diesel-DeNOx-Katalysators auf der Basis von Pt/Al2O3, Dissertation S. Eckhoff, 1998. Lit.: Appl. Catal. B: Environ. 93 (2009) S. 22–29; 22nd North Am. Catal. Soc. Meeting, 2011, Poster, J. R. Theis, Ford). Diese reduzierenden Bedingungen müssen nur kurze Zeit vorliegen – vergleichbar mit der Regeneration von NOx-Speicherkatalysatoren. Das bedeutet, dass die Aktivität z. B. die Light-off Temperatur des Katalysators unter diesen Bedingungen zu niedrigeren Temperaturen hin verschoben wird im Vergleich zur Aktivität nach reinem Magerbetrieb.
  • Eine effiziente Reaktivierung eines Dieseloxidationskatalysators ist gewöhnlich erst bei Temperaturen oberhalb von 200°C möglich. Im Neuen Europäischen Fahrzyklus (NEFZ) bedeutet dies bei modernen Dieselmotoren, dass eine Reaktivierung erst innerhalb des außerstädtischen Bereiches am Ende des Fahrzyklus möglich ist, da erst hier die für die Reaktivierung notwendigen Abgastemperaturen erreicht werden. Es wäre allerdings wünschenswert, eine Reaktivierung auch bereits bei niedrigeren Temperaturen (innerstädtisch) durchführen zu können, um auch bei längeren Fahrten mit niedrigen Geschwindigkeiten eine effektive Abgas-Nachbehandlung sicherstellen zu können. Derzeit ist es in diesen Fahrsituationen daher nötig, das Abgassystem für die Reaktivierung aufzuheizen, um eine effektive Reaktivierung durchführen zu können, was unweigerlich eine Erhöhung des Kraftstoffverbrauchs als auch eine Erhöhung der HC/CO Emissionen mit sich bringt.
  • In der DE 10 2008 015 600 wird ein Abgassystem beschrieben, welches ein Niederdruckabgasrückführsystem (ND-AGR) aufweist. Innerhalb der Niederdruckrückführstrecke sind ein Oxidationskatalysator und ein Partikelfilter sowie wahlweise ein Stickoxidspeicherkatalysator beheimatet. Sowohl Dieselpartikelfilter als auch der Stickoxidspeicherkatalysator müssen von Zeit zu zeit regeneriert werden. Dies kann durch zumindest teilweises Öffnen des ND-AGR-Ventils und Drosselung des Abgasausstoßes geschehen. Es wird erwähnt, dass das ND-AGR-Ventil auch im Schubbetrieb geöffnet bleiben kann.
  • Die Aufgabe der vorliegenden Erfindung war daher, eine Verfahren und ein System für die Abgasreinigung eines überwiegend mager betriebenen Verbrennungsmotors anzugeben, bei dem der Oxidationskatalysator (DOC) bei niedrigen Temperaturen und damit in solchen Fahrsituationen reaktiviert werden kann, in denen die Abgastemperatur eigentlich zu niedrig ist, ohne dass ein spezielles Anheizen des Abgasreinigungssystems von Nöten wäre. Das Verfahren und das System sollten dabei den entsprechenden bekannten Maßnahmen des Standes der Technik vom ökonomischen wie ökologischen Standpunkt aus überlegen sein, d. h. u. a. auch zukünftige Abgasgrenzwerte einhalten können.
  • Diese und weitere hier nicht genannte, sich dem Fachmann jedoch aus dem Stand der Technik in nahe liegender Weise erschließende Aufgaben werden durch ein Regerationsverfahren und ein System gemäß den unabhängigen Ansprüchen 1 und 10 gelöst. Bevorzugte Ausführungsformen des Verfahrens bzw. des Systems befinden sich in den von Anspruch 1 und 10, respektive, abhängigen Unteransprüchen.
  • Dadurch, dass man in einem Verfahren zur Reaktivierung eines Oxidationskatalysators (5), welcher nicht befähigt ist, Stickoxide zu speichern, und der in der Abgasleitung (3) eines Magermotors (1) angeordnet ist, wobei der Motor (1) eine Vorrichtung zur Verminderung des Abgasausstoßes (10) und/oder eine Vorrichtung zur Verminderung der Ansaugluft (11) besitzt und mit einer Vorrichtung zur Niederdruck-Abgasrückführung versehen ist, wobei in der Niederdruck-AGR-Leitung (14) ein Niederdruck-AGR-Ventil (9) angeordnet ist, die Reaktivierung während eines Schleppbetriebes des Motors in der Weise beginnt, dass bei Drosselung der Ansaugluft über das Ventil (11) und/oder Verminderung des Ausstoßes der Abgase über das Ventil (10) das Abgas im wesentlichen durch das Niederdruck-AGR-Ventil (9) über den Motor (1) und den Dieseloxidationskatalysator (5) und den Partikelfilter (6) im Kreis geleitet wird und währenddessen ein Luft-Kraftstoff-Gemisch eingestellt wird, welches einem Lambda-Wert von ≤ 1 entspricht, gelangt man äußerst überraschend dafür aber nicht minder vorteilhaft zur Lösung der gestellten Aufgabe.
  • Je nach Dauer des Schleppbetriebs kann die Reaktivierung mit hohem Niederdruck-AGR-Anteil zwar wesentlich länger dauern (5–20 s) als bei einer normalen Reaktivierung (3–5 s). Hierbei werden jedoch keine größeren Mengen HC/CO emittiert. Dadurch, dass das Abgas im Kreis geführt und somit etliche Male mit dem Katalysator in Kontakt gebracht wird, kann die Effizienz der Abgasreinigung erheblich erhöht werden. Dadurch werden die DOCs effizienter regeneriert und dieses auch bei niedrigeren Abgastemperaturen, was im Endeffekt ggf. auch Edelmetalleinsatzkosten sparen hilft. Darüber hinaus wird das Abgassystem während des Schleppbetriebs mit hohem Niederdruck-AGR-Anteil weniger abkühlen, als unter normalem Schubbetrieb, bei dem die kalte Ansaugluft ohne Verbrennung direkt durch den Motor und über die Katalysatoren geleitet wird, was u. a. dazu führt, dass beim Wiedereinsetzen des Lastbetriebs des Motors der Katalysator trotz Reaktivierung unter seine Aktivtätstemperatur abgekühlt sein kann.
  • Der DOC (5) kann nach Maßgabe des Fachmannes ausgestaltet sein. Der Oxidationskatalysator (5) hat eine oxidative Wirkung bzw. Aktivität. Unter oxidierender Wirkung oder Aktivität wird generell verstanden, dass die den Katalysator durchströmenden oxidierbaren Bestandteile des heißen Abgases in Gegenwart des vorhandenen Sauerstoffs oxidiert werden. Damit werden sowohl Kohlenwasserstoffe und Kohlenmonoxid als auch vorhandenes NO zumindest teilweise zu CO2, H2O bzw. NO2 umgesetzt. Die oxidative Wirkung wird durch vorhandene Edelmetalle ausgeübt. Geeignete Ausführungen können den Anmeldungen DE 10308288 A1 , DE 19614540 A1 , DE 19753738 A1 , DE 3940758 A1 , EP 427970 A2 , DE 4435073 A1 entnommen werden. Einsetzbar sind z. B. gängige DOCs mit einer oxidativ wirkenden Katalysatorbeschichtung auf Basis von Edelmetallen ausgewählt aus der Gruppe bestehend aus Pt, Pd, Au, Ag oder Mischungen davon auf einem Trägermaterial. Es ist jedoch bevorzugt, wenn der DOC (5) keine weiteren Edelmetalle außer Platin, Palladium oder Mischung davon aufweist. Die Beschichtung kann dabei in mehreren Lagen und/oder zoniert auf dem Substrat vorhanden sein. Der Oxidationskatalysator (5) und insbesondere die Katalysatorbeschichtung kann vorzugsweise Platin und/oder Palladium, besonders bevorzugt Platin und Palladium als katalytisch aktive Komponenten, vorteilhaft in einem Molverhältnis zwischen 15:1 und 1:3, insbesondere zwischen 15:1 und 1:1 aufweisen. Beispiele für oxidativ wirkende Katalysatorbeschichtungen finden sich auch in den oben genannten Patentanmeldungen.
  • Im Hinblick auf vorteilhaft einzusetzendes Trägermaterial für den genannten Oxidationskatalysator (5) sei auf die EP 0800856 A2 und dort zitierte Literatur verwiesen. Der hier beschriebene Träger enthält ein Zeolithgemisch aus mehreren Zeolithen mit unterschiedlichen Modulen und Platingruppenmetallen sowie weitere Metalloxide aus der Gruppe Aluminiumsilikat, Aluminiumoxid und Titanoxid, wobei das Aluminiumsilikat ein Gewichtsverhältnis Siliziumdioxid/Aluminiumoxid von 0,005 bis 1, vorzugsweise 0,01 bis 0,5, besonders bevorzugt 0,05 bis 0,1, aufweist, wobei die Platingruppenmetalle vorteilhafter Weise nur auf den weiteren Metalloxiden abgeschieden sein können. In einer bevorzugten Ausführungsform enthält der Katalysator die aktiven Metalle, insbesondere Platin und/oder Palladium, auf einem Aluminiumsilikat sowie bis zu fünf verschiedene Zeolithe. Die Zeolithe können ausgewählt werden aus der Gruppe bestehend aus Mordenit, H-ZSM5, Na-ZSM5, Y-Zeolith, dealuminierter Y-Zeolith (DAY) und β-Zeolith. Die Konzentration der Platingruppenmetalle auf den oxidischen Trägermaterialien kann hier zwischen 0,1 und 5 Gew.-% bezogen auf das Trägermaterial liegen. Bevorzugt ist ein Bereich von 0,5–4 Gew.-% und besonders bevorzugt, 1,5–3,8 Gew.-%. Ein weiteres Beispiel in diesen Zusammenhang ist die US 6767855 . Dort und in den zitierten Schriften werden ein- und mehrschichtige Katalysatoren, die als Kohlenwasserstoffe adsorbierendes Material Zeolithe enthalten sowie katalytisch aktive Edelmetalle der Platingruppe (Platin, Palladium, Rhodium, Iridium und Ruthenium), die bevorzugt auf Aluminiumoxid abgeschieden sind, beschrieben. Die Kohlenwasserstoff adsorbierenden Zeolithe sind bevorzugt in einer separaten Schicht angeordnet, die direkt auf einem Tragkörper aufgebracht ist. Die Zeolithe können mit den Edelmetallen, wie Palladium oder Silber, beschichtet sein. Die weiteren Katalysatorschichten sind auf dieser adsorbierenden Schicht aufgebracht und können neben dem mit den Platingruppenmetallen aktivierten Aluminiumoxid noch ein Cer enthaltendes Oxid aufweisen. Die US 6756336 beschreibt ebenso wie die US 6767855 erfindungsgemäß geeignete ein- und mehrschichtige Katalysatoren mit Zeolithen als Kohlewasserstoffe adsorbierende Materialien. Sofern davon die Rede ist, dass der Dieseloxidationskatalysator nicht befähigt ist, Stickoxide zu speichern, so betrifft diese Aussage vorzugsweise ausschließlich solche Eignungen, bei denen Stickoxide in Form von Nitraten gebunden werden.
  • Der Oxidationskatalysator (5) befindet sich auf einem dafür vorgesehenen Substrat. Vorteilhaft ist der Einsatz von sogenannten Flow-Through-Monolithen (Durchflussmonolith). Diese Monolithe sind im Stand der Technik übliche Katalysatorträger, die aus Metall oder keramischen Materialien bestehen können. Bevorzugt werden feuerfeste Keramiken wie zum Beispiel Cordierit eingesetzt. Die Flow-Through-Monolithe aus Keramik besitzen meist eine wabenförmige Struktur, die aus durchgehenden Kanälen bestehen, weshalb Flow-Through-Monolithe auch als Kanal-Fluss- oder Durchfluss-Monolithe bezeichnet werden. Das Abgas kann durch die Kanäle strömen und kommt dabei mit den Kanalwänden in Kontakt, welche mit der katalytisch aktiven Substanz beschichtet sind. Die Anzahl der Kanäle pro Fläche wird durch die Zelldichte charakterisiert, welche üblicher Weise zwischen 300 und 900 Zellen pro Quadrat inch (cells per square inch, cpsi) liegt. Die Wanddicke der Kanalwände beträgt bei Keramiken zwischen 0,5–0,05 mm.
  • Im vorliegenden Abgasreinigungssystem befindet sich hinter dem Dieseloxidationskatalysator (5) jedoch vor der Niederdruck-AGR-Leitung (14) ein Partikelfilter (6). Als Ausführungsformen des erfindungsgemäß verwendeten Partikelfilters (6) können alle im Stand der Technik üblichen Filterkörper aus Metall und/oder keramischen Materialien eingesetzt werden. Dazu gehören beispielsweise metallische Gewebe- und Gestrickfilterkörper, Sintermetallkörper und Schaumstrukturen aus keramischen Materialien. Bevorzugt werden poröse Wandflussfiltersubstrate aus Cordierit, Siliziumcarbid oder Aluminiumtitanat eingesetzt. Diese Wandflussfiltersubstrate weisen An- und Abströmkanäle auf, wobei jeweils die abströmseitigen Enden der Anströmkanäle und die anströmseitigen Enden der Abströmkanäle gegeneinander versetzt mit gasdichten „Stopfen” verschlossen sind. Bevorzugt werden als Substrate derartige Wall-Flow-Filter (Wandflussfiltersubstrate) eingesetzt. Bei diesen wird das zu reinigende Abgas, das das Filtersubstrat durchströmt, zum Durchtritt durch die poröse Wand zwischen An- und Abströmkanal gezwungen, was eine exzellente Partikelfilterwirkung bedingt. Durch die Porosität, Poren-/Radienverteilung, und Dicke der Wand kann die Filtrationseigenschaft für Partikel ausgelegt werden. Das Speichermaterial und evtl. das Katalysatormaterial kann in Form von Beschichtungen in und/oder auf den porösen Wänden zwischen An- und Abströmkanälen vorliegen. Es können auch Filter zum Einsatz kommen, die direkt oder mithilfe von Bindern aus den entsprechenden Speicher- und/oder Katalysatormaterialien extrudiert wurden, das heißt, dass die porösen Wände direkt aus dem Katalysatormaterial bestehen, wie es beispielsweise im Falle von SCR-Katalysatoren auf Vanadiumbasis der Fall sein kann.
  • In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens ist der Partikelfilter (6) mit einer katalytischen Funktion ausgewählt aus der Gruppe bestehend aus Oxidationskatalysator, SCR-Katalysator, Stickoxid-Speicherkatalysator, TWC-Katalysator versehen. In einer besonders vorteilhaften Ausgestaltung ist der Partikelfilter (6) mit diesen Katalysatorformulierungen beschichtet. Ganz besonders bevorzugt ist der Filter mit einem Oxidationskatalysator beschichtet, wenn keine weitere Stickoxidnachbehandlung erforderlich ist. Im Falle, dass eine Stickoxidnachbehandlung benötigt wird, ist eine Beschichtung des Filters mit einem SCR-Katalysator besonders bevorzugt. Die Beschichtung kann aus einem oder mehreren Beschichtungsmaterialien und katalytischen Eigenschaften bestehen und kann entweder über die gesamte Länge des Filters aufgebracht sein oder in Form einer Zonierung auf der Einlassseite und/oder Auslassseite. Ferner kann die Beschichtung auch in mehreren Schichten übereinander aufgebracht werden. Im Hinblick auf mögliche Ausführungsformen der Partikelfilter wird diesbezüglich auf die eingangs genannten Literaturstellen und insbesondere auf die EP 2283213 A1 sowie dort zitierte Literatur verwiesen.
  • Als oxidativ wirkende Komponenten oder Beschichtungen kommen für den Fachmann z. B. solche in Frage, die in der WO 2008 101 585 A1 dargestellt sind. Bevorzugt weist der Partikelfilter (6) und insbesondere die angesprochene Beschichtung Metalle wie Platin, Palladium, Rhodium oder Mischungen derselben auf, wobei diese dann vorteilhaft auf hochoberflächigen Trägermaterialien aufgebracht sind. Mehr bevorzugt werden Platin-Palladium-Gemische eingesetzt. Ggf. abhängig vom Anteil an oxidierend wirkenden Spezies im Abgas und dem einzuhaltenden Temperaturregime wählt der Fachmann das geeignete Mischungsverhältnis der Metalle aus. Der oxidativ wirkende Partikelfilters (6) kann vorzugsweise ein Molverhältnis von Platin zu Palladium zwischen 15:1 und 0:1, insbesondere zwischen 15:1 und 1:1 aufweisen. Ganz besonders vorteilhaft ist es, wenn die oxidative Wirkung des Partikelfilters (6) auf die oxidative Aktivität des Dieseloxidationskatalysators (5) im Sinne der EP 2123345 A1 abgestimmt ist.
  • Es kann auch sinnvoll erscheinen, als katalytisch aktive Beschichtungen sogenannte Katalysatoren mit 3-Wege-Funktion auf den Filter (6) aufzubringen, die sowohl unter mageren als auch stöchiometrischen Abgasbedingungen hohe Umsatzraten für Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide aufweisen. Die Funktionsweise und geeignete Ausgestaltung von 3-Wege-Katalysatoren ist beispielsweise in EP 1046423 A2 und WO 95/35152 A1 ausführlich beschrieben.
  • In einer weiteren Ausführungsform der Erfindung kann die katalytische Wirkung, vorzugsweise die Beschichtung des Partikelfilters (6) auch eine Funktion zur Einspeicherung von Stickoxiden und/oder Sauerstoff unter mageren Abgasbedingungen aufweisen. Der Vorteil einer solchen NOx-Einspeicherfunktion (NSC-, NOx-Storage-Catalyst, LNT) bzw. einer Sauerstoffspeicherfunktion (OSC – Oxygen-Storage-Component) in dem Bauteil (6) ist, dass die im Abgas enthaltenen Stickoxide bereits bei niedrigen Abgastemperaturen herausgefiltert werden können und bei höheren Temperaturen von den Einspeicherzentren desorbiert und an einen ggf. nachgeschalteten SCR-Katalysator (als (7) und/oder (8)) umgesetzt werden können (wie in WO 2004076829 A1 beschrieben). Zur Speicherung der Stickoxide als Nitrate dienen basische Oxide, Carbonate oder Hydroxide von Alkalimetallen, Erdalkalimetallen und Seltenerdmetallen, insbesondere basische Verbindungen des Bariums und Strontiums sowie des Cers. Bevorzugt weist der NOx-Speicher die Komponenten ausgewählt aus den Oxiden des Cers, Bariums oder Strontiums oder Mischungen derselben auf. Insbesondere vorteilhaft ist, dass über entsprechende NOx-Speicherfunktionalitäten im fetten Abgas das gespeicherte NO2 zu N2 abreagieren kann. Demzufolge kann in der Phase des Schleppbetriebs, wenn ein Luft-Kraftstoff-Gemisch von ≤ 1 eingestellt und das Abgas erfindungsgemäß zyklisch über den Motor geleitet wird, die eingespeicherten Stickoxide wesentlich besser reduziert werden. Es treten mithin zumindest keine NOx- oder NH3-Spitzen auf, wie sie bei normalen NOx-Speicherkatalysatoranordnungen beschrieben werden.
  • Wie eben dargestellt wird die Reaktivierung des Dieseloxidationskatalysators (5) zu einem Zeitpunkt durchgeführt, bei dem der Motor keine positive Arbeit leistet, dem Motor daher gewöhnlich kein Kraftstoff zugeführt wird, der Motor aber dennoch durch die Masse (träge oder schwere) des Fahrzeugs angetrieben mitdreht. Dies ist der Fall, wenn sich der Motor im so genannten Schleppbetrieb befindet. Ein solcher liegt beispielsweise vor, wenn eine Verzögerungsphase eintritt, z. B. durch Abbremsung – ggf. durch Motorbremse – des Fahrzeugs, d. h. die Geschwindigkeit des Fahrzeugs abnimmt und dem Motor kein Kraftstoff mehr zugeführt wird (so genannte Schubabschaltung). Der Motor ist in dieser Phase aber immer noch an das Getriebe angekoppelt, und es ist ein Gang eingelegt. Dabei wird gewöhnlich nur noch Luft über den Ansaugtrakt durch den sich drehenden Motor in die Abgasanlage gepumpt. Eine solche Betriebsweise erfolgt beispielsweise beim Annähern an eine rote Ampel oder beim schnellen Annähern an ein langsamer fahrendes Fahrzeug.
  • Bei Hybridantrieben, bei denen neben dem Verbrennungsmotor auch Elektromotoren zum Antrieb des Fahrzeuges zum Einsatz kommen, kann der Schleppbetrieb des Verbrennungsmotors auch in anderen Fahrzuständen erzeugt werden, um diesen zur erfindungsgemäßen Reaktivierung des Katalysator (5) zu nutzen. Hier kann auch während des Stillstandes oder während des Antriebs des Fahrzeugs der Verbrennungsmotor auf Schubbetrieb umgestellt werden, indem der Verbrennungsmotor und eventuell zusätzlich das Fahrzeug vom Elektromotor angetrieben werden. Hier wird also der Schleppbetrieb des Motors durch den Elektromotor bewerkstelligt. Bei Hybridantrieben kann somit die erfindungsgemäße Reaktivierung des Oxidationskatalysators auf alle Fahrsituationen erweitert werden, bei denen die Antriebsleistung des Elektromotors für den Antrieb des Fahrzeuges und des Verbrennungsmotors ausreichen. Dies ist im Besonderen bei innerstädtischen Fahrsituationen gegeben.
  • Unter Schleppbetrieb ist ebenfalls in einer weiteren bevorzugten Ausgestaltung der Erfindung zu verstehen, dass der Motor beim Abschalten oder während des Abschaltens kurzzeitig auf fettes Abgas und eine hohe Niederdruck-AGR-Rate in der oben beschriebenen Weise umgestellt wird, um den Dieseloxidationskatalysator (5) mit fettem Abgas während der Motorabschaltung zu spülen und somit zumindest teilweise zu reaktivieren. Zum Abschalten eines Motors muss die Umwandlung von Wärme in mechanische Arbeit (indizierter Leistung) soweit reduziert werden, dass diese Leistung nicht mehr zur vollständigen Überwindung der Reibleistung des Motors ausreicht. Dies geschieht im Allgemeinen dadurch, dass im Zylinder die Entstehung von Wärme während des Arbeitstakes unterbunden wird. Bei Ottomotoren wurde dies früher durch Abschalten der Zündung (Zündfunken) realisiert. Bei Dieselmotoren und modernen Ottomotoren wird dies durch Abschalten der Kraftstoffzufuhr realisiert. Im erfindungsgemäßen Fall wird die Entstehung von Wärme im Zylinder durch Abschalten der Luft-/Sauerstoffzufuhr erreicht, bei vorerst weiter bestehender Kraftstoffzufuhr. Hierbei kann das Weiterdrehen des Motors bei entkoppeltem Getriebe entweder durch den Anlasser oder ein Elektromotor (Hybridantrieb) zusätzlich unterstützt und verlängert werden. Dies kann entweder während des Abschaltens des Motors geschehen oder bei einem Fahrzeug mit Stop/Start-Funktion während des Stillstand des Fahrzeuges, in der sich der Motor automatisch abstellt. Das Anfetten bei hoher Niederdruck-AGR-Rate, wie zuvor beschrieben, kann daher vorzugsweise während des Schubbetriebs des Motors begonnen werden und ggf. nahtlos in das Abschalten des Motors übergehen.
  • Erfindungsgemäß bevorzugt wird in diesen Phasen der Reaktivierung im Schleppbetrieb das Niederdruck-AGR-Ventil komplett geöffnet, um einen möglichst großen Abgasstrom von mindestens 50%, vorzugsweise mindestens 80% und besonders bevorzugt zu annähernd 100% über die Niederdruck-AGR-Leitung (14) den Motor (1) und den Oxidationskatalysator (5) und Partikelfilter (6) im Kreis zu führen. Um eine hohe Niederdruck-AGR-Rate zu erreichen, können gleichzeitig die anderen Ventile (10) und/oder (11) mehr oder minder weit geschlossen werden. Zusätzlich kann der nicht über die Niederdruck-AGR-Leitung geführte Abgasstrom über die Hochdruck-AGR-Leitung (15) zurückgeführt werden. Die Rückführung des Abgases über die Niederdruck- und Hochdruck-AGR-Leitung kann dann angewendet werden, wenn der Strömungswiderstand des Abgases verringert werden soll um das Abbremsen des Motors möglichst gering zu halten.
  • Das während der Reaktivierung einzustellende Luft-Kraftstoffverhältnis (Lambda) sollte einen Wert von kleiner oder gleich 1 betragen (λ ≤ 1). Die Messung des Luft/Kraftstoffverhältnisses kann über bekannte Lambdasensoren oder Sauerstoffsensoren oder NOx-Sensoren (Handbuch Verbrennungsmotor, van Basshuysen/Schäfer, ISBN 3-528-13933-1) erfolgen oder kann vom Motorsteuergerät berechnet werden. Je nach Lambdasensor wir das Signal in mV oder als Lambda-Wert ausgegeben. Als Definition des Wertes Lambda (λ) ist erfindungsgemäß eine Zahl anzusehen, mit der die Gemischzusammensetzung bestehend aus Luft und Kraftstoff beschrieben wird. Andere Begriffe in diesem Zusammenhang sind Luftverhältnis, Luftverhältniszahl, Luftzahl, Luftüberschuss und Luftüberschusszahl.
  • Das Verbrennungsluftverhältnis setzt die tatsächlich für eine Verbrennung zur Verfügung stehende Luftmasse mL,tats ins Verhältnis zur mindestens notwendigen stöchiometrischen Luftmasse mL,st, die für eine vollständige Verbrennung benötigt wird:
    Figure 00110001
  • Ist λ = 1, so gilt das Verhältnis als stöchiometrisches Verbrennungsluftverhältnis mit mL,tats = mL,st; das ist der Fall, wenn alle Brennstoff-Moleküle theoretisch vollständig mit dem Luftsauerstoff reagieren können, ohne dass Sauerstoff fehlt oder unverbrannter Sauerstoff übrig bleibt.
  • Für Verbrennungsmotoren gilt:
    λ < 1 (z. B. 0,9) bedeutet „Luftmangel”: fettes oder auch reiches Gemisch
    λ > 1 (z. B. 1,1) bedeutet „Luftüberschuss”: mageres oder auch armes Gemisch
  • Aussage: λ = 1,1 bedeutet, dass 10% mehr Luft an der Verbrennung teilnimmt, als zur stöchiometrischen Reaktion notwendig wäre. Dies ist gleichzeitig der Luftüberschuss. Vorzugsweise wird während der Reaktivierung jedoch ein Luft-Kraftstoff-Gemisch aufrechterhalten, welches einem Lambda-Wert von 0,8 bis 1 entspricht. Besonders bevorzugt liegt dieser Wert zwischen 0,85 und 0,99, ganz besonders bevorzugt zwischen 0,95 und 0,99.
  • In einer besonderen Ausführungsform werden Umgebungsdaten des Fahrzeugs zur Berechnung des Einsetzens und der Dauer des Schleppbetriebes und der Regeneration des Stickoxid-Speicherkatalysators herangezogen, z. B. beim Annähern des Fahrzeugs an eine rote Ampel oder Geschwindigkeitsbegrenzung. Ferner können beispielsweise Navigationsdaten (GPS) oder Abstandssensoren dazu dienen, das Einsetzen bzw. Ende des Schleppbetriebs vorherzusehen und die Regeneration so effizient wie möglich zu gestalten.
  • Das erfindungsgemäße Verfahren zur Reaktivierung kann mit folgendem System zur Reinigung der Abgase eines Magermotors besonders vorteilhaft durchgeführt werden. Das System weist dabei folgende Merkmale auf:
    • – Einheit zur Steuerung des Motors und der Regeleinrichtungen des Systems
    • – eine Vorrichtung zur Drosselung der Ansaugluft (11);
    • – einen ersten Sensor zur Erfassung des Luft-Kraftstoffverhältnisses oder NOx-Sensor (12);
    • – einen Oxidationskatalysator (5), welcher nicht befähigt ist, Stickoxide zu speichern;
    • – eine Apparatur zur Eindosierung von Reduktionsmittel in den Abgasstrang (19)
    • – einen ggf. katalytisch aktiven Partikelfilter (6);
    • – einen zweiten Sensor zur Erfassung des Luft-Kraftstoffverhältnisses oder NOx-Sensor (13);
    • – eine Niederdruck-AGR-Leitung (14) mit einem Niederdruck-AGR-Ventil (9);
    • – optional eine Vorrichtung zur Verminderung des Ausstoßes des Abgases (10).
  • Es sei angemerkt, dass die für das System genannten weiteren und bevorzugten Ausführungsformen für das erfindungsgemäße Verfahren entsprechend gelten.
  • In einer weiteren vorteilhaften Ausgestaltung ist hinter (stromab) des Partikelfilters (6) und vor (stromauf) der Niederdruck-AGR-Leitung (14) ein Katalysator (7) mit Eigenschaften ausgewählt aus der Gruppe bestehend aus Oxidationskatalysator, SCR-Katalysator, NOx-Speicherkatalysator, Kohlenwasserstoffspeicher, TWC-Katalysator angeordnet. Dieser optionale Katalysator (7) befindet sich wie auch der Partikelfilter (6) noch innerhalb des Niederdruck-AGR-Kreislaufes und kann somit während der Reaktivierung des Oxidationskatalysators (5) die Reaktivierungsprodukte weiter katalytisch umsetzen bzw. adsorbieren. Besonders bevorzugt ist der Katalysator (7) ein SCR-Katalysator mit Ammoniakspeicherfunktion, da dieser Katalysator bei der Reaktivierung evtl. gebildeten oder desorbierenden Ammoniak wieder einspeichern kann. Hieraus ergibt sich eine weitere Möglichkeit zur verbesserten Reduktion der Stickoxide, durch die erhöhte Bildung von Ammoniak über einen auf dem Partikelfilter (6) angebrachten Stickoxid-Speicherkatalysator während der Reaktivierung mittels des erfindungsgemäßen Verfahrens. Dieser Sachverhalt kann genutzt werden, um den Ammoniak, der ggf. während der Reaktivierung entsteht in einem Ammoniakspeicher in (7) aufzufüllen und in dem anschließenden Magerbetrieb zur zusätzlichen NOx-Reduktion über dem SCR-Katalysator (7) zu nutzen. Es ist jedoch auch möglich, vor dem SCR-Katalysator eine Einspritzvorrichtung für Ammoniak oder eine Ammoniak erzeugende Vorläuferverbindung zu etablieren. Damit wird eine fast vollständige Stickoxidreduktion im Abgas über den SCR-Katalysator (7) durch Komproportionierung von NH3 und NOx erreicht. Bei der hier vorgestellten Vorgehensweise wird während des Schleppbetriebs des Motors und bei Drosselung der Ansaugluft über das Ventil (11) und/oder Verminderung des Ausstoßes der Abgase über das Ventil (10) das Abgas im wesentlichen durch das Niederdruck-AGR-Ventil (9) über den Motor (1), den Dieseloxidationskatalysator (5), den Partikelfilter (6) sowie den SCR-Katalysator (7) im Kreis geleitet und währenddessen ein Luft-Kraftstoff-Gemisch eingestellt wird, welches einem Lambda-Wert von ≤ 1 entspricht. Besonders bevorzugt passt zu dieser Ausführung der Erfindung ein wie oben beschriebenes erfindungsgemäßes System, bei dem der SCR-Katalysator auf dem Partikelfilter (6) und/oder dem optionalen Katalysator (7) aufgebracht ist und eine Einspritzvorrichtung für ein Reduktionsmittel wie z. B. Ammoniak oder eine Ammoniak erzeugende Vorläuferverbindung (19) je nach Anforderung wahlweise stromauf oder stromab des DPF (6) vorhanden ist.
  • Besonders bevorzugt ist ein System, bei dem sich nach der Niederdruck-AGR-Leitung (14) im Abgasstrang ein weiterer Katalysator (8) mit Eigenschaften ausgewählt aus der Gruppe bestehend aus Oxidationskatalysator, SCR-Katalysator, NOx-Speicherkatalysator, Ammoniak-Sperrkatalysator, TWC-Katalysator befindet. Dieser optionale Katalysator (8) ist außerhalb des Niederdruck-AGR-Kreislaufes lokalisiert und kann, wenn er beispielsweise als Oxidationskatalysator entsprechend Katalysator (5) ausgestaltet ist, dazu dienen, unvollständig verbranntes Reduktionsmittel nach der Reaktivierung aufzuoxidieren. Dafür sollte der Katalysator (8) katalytische Eigenschaften aufweisen, die sowohl die Oxidation der Reduktionsmittel ermöglicht, wie z. B. Pt, Pd, Rh, Ag, Au, Fe, Cu, Co und Ni, als auch Sauerstoffspeichermaterialien, wie Seltenerdmetallverbindungen z. B. des Cer, Praseodym, Neodym, und Yttrium, die den eingespeicherten Sauerstoff nutzen können, um Reduktionsmittel auch in kurzzeitig unterstoichiometrischem Abgas umzusetzen. Geeignete Ausführungsformen eines solchen Katalysators wurden zuvor bereits unter Drei-Wege-Katalysatoren (TWC) beschrieben.
  • Durch die motorfern angeordnete Lage dieses Katalysators (8) und den daraus resultierenden geringeren Abgastemperaturen ist ebenfalls eine Aktivität besonders vorteilhaft, die eine Adsorption von Abgaskomponenten bewirkt, wie beispielsweise:
    • • die Adsorption von Kohlenwasserstoffen z. B. im Kohlenwasserstoffspeicher oder Oxidationskatalysator während des Kaltstarts des Motors oder während der Reaktivierung des Stickoxid-Speicherkatalysators oder Partikelfilters;
    • • die Adsorption von Stickoxiden z. B. im NOx-Speicherkatalysator, um eine weitere Verbesserung des NOx-Umsatzes zu erzielen, vor allem in Motorbetriebspunkten mit erhöhten Abgastemperaturen, bei denen die ggf. vorhandene NOx-Speicheraktivität des Partikelfilters (5) bzw. der Niederdruck-AGR für eine effiziente Stickoxidreduzierung nicht mehr ausreichend ist;
    • • Die Adsorption von Ammoniak z. B. im SCR Katalysator, um während der Reaktivierung des Stickoxid-Speicherkatalysator gebildeten Ammoniak abzufangen.
  • Ganz besonders bevorzugt weist der Katalysator (8) einen SCR-Katalysator und/oder Ammoniak-Sperrkatalysator auf.
  • Auf den optionalen Katalysatoren (7) und (8) sowie auf dem Oxidationskatalysator (5) und dem Partikelfilter (6) können katalytisch aktive Beschichtungen mit unterschiedlichen Funktionen zoniert und/oder in Schichten aufgebracht sein, wobei die Beschichtungen für die Katalysatoren (7), (8), und (5) besonders bevorzugt auf einem wabenförmigen Tragkörper aufgebracht sind, der im Gemeinen als Durchfluss-Monolith bezeichnet wird.
  • Die Regelung der Reaktivierung wird durch eine elektronische Steuereinheit (ECU) im Fahrzeug bewerkstelligt.
  • Zur Verbesserung der Reaktivierungseffizienz eines Oxidationskatalysators bei niedrigen Abgastemperaturen (≤ 350°C, vorzugsweise ≤ 250°C, besonders bevorzugt ≤ 200°C) wird erfindungsgemäß in einem Abgassystem eines Magermotors enthaltend einen Oxidationskatalysator (5) und einen ggf. katalytisch aktiven DPF (Partikelfilter) (6) sowie eine Vorrichtung für Niederdruck-Abgasrückführung (AGR – Abgasrückführung) die Dauer der Reaktivierung verlängert, ohne den Kraftstoffverbrauch bzw. die HC/CO Emissionen maßgeblich zu erhöhen, indem beispielsweise folgendes erfindungsgemäßes Verfahren angewendet wird:
    • 1. Der Magermotor (1) wird mit einem mager abgestimmten Verbrennungsgemisch betrieben (Normalbetrieb) und das Abgas wird durch den Oxidationskatalysator (5) und einen ggf. beschichteten Partikelfilter (6) geleitet, wobei möglichst vollständig HC, CO und Partikel aus dem Abgas entfernt werden.
    • 2. Wenn der Oxidationskatalysator (5) regeneriert werden muss, um seine Reinigungseffizienz wiederzuerlangen, wird dafür eine Phase des Fahrbetriebs ausgenutzt, in der sich der Motor im Schleppbetrieb befindet. Während dieser Phase (Betrieb, bei dem üblicher Weise kein Kraftstoff in den Motor eingespritzt wird) wird das Abgas vorteilhafter Weise zu 100% zum Motor zurückgeführt. Dies wird erreicht, indem zu Beginn der Phase das Niederdruck-AGR Ventil (9) geöffnet wird, die Kraftstoffzufuhr zur Erzeugung von Arbeit beendet und gleichzeitig entweder die Drosselklappe (11) der Ansaugluft oder auch die Abgasklappe (10) nahezu vollständig geschlossen wird. Die Reihenfolge und Geschwindigkeit der Änderung der Stellglieder erfolgt in Abstimmung mit der jeweiligen Fahrsituation bevorzugt so, dass unerwünschte Druckstöße, Geräusche und Schwingungen vermieden oder verringert werden. Gleichzeitig wird vorteilhafter Weise die notwendige Kraftstoffmenge zur Erlangung des Reaktivierungslambdas aus den Größen: Volumen der Kreislaufstrecke, aktueller Zustand des in der Kreislaufstrecke befindlichen Gases (wie Druck, Temperatur und Lambda) berechnet. Weiterhin wird bevorzugt die notwendige Kraftstoffmenge berechnet, die zur Reaktivierung des Oxidationskatalysators (5) und/oder zur Reaktivierung des Partikelfilters (6) und des evtl. gespeicherten Sauerstoffs benötigt wird. Die beiden berechneten Kraftstoffmengen werden teilweise und/oder schrittweise oder vollständig bevorzugt über ein oder mehrere Kraftstoffdüsen (12) in die Kreislaufstrecke dosiert. Dann wird die Einspritzung von Kraftstoff abgeschaltet.
    • 3. Das fette Abgas wird nun über den Oxidationskatalysator (5) und den Filter (6) im Kreis geleitet, und bei Bedarf, z. B. beim Anstieg von Lambda auf Werte über 1, kann weiterer Kraftstoff eingespritzt werden. Die notwendige Kraftstoffmenge kann aus dem Lambdawert vor dem Oxidationskatalysator (5) und/oder nach dem Oxidationskatalysator (5), sowie dem Volumen der Kreislaufstrecke ermittelt werden. Das Ende der Reaktivierung wird bei vollständiger Reaktivierung des Oxidationskatalysators (5) oder ggf. des Partikelfilters (6), beim Erreichen der Leerlaufdrehzahl, Erreichen des Motorstops, Anforderung von Leistung vom Motor erreicht.
    • 4. Wenn das Ende der Reaktivierung erreicht ist, wird die Abgas- (10) und/oder Drosselklappe (11) wieder geöffnet, die Niederdruck-AGR-Rate durch Stellen des Ventils (9) verringert und das Verbrennungsgemisch wieder auf Magerbetrieb umgestellt. Um zu verhindern, dass dabei das im Kreis geführte, mit Reduktionsmitteln angereicherte Abgas vollständig und schlagartig an die Umgebungsluft abgegeben wird, wodurch die HC und CO Emissionen stark ansteigen würden, wird folgendes Verfahren vorgeschlagen: Es wird nach dem Ende der Reaktivierung nur so viel Frischluft in den Niederdruck-Gaskreislauf zugemischt, dass das Gemisch gerade leicht mager wird, wobei weiterhin eine hohe AGR-Rate von über 80%, bevorzugt über 90%, besonders bevorzugt über 95% solange aufrecht erhalten wird, bis vorteilhafter Weise das überschüssige Reduktionsmittel größtenteils über den Katalysatoren (5, ggf. 6, ggf. 7) vernichtet ist. Erst danach erfolgt die vollständige Umstellung auf den normalen Magerbetrieb. Die Reihenfolge und Geschwindigkeit der Änderung der Stellglieder erfolgt bevorzugt in Abstimmung mit der jeweiligen Fahrsituation so, das unerwünschte Druckstöße, Geräusche und Schwingungen vermieden oder verringert werden.
  • Zusätzlich sollten die Fahreigenschaften während der Reaktivierung möglichst nicht negativ beeinträchtigt werden, da die Reaktivierung erfindungsgemäß dann erfolgt, wenn der Motor keine eigene Arbeit verrichten muss. Dadurch sinkt auch das Risiko der Ölverdünnung während der Reaktivierung.
  • Das Verfahren kann auch bei höheren Abgastemperaturen angewandt werden. Vorteile dabei sind:
    • • Geringerer Kraftstoffverbrauch während der Reaktivierung.
    • • Geringere Exothermiebildung während der Reaktivierung und dadurch geringere Gefahr der irreversiblen Deaktivierung der Katalysatoren.
    • • Verminderung der Kohlenwasserstoff- und CO-Emission während der Reaktivierung durch effizienteres Umsetzen der Reduktionsmittel.
  • Durch das effizientere Reaktivieren des DOC (5) gemäß vorliegender Erfindung kann Edelmetall im System eingespart werden, da ansonsten höhere Edelmetallmengen notwendig sind, um die geforderten Grenzwerte an HC und CO auch bei niedrigen Abgastemperaturen einhalten zu können. Zusätzlich werden die Fahreigenschaften während der Reaktivierung nicht negativ beeinträchtigt und die Ölverdünnung wird minimiert. Dies war so vor dem Hintergrund des bekannten Standes der Technik nicht zu erwarten.
  • In 1 und 2 sind zwei mögliche Systemaufbauten exemplarisch dargestellt.
  • Bezugszeichenliste
  • 1
    Motor
    2
    Zylinder
    3
    Abgasanlage
    4
    Ansaugluftanlage
    5
    Oxidationskatalysator
    6
    Partikelfilter
    7
    Optionaler Katalysator
    8
    Optionaler Katalysator (kann auch abstromseitig von (10) angeordnet sein)
    9
    Niederdruck-AGR-Ventil
    10
    Abgasklappe
    11
    Drosselklappe
    12
    Sensor zur Erfassung des Luft-Kraftstoffverhältnisses, z. B. Lambda-Sensor oder NOx-Sensor (kann auch abstromseitig von (5) angeordnet sein)
    13
    Sensor zur Erfassung des Luft-Kraftstoffverhältnisses, z. B. Lambda-Sensor oder NOx-Sensor (kann auch abstromseitig von (7) oder (8) angeordnet sein)
    14
    Niederdruck-AGR-Leitung
    15
    Hochdruck-AGR-Leitung
    16
    Hochdruck-AGR-Ventil
    17
    Verdichter des Turboladers
    18
    Turbine des Turboladers
    19
    Apparatur zur Eindosierung von Reduktionsmittel in den Abgasstrang (kann auch abstromseitig von (6) oder (7) angeordnet sein)

Claims (9)

  1. Verfahren zur Reaktivierung eines Oxidationskatalysators (5), welcher nicht befähigt ist, Stickoxide zu speichern, und der in der Abgasleitung (3) eines Magermotors (1) angeordnet ist, wobei der Motor (1) eine Vorrichtung zur Verminderung des Abgasausstoßes (10) und/oder eine Vorrichtung zur Verminderung der Ansaugluft (11) besitzt und mit einer Vorrichtung zur Niederdruck-Abgasrückführung versehen ist, wobei in der Niederdruck-AGR-Leitung (14) ein Niederdruck-AGR-Ventil (9) angeordnet ist, dadurch gekennzeichnet, dass die Reaktivierung während eines Schleppbetriebes des Motors in der Weise begonnen wird, dass bei Drosselung der Ansaugluft über das Ventil (11) und/oder Verminderung des Ausstoßes der Abgase über das Ventil (10) das Abgas im wesentlichen durch das Niederdruck-AGR-Ventil (9) über den Motor (1) und den Dieseloxidationskatalysator (5) und den Partikelfilter (6) im Kreis geleitet und währenddessen ein Luft-Kraftstoff-Gemisch eingestellt wird, welches einem Lambda-Wert von ≤ 1 entspricht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass, der Dieseloxidationskatalysator Platin und/oder Palladium als katalytisch aktive Komponenten enthält.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Partikelfilter (6) mit einer Aktivität ausgewählt aus der Gruppe bestehend aus Oxidationskatalysator, SCR-Katalysator, Stickoxid-Speicherkatalysator, TWC-Katalysator versehen ist.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schleppbetrieb des Motors durch die träge oder schwere Masse des Fahrzeugs erfolgt.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schleppbetrieb des Motors durch einen Elektromotor erfolgt.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren während des Abschalten des Motors durchgeführt wird.
  7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Niederdruck-AGR-Ventil (9) während der Reaktivierung komplett geöffnet ist.
  8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Luft-Kraftstoff-Gemisch während der Reaktivierung aufrecht erhalten wird, welches einem Lambda-Wert von 0,8 bis 1 entspricht.
  9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Umgebungsdaten des Fahrzeugs zur Berechnung des Einsatzes und der Dauer des Schleppbetriebes des Motors und der Reaktivierung des Oxidationskatalysators herangezogen werden.
DE102011107692A 2011-07-13 2011-07-13 Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR Expired - Fee Related DE102011107692B3 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102011107692A DE102011107692B3 (de) 2011-07-13 2011-07-13 Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR
US14/125,692 US9587540B2 (en) 2011-07-13 2012-06-22 Method and device for reactivating exhaust-gas purification systems of diesel engines with low-pressure EGR
PCT/EP2012/062138 WO2013007497A1 (en) 2011-07-13 2012-06-22 Method and device for reactivating exhaust-gas purification systems of diesel engines with low-pressure egr
EP12729962.6A EP2732141B1 (de) 2011-07-13 2012-06-22 Verfahren und vorrichtung zur reaktivierung von abgasreinigungssystemen von dieselmotoren mit niederdruck-agr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011107692A DE102011107692B3 (de) 2011-07-13 2011-07-13 Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR

Publications (1)

Publication Number Publication Date
DE102011107692B3 true DE102011107692B3 (de) 2013-01-03

Family

ID=46384376

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011107692A Expired - Fee Related DE102011107692B3 (de) 2011-07-13 2011-07-13 Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR

Country Status (4)

Country Link
US (1) US9587540B2 (de)
EP (1) EP2732141B1 (de)
DE (1) DE102011107692B3 (de)
WO (1) WO2013007497A1 (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846019A1 (de) * 2013-09-10 2015-03-11 Arno Hofmann Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor zur Durchführung des Verfahrens
DE102013020658A1 (de) * 2013-12-12 2015-06-18 Daimler Ag Betriebsverfahren für eine Kraftfahrzeug-Brennkraftmaschine
DE102014205196A1 (de) * 2014-03-20 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Niederdruck-Abgasrückführung für eine Brennkraftmaschine
WO2015169958A1 (de) 2014-05-09 2015-11-12 Fev Gmbh Verfahren und vorrichtung zur regeneration eines partikelfilters
EP3006690A4 (de) * 2013-05-30 2016-06-08 Toyota Motor Co Ltd Fehlerdiagnosevorrichtung für eine abgasreinigungsvorrichtung
DE102015216751A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasrückführung
DE102015202901A1 (de) * 2015-02-18 2016-08-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015220182A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015202902A1 (de) * 2015-02-18 2016-08-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015216851A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasrückführung
DE102015216730A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasrückführung
WO2016137870A1 (en) * 2015-02-25 2016-09-01 Carrier Corporation Air control valve for transportation refrigeration system
DE102015203751A1 (de) * 2015-03-03 2016-09-08 Ford Global Technologies, Llc Verlängerung der Lebensdauer von Dieselpartikelfiltern in Niederdruck-Abgasrückführungen
DE102015212846A1 (de) * 2015-07-09 2017-01-12 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine
DE102015013463A1 (de) * 2015-10-17 2017-04-20 Daimler Ag Verfahren zum Ermitteln des Alterungszustands eines Oxidationskatalysators für eine Verbrennungskraftmaschine
DE102017104897A1 (de) 2016-03-15 2017-09-21 Volkswagen Aktiengesellschaft Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE102016121509A1 (de) 2016-11-10 2018-05-17 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102017200089B3 (de) 2017-01-05 2018-06-07 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasturbolader und SCR-Abgasnachbehandlung sowie Verfahren zu dessen Betrieb
US10029671B2 (en) 2015-02-18 2018-07-24 Ford Global Technologies, Llc Methods relating to exhaust after-treatment devices
DE102017208189A1 (de) * 2017-05-16 2018-12-06 Volkswagen Ag Brennkraftmaschine und Verfahren zum Betreiben einer solchen Brennkraftmaschine
RU2684074C2 (ru) * 2014-03-24 2019-04-03 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Система для двигателя с турбонаддувом (варианты) и способ для двигателя с турбонаддувом
US11433870B2 (en) 2018-11-22 2022-09-06 Volkswagen Aktiengesellschaft Method for control and/or regulation of a hybrid powertrain of a motor vehicle with an exhaust gas recirculation system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3043039B1 (de) * 2009-12-08 2017-12-06 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem für einen verbrennungsmotor
DE102011101079B4 (de) 2011-05-10 2020-08-20 Umicore Ag & Co. Kg Verfahren zur Regeneration von NOx-Speicherkatalysatoren von Dieselmotoren mit Niederdruck-AGR
DE102011111590A1 (de) * 2011-08-25 2013-02-28 Volkswagen Aktiengesellschaft Abgasbehandlungseinrichtung, Verfahren zur Aufbereitung von Abgas und Kraftfahrzeug
JP6296228B2 (ja) * 2013-12-13 2018-03-20 三菱自動車工業株式会社 ハイブリッド車両の制御装置
SE537663C2 (sv) 2014-01-15 2015-09-29 Scania Cv Ab Förfarande och system för styrning av temperatur för ett avgasbehandlingssystem
SE537928C2 (sv) 2014-01-15 2015-11-24 Scania Cv Ab Förfarande och system för styrning av temperatur för ett avgasbehandlingssystem
FR3023874B1 (fr) * 2014-07-16 2019-06-28 Renault S.A.S Systeme de recirculation basse pression des gaz d'echappement pour moteur a turbocompresseur
KR101714168B1 (ko) * 2015-07-14 2017-03-09 현대자동차주식회사 배압밸브 제어방법
GB2556753B (en) * 2015-08-03 2020-12-09 Cummins Emission Solutions Inc Sensor configuration for aftertreatment system including SCR on filter
US20170321598A1 (en) * 2016-05-04 2017-11-09 Donald Williams Energy system or apparatus and method of energy system or apparatus operation or control
US10066568B2 (en) * 2016-08-04 2018-09-04 Robert Bosch Gmbh Learning an intake oxygen concentration of an engine
CN108278145B (zh) 2017-01-05 2022-04-15 福特环球技术公司 用于排气后处理系统的方法和系统
DE102017218314B4 (de) * 2017-10-13 2019-07-11 Continental Automotive Gmbh Verfahren zum Betreiben eines Dieselmotors und Dieselmotor mit Prüfung der NH3-Konzentration
CN111535929B (zh) * 2020-05-08 2022-06-14 广西玉柴机器股份有限公司 基于燃油消耗量进行dpf再生补偿值的计算方法
CN112943430B (zh) * 2021-03-30 2023-06-30 东风汽车集团股份有限公司 降低固体颗粒排放的控制方法、系统及存储介质
CN114893278A (zh) * 2022-04-27 2022-08-12 江铃汽车股份有限公司 一种城市车辆道路排放的自主开发方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308288A1 (de) * 2003-02-26 2004-09-16 Umicore Ag & Co.Kg Verfahren zur Entfernung von Stickoxiden aus dem Abgas eines mager betriebenen Verbrennungsmotors und Abgasreinigungsanlage hierzu
DE102008015600A1 (de) * 2008-03-26 2009-10-01 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122666A (en) 1974-08-21 1976-02-23 Mitsubishi Heavy Ind Ltd Haigasuchuno chitsusosankabutsuno jokyoho
US4961917A (en) 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
JP2909553B2 (ja) 1989-10-18 1999-06-23 トヨタ自動車株式会社 排気ガス浄化用触媒及び排気ガスの浄化方法
DE3940758A1 (de) 1989-12-09 1991-06-13 Degussa Verfahren zur reinigung der abgase von dieselmotoren
JP3203445B2 (ja) 1993-03-09 2001-08-27 マツダ株式会社 ターボ過給機付エンジンの排気還流装置
JP3411942B2 (ja) 1993-09-30 2003-06-03 マツダ株式会社 排気ガス浄化用のhc吸着剤、排気ガス浄化用触媒及び排気ガス浄化装置
CA2192176A1 (en) 1994-06-17 1995-12-28 Shau-Lin Chen Layered catalyst composite
DE19614540A1 (de) 1996-04-12 1997-10-16 Degussa Dieselkatalysator
DE19636790A1 (de) 1996-09-11 1998-03-12 Volkswagen Ag NOx-Abgasreinigungsverfahren
JP4034375B2 (ja) 1997-04-03 2008-01-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19716275C1 (de) 1997-04-18 1998-09-24 Volkswagen Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19747671C1 (de) 1997-10-29 1999-07-08 Daimler Chrysler Ag Verfahren zum Betrieb eines mehrzylindrigen Verbrennungsmotors
DE19753738A1 (de) 1997-12-04 1999-06-10 Degussa Verfahren zur Herstellung eines Katalysators
JP3104692B2 (ja) 1998-11-13 2000-10-30 トヨタ自動車株式会社 内燃機関
JP3225957B2 (ja) 1999-02-02 2001-11-05 トヨタ自動車株式会社 内燃機関
EP1046423B8 (de) 1999-04-23 2007-11-21 Umicore AG & Co. KG Mehrschichtiger Edelmetall-enthaltender Abgaskatalysator und seine Herstellung
GB9921376D0 (en) 1999-09-10 1999-11-10 Johnson Matthey Plc Improving catalyst performance
JP4642978B2 (ja) 2000-08-08 2011-03-02 株式会社キャタラー 排ガス浄化用触媒
DE10040554B4 (de) 2000-08-15 2013-05-02 Daimler Ag Verfahren zum Betrieb einer Abgasreinigungsanlage mit Partikelfilter und Stickoxidspeicher
US6826906B2 (en) 2000-08-15 2004-12-07 Engelhard Corporation Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
JP3546829B2 (ja) 2000-10-04 2004-07-28 トヨタ自動車株式会社 圧縮着火式内燃機関
DE10103771A1 (de) * 2001-01-27 2002-08-14 Omg Ag & Co Kg Verfahren zur Wiederherstellung der katalytischen Aktivität eines Katalysators, welcher im Abgastrakt eines Dieselmotors angeordnet ist und wenigstens eine Oxidationsfunktion aufweist
EP2322267B1 (de) 2002-02-01 2017-08-23 Cataler Corporation Katalysator zur Reinigung von Abgasen
US6899090B2 (en) 2002-08-21 2005-05-31 Honeywell International, Inc. Dual path EGR system and methods
US7189375B2 (en) 2002-09-16 2007-03-13 Delphi Technologies, Inc. Exhaust treatment device
DE10308287B4 (de) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
DE10335785A1 (de) 2003-08-05 2005-03-10 Umicore Ag & Co Kg Katalysatoranordnung und Verfahren zur Reinigung des Abgases von mager betriebenen Verbrennungsmotoren
DE10360955A1 (de) 2003-12-23 2005-07-21 Umicore Ag & Co. Kg Abgasreinigungsanlage und Verfahren zur Entfernung von Stickoxiden aus dem Abgas von Verbrennungsmotoren mit Hilfe von katalytisch erzeugtem Ammoniak
JP2006200362A (ja) 2005-01-17 2006-08-03 Toyota Motor Corp ハイブリッド車両における排気浄化装置
JP4417878B2 (ja) 2005-05-16 2010-02-17 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
DE102005056955A1 (de) 2005-11-30 2007-05-31 Volkswagen Ag Brennkraftmaschine mit Niederdruck-Abgasrückführung
US20100166628A1 (en) 2006-02-15 2010-07-01 Nicola Soeger Catalyst for reducing nitrogen-containing pollutants from the exhaust gases of diesel engines
EP1837497B1 (de) 2006-03-23 2008-12-31 Ford Global Technologies, LLC Abgasnachbehandlungssystem umfassend einen Speicherkatalysator und einen Partikelfilter sowie Verfahren zur Herstellung eines derartigen Systems
JP4215069B2 (ja) 2006-04-26 2009-01-28 トヨタ自動車株式会社 内燃機関の排気還流装置
JP4611941B2 (ja) * 2006-06-29 2011-01-12 トヨタ自動車株式会社 内燃機関の排気還流装置
ATE464458T1 (de) 2007-02-23 2010-04-15 Umicore Ag & Co Kg Katalytisch aktiviertes dieselpartikelfilter mit ammoniak-sperrwirkung
KR20090114480A (ko) 2007-02-27 2009-11-03 바스프 카탈리스트 엘엘씨 선택적 암모니아 산화를 위한 이원기능 촉매
US8291697B2 (en) 2007-04-06 2012-10-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device
JP5122195B2 (ja) 2007-07-17 2013-01-16 本田技研工業株式会社 NOx浄化触媒
DE102007039249A1 (de) 2007-08-20 2009-02-26 Robert Bosch Gmbh Verfahren zur Herstellung eines keramischen Trägers sowie Filter
DE102007046158B4 (de) 2007-09-27 2014-02-13 Umicore Ag & Co. Kg Verwendung eines katalytisch aktiven Partikelfilters zur Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
ATE457813T1 (de) 2007-09-28 2010-03-15 Umicore Ag & Co Kg Entfernung von partikeln aus dem abgas von mit überwiegend stöchiometrischem luft/kraftstoff- gemisch betriebenen verbrennungsmotoren
US8439859B2 (en) 2007-10-08 2013-05-14 Ais Gmbh Aachen Innovative Solutions Catheter device
DE102007060142B4 (de) * 2007-12-13 2010-09-09 Ford Global Technologies, LLC, Dearborn Steuerverfahren zur zeitlichen Erhöhung der Abgastemperatur
DE102007060623B4 (de) 2007-12-15 2011-04-14 Umicore Ag & Co. Kg Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
EP2112339A1 (de) 2008-04-24 2009-10-28 Umicore AG & Co. KG Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
DE502008001082D1 (de) 2008-05-23 2010-09-16 Umicore Ag & Co Kg Vorrichtung zur Reinigung von Dieselabgasen
DE102008048854B4 (de) 2008-09-25 2012-08-02 Umicore Ag & Co. Kg Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
RU2542159C2 (ru) 2009-08-28 2015-02-20 Умикоре Аг & Ко. Кг Система нейтрализации отработавших газов, содержащая каталитический активный фильтр с проточной стенкой, имеющий функцию накопления и расположенный перед каталитическим нейтрализатором с такой же функйией накопления
DE102010033688A1 (de) 2009-08-28 2011-03-03 Umicore Ag & Co. Kg Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit Speicherfunktion vor Katalysator mit gleicher Speicherfunktion
DE102010033689A1 (de) 2009-08-28 2011-03-03 Umicore Ag & Co. Kg Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit NOx-Speicherfunktion vor Katalysator mit gleicher Speicherfunktion
US8407988B2 (en) * 2009-09-29 2013-04-02 Ford Global Technologies, Llc Particulate filter regeneration in an engine coupled to an energy conversion device
US8635852B2 (en) * 2009-09-29 2014-01-28 Ford Global Technologies, Llc Exhaust treatment system for internal combustion engine
EP3043039B1 (de) * 2009-12-08 2017-12-06 Toyota Jidosha Kabushiki Kaisha Abgasreinigungssystem für einen verbrennungsmotor
US8209955B2 (en) * 2010-04-07 2012-07-03 Ford Global Technologies, Llc Reduction of particulate, NOx, and ammonia emissions
DE102011101079B4 (de) 2011-05-10 2020-08-20 Umicore Ag & Co. Kg Verfahren zur Regeneration von NOx-Speicherkatalysatoren von Dieselmotoren mit Niederdruck-AGR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308288A1 (de) * 2003-02-26 2004-09-16 Umicore Ag & Co.Kg Verfahren zur Entfernung von Stickoxiden aus dem Abgas eines mager betriebenen Verbrennungsmotors und Abgasreinigungsanlage hierzu
DE102008015600A1 (de) * 2008-03-26 2009-10-01 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. Hauptman et al.: Inverse hysteresis during NO oxidation on PT under lean conditions. Applied Catalyst B: Environmental. internet : elsevier, 16. September 2009 (93 (2009)). 22 bis 29. - ISBN 0926-3373 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006690A4 (de) * 2013-05-30 2016-06-08 Toyota Motor Co Ltd Fehlerdiagnosevorrichtung für eine abgasreinigungsvorrichtung
EP2846019A1 (de) * 2013-09-10 2015-03-11 Arno Hofmann Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor zur Durchführung des Verfahrens
US10036308B2 (en) 2013-09-10 2018-07-31 Arno Hofmann Method for operating a combustion engine and combustion engine for carrying out the method
DE102013020658A1 (de) * 2013-12-12 2015-06-18 Daimler Ag Betriebsverfahren für eine Kraftfahrzeug-Brennkraftmaschine
DE102014205196A1 (de) * 2014-03-20 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Niederdruck-Abgasrückführung für eine Brennkraftmaschine
RU2684074C2 (ru) * 2014-03-24 2019-04-03 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Система для двигателя с турбонаддувом (варианты) и способ для двигателя с турбонаддувом
WO2015169958A1 (de) 2014-05-09 2015-11-12 Fev Gmbh Verfahren und vorrichtung zur regeneration eines partikelfilters
DE102014006692A1 (de) 2014-05-09 2015-11-12 Fev Gmbh Ottomotor mit Partikelfilter und Regenerationsstrategie und Verfahren hierzu
US10029671B2 (en) 2015-02-18 2018-07-24 Ford Global Technologies, Llc Methods relating to exhaust after-treatment devices
DE102015220182A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015216851A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasrückführung
DE102015216730A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasrückführung
DE102015202902A1 (de) * 2015-02-18 2016-08-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015220182B4 (de) 2015-02-18 2024-04-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015216751A1 (de) 2015-02-18 2016-08-18 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasrückführung
DE102015202902B4 (de) * 2015-02-18 2018-02-01 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015202901B4 (de) * 2015-02-18 2018-02-15 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
DE102015202901A1 (de) * 2015-02-18 2016-08-18 Ford Global Technologies, Llc Betriebsverfahren und Kraftfahrzeug
WO2016137870A1 (en) * 2015-02-25 2016-09-01 Carrier Corporation Air control valve for transportation refrigeration system
DE102015203751A1 (de) * 2015-03-03 2016-09-08 Ford Global Technologies, Llc Verlängerung der Lebensdauer von Dieselpartikelfiltern in Niederdruck-Abgasrückführungen
DE102015203751B4 (de) 2015-03-03 2019-02-14 Ford Global Technologies, Llc Verlängerung der Lebensdauer von Dieselpartikelfiltern in Niederdruck-Abgasrückführungen
DE102015212846A1 (de) * 2015-07-09 2017-01-12 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine
DE102015013463A1 (de) * 2015-10-17 2017-04-20 Daimler Ag Verfahren zum Ermitteln des Alterungszustands eines Oxidationskatalysators für eine Verbrennungskraftmaschine
DE102017104897A1 (de) 2016-03-15 2017-09-21 Volkswagen Aktiengesellschaft Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE102016121509A1 (de) 2016-11-10 2018-05-17 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102016121509B4 (de) 2016-11-10 2021-09-16 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102017200089B3 (de) 2017-01-05 2018-06-07 Ford Global Technologies, Llc Kraftfahrzeug mit Abgasturbolader und SCR-Abgasnachbehandlung sowie Verfahren zu dessen Betrieb
DE102017208189A1 (de) * 2017-05-16 2018-12-06 Volkswagen Ag Brennkraftmaschine und Verfahren zum Betreiben einer solchen Brennkraftmaschine
US11433870B2 (en) 2018-11-22 2022-09-06 Volkswagen Aktiengesellschaft Method for control and/or regulation of a hybrid powertrain of a motor vehicle with an exhaust gas recirculation system

Also Published As

Publication number Publication date
US9587540B2 (en) 2017-03-07
WO2013007497A1 (en) 2013-01-17
EP2732141B1 (de) 2017-03-08
US20140123630A1 (en) 2014-05-08
EP2732141A1 (de) 2014-05-21

Similar Documents

Publication Publication Date Title
DE102011107692B3 (de) Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR
DE102011101079B4 (de) Verfahren zur Regeneration von NOx-Speicherkatalysatoren von Dieselmotoren mit Niederdruck-AGR
DE112013005070B4 (de) SYSTEM FÜR DIE BEHANDLUNG VON NOx ENTHALTENDEN ABGASEN VON EINEM MOTOR
DE102010014468B4 (de) Verfahren zur Verminderung von Lachgas bei der Abgasnachbehandlung von Magermotoren
DE102010023819B4 (de) Abgasbehandlungssystem für einen Dieselmotor Verfahren zu dessen Verwendung und Dieselmotor- und Abgasbehandlungssystem
DE602004006415T2 (de) Verfahren zur steuerung der reduktionsmittelzugabe
DE102012204524B4 (de) Durch Oxide auf Manganbasis begünstigter Mager-NOx-Fallen (LNT)-Katalysator
DE102008048854B4 (de) Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
DE102010010039B4 (de) Abgasbehandlungssystem mit einem Vier-Wege-Katalysator und einem Harnstoff-SCR-Katalysator und Verfahren zur Verwendung desselben
DE19944694B4 (de) Abgasreinigungsvorrichtung
DE10393184T5 (de) Abgasreinigungssystem für Dieselmotorbetriebene Fahrzeuge
DE60123977T2 (de) Abgassystem für brennkraftmaschinen mit magergemischverbrennung
DE102009051234B4 (de) Abgasreinigungsverfahren
DE10308287A1 (de) Abgasreinigungsanlage für die selektive katalytische Reduktion von Stickoxiden im mageren Abgas von Verbrennungsmotoren und Verfahren zur Abgasreinigung
EP2138681A1 (de) Verfahren und Vorrichtung zur Reinigung von Dieselabgasen
EP2112339A1 (de) Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
EP3126646B1 (de) Regenerationsverfahren für abgasnachbehandlungssysteme
DE102012023049A1 (de) SCR-Abgasnachbehandlungseinrichtung sowie Kraftfahrzeug mit einer solchen
DE102009044776A1 (de) Verfahren zum Reinigen von in Abgas enthaltenem Stickoxid und ein das Verfahren ausführendes Abgassystem
DE102017100518A1 (de) System und Verfahren zur Abgasreinigung unter Vermeidung von Lachgas
DE102010033688A1 (de) Abgasnachbehandlungssystem mit katalytisch aktivem Wall-Flow-Filter mit Speicherfunktion vor Katalysator mit gleicher Speicherfunktion
EP3490693A1 (de) Katalysator zur reduktion von stickoxiden
DE102019207655A1 (de) Nachbehandlungssystem und Nachbehandlungsverfahren für einen Magermotor
DE102009014360A1 (de) Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators
EP3459617B1 (de) Partikelfilter mit integrierten katalytischen funktionen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R130 Divisional application to

Ref document number: 102011122866

Country of ref document: DE

R016 Response to examination communication
R130 Divisional application to

Ref document number: 102011122866

Country of ref document: DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20130404

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee