DE102007045195B3 - Verfahren zur Regelung eines stationären Gasmotors - Google Patents

Verfahren zur Regelung eines stationären Gasmotors Download PDF

Info

Publication number
DE102007045195B3
DE102007045195B3 DE102007045195A DE102007045195A DE102007045195B3 DE 102007045195 B3 DE102007045195 B3 DE 102007045195B3 DE 102007045195 A DE102007045195 A DE 102007045195A DE 102007045195 A DE102007045195 A DE 102007045195A DE 102007045195 B3 DE102007045195 B3 DE 102007045195B3
Authority
DE
Germany
Prior art keywords
mixture
volume flow
gas
actual
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102007045195A
Other languages
English (en)
Inventor
Johannes Baldauf
Ludwig KLÄSER-JENEWEIN
Peer Smuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102007045195A priority Critical patent/DE102007045195B3/de
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to US12/679,476 priority patent/US8340885B2/en
Priority to EP08802401.3A priority patent/EP2205845B1/de
Priority to JP2010525257A priority patent/JP5469603B2/ja
Priority to CN2008801178894A priority patent/CN101868606B/zh
Priority to AU2008303820A priority patent/AU2008303820B2/en
Priority to KR1020107008533A priority patent/KR101380283B1/ko
Priority to PCT/EP2008/007891 priority patent/WO2009040058A1/de
Priority to ES08802401.3T priority patent/ES2612762T3/es
Application granted granted Critical
Publication of DE102007045195B3 publication Critical patent/DE102007045195B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

Die Erfindung schlägt ein Verfahren zur Regelung eines stationären Gasmotors (1) vor, bei dem eine Drehzahl-Regelabweichung aus einer Soll-Drehzahl (nSL) sowie einer Ist-Drehzahl (nIST) berechnet wird, aus der Drehzahl-Regelabweichung über einen Drehzahlregler als Stellgröße ein Soll-Moment bestimmtrom bestimmt wird, bei dem ein Gemisch-Drosselklappenwinkel (DKW1, DKW2) zum Festlegen eines Gemisch-Volumenstroms sowie eines Ist-Gemischdrucks (p1(IST), p2(IST)) in einem Receiverrohr (12, 13) vor den Einlassventilen des Gasmotors (1) in Abhängigkeit des Soll-Volumenstroms festgelegt wird und bei dem ein Gas-Drosselklappenwinkel zum Festlegen eines Gas-Volumenstroms als Gasanteil in einem Gas-Luftgemisch ebenfalls in Abhängigkeit des Soll-Volumenstroms festgelegt wird.

Description

  • Die Erfindung betrifft eine Verfahren zur Regelung eines stationären Gasmotors, bei dem eine Drehzahl-Regelabweichung aus einer Soll-Drehzahl sowie einer Ist-Drehzahl berechnet wird, aus der Drehzahl-Regelabweichung über einen Drehzahlregler als Stellgröße ein Soll-Moment bestimmt wird und an Hand des Soll-Moments ein Soll-Volumenstrom bestimmt wird. Ferner besteht das Verfahren darin, dass ein Gemisch-Drosselklappenwinkel zum Festlegen eines Gemisch-Volumenstroms sowie eines Ist-Gemischdrucks in einem Receiverrohr vor den Einlassventilen des Gasmotors in Abhängigkeit des Soll-Volumenstroms festgelegt wird und ein Gas-Drosselklappenwinkel zum Festlegen eines Gas-Volumenstroms als Gasanteil in einem Gas-Luftgemisch ebenfalls in Abhängigkeit des Soll-Volumenstroms festgelegt wird.
  • Stationäre Gasmotoren werden häufig als Antrieb für Notstrom-Generatoren oder Schnellbereitschaftsaggregate verwendet. Dabei wird der Gasmotor bei einem Lambdawert von zum Beispiel 1.7, also im Magerbetrieb mit Luftüberschuss, betrieben. Typischerweise umfasst der Gasmotor eine Gasdrosselklappe zum Festlegen des Gasanteils im Gas-Luftgemisch, einen Mischer zum Zusammenführen des brennbaren Gases mit der Luft, einen Verdichter als Teil eines Abgasturboladers, einen Kühler und eine Gemischdrosselklappe. Über die Gemischdrosselklappe wird der angesaugte Volumenstrom im Receiverrohr vor den Einlassventilen des Gasmotors und damit auch der Gemischdruck im Receiverrohr festgelegt.
  • Ein Verfahren zur Steuerung eines derartigen Gasmotors ist aus der DE 699 26 036 T2 bekannt. Ein elektronisches Motorsteuergerät berechnet an Hand der Drehzahl-Regelabweichung die Stellung der Gemischdrosselklappe. Aus dem Druck und der Temperatur im Receiverrohr sowie der Ist-Drehzahl wird dann ein Luftfluss im Receiverrohr berechnet, aus welchem wiederum über den Lambdawert der Gasanteil zur Ansteuerung der Gasdrosselklappe bestimmt wird. Zur Vermeidung von Drehzahlschwankungen und langen Systemantwortzeiten bei einem Lastwechsel, wird das Ansteuersignal für die Gasdrosselklappe über einen Korrekturfaktor verändert. Berechnet wird dieser aus der Drehzahl-Regelabweichung und einem proportionalen Wert, alternativ einem Integral-Ausdruck.
  • Aus der EP 1 158 149 A1 ist ein stationärer Gasmotor zum Antreiben eines Generators bekannt. Gesteuert wird der Gasmotor, indem aus der Motorleistung über eine Kennlinie ein Soll-Lambda als Führungsgröße berechnet wird. An Hand des Soll-Lambdas berechnet ein elektronisches Motorsteuergerät einen Gasmengen-Sollwert, über welchen dann die Gasdrosselklappe entsprechend eingestellt wird. In einer zweiten Ausführungsform wird der Soll-Lambdawert aus einer Gemischdruck-Regelabweichung berechnet. Die Gemischdruck-Regelabweichung bestimmt sich aus dem detektierten Ist-Gemischdruck im Receiverrohr und dem Soll-Gemischdruck, welcher wiederum aus der Motorleistung über eine Kennlinie festgelegt wird. In einer dritten Ausführungsform wird ergänzend zur zweiten Ausführungsform der Gasmengen-Sollwert zur Einstellung der Gasdrosselklappe in Abhängigkeit der Stellung eines Verdichter-Bypassventils und der Drehzahl-Regelabweichung korrigiert. Gemeinsames Merkmal aller drei Ausführungsformen ist die Einstellung der Gasdrosselklappe auf einen Soll-Lambdawert. Für den praktischen Betrieb bedeutet dies: Bei einer Änderung der Leistungsvorgabe wird zuerst die Stellung der Gemischdrosselklappe als Leistungssteuerorgan verändert. Dies bewirkt, dass der angesaugte Gemischvolumenstrom sich ebenfalls ändert. Da zunächst die Stellung der Gasdrosselklappe konstant bleibt, ändert sich auch der Gas-Volumenstrom nicht. Hieraus resultiert ein sich veränderndes Ist-Lambda. Bei einer beispielsweise in Schließrichtung betätigten Gemischdrosselklappe wird eine Anfettung des Gemisches verursacht, wodurch eine Leistungsänderung des Gasmotors bewirkt wird. Als Reaktion auf diese Leistungsänderung werden dann der Soll-Lambdawert, der Gasmengen-Sollwert und die Stellung der Gasdrosselklappe verändert. Bei dieser Art der Regelung ist die Reaktionszeit, zum Beispiel bei Laständerung, kritisch, da systembedingt ein Eingriff in die Lambdaregelung träge ist.
  • Auch die DE 103 46 983 A1 beschreibt einen Gasmotor und ein Verfahren zur Regelung des Kraftstoffgemisches. Bei diesem Verfahren wird in einem ersten Schritt eine Ist-Druckdifferenz des Luftmassenstroms an einem Venturimischer erfasst und in einem zweiten Schritt aus der gemessenen Ist-Leistung des Gasmotors eine Soll-Druckdifferenz des Luftmassenstroms bestimmt. In einem dritten Schritt wird die Ist-Druckdifferenz der Soll-Druckdifferenz angenähert, indem über die Stellung der Gasdrosselklappe die zugeführte Gasmenge verändert wird. In einem vierten Schritt wird die sich einstellende Ist-Leistung des Gasmotors erneut detektiert und die Gemischdrosselklappe so eingestellt, dass die Soll-Ist-Abweichung der Druckdifferenz des Luftmassenstroms im Venturimischer sich verringert. Dieser sequentielle Ablauf wird iterativ so lange durchgeführt bis die Soll-Ist-Abweichung der Druckdifferenz kleiner als ein Grenzwert wird. Da eine Änderung der Stellung der Gemisch-Drosselklappe eine Leistungsänderung des Gasmotors bewirkt, muss die Stellung der Gas-Drosselklappe zur Kompensation der Leistungsänderung des Gasmotors nachgeregelt werden. Dies kann unter Umständen zum Überschwingen der Stellgrößen führen.
  • Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zur Regelung eines stationären Gasmotors mit verbesserter Regelgüte zu entwerfen.
  • Die Aufgabe wird durch ein Verfahren gelöst, bei dem eine Drehzahl-Regelabweichung aus einer Soll-Drehzahl sowie einer Ist-Drehzahl berechnet wird, aus der Drehzahl-Regelabweichung über einen Drehzahlregler als Stellgröße ein Soll-Moment bestimmt wird und an Hand des Soll-Moments dann ein Soll-Volumenstrom bestimmt wird. In Abhängigkeit des Soll-Volumenstroms wiederum wird ein Gemisch-Drosselklappenwinkel zum Festlegen eines Gemisch-Volumenstroms sowie eines Ist-Gemischdrucks in einem Receiverrohr vor den Einlassventilen des Gasmotors festgelegt. Ebenfalls in Abhängigkeit des Soll-Volumenstroms wird ein Gas-Drosselklappenwinkel zum Festlegen eines Gas-Volumenstroms als Gasanteil in einem Gas-Luftgemisch festgelegt. Zentraler Gedanke der Erfindung ist also die parallele Ansteuerung der Gasdrosselklappe und der Gemischdrosselklappe in Abhängigkeit derselben Steuergröße, hier dem Soll-Volumenstrom. Neben einer verkürzten Reaktionszeit ist ein präziseres Einschwingen mit verbesserter Einstellbarkeit des Gesamtsystems von Vorteil. Zudem ist auf Grund der parallelen Ansteuerung eine Lambda-Nachführung nicht erforderlich. Insgesamt gestattet die Erfindung eine gleichmäßige Regelung der Motorleistung.
  • Der Soll-Volumenstrom wird aus dem Soll-Moment berechnet, indem das Soll-Moment begrenzt wird und dem begrenzten Soll-Moment über ein Kennfeld in Abhängigkeit der Ist-Drehzahl der Soll-Volumenstrom zugeordnet wird. Die Begrenzung des Soll-Moments erfolgt in Abhängigkeit der Ist-Drehzahl und zusätzlich in Abhängigkeit eines erkannten Fehlerzustands des Systems, zum Beispiel bei Sensorausfall. Mitberücksichtigt wird ein zulässiges mechanisches Maximalmoment. Über die Begrenzung wird die Betriebssicherheit des Gesamtsystems verbessert.
  • Festgelegt wird der Gemisch-Drosselklappenwinkel, indem aus dem Soll-Volumenstrom ein Soll-Gemischdruck berechnet wird, aus dem Soll-Gemischdruck und einem Ist-Gemischdruck im Receiverrohr eine Gemischdruck-Regelabweichung ermittelt wird und aus der Gemischdruck-Regelabweichung über einen Gemischdruckregler eine Stellgröße zur Festlegung des Gemisch-Drosselklappenwinkels berechnet wird. Bei der Berechnung des Soll-Gemischdrucks werden neben den Systemkonstanten, beispielsweise das Hubvolumen, ein Soll-Lambda und eine Gemischtemperatur im Receiverrohr verwendet.
  • Bei einem Gasmotor in V-Anordnung sieht das Verfahren vor, dass ein erster Gemisch-Drosselklappenwinkel für die A-Seite zum Festlegen eines ersten Gemisch-Volumenstroms sowie eines ersten Ist-Gemischdrucks in einem ersten Receiverrohr und ein zweiter Gemisch-Drosselklappenwinkel für die B-Seite zum Festlegen eines zweiten Gemisch-Volumenstroms sowie eines zweiten Ist-Gemischdrucks in einem zweiten Receiverrohr berechnet werden.
  • In den Zeichnungen ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
  • 1 ein Gesamtschaubild,
  • 2 ein Blockschaltbild zur Ansteuerung der Gasdrosselklappe und der Gemischdrosselklappen,
  • 3 einen Regelkreis zur Regelung des Gemischdrucks und
  • 4 einen Programm-Ablaufplan.
  • Die 1 zeigt ein Gesamtschaubild eines stationären Gasmotors 1 in V-Anordnung. Der Gasmotor 1 treibt über eine Welle 2, eine Kupplung 3 und eine Welle 4 einen Generator 5 an. Über den Generator 5 wird elektrische Energie erzeugt, welche in ein elektrisches Netz eingespeist wird. Dem Gasmotor 1 sind folgende mechanische Komponenten zugeordnet: eine Gasdrosselklappe 6 zum Festlegen eines zugeführten Gas-Volumenstroms, zum Beispiel Erdgas, ein Mischer 7 zur Zusammenführung von Luft und Gas, ein Verdichter 8 als Teil eines Abgasturboladers, ein Kühler 9, eine erste Gemischdrosselklappe 10 auf der A-Seite des Gasmotors 1 und eine zweite Gemischdrosselklappe 11 auf der B-Seite des Gasmotors 1.
  • Die Betriebsweise des Gasmotors 1 wird durch ein elektronisches Motorsteuergerät 14 (GECU) festgelegt. Das elektronische Motorsteuergerät 14 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb des Gasmotors 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Motorsteuergerät 14 aus den Eingangsgrößen die Ausgangsgrößen. In der 1 sind als Eingangsgrößen dargestellt: ein erster Ist-Gemischdruck p1(IST) sowie eine Gemischtemperatur T1, welche beide im ersten Receiverrohr 12 gemessen werden, ein zweiter Ist-Gemischdruck p2(IST), welcher im zweiten Receiverrohr 13 gemessen wird, eine Ist-Drehzahl nIST des Gasmotors 1, eine Soll-Drehzahl nSL, die von einem nicht dargestellten Anlagenregler des Generators 5 vorgegeben wird, und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren Eingangssignale zusammengefasst, beispielsweise die Öltemperatur. Als Ausgangsgrößen des elektronischen Motorsteuergeräts 14 sind dargestellt: das Signal eines Soll-Volumenstroms VSL zur Ansteuerung der Gasdrosselklappe 6, das Signal eines ersten Gemisch-Drosselklappenwinkels DKW1 zur Ansteuerung der ersten Gemischdrosselklappe 10, das Signal eines zweiten Gemisch-Drosselklappenwinkels DKW2 zur Ansteuerung der zweiten Gemischdrosselklappe 11 und ein Signal AUS. Das Signal AUS steht stellvertretend für die weiteren Signale zur Steuerung und Regelung des Gasmotors 1.
  • Die Anordnung besitzt folgende allgemeine Funktionalität: Über die Stellung der Gasdrosselklappe 6 wird ein Gas-Volumenstrom, welcher dem Mischer 7 zugeführt wird, eingestellt. Die Position der ersten Gemischdrosselklappe 10 definiert ein erstes Gemischvolumen und damit den ersten Ist-Gemischdruck p1(IST) im ersten Receiverrohr 12 vor den Einlassventilen des Gasmotors 1. Über die zweite Gemischdrosselklappe 11 wird ein zweites Gemischvolumen und damit der zweite Ist-Gemischdruck p2(IST) im zweiten Receiverrohr 13 vor den Einlassventilen des Gasmotors 1 festgelegt.
  • In der 2 ist ein Blockschaltbild zur Ansteuerung der beiden Gemischdrosselklappen 10 sowie 11 und der Gasdrosselklappe 6 dargestellt. Das Bezugszeichen 15 kennzeichnet den Anlagenregler des Generators. Das Bezugszeichen 14 kennzeichnet als reduziertes Blockschaltbild das elektronische Motorsteuergerät, wobei die dargestellten Elemente die Programmschritte eines ausführbaren Programms repräsentieren. Die Eingangsgrößen des elektronischen Motorsteuergeräts 14 sind bei dieser Darstellung die Soll-Drehzahl nSL sowie optional ein Ist-Moment MIST, welche vom Anlagenregler 15 geliefert werden, die Ist-Drehzahl nIST und eine weitere Größe E. Unter der weiteren Größe E sind ein Soll-Lambda, ein Hubvolumen der Zylinder des Gasmotors, der Liefergrad im Sinne einer Zylinderfüllung und die Kraftstoffeigenschaft zusammengefasst. Die Ausgangsgrößen sind der erste Gemisch-Drosselklappenwinkel DKW1 zur Ansteuerung der ersten Gemischdrosselklappe 10, der zweite Gemisch-Drosselklappenwinkel DKW2 zur Ansteuerung der zweiten Gemischdrosselklappe 11 und der Soll-Volumenstrom VSL zur Ansteuerung der Gasdrosselklappe 6.
  • Vom Anlagenregler 15 wird als Leistungswunsch die Soll-Drehzahl nSL vorgegeben, zum Beispiel 1500 1/min, welche einer Frequenz von 50 Hz entspricht. An einem Punkt A wird aus der Soll-Drehzahl nSL und der Ist-Drehzahl nIST eine Drehzahl-Regelabweichung dn berechnet. Aus der Drehzahl-Regelabweichung dn berechnet ein Drehzahlregler 16 als Stellgröße ein Soll-Moment MSL. In der Praxis ist der Drehzahlregler 16 als PIDT1-Regler ausgeführt. Über eine Momentbegrenzung 17 wird das Soll-Moment MSL auf einen minimalen und maximalen Wert limitiert. Das Ausgangssignal entspricht einem begrenzten Soll-Moment MSLB. Die Parameter für die Grenzwerte der Momentbegrenzung 17 sind die Ist-Drehzahl nIST und ein Fehler-Zustandssignal FM, welches dann gesetzt wird, wenn ein Fehler im Gesamtsystem erkannt wird, zum Beispiel bei einem defekten Drucksensor. Als weiterer Parameter kann noch ein zulässiges mechanisches Maximalmoment vorgesehen sein. Liegt der Wert des Soll-Moments MSL im zulässigen Bereich, so entspricht der Wert des begrenzten Soll-Moments MSLB dem Wert des Soll-Moments MSL. Über einen Wirkungsgrad 18 wird dem begrenzten Soll-Moment MSLB in Abhängigkeit der Ist-Drehzahl nIST ein Soll-Volumenstrom VSL zugeordnet. Hierzu ist in der Einheit Wirkungsgrad 18 ein entsprechendes Kennfeld hinterlegt. Der Soll-Volumenstrom VSL ist die Eingangsgröße der Gemischquantität 19 und zugleich die Eingangsgröße der Gasdrosselklappe 6. Über die Gemischquantität 19 wird aus dem Soll-Volumenstrom VSL in Abhängigkeit der Ist-Drehzahl nIST und der Eingangsgröße E der erste Gemisch-Drosselklappenwinkel DKW1 und der zweite Gemisch-Drosselklappenwinkel DKW2 berechnet. Die Einheit Gemischquantität 19 wird näher in Verbindung mit der 3 erläutert. Mit dem ersten Gemisch- Drosselklappenwinkel DKW1 wird die erste Gemischdrosselklappe 10 angesteuert. Über die erste Gemischdrosselklappe 10 wird ein erster Gemisch-Volumenstrom V1 und der erste Ist-Gemischdruck p1(IST) eingestellt. Mit dem zweiten Gemisch-Drosselklappenwinkel DKW2 wird die zweite Gemischdrosselklappe 11 angesteuert, über welche ein zweiter Gemisch-Volumenstrom V2 und der zweite Ist-Gemischdruck p2(IST) eingestellt wird. Mit dem Soll-Volumenstrom VSL wird ebenfalls die Gasdrosselklappe 6 angesteuert. In dieser ist eine Verarbeitungselektronik 20 integriert, über welche dem Wert des Soll-Volumenstroms VSL eine entsprechende Querschnittsfläche und ein entsprechender Winkel zugeordnet werden. Über die Gasdrosselklappe 6 wird ein Gas-Volumenstrom VG als Gasanteil des Gas-Luftgemisches eingestellt.
  • Wie in der 2 dargestellt, werden die beiden Gemischdrosselklappen 10 und 11 sowie die Gasdrosselklappe 6 parallel in Abhängigkeit derselben Vorgabegröße, hier: der Soll-Volumenstrom VSL, angesteuert. Gegenüber dem Stand der Technik mit sequentieller Ansteuerung und Lambda-Nachregelung bietet das Verfahren nach der Erfindung die Vorteile einer verkürzten Reaktionszeit und eines präziseren Einschwingens mit verbesserter Einstellbarkeit des Gesamtsystems. Zudem ist auf Grund der parallelen Ansteuerung eine Lambda-Nachführung nicht erforderlich. Insgesamt erlaubt die Erfindung eine gleichmäßige Regelung der Motorleistung.
  • Die 3 zeigt einen ersten Regelkreis 21 zur Regelung des ersten Ist-Gemischdrucks p1(IST) im ersten Receiverrohr und einen zweiten Regelkreis 22 zur Regelung des zweiten Ist-Gemischdrucks p2(IST) im zweiten Receiverrohr. Mit Bezugszeichen 23 ist eine Berechnungseinheit zur Berechnung des Soll-Gemischdrucks pSL dargestellt. Die Eingangsgröße des ersten Regelkreises 21 ist der Soll-Gemischdruck pSL. Die Ausgangsgröße des ersten Regelkreises 21 entspricht dem ersten Ist-Gemischdruck p1(IST). Der erste Regelkreis 21 umfasst eine Vergleichstelle A, einen ersten Gemischdruckregler 24, eine erste Kennlinie 25 und als Regelstrecke die erste Gemischdrosselklappe 10 zur Festlegung des zugeführten Gemischvolumenstroms und des ersten Ist-Gemischdrucks p1(IST). Die Eingangsgröße des zweiten Regelkreises 22 ist ebenfalls der Soll-Gemischdruck pSL. Die Ausgangsgröße des zweiten Regelkreises 22 ist der zweite Ist-Gemischdruck p2(IST). Der zweite Regelkreis umfasst eine Vergleichsstelle B, einen zweiten Gemischdruckregler 26, eine zweite Kennlinie 27 und als Regelstrecke die zweite Gemischdrosselklappe 11 zur Festlegung des zugeführten Gemischvolumenstroms und des zweiten Ist-Gemischdrucks p2(IST). Die Berechnungseinheit 23, die beiden Vergleichsstellen (A, B), die beiden Gemischregler (24, 26) und die beiden Kennlinien (25, 27) sind in der Einheit Gemischquantität 19 integriert, wie dies durch eine strichpunktierte Linie dargestellt ist.
  • Aus dem vorgegebenen Volumenstrom VSL wird über die Berechnungseinheit 23 der Soll-Gemischdruck pSL gemäß folgender Formel berechnet: pSL = {VSL·2[1 + LMIN·LAM(SL)]·T1·pNORM}/[nIST·VH·LG·TNORM]
  • Hierin bedeuten:
  • pSL
    Soll-Gemischdruck
    VSL
    Soll-Volumenstrom
    LMIN
    Kraftstoffeigenschaft
    LAM(SL)
    Soll-Lambda
    T1
    Temperatur im ersten Receiverrohr
    pNORM
    Normluftdruck auf NN (1013 mbar)
    nIST
    aktuelle Ist-Drehzahl
    VH
    Hubvolumen des Motors
    LG
    Liefergrad (Zylinderfüllung)
    TNORM
    Normtemperatur 273,15 K
  • Der Soll-Gemischdruck pSL ist die Führungsgröße für die beiden Regelkreise 21 und 22. An der Vergleichsstelle A wird der Soll-Gemischdruck pSL mit dem ersten Ist-Gemischdruck p1(IST) verglichen. Das Ergebnis entspricht der ersten Gemischdruck-Regelabweichung dp1. Aus dieser berechnet der erste Gemischdruckregler 24, typischerweise ein PIDT1-Regler, als Stellgröße eine erste Querschnittsfläche QF1. Dieser wird über die erste Kennlinie 25 der erste Gemisch-Drosselklappenwinkel DKW1 zugeordnet. Mit dem ersten Gemisch-Drosselklappenwinkel DKW1 wird dann die erste Gemischdrosselklappe 10 angesteuert, welche der Regelstrecke entspricht. Die Ausgangsgröße der ersten Gemischdrosselklappe 10 ist der erste Soll-Gemischdruck p1(IST), welcher der Regelgröße entspricht. Der erste Ist-Gemischdruck p1(IST) wird über ein (nicht dargestelltes) optionales Filter auf die Vergleichsstelle A zurückgeführt. Damit ist der erste Regelkreis 21 geschlossen.
  • An der Vergleichsstelle B wird der Soll-Gemischdruck pSL mit dem zweiten Ist-Gemischdruck p2(IST) verglichen. Das Ergebnis entspricht der zweiten Gemischdruck-Regelabweichung dp2. Aus dieser berechnet der zweite Gemischdruckregler 26 als Stellgröße eine zweite Querschnittsfläche QF2, welcher über die zweite Kennlinie 27 der zweite Gemisch-Drosselklappenwinkel DKW2 zugeordnet wird. Mit dem zweiten Gemisch-Drosselklappenwinkel DKW2 wird dann die zweite Gemischdrosselklappe 11 angesteuert, welche der Regelstrecke entspricht. Die Ausgangsgröße der zweiten Gemischdrosselklappe 11 ist der zweite Soll-Gemischdruck p2(IST), welcher der Regelgröße entspricht. Der zweite Soll-Gemischdruck p2(IST) wird über ein (nicht dargestelltes) optionales Filter auf die Vergleichsstelle B zurückgeführt. Damit ist der zweite Regelkreis 22 geschlossen.
  • In der 4 ist ein Programm-Ablaufplan dargestellt, welcher Teil des im elektronischen Motorsteuergerät 14 implementierten ausführbaren Programms ist. Bei S1 werden die Soll-Drehzahl nSL sowie die Ist-Drehzahl nIST eingelesen und bei S2 die Drehzahl-Regelabweichung dn berechnet. An Hand der Drehzahl-Regelabweichung dn bestimmt der Drehzahlregler als Stellgröße das Soll-Moment MSL, S3. Danach wird das Soll-Moment MSL auf eine obere und untere Grenze limitiert. Der Ausgangswert entspricht dem begrenzten Soll-Moment MSLB. Liegt der Wert des Soll-Moments MSL im zulässigen Bereich, dann entspricht der Wert des begrenzten Soll-Moments MSLB dem Wert des Soll-Moments MSL. Bei S5 wird über die Einheit Wirkungsgrad (2: Bezugszeichen 18) dem begrenzten Soll-Moment MSLB in Abhängigkeit der Ist-Drehzahl nIST über ein Kennfeld ein Soll-Volumenstrom VSL zugeordnet. Anschließend werden bei S6 der Wert des Soll-Volumenstroms VSL, die Ist-Drehzahl nIST, die Temperatur T1 im ersten Receiverrohr und die Systemkonstanten eingelesen. Bei S7 wird über die Berechnungseinheit (3: Bezugszeichen 23) der Soll-Gemischdruck pSL an Hand der zuvor beschriebenen Formel berechnet. Bei S8 werden die erste Gemischdruck-Regelabweichung dp1 und die zweite Gemischdruck-Regelabweichung dp2 bestimmt. Im Anschluss daran wird bei S9A in Abhängigkeit der ersten Gemischdruck-Regelabweichung dp1 sowie der zweiten Gemischdruck-Regelabweichung dp2 der erste Gemisch-Drosselklappenwinkel DKW1 und auch der zweite Gemisch-Drosselklappenwinkel DKW2 berechnet und ausgegeben. Gleichzeitig wird bei S9B der Wert des Soll-Volumenstroms VSL an die Gasdrosselklappe ausgegeben. Bei S10 wird geprüft, ob ein Motorstopp vorliegt. Ist dies nicht der Fall, Abfrageergebnis S10: nein, so wird zum Punkt A zurückverzweigt und das Programm bei S1 fortgesetzt. Wird bei S10 ein Motorstopp erkannt, Abfrageergebnis S10: ja, so ist das Programm beendet.
  • 1
    Gasmotor
    2
    Welle
    3
    Kupplung
    4
    Welle
    5
    Generator
    6
    Gasdrosselklappe
    7
    Mischer
    8
    Verdichter
    9
    Kühler
    10
    erste Gemischdrosselklappe
    11
    zweite Gemischdrosselklappe
    12
    erstes Receiverrohr
    13
    zweites Receiverrohr
    14
    elektronisches Motorsteuergerät (GECU)
    15
    Anlagenregler
    16
    Drehzahlregler
    17
    Momentbegrenzung
    18
    Wirkungsgrad
    19
    Gemischquantität
    20
    Verarbeitungselektronik
    21
    erster Regelkreis
    22
    zweiter Regelkreis
    23
    Berechnungseinheit
    24
    erster Gemischdruckregler
    25
    erste Kennlinie
    26
    zweiter Gemischdruckregler
    27
    zweite Kennlinie

Claims (7)

  1. Verfahren zur Regelung eines stationären Gasmotors (1), bei dem eine Drehzahl-Regelabweichung (dn) aus einer Soll-Drehzahl (nSL) sowie einer Ist-Drehzahl (nIST) berechnet wird, aus der Drehzahl-Regelabweichung (dn) über einen Drehzahlregler (16) als Stellgröße ein Soll-Moment (MSL) bestimmt wird, an Hand des Soll-Moments (MSL) ein Soll-Volumenstrom (VSL) bestimmt wird, bei dem ein Gemisch-Drosselklappenwinkel (DKW1, DKW2) zum Festlegen eines Gemisch-Volumenstroms (V1, V2) sowie eines Ist-Gemischdrucks (p1(IST), p2(IST)) in einem Receiverrohr (12, 13) vor den Einlassventilen des Gasmotors (1) in Abhängigkeit des Soll-Volumenstroms (VSL) festgelegt wird und bei dem ein Gas-Drosselklappenwinkel zum Festlegen eines Gas-Volumenstroms (VG) als Gasanteil in einem Gas-Luftgemisch ebenfalls in Abhängigkeit des Soll-Volumenstroms (VSL) festgelegt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Soll-Volumenstrom (VSL) berechnet wird, indem das Soll-Moment (MSL) begrenzt wird und dem begrenzten Soll-Moment (MSLB) über ein Kennfeld in Abhängigkeit der Ist-Drehzahl (nIST) der Soll-Volumenstrom (VSL) zugeordnet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Begrenzung in Abhängigkeit der Ist-Drehzahl (nIST) festgesetzt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Begrenzung zusätzlich in Abhängigkeit eines erkannten Fehlerzustands des Systems (FM) und eines zulässigen mechanischen Maximalmoments festgesetzt wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Gemisch-Drosselklappenwinkel (DKW1, DKW2) festgelegt wird, indem aus dem Soll-Volumenstrom (VSL) ein Soll-Gemischdruck (pSL) berechnet wird, aus dem Soll-Gemischdruck (pSL) und einem Ist-Gemischdruck (p1(IST), p2(IST)) im Receiverrohr (12, 13) eine Gemischdruck-Regelabweichung (dp1, dp2) ermittelt wird und aus der Gemischdruck-Regelabweichung (dp1, dp2) über einen Gemischdruckregler (24, 26) eine Stellgröße (QF1, QF2) zur Festlegung des Gemisch-Drosselklappenwinkels (DKW1, DKW2) berechnet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass bei der Berechnung des Soll-Gemischdrucks (pSL) die Ist-Drehzahl (nIST), ein konstantes Soll-Lambda (LAM(SL)), ein Motorhubvolumen (VH), ein Liefergrad (LG) entsprechend einer Zylinderfüllung, eine Gemischtemperatur (T1) im Receiverrohr (12), ein Normluftdruck (pNORM), eine Normtemperatur (TNORM) und eine Kraftstoffeigenschaft (LMIN) mitberücksichtigt werden.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei einem Gasmotor in V-Anordnung ein erster Gemisch-Drosselklappenwinkel (DKW1) für die A-Seite zum Festlegen eines ersten Gemisch-Volumenstroms (V1) sowie eines ersten Ist-Gemischdrucks (p1(IST)) in einem ersten Receiverrohr (12) und ein zweiter Gemisch-Drosselklappenwinkel (DKW2) für die B-Seite zum Festlegen eines zweiten Gemisch-Volumenstroms (V2) sowie eines zweiten Ist-Gemischdrucks (p2(IST)) in einem zweiten Receiverrohr (13) berechnet werden.
DE102007045195A 2007-09-21 2007-09-21 Verfahren zur Regelung eines stationären Gasmotors Active DE102007045195B3 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE102007045195A DE102007045195B3 (de) 2007-09-21 2007-09-21 Verfahren zur Regelung eines stationären Gasmotors
EP08802401.3A EP2205845B1 (de) 2007-09-21 2008-09-19 Verfahren zur regelung eines stationären gasmotors
JP2010525257A JP5469603B2 (ja) 2007-09-21 2008-09-19 固定式のガスエンジンを調整する方法
CN2008801178894A CN101868606B (zh) 2007-09-21 2008-09-19 用于调节固定式燃气发动机的方法
US12/679,476 US8340885B2 (en) 2007-09-21 2008-09-19 Method for controlling a stationary gas motor
AU2008303820A AU2008303820B2 (en) 2007-09-21 2008-09-19 Method for controlling a stationary gas motor
KR1020107008533A KR101380283B1 (ko) 2007-09-21 2008-09-19 고정식 가스 모터를 제어하기 위한 방법
PCT/EP2008/007891 WO2009040058A1 (de) 2007-09-21 2008-09-19 Verfahren zur regelung eines stationären gasmotors
ES08802401.3T ES2612762T3 (es) 2007-09-21 2008-09-19 Procedimiento para la regulación de un motor de gas estacionario

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007045195A DE102007045195B3 (de) 2007-09-21 2007-09-21 Verfahren zur Regelung eines stationären Gasmotors

Publications (1)

Publication Number Publication Date
DE102007045195B3 true DE102007045195B3 (de) 2009-03-12

Family

ID=40279845

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007045195A Active DE102007045195B3 (de) 2007-09-21 2007-09-21 Verfahren zur Regelung eines stationären Gasmotors

Country Status (9)

Country Link
US (1) US8340885B2 (de)
EP (1) EP2205845B1 (de)
JP (1) JP5469603B2 (de)
KR (1) KR101380283B1 (de)
CN (1) CN101868606B (de)
AU (1) AU2008303820B2 (de)
DE (1) DE102007045195B3 (de)
ES (1) ES2612762T3 (de)
WO (1) WO2009040058A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006708B3 (de) * 2008-01-30 2009-08-20 Mtu Friedrichshafen Gmbh Verfahren zur Regelung eines stationären Gasmotors
WO2011000474A1 (de) * 2009-07-03 2011-01-06 Mtu Friedrichshafen Gmbh Verfahren zur regelung eines gasmotors
US8683983B2 (en) 2007-11-23 2014-04-01 Mtu Friedrichshafen Gmbh Method for regulating a stationary gas engine
DE102013203741A1 (de) 2013-03-05 2014-09-11 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
WO2014154314A1 (de) * 2013-03-28 2014-10-02 Mtu Friedrichshafen Gmbh Verfahren und vorrichtung zum betrieb einer gas-brennkraftmaschine
EP2868903A3 (de) * 2013-10-30 2015-12-23 GE Jenbacher GmbH & Co OG Verfahren zum Betreiben einer mit einem elektrischen Generator verbundenen Brennkraftmaschine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493884A (zh) * 2011-12-23 2012-06-13 重庆潍柴发动机厂 一种大功率气体发动机进气控制方法
JP6130696B2 (ja) * 2013-03-26 2017-05-17 田中貴金属工業株式会社 半導体装置
DE102013021523A1 (de) * 2013-12-13 2015-07-02 Mtu Friedrichshafen Gmbh Verfahren zur Drehzahlregelung einer Brennkraftmaschine
JP2015132206A (ja) * 2014-01-14 2015-07-23 三菱重工業株式会社 ガスエンジンの制御装置および制御方法ならびに制御装置を備えたガスエンジン
US9719445B2 (en) * 2015-08-11 2017-08-01 General Electric Company Lambda virtual sensor systems and methods for a combustion engine
CN106837566A (zh) * 2017-01-20 2017-06-13 新奥科技发展有限公司 一种天然气发动机电控系统及热电联产系统
CN114901934A (zh) 2019-12-31 2022-08-12 卡明斯公司 用于发动机起动的旁路系统
US11359557B2 (en) * 2020-05-27 2022-06-14 Caterpillar Inc. Method and system for load control in an internal combustion engine
CN113250834B (zh) * 2021-06-29 2023-03-21 潍柴动力股份有限公司 发动机的控制方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158149A1 (de) * 2000-05-26 2001-11-28 Jenbacher Aktiengesellschaft Einrichtung zum Einstellen des Verbrennungsgas-Luft-Verhältnisses eines vorzugsweise stationären Gasmotors
DE10346983A1 (de) * 2003-10-09 2005-05-12 Mtu Friedrichshafen Gmbh Verfahren und eine Vorrichtung zur Regelung des Kraftstoffgemischs einer mit gasförmigem Kraftstoff betriebenen Brennkraftmaschine
DE69926036T2 (de) * 1998-07-23 2006-04-20 Caterpillar Inc., Peoria Verfahren und Vorrichtung zum Ermitteln der Kraftstoffsteuermenge für ein Kraftstoffsystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639641A (ja) * 1986-06-27 1988-01-16 Hitachi Ltd 内燃機関の負荷トルク制御装置
JPH0714135U (ja) * 1993-08-24 1995-03-10 日産ディーゼル工業株式会社 圧縮天然ガスエンジンの空燃比制御装置
US5864770A (en) * 1996-03-14 1999-01-26 Ziph; Benjamin Speed and power control of an engine by modulation of the load torque
US6189523B1 (en) * 1998-04-29 2001-02-20 Anr Pipeline Company Method and system for controlling an air-to-fuel ratio in a non-stoichiometric power governed gaseous-fueled stationary internal combustion engine
US6340005B1 (en) * 2000-04-18 2002-01-22 Rem Technology, Inc. Air-fuel control system
US6876097B2 (en) * 2001-02-22 2005-04-05 Cummins Engine Company, Inc. System for regulating speed of an internal combustion engine
JP4365553B2 (ja) * 2001-12-26 2009-11-18 株式会社日立製作所 エンジンの燃料制御装置及びアイドリング時の空燃比制御方法
DE10205375A1 (de) * 2002-02-09 2003-08-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine, insbesondere zur Regelung der Drehzahl der Brennkraftmaschine
DE102005056519A1 (de) * 2005-11-28 2007-06-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4476317B2 (ja) * 2007-08-30 2010-06-09 三菱重工業株式会社 ガスエンジンの統合制御方法及び装置
JP4755155B2 (ja) * 2007-08-30 2011-08-24 三菱重工業株式会社 ガスエンジンの統合制御方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69926036T2 (de) * 1998-07-23 2006-04-20 Caterpillar Inc., Peoria Verfahren und Vorrichtung zum Ermitteln der Kraftstoffsteuermenge für ein Kraftstoffsystem
EP1158149A1 (de) * 2000-05-26 2001-11-28 Jenbacher Aktiengesellschaft Einrichtung zum Einstellen des Verbrennungsgas-Luft-Verhältnisses eines vorzugsweise stationären Gasmotors
DE10346983A1 (de) * 2003-10-09 2005-05-12 Mtu Friedrichshafen Gmbh Verfahren und eine Vorrichtung zur Regelung des Kraftstoffgemischs einer mit gasförmigem Kraftstoff betriebenen Brennkraftmaschine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8683983B2 (en) 2007-11-23 2014-04-01 Mtu Friedrichshafen Gmbh Method for regulating a stationary gas engine
US9051888B2 (en) 2008-01-30 2015-06-09 Mtu Friedrichshafen Gmbh Method for automatically controlling a stationary gas engine
DE102008006708B3 (de) * 2008-01-30 2009-08-20 Mtu Friedrichshafen Gmbh Verfahren zur Regelung eines stationären Gasmotors
CN102575599B (zh) * 2009-07-03 2014-11-26 Mtu腓特烈港有限责任公司 用于调节燃气发动机的方法
CN102575599A (zh) * 2009-07-03 2012-07-11 Mtu腓特烈港有限责任公司 用于调节燃气发动机的方法
US20120109499A1 (en) * 2009-07-03 2012-05-03 Mtu Friedrichshafen Gmbh Method for regulating a gas engine
DE102009033082B3 (de) * 2009-07-03 2011-01-13 Mtu Friedrichshafen Gmbh Verfahren zur Regelung eines Gasmotors
WO2011000474A1 (de) * 2009-07-03 2011-01-06 Mtu Friedrichshafen Gmbh Verfahren zur regelung eines gasmotors
AU2010268459B2 (en) * 2009-07-03 2015-09-03 Mtu Friedrichshafen Gmbh Method for regulating a gas engine
US9273620B2 (en) 2009-07-03 2016-03-01 Mtu Friedrichshafen Gmbh Method for regulating a gas engine
DE102013203741A1 (de) 2013-03-05 2014-09-11 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102013203741B4 (de) * 2013-03-05 2017-12-14 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
WO2014154314A1 (de) * 2013-03-28 2014-10-02 Mtu Friedrichshafen Gmbh Verfahren und vorrichtung zum betrieb einer gas-brennkraftmaschine
US9982633B2 (en) 2013-03-28 2018-05-29 Mtu Friedrichshafen Gmbh Method and device for operating a gas internal combustion engine
EP2868903A3 (de) * 2013-10-30 2015-12-23 GE Jenbacher GmbH & Co OG Verfahren zum Betreiben einer mit einem elektrischen Generator verbundenen Brennkraftmaschine
US9926862B2 (en) 2013-10-30 2018-03-27 Ge Jenbacher Gmbh & Co Og Method of operating an internal combustion engine connected to an electric generator

Also Published As

Publication number Publication date
KR20100085050A (ko) 2010-07-28
AU2008303820A1 (en) 2009-04-02
EP2205845A1 (de) 2010-07-14
AU2008303820B2 (en) 2011-12-08
KR101380283B1 (ko) 2014-04-01
WO2009040058A1 (de) 2009-04-02
US8340885B2 (en) 2012-12-25
JP2010539383A (ja) 2010-12-16
US20100256890A1 (en) 2010-10-07
CN101868606A (zh) 2010-10-20
JP5469603B2 (ja) 2014-04-16
EP2205845B1 (de) 2016-11-16
ES2612762T3 (es) 2017-05-18
CN101868606B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
DE102007045195B3 (de) Verfahren zur Regelung eines stationären Gasmotors
DE102007056623B3 (de) Verfahren zur Regelung eines stationären Gasmotors
DE102008006708B3 (de) Verfahren zur Regelung eines stationären Gasmotors
EP2449234B1 (de) Verfahren zur regelung eines gasmotors
DE10329763B4 (de) Koordinierte Regelung einer elektronischen Drosselklappe und eines Turboladers mit variabler Geometrie in ladedruckverstärkten und stöchiometrisch betriebenen Ottomotoren
EP0364522B1 (de) Verfahren und einrichtung zum stellen eines tankentlüftungsventiles
DE4100692C2 (de) Drehzahlregelungsvorrichtung für einen internen Verbrennungsmotor
DE3015832A1 (de) Verfahren und vorrichtung zum steuern und/oder regeln der luftmengenzufuhr bei verbrennungskraftmaschinen
EP2977596B1 (de) Brennkraftmaschine mit einer regeleinrichtung
DE60114979T2 (de) Regelsystem für einen Turbolader variabler Geometrie
EP1585893B1 (de) Verfahren zur drehzahl-regelung einer brennkraftmaschine
DE19713107B4 (de) Verfahren und Vorrichtung zur Einstellung der Fliessrate der Einsaugluft von Brennkraftmaschinen
DE102004015973B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschinen-Generator-Einheit
DE10252399A1 (de) Verfahren zur Regelung einer Brennkraftmaschinen-Generator-Einheit
DE102015207705B3 (de) Verfahren zur Regelung eines Kraftstofffördersystems
EP1432904B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102022202574A1 (de) Kompressorvorrichtung und Verfahren zum Betreiben einer Kompressorvorrichtung
EP3023618A1 (de) Verfahren zum starten einer mit einem brennstoff-luft-gemisch betriebenen brennkraftmaschine
EP1402163A1 (de) Verfahren und vorrichtung zur steuerung einer aufgeladenen brennkraftmaschine
DE4426365A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102006052269A1 (de) Verfahren zur Regelung einer Brennkraftmaschine
DE112019004621T5 (de) Motorsteuerungsvorrichtung und motorsteuerungsverfahren
DE19935900A1 (de) Verfahren und Vorrichtung zur Regelung einer Brennkraftmaschine
DE4230973A1 (de) Verfahren zum Einstellen eines vorgegebenen Sollwertes
DE102009036377A1 (de) Verfahren und Vorrichtung zum Steuern und Regeln einer Eingangsgröße einer mittels eines Verdichters aufgeladenen Brennkraftmaschine

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE