DE102006033089A1 - Verfahren zur Verarbeitung von zu entgasenden Produkten - Google Patents

Verfahren zur Verarbeitung von zu entgasenden Produkten Download PDF

Info

Publication number
DE102006033089A1
DE102006033089A1 DE102006033089A DE102006033089A DE102006033089A1 DE 102006033089 A1 DE102006033089 A1 DE 102006033089A1 DE 102006033089 A DE102006033089 A DE 102006033089A DE 102006033089 A DE102006033089 A DE 102006033089A DE 102006033089 A1 DE102006033089 A1 DE 102006033089A1
Authority
DE
Germany
Prior art keywords
spindles
teeth
tooth
planetary roller
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102006033089A
Other languages
English (en)
Inventor
Harald Rust
Ilmi Albak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entex Rust and Mitschke GmbH
Original Assignee
Entex Rust and Mitschke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entex Rust and Mitschke GmbH filed Critical Entex Rust and Mitschke GmbH
Priority to DE102006033089A priority Critical patent/DE102006033089A1/de
Publication of DE102006033089A1 publication Critical patent/DE102006033089A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • B29C48/44Planetary screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/535Screws with thread pitch varying along the longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/655Screws with two or more threads having three or more threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/793Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling upstream of the plasticising zone, e.g. heating in the hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92533Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92933Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/287Raw material pre-treatment while feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/35Extrusion nozzles or dies with rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Abstract

Nach der Erfindung werden Planetwalzenextruder, insbesondere zur Entgasung, auch zur Trocknung, mit Planetwalzenspindeln versehen, die ganz oder teilweise einen reduzierten Zahnbesatz aufweisen.

Description

  • Die Erfindung betrifft ein Verfahren zur Verarbeitung von PET oder anderen zu entgasenden Produkten.
  • Die weltweite Bedeutung von PET (Polyethylenenterephthalat) ist bereits mit verschiedenen Aufsätzen gewürdigt worden. Zum Beispiel wird verwiesen auf den Aufsatz von Schwarz, Wiederverarbeitung von PET durch reaktive Extrusion,
    http://www.petnology.com/deutsch/zine/material/beitrage/schwarz_ikv/schwarz_ikv.html.
  • Dort finden sich auch weitere druckschriftliche Nachweise.
  • Dabei ist auf die Bedeutung für die Verpackung, insbesondere für Getränke, hingewiesen. Entsprechend dieser Bedeutung besteht ein Bedarf nach PET. Darüber hinaus ist mit einer entsprechenden Abfallmenge zu rechnen.
  • Bei der Abfallwirtschaft ist bei PET eine vorteilhafte Situation gegeben. PET fällt in großem Umfang sortenrein an.
  • Zum Recycling von PET stehen verschiedene Verfahren zur Verfügung.
  • Ein Verfahren ist eine rohstoffliches Recycling.
  • Ein anderes Verfahren ist ein werkstoffliches Recycling. Das werkstoffliche Recycling umfaßt Zerkleinerung, Reinigung und Trocknung des Altmaterials mit anschließender Regranulierung. Die Reinigung ist problematisch. Solange keine 100%ige Reinigung erfolgt, sind die Einsatzmöglichkeiten des Altmaterials eingeschränkt.
  • Sowohl bei neuem Material als auch bei Altmaterial stellt sich das Problem, daß PET ein Polykondensat ist. Die Monomere werden durch Abspaltung von Wasser verknüpft, so daß Polymere entstehen. Dieser Vorgang ist reversibel. Durch die Einwirkung von Wasser kann PET, vor allem bei hohen Temperaturen, in seine Bestandteile zerfallen.
  • PET nimmt bei der Lagerung an der Umgebungsluft bis zu 0,5 Gew% Wasser auf. Das Wasser gefährdet die Produktqualität. Deshalb ist üblicherweise vor der Verarbeitung eine Trocknung von PET vorgesehen.
  • Es ist aber auch bekannt, PET ohne eine vorherige Trocknung in einen Doppelschnecken-Extruder zu geben und das Wasser in Form eine Entgasung aus der PET-Schmelze abzuziehen. Dabei können auch zwei Entgasungszonen vorgesehen sein.
  • Das bekannte Verfahren ist jedoch sehr kompliziert, so daß es außerordentlich schwierig ist, eine kommerziell verwendbare PET-Qualität zu erzeugen. Deshalb hat sich das Verfahren bisher nicht durchsetzen können.
  • Das Entgasungsproblem kommt nicht nur bei PET, sondern auch bei diversen anderen Stoffen vor. Dabei beschränkt sich die Entgasung nicht auf Wasseranteile. Auch bei anderen gasförmigen Bestandteilen kann eine Entgasung geboten sein. Die gasförmigen Bestandteile können Fremdstoffe sein. Die Stoffe können zum Beispiel durch chemische oder physikalische Reaktion einen gasförmigen Zustand einnehmen.
  • Nach dem älteren Vorschlag sollen die Qualitätsprobleme dadurch gelöst werden, daß
    • a) die Entgasung unter Kneten des Einsatzmateriales unterhalb des Glaspunktes des PET, vorzugsweise mindestens 10 Grad Celsius unterhalb des Glaspunktes des PET, noch weitere bevorzugt mindestens 15 Grad Celsius unterhalb des Glaspunktes von PET, und
    • b) in trockener Atmosphäre erfolgt.
  • Das Einsatzmaterial hat vorzugsweise eine Granulatform. Das Einsatzmaterial kommt auch in Flakes, Schnitzeln, Platten, Filamenten und Agglomeraten vor. Im weiteren ist nur die Granulatform angesprochen. Das schließt alle anderen Formen des Einsatzmateriales, auch Mischungen verschiedener Formen ein. Die Mischungen der Formen können sowohl bei frischem (neu hergestelltem) PET als auch bei recyceltem PET als auch dann vorkommen, wenn recyceltes PET mit einem Zusatz an frischem PET eingesetzt wird oder umgekehrt.
  • Das Kneten findet ohne Aufschmelzen von PET statt.
  • Durch das Kneten findet ein Materialaustausch an der Oberfläche der Granulate statt. Dabei kann die an die Oberfläche kommende Feuchtigkeit abdampfen. Das Abdampfen wird durch Erwärmung des Granulats gesteigert.
  • Jede Erwärmung steigert schon das Abdampfen beim Kneten. So kann die Erwärmung auf mindestens 50 oder auf mindestens 70 Grad Celsius erfolgen. Günstiger ist eine höhere Erwärmung auf mindestens 90 Grad Celsius, noch besser eine Erwärmung auf mindestens 110 Grad Celsius, vorzugsweise erfolgt die Erwärmung auf 130 Grad Celsius plus/minus 5 Grad Celsius.
  • In weiterer Ausbildung des älteren Vorschlages wird zum Kneten ein Extruder eingesetzt. Vorzugsweise findet dabei ein Planetwalzenextruder, zumindest ein Planetwalzenextruderabschnitt, Anwendung. Von Planetwalzenextruderabschnitten/Modulen wird dann gesprochen, wenn ein Extruder sich aus mehreren Abschnitten/Modulen zusammensetzt. Zumeist handelt es sich um unterschiedliche Abschnitte/Module.
  • Ein Planetwalzenextruder besitzt eine Zentralspindel, ein innen verzahntes Gehäuse und zwischen Gehäuseinnenverzahnung und der Zentralspindel verschiedene Planetspindeln. Die Planetspindeln kämmen sowohl mit der Zentralspindel als auch mit dem innen verzahnten Extrudergehäuse. Die Planetspindeln laufen dabei um die Zentralspindel um.
  • Um das Kneten ohne Aufschmelzen zu bewirken, wird der Planetwalzenextruderabschnitt nach der Erfindung so eingestellt, daß sich die Materialverformung auf das Kneten ohne Aufschmelzung beschränkt.
  • Für die Einstellung des Knetens können an dem Planetwalzenextruder verändert werden:
    • a) das Spiel zwischen den bewegten Planetwalzenteilen
    • b) die Anzahl der Planetspindeln
    • c) die Verzahnung der Planetwalzenteile
  • Zu a)
    Mit dem Spiel zwischen den bewegten Planetwalzenteilen wird das Maß der Verformung bestimmt, dem das Granulat unterliegt, wenn es zwischen die Zähne der Planetwalzenteile gelangt. Je kleiner das Spiel ist, desto stärker wird die Verformung. Je größer das Spiel ist, desto geringer wird die Verformung.
  • Zu b)
    Das Besondere an Planetwalzenextrudern bzw. an Planetwalzenextruderabschnitten gegenüber Extrudern und Extruderabschnitten anderer Bauart, ist neben einer extremen Verformungsleistung ein Hohlraum zwischen den die Zentralspindel umlaufenden Planetspindeln. In den Hohlraum kann das Granulat strömen.
  • Der Hohlraum wird durch Änderung der Anzahl der Planetspindeln beeinflußt. Je geringer die Zahl der Planetspindeln ist, desto größer wird der Hohlraum.
  • Zu c)
    Die Verzahnung kann unterschiedliche Beschaffenheit haben.
  • Wahlweise ist eine Noppenverzahnung vorgesehen. Die Noppenverzahnung entsteht vorzugsweise aus der Normalverzahnung.
  • Die Normalverzahnung von Planetspindeln ist einerseits durch einen Querschnitt gekennzeichnet, wie ihn die ineinander greifenden Zähne der Zahnräder eines Getriebes zeigen. Anderseits verlaufen die Zähne nicht gerade sondern spindelförmig bzw. wie die Gewindegänge eines Schraubgewindes am Umfang entlang.
  • Die Gewindegänge werden auch in dieser Form in das Ausgangsmaterial der Planetspindeln geschnitten, z.B. gedreht oder gefräst.
  • Bei den Gewinden wird unterschieden zwischen linksgängem Gewinde und rechtsgängigem Gewinde. Es gibt auch mehrgängige Gewinde.
  • Die gleiche Unterscheidung findet an Extruderspindeln statt.
  • Eine Noppenverzahnung entsteht, wenn z.B. in eine rechtsgängige Verzahnung eine linksgängig verlaufende Nut ähnlich einem Gewindegang eingearbeitet wird. Durch die Nut werden die Gewindegänge der Planetspindeln unterbrochen. Die Nut kann gleiche oder eine andere (geringer oder größere) Steigung als die Verzahnung der Spindeln besitzen. Die Steigung der Nut weicht vorzugsweise höchstens um 50% von der Steigung der Verzahnung ab.
  • Die Noppenverzahnung kann auf einzelne Planetwalzenteile beschränkt sein. Die Noppenverzahnung kann auch in mehreren oder in allen Planetwalzenteilen vorgesehen sein. Die Noppenverzahnung kann ganz oder teilweise die Verzahnung an den Planetwalzenteilen bilden.
  • Bei teilweise Noppenverzahnung an den Planetwalzenteilen kann es gewünscht sein, den normalverzahnten Teil der Planetwalzenteile in Förderrichtung des Extruders am hinter Ende (am austragseitigen Ende der Planetwalzenteile) anzuordnen, um dort einen Förderdruck aufzubauen, der einen Übergang des Granulates in den weiteren Extruderbereich sicherzustellen, der die Aufschmelzung des Granulates bewirkt.
  • Wahlweise können sich auch Noppenverzahnte Planetwalzenspindeln mit normal verzahnten Planetwalzenspindeln abwechseln und umgekehrt.
  • Wahlweise können auch einzelne normalverzahnte Planetwalzenspindeln zwischen Noppenverzahnten Planetwalzenspindeln angeordnet sein oder umgekehrt.
  • Sofern die Noppenverzahnung in mehreren korrespondierenden Planetwalzenteilen vorgesehen ist, kann die Noppenverzahnung so angeordnet werden, daß die Unterbrechungen der Verzahnung im einen Planetwalzenteil mit den Unterbrechnungen im korrespondierenden Planetwalzenteil fluchten oder im Verhältnis zu diesen Unterbrechungen versetzt sind. Der Versatz kann ein Maß haben, das gleich einem Bruchteil der Zahnlücke zwischen zwei Zähnen oder ein Mehrfaches der Zahnlücke zwischen zwei Zähnen ist, wobei ein Mehrfaches auch eine Zahl kleiner 2 sein kann.
  • Durch die Unterbrechung der Zähne entstehen Öffnungen, in welche das Granulat strömen kann.
  • Das unter b) beschriebene Hohlraumvolumen und die unter c) beschriebene Noppenverzahnung reduzieren den von den Planetwalzenteilen ausgehenden Druckaufbau, so daß das Granulat für eine notwendige Entgasungsdauer in dem Extruder bzw. in dem Extruderabschnitt verbleiben kann.
  • Vorzugsweise besitzt der Planetwalzenabschnitt eine Länge von höchstens 1200 mm bei einem Durchmesser bis 100 mm in der Verzahnung des Planetwalten-Extrudergehäuses, noch weiter bevorzugt von höchstens 1000 mm. Bei anderen Durchmessern der Verzahnung des Planetwalzen-Extrudergehäuses ergeben sich entsprechend größere oder kleinere maximale Längen.
  • Beim Kneten wird im Extruder bzw. im Extruderabschnitt in erheblichem Umfang Energie freigesetzt, die sich in dem Granulat als Wärme zeigt. Sofern das Granulat schon mit erheblicher Temperatur in den Planetwalzenextruder bzw. den Planetwalzenextruderabschnitt gelangt, kann es erforderlich werden, die anfallende Wärme durch Kühlung abzuführen. Sofern das Granulat beim Eintritt in den Planetwalzenextruder bzw. den Extruderabschnitt noch keine ausreichende Temperatur hat, unterbleibt obige Kühlung. Gegebenenfalls wird sogar Wärme zugeführt.
  • Für die Kühlung und/oder Erwärmung sind übliche Temperierungseinrichtungen an Planetwalzenextrudern ausreichend. Üblich ist es, das Gehäuse zweischalig auszuführen und das Temperierungsmittel durch den Zwischenraum zu leiten. Üblich ist auch, die Zentralspindel mit Kanälen zu versehen, durch die gleichfalls Temperierungsmittel geleitet wird. Das übliche Temperierungsmittel ist Wasser oder Öl, mit dem beheizt oder gekühlt wird.
  • Um dem Granulat eine möglichst günstige Ausgangstemperatur für den Entgasungsvorgang zu geben, wird das Granulat im Extrudereinzug und/oder in einer vorgeschalteten Heizeinrichtung vorgewärmt, bevor es dem Abdampfvorgang und Entgasungsvorgang zugeführt wird.
  • Vorzugsweise findet das Abdampfen und Entgasen in einem Extruder mit einem Planetwalzenextruderabschnitt und einer vorgeschalteten Einzugschnecke(Füllteil) statt, die zur Vorwärmung des PET beheizt ist, so daß die Temperierung im Planetwalzenextruderabschnitt sich auf die Kühlung beschränken kann. Vorzugsweise ist die Einzugsschnecke eine Einschnecke.
  • Über der Einzugschnecke kann in üblicher Weise eine Dosierung mit einem Trichter, ggfs. auch mit einer Dosierschnecke angeordnet sein. Günstig ist, wenn die Dosierung gleichfalls beheizt ist, um die Vorwärmstrecke zu verlängern.
  • Der bei der Entgasung im Planetwalzenextruderabschnitt anfallende Dampf kann dort abgezogen werden. Dafür können bekannte Entgasungseinrichtungen an Planetwalzenextruderabschnitten genutzt werden.
  • Vorzugsweise findet jedoch eine Gasabzug durch die Einzugschnecke hindurch statt. Dazu wird im Einzugsbereich ein Unterdruck (Saugzug) angelegt und wird durch eine bestimmte Dosierung des Granulates sichergestellt, daß der Dampf entlang der Einzugschnecke entweichen kann.
  • Dabei wird die Einzugschnecke unterfüttert. Die Dosierung wird so gestaltet, daß das eingezogene Granulat höchstens locker in den Gängen der Einzugschnecke liegt. Vorzugsweise werden der Querschnitt der Einzugschnecke über der gesamten Länge nur teilweise ausgefüllt. Dazu ist wahlweise auch durch eine entsprechend große Querschnittsgestaltung bei den Schneckengängen vorgesehen. Die Dimensionsierung der Schneckengänge läßt sich dabei einerseits mit wenigen Versuchen anderseits auch durch Berechnung bestimmen. Maßgebend für die Berechnung sind der vorgesehene Materialdurchsatz und Material.
  • Das richtige Maß an Knetung und an Unterdruck läßt sich unter Beobachtung der aus dem Extruder austretenden Schmelze leicht kontrollieren. Wenn die Qualität nachläßt, stellen sich in der austretenden Schmelze Blasen bzw. Trübungen ein, während ungefärbtes PET bei richtiger Entgasung klar durchsichtig ist. Die Blasen und Trübungen lassen sich im Regelfall durch Verstärkung des Knetens und/oder durch Verstärkung des Unterdruckes für die Entgasung beseitigen.
  • Die Anlegung des Unterdruckes erfolgt in einem gekapselten Einzug und ggfs. in einer gekapselten Dosierung.
  • Die Kapselung kann unter Verwendung eines oder mehrerer Schleusen erfolgen, die von dem Granulat durchwandert werden. Jede Schleuse besteht wahlweise aus einem Behälter und zwei Schließeinrichtungen, die in Durchströmungsrichtung des Behälters vor und hinter dem Behälter angeordnet sind. Es ist im Betrieb einer Schleuse immer mindestens eine der Schließeinrichtungen geschlossen. Beim Schleusenbetrieb ist zu unterscheiden zwischen der Behälterfüllung, der Erzeugung des Unterdrucks im Behälter und der Behälterentleerung.
  • Bei der Behälterfüllung ist der Behälterausgang geschlossen. Vorzugsweise sind bei Gasabsaugung zur Unterdruckerzeugung der Behälterausgang und der Behältereingang geschlossen. Bei der Behälterentleerung bleibt der Behältereingang geschlossen, während der Behälterausgang geöffnet wird.
  • Mit nur einer solchen Schleuse entsteht eine diskontinuierliche Dosierung, weil die Dosierung der Schnecke zur Behälterfüllung unterbrochen werden muß.
  • Mit zwei solchen Schleusen, kann eine kontinuierliche Dosierung erfolgen.
  • Dabei können die Schleusen parallel geschaltet sein, so daß mit der Entleerung der einen Schleuse auf die andere Schleuse umgeschaltet werden kann.
  • Dabei können die Schleusen auch hintereinander geschaltet sein. Bei der Hintereinanderschaltung durchläuft das Granulat erst den Behälter in der ersten Schleuse und dann den Behälter in der zweiten Schleuse. Dadurch gibt es auf dem Förderweg des Granulats einen Behälter, welcher dem Extruder am nächsten ist und einen Behälter, welcher einen größer Abstand hat und in Förderrichtung vor dem ersten Behälter angeordnet ist. Bei diesem Konzept wird der Behälter in der zweiten Schleuse aus dem Behälter der ersten Schleuse immer wieder nachgefüllt bevor eine Entleerung stattgefunden hat. Die Öffnung des ersten Behälters erfolgt zum Nachfüllen, wenn der zweite Behälter auf den gleichen Druck wie der erste Behälter gebracht worden ist.
  • Die Behälter beider Schleusen besitzen vorzugsweise eine Steuerung mit mindestens einem Min-Schalter, der bei Erreichen einer Mindestfüllung Kontakt gibt, und einem Max-Schalter, der bei Erreichen einer maximalen Füllung Kontakt gibt. Der Kontakt bei Erreichen der Mindestfüllung dient der Nachfüllung. Der Kontakt bei Erreichen der maximalen Füllung dient beim Nachfüllen der Beendigung des Füllvorgangs.
  • Vorteilhafterweise wird das Nachfüllen vereinfacht, wenn austragseitig an den Schleusen besondere Austrageinrichtungen vorgesehen sind, wie zum Beispiel Zellenräder. Die Zellenräder bilden ihrerseits eine Schleuse und zugleich eine Dosierung.
  • Günstig ist auch eine Beheizung der Schleusen. Das erleichtert die Trocknung und ermöglicht eine Vorentgasung.
  • Es kommen auch Schleusen in Betracht, die durch eine Schnecke gebildet werden. Diese Schnecke wird nachfolgend Schleusenschnecke genannt.
  • Die Schleusenschnecke kann ein Seitenextruder sein. Diese Schleusen-Schnecke kann auch eine spezielle Füllschnecke oder Stopfschnecke sein. Nach dem älteren Vorschlag wird die Schleusen-Schnecke so mit Granulat gefüttert, daß das Granulat eine ausreichende Dichtwirkung entfaltet, um den oben erläuterten Unterdruck mit wirtschaftlichem Aufwand zu bewirken.
  • Bei ausreichender Schneckenlänge ist die an der Schleusenschnecke zu berücksichtigende Leckage vernachlässigbar. Dabei ist eine Lackage vernachlässigbar, deren Ausgleich im Verhältnis zum Absaugen des Abdampfes aus der Entgasungsstation bis zu 10% der Pumpenleistung für das Absaugen erfordert. Selbst eine Verdoppelung der Pumpenleistung zum Ausgleich einer Leckage an der Schleusenschnecke kann noch wirtschaftlich tragbar sein.
  • Mit einer Schleusenschnecke ist gleichfalls ein kontinuierlicher Materialeintrag in den oben beschriebenen Extruder möglich.
  • Wahlweise bilden die Schnecken auch nur einen Austrag am Behälter einer Schleuse. Mit der Schnecke kann vorteilhafterweise über den Materialaustrag hinaus eine Auflockerung der Behälterfüllung bewirkt werden.
  • Während eine Schleusenschnecke durch entsprechende Fütterung zumindest eine weitgehende Abdichtung des Extrudereintrages bewirkt, hat eine Unterfütterung einen Gasdurchlaß zur Folge. Die Unterfütterung kommt an der Eintragschnecke des Extruder zur Anwendung. Ziel ist dabei eine Absaugung des Planetwalzenextruderteiles entlang der Einzugschnecke bzw. durch deren Schneckengänge hindurch. Damit ist eine separate Absaugung an dem Planetwalzenextruderabschnitt entbehrlich.
  • Wahlweise erfolgt die Absaugung zusätzlich oder alternativ über eine unmittelbar an den Planetwalzenabschnitt angeschlossene Leitung. Die Leitung zu einer separaten Pumpe führen. Die Leitung kann auch zu einer gemeinsamen Pumpe führen. Diese gemeinsame Pumpe saugt dann sowohl den gekapselten Extrudereintrag und ggfs. die Dosierung als auch den zur Entgasung vorgesehenen Planetwalzenextruderabschnitt ab. Dabei können Schieber in den Leitungen sicherstellen, daß die Absaugeleistung sich in gewünschter Weise auf die verschiedenen abzusaugenden Bereiche verteilt.
  • Wahlweise sind noch weitere Pumpen vorgesehen. Zum Beispiel können am Materialeinzug ein Leitungsanschluß und in Förderrichtung vor den Schleusen ein Leitungsanschluß vorgesehen sein, deren Leitungen zu separaten Pumpen führen.
  • Günstig ist, wenn in Absaugrichtung vor den Pumpen ein Kondensator in der Saugleitung angeordnet ist.
  • Vorteilhafte Ergebnisse lassen sich auch erzielen, wenn die dem Extruder nächste Schleuse mit einem Schneckenaustrag versehen ist und das Material über ein Fallrohr in den Fallrohr aufgegeben wird.
  • Vorzugsweise ist auch am Fallrohr eine Gasabsaugung zur weiteren Entgasung oder zur Aufrechterhaltung des bisherigen Unterdruckes vorgesehen.
  • Günstig ist auch eine Beheizung des Fallrohres zur Verlängerung der Beheizungsstrecke für die Vorwärmung und gegebenenfalls für die Vorentgasung des Materials.
  • In Extruderrichtung sind hinter der Entgasung ein oder mehrere Extruderabschnitte vorgesehen, die ein Aufschmelzen des entgasten Granulats bewirken.
  • Für die verschiedenen Extruderabschnitte ist eine gemeinsame Spindel vorgesehen. Die gemeinsame Spindel wird durch eine Stange/Rohr gebildet, das sich vom Extruderantrieb bis zum Extruderende erstreckt. Auf die Stange/Rohr werden für Aufsätze geschoben, die an gewünschter Stelle die Einzugschnecke und an anderer gewünschter Stelle die Zentralspindel des Planetwalzenextruderabschnittes und an weiterer gewünschter Stelle die Schnecke zum Aufschmelzen des Granulats bilden. Auf der Stange/Rohr werden die verschiedenen Aufsätze verspannt.
  • Dabei findet je nach Beschaffenheit des PET eine Temperatursteigerung im PET auf bis zu 260 Grad Celsius statt. Für diese Aufschmelzung kann ein Extruderabschnitt mit einer herkömmlichen Einschnecke verwendet werden.
  • Die aus dem Extruder austretende PET-Schmelze kann unterschiedlichen Verwendungen zugeführt werden, z.B. der Verwendung für eine Folie oder für Behältnisse wie Flaschen.
  • Für die Herstellung von Flaschen aus extrudierter Schmelze stehen verschiedene Verfahren zur Verfügung. Beispielsweise kann die Schmelze zur Herstellung von Flaschen in eine Form gedrückt oder gespritzt werden. Die bekannten Verfahren zur Flaschenherstellung führen zu einem intermittierenden Bedarf an PET-Schmelze. Deshalb kann es zweckmäßig sein, über den Extruder kontinuierlich in einen Schmelzespeicher zu fahren, der die Schmelze in den notwendigen Abständen in eine Form drückt.
  • Zur Folienherstellung dienen in der Regel Kalander und Glättwerke. Das PET muß mit ausreichender Temperatur zwischen die Kalanderwalzen gefahren werden. Dazu sind verschiedene Verfahren bekannt. Zum Beispiel kann mit einer Breitschlitzdüse gearbeitet werden. Den notwendigen Druckaufbau für die Breitschlitzdüse kann der Extruder leisten. Der Druck kann auch mit einer zwischengeschalteten Schmelzepumpe hochgespannt werden.
  • Die Erfindung hat sich die Aufgabe gestellt, die Wirkung von Mischung und Transport der Schmelze im Planetwalzenextruder zu steuern.
  • Nach der Erfindung wird das dadurch erreicht, daß die Planetwalzenspindeln den unterschiedlichen Anforderungen angepasst sind.
  • Bei Einschneckenextrudern ist das Leistungsverhalten einer Schnecke verhältnismäßig leicht einstellbar. Das resultiert aus der dort üblichen Bauweise:
    Jede zeitgemäße Schnecke setzt sich aus einzelnen Abschnitten zusammen, die mittig eine Bohrung besitzen. Durch die Bohrung erstreckt sich ein Anker, mit dem die einzelnen Abschnitte gegeneinander verspannt werden. Je nach Bedarf haben die einzelnen Abschnitte eine andere Konfiguration. Das äußert sich zum Beispiel in verschiedenen Steigungen.
  • Bei Doppelschneckenextrudern findet die Bauweise nur eingeschränkt Anwendung, denn die beiden Schnecken des Doppelschneckenextruders kämmen miteinander und müssen deshalb im Wesentlichen baugleich sein.
  • Bei den Planetwalzenextrudern ist die bei den Einschnecken und Doppelschnecken bekannte Bauweise nicht üblich. Das hat den einfachen Grund, daß die notwendige Anpassung aller verzahnten Teile spätestens bei dem innen verzahnten Gehäuse des Extruders bzw. bei dessen innen verzahnter Buchse endet. Bei den Planetwalzenextrudern sind Änderungen an den Planetwalzenspindeln bekannt. Zu den bekannten Änderungen der Planetwalzenspindeln gehört die oben beschriebene Noppenbildung. Die Noppenverzahnung verringert die Vortriebswirkung auf die Schmelze, so daß sich die Mischleistung erhöht. Darüber hinaus ist es bekannt, die Planetwalzenspindeln mit umlaufenden Nuten zu versehen. Die umlaufenden Nuten reduzieren die Förderwirkung auf die Schmelze auf Null.
  • Die Erfindung hat eine weitere Möglichkeit zur Einflussnahme auf die Förderwirkung der Planetwalzenspindeln gefunden. Nach der Erfindung wird an mindestens einer Planetenspindel mindestens ein Zahn entfernt. Wahlweise werden auch mehr Zähne entfernt. Vorzugsweise verbleiben mindestens jeweils 3 gleichmäßig am Umfang der Planetwalzenspindeln. Es kann auch jeder vierte oder jeder dritte oder jeder zweite Zahn entfernt werden. Es handelt sich um reduzierten Zahnbesatz im Unterschied zu nicht reduziertem Zahnbesatz. Die Entfernung der Zähne erfolgt vorzugsweise bis in den Zahngrund. Denkbar ist auch eine darüber hinausgehende Materialausarbeitung, ebenso eine teilweise Entfernung der Zähne.
  • Durch die ganze oder teilweise Entfernung bestimmter Zähne entsteht bei unverändertem Fortbestand der übrigen Zähne eine Planetwalzenspindel mit mehr Förderwirkung als eine reine Noppenspindel, wenn auch mit weniger Mischleistung als eine reine Noppenspindel. Gegenüber einer üblichen Planetwalzenspindel ist die Förderwirkung aber geringer und die Mischleistung höher. Gleichwohl läßt sich z.B. die gleiche Förderwirkung des Extruder erreichen, indem nach der Reduzierung des Zahnbesatzes an den Planetenwalzenspindeln die Zahl der Planetenwalzenspindeln erhöht wird. Dadurch ergibt sich eine höhere Planetwalzenspindelzahl.
  • Die Erhöhung der Förderwirkung kann bei einer Temperaturerhöhung und damit verbundenem Viskositätsverlust wichtig, zum Teil sogar entscheidend werden. Das heißt, je höher die Schmelzetemperatur wird, desto flüssiger wird die Schmelze und desto schwieriger und wichtiger wird es, auf die Schmelze eine Förderwirkung auszuüben.
  • Ähnliche Situationen können sich bei der Trocknung von PET-Partikeln und vergleichbaren Stoffen ergeben. PET-Partikel zeigen auch temperaturabhängig schon unterschiedliche Reibungswerte. Das gilt besonders für den Grenzbereich, in dem die Partikel außen anschmelzen und innen noch fest sind. Eine zu geringe Förderwirkung kann zu lange Verweilzeiten des PET und eine zu große Sprödigkeit des PET zur Folgen haben.
  • Die erfindungsgemäße Entfernung der Zähne kann an vorhandenen Planetwalzenspindeln nachträglich erfolgen.
  • Soweit eine Vorratshaltung an Planetwalzenspindeln stattfindet und soweit eine Vergütung oder Härten oder sonstiges Behandeln zur Erhöhung der Verschleißfestigkeit der Zahnflächen vorgesehen ist, werden die Planetwalzenspindeln vorzugsweise ohne die Oberflächenbehandlung bevorratet, damit im nachhinein eine einfache erfindungsgemäße Bearbeitung der Planetwalzenspindeln, z.B. durch Fräsen, möglich ist. Die Behandlung der der Zahnflächen erfolgt nach der erfindungsgemäßen Bearbeitung.
  • Überraschenderweise beeinträchtigt das erfindungsgemäße Entfernen von Zähnen die Laufruhe der Planetwalzenspindeln nicht, weil die Zähne wie Schrauben/Gewindegänge an der Oberfläche der Planetwalzenspindeln verlaufen. Bei ausreichender Länge der Spindeln und entsprechender Steigung umschlingen die schraubenförmig bzw. gewindegangförmig verlaufenden Zähne die Spindeln so häufig, daß die Planetwalzenspindeln zwischen der Zentralspindel und dem umgebenden Gehäuse sicher geführt und fixiert sind. Bei einer Planetwalzenspindel, bei der jeder zweite Zahn entfernt worden ist, ist nach der Erfindung
    • a) bei einem Planetwalzenspindeldurchmesser kleiner 160 mm eine erfindungsgemäß bearbeitete Spindellänge von mindestens 200 mm, bevorzugt von mindestens 300 m und weiter bevorzugt eine Spindellänge von mindestens 400 mm und höchst bevorzugt eine Spindellänge bis 800 mm vorgesehen. Bei weniger entfernten Zähnen kann die Spindellänge kürzer sein, bei mehr entfernten Zähnen soll die Spindellänge länger sein.
    • b) bei einem Planetwalzenspindeldurchmesser von 160 mm und mehr eine erfindungsgemäß bearbeitete Spindellänge von mindestens 400 mm, bevorzugt von mindestens 800 m und weiter bevorzugt eine Spindellänge von mindestens 1200 mm und höchst bevorzugt eine Spindellänge bis 2500 mm vorgesehen. Bei weniger entfernten Zähnen kann die Spindellänge kürzer sein, bei mehr entfernten Zähnen soll die Spindellänge länger sein.
  • Die erfindungsgemäße Bearbeitung der Planetwalzenspindeln kann auf alle bekannten Zahnmodule Anwendung finden, insbesondere auf die gebräuchlichen Module 1,5 bis 12 oder darüber hinaus bis 20. Die Zahnmodule sind von den oben erwähnten Planetwalzenteilen/Modulen zu unterscheiden. Die Zahnmodule kennzeichnen die Größe der Zähne. Die Plaentwalzenabschnitte/Extruderteile/Module werden mit den anderen Modulen zu dem jeweils gewünschten Extruder zusammengesetzt. Die Modulbauweise ist mit einem Baukastensystem vergleichbar und in der Regel besonders wirtschaftlich.
  • Die verschiedenen Planetenteile (Zentralspindel/Planetenspindeln/Innenverzahnung) eines Abschnittes/Moduls haben regelmäßig den gleichen Zahnmodul.
  • Wahlweise werden die Zähne nicht nachträglich entfernt, sondern findet eine Fertigung statt, bei der die Planetwalzenspindeln sofort in die Form gebracht werden, wie sie nach der oben beschriebenen Zahnentfernung ensteht.
  • Dazu ist zunächst darauf einzugehen, wie die Zähne bei herkömmlicher Verzahnung entstehen. Verbreitet ist die Herstellung durch Fräsen und Schleifen. Dazu wird die Kontur der Verzahnung festgelegt und der Fräser entlang der Kontur bewegt. Der Fräser arbeitet dabei verhältnismäßig grob. Deshalb ist anschließend eine Feinbearbeitung üblich, z.B. durch Schleifen bei außen verzahnten Teilen oder durch Honen oder Erodieren bei innen verzahnten Teilen üblich. Es sind auch urformende Herstellungsverfahren für Getriebeteile bekannt, das sind Gießen und Sintern. Zu den Umformenden Herstellungsverfahren zählt Schmieden, Pressen, Ziehen, Walzen, Stanzen).
  • Das Fräsen gehört zur spanenden Herstellung. Andere spanende Verfahren sind zum Beispiel Hobeln, Stoßen, Räumen, Schaben, Schleifen, Honen.
  • Allen Herstellungsverfahren für Verzahnungen ist gemeinsam, daß sie der festgelegten Kontur der Verzahnung folgen. Bei normaler Verzahnung wechselt ein Zahn mit einer Zahnlücke. Der Abstand zwischen zwei benachbarten Zähnen eines Teiles ist gleich Bei der Festlegung der Kontur kommt es auf die Verzahnung an. Die Verzahnung folgt den allgemeinen Erkenntnissen der Getriebetechnik.
  • Man unterscheidet verschiedene Grundformen von Verzahnungen: Evolventenverzahnung, Zykloidenverzahnung und Treibstockverzahnung. Darüber hinaus gibt es diverse Sonderformen.
  • Bei Planetwalzenextrudern hat sich die Evolventenverzahnung durchgesetzt. Die Evolventenverzahnung mit vollem Zahnbesatz wird im folgenden als Normalverzahnung bezeichnet.
  • Bei der Evolventenverzahnungi werden die Flanken der Zähne des Zahnrades von Evolventen gebildet. Vorstellen kann man sich die Evolventen, wenn man sich den Zahnradgrundkreis als massiven Zylinder vorstellt, um den ein Faden gewickelt ist. Wird dieser Faden nun abgewickelt, so beschreibt der straff gespannte Endpunkt des Fadens die Figur eine Evolvente. Alle Punkte auf dem Faden, welche den ganzzahlig vielfachen Abstand vom Endpunkt aufweisen, bewegen sich somit auf der Evolvente eines anderen Zahnes. Die Evolventenverzahnungen haben folgende Vorteile:
    Die Flanken zweier im Eingriff befindlicher Zahnräder berühren sich immer, und in diesen Berührungspunkten haben sie stets die annähernd gleiche Geschwindigkeit. Somit ist gewährleistet, daß die Übertragung der Drehbewegung reibungsarm erfolgt.
  • Gleichzeitig erlaubt die Evolventenverzahnung die gleichmäßige Übertragung von Drehmomenten durch eine konstante Übersetzung.
  • Sie ist unempflindlich gegen das Verschieben der Achsen der Zahnräder (Achsabstandsunabhängigkeit).
  • Sie ist einfach in der Fertigung durch standardisierte geradlinige Werkzeuge.
  • Bei gleicher Geometrie des Werkzeuges sind Zahnräder mit unterschiedlicher Zähnezahl und unterschiedlicher Profilverschiebung frei miteinander kombinierbar.
  • Bei Planetwalzengetrieben ist man wie bei anderen Getrieben bemüht, mit möglichst geringem Spiel zwischen den Getriebeteilen zu arbeiten. Das Spiel kann bei der Festlegung der Kontur berücksichtigt werden. Bei Planetwalzenextrudern ist üblicherweise ein sehr viel größeres Spiel vorgesehen. Auch dieses Spiel kann bei der Festlegung der Zahnkontur berücksichtigt werden.
  • Bei üblicher Verzahnung folgt ein Zahn einer Zahnlücke und einer Zahnlücke ein Zahn, wobei die Zähne und die Zahnlücken gleich sind. Da die Zähne in die Zahnlücken greifen und die miteinander kämmenden/ineinander greifenden Getriebeteile die gleiche Verzahnung haben sollen, beinhalten die Zahnlücken eine spiegelverkehrte Abbildung der Zähne.
  • Bei der erfindungsgemäßen Gestaltung der Verzahnung sind die Zahnlücken aber anders als bei üblicher Verzahnung. Bei der oben beschriebenen Herstellung der erfindungsgemäßen Verzahnung werden dazu an vorhandenen Getriebeteilen einzelne oder mehrere Zähne entfernt. Alternativ werden schon bei der Festlegung der Zahnkontur einzelne oder mehrere Zähne entfernt. Die Herstellung folgt dann in der oben beschriebenen Weise der festgelegten erfindungsgemäßen Zahnkontur. Das heißt, im Falle der Anwendung eines Fräsers, folgt der Fräser der vorher festgelegten neuen Kontur mit größeren Zahnlücken. Entsprechendes gilt für andere Werkzeuge zur Herstellung der vorher festgelegten neuen Kontur.
  • Günstig ist es, wenn die Zahl der Zähne von Gehäuseinnenverzahnung(Buchsenverzahnung), Planetspindeln und Zentralspindel so gewählt ist, daß der Selbstreinigungseffekt der Planetwalzenteile gewahrt bleibt. Das ist zum Beispiel dann der Fall, wenn die Zähnezahl an der Zentralspindel und an der Gehäuseinnenverzahnung(Buchsenverzahnung) gerade ist und die Zähnezahl an den Planetspindeln ungerade ist. Dann wird die Schmelze in jedem Zwischenraum zwischen zwei Zähnen durch die in den Zwischenraum eindringenden Zähne anderer Teile des Planetwalzenextruders in Bewegung gebracht.
  • Die gleichen Verhältnisse ergeben sich bei ungeraden Zähnezahlen an Zentralspindel und Gehäuseinnenverzahnung und gerade Zähnezahl an den Planetwalzenspindeln.
  • Das gleiche Ergebnis kann durch unregelmäßiges Entfernen des Zahnbesatzes erreicht werden, zum Beispiel dadurch, daß nicht regelmäßig jeder zweite Zahn, sondern einmal oder mehrmals ein anderer Zahn, zum Beispiel der dritte Zahn entfernt wird oder zum Beispiel zwei ursprünglich neben einander stehende Zähne unberührt bleiben. Das heißt, die Bearbeitung erfolgt in unterschiedlichen Abständen. Dabei kann ausreichend sein, daß ein Abstand anders als die anderen Abstände ist. Es können auch mehrer Abstände anders sein. Das gleiche Ergebnis kann auch dadurch erreicht werden, daß erfindungsgemäß bearbeitete Planetwalzenspindeln mit unbearbeiteten Planetwalzenspindeln kombiniert werden oder das unterschiedlich erfindungsgemäß bearbeitete Planetwalzenspindeln miteinander kombiniert werden.
  • Es besteht die Erwartung, daß sich Planetwalzenspindeln durchsetzen, die auf der gesamten Länge erfindungsgemäß verzahnt sind.
  • In der Anwendung auf PET und dergleichen Stoffe kann es gleichwohl vorteilhaft sein, Planetwalzenspindeln zu verwenden, die in dem oben beschriebenen Bereich die erfindungsgemäße Bearbeitung aufweisen und in dem übrigen Bereich normal verzahnt sind oder als Noppenspindeln ausgebildet sind oder eine andere Verzahnung aufweisen.
  • Diese kann dadurch erfolgen, daß die Bearbeitungswerkzeuge am Übergang von dem einen Bereich in den anderen Bereich auslaufen. In der Kombination mit Noppenbildung heißt das, die gegenläufige Verzahnung, welche in der oben beschriebenen Form die Noppenspindeln, läuft an dem erwähnten Übergang aus.
  • Desgleichen läuft die erfindungsgemäße Bearbeitung beim Übergang von einem Bereich in den anderen aus.
  • Wahlweise sind auch mehrteilige Planetwalzenspindeln vorgesehen, nämlich mit einem separat und erfindungsgemäß bearbeiteten Teil und mit einem separat hergestellten Restteil. Der Restteil kann ein Noppenverzahnungsteil oder ein normal verzahntes Teil oder ein anderes Teil sein. Beide Teile sind zugleich mit einer mittigen Bohrung für einen Anker versehen, mit dem die beiden Teile miteinander verspannt werden. Auf dem Wege entstehen mehrteilige Planetwalzenspindeln, die über ihrer Länge einen Verzahnungswechsel aufweisen, daß heißt von einer erfindungsgemäßen Verzahnung zu einer anderen Verzahnung wechseln.
  • Die Mehrteiligkeit kann bei der Herstellung der Verzahnung Vorteile haben, indem die Teile mit unterschiedlicher Verzahnung separat hergestellt werden. Dann müssen die Werkzeuge dem Zahnwechsel nicht folgen. Im Zusammenhang mit einem gewünschten schlagartigen Wechsel der Verzahnung bietet sich eine solche Vorgehensweise an.
  • Auf der anderen Seite kann verfahrenstechnisch auch ein langsamer Wechsel von einer Verzahnung zur anderen von Vorteil sein. Ein langsamer Übergang von einer erfindungsgemäßen Verzahnung zu einer Normalverzahnung entsteht in der Anwendung eines Fräsers zum Beispiel dadurch, daß der für die nachträgliche Zahnentfernung eingesetzte Fräser langsam aus dem Material der Planetwalzenspindel herausgefahren wird.
  • Es kann auch ein Wechsel von einer Verzahnung, zum Beispiel von einer Normalverzahnung, zu einer erfindungsgemäßen Verzahnung vorkommen. Dann gilt entsprechendes wie zu dem vorstehend erläuterten Wechsel mit der Maßgabe, daß für einen langsamen Wechsel der Fräser langsam in das Material der Planetwalzenspindel hineingefahren wird.
  • Die mehrteiligen Planetwalzenspindeln können auch einen mehrfachen Verzahnungswechsel besitzen.
  • Es kommen auch einteilige Planetwalzenspindeln in Betracht, die über Ihrer Länge in der Verzahnung einen oder mehrere Verzahnungswechsel zeigen.
  • Für jeden Wechsel der Verzahnung gelten die Ausführungen zur nachträglichen Entfernung von Zähnen und der vorhergehenden Festlegung der Zahnkontur entsprechend.
  • In der Anwendung auf PET lassen sich die Einsatzpartikel mit dem erfindungsgemäßen Planetwalzenextruder kontrolliert und sicher durch eine Trocknungszone fördern. Durch die erfindungsgemäße Verzahnung entsteht in dem Extruder ein größeres Kammervolumen als bei Normalverzahnung, so daß mehr Gelegenheit zur Trockung bzw. zur Entgasung besteht. Außerdem verringert sich durch die erfindungsgemäße Verzahnnung die Knetarbeit, so daß weniger Energie in das Behandlungsgut getragen wird und sofort ein Temperaturabfall gegenüber einer Trocknung in einem normal verzahnten Extruder entsteht.
  • Die Planetwalzenspindeln bilden nur einen Teil des Planetwalzenextruders.
  • Andere Planetwalzenteile sind die Zentralspindel und die Innenverzahnung des Gehäuses bzw. der ggfs. im Gehäuse sitzenden Buchse.
  • Die Zentralspindel kann auch mit der erfindungsgemäßen Verzahnung versehen sein. Das gleiche gilt für die Innenverzahnung des Gehäuses bzw. der Buchse. Insoweit gelten obige Ausführungen auch für die Zentralspindel und die Innenverzahnung. Dabei gehören mehrteilige Zentralspindeln bereits zum bekannten Stand der Technik, so daß die erfindungsgemäße Bearbeitung der Zentralspindel leichter ist. Gleichwohl ist es in der Regel aus verfahrenstechnischen Gründen vorteilhafter, die Planetspindeln mit der erfindungsgemäßen Verzahnung zu versehen. Die Planetwalzenspindeln bieten bei entsprechend großer Besatzzahl eine größere Verzahnungsfläche als die Zentralspindel. Dadurch hat die erfindungsgemäße Verzahnung dort eine größere Wirkung als an der Zentralspindel. Hinzu kommt die vorteilhafte Kombinationsmöglichkeit der Planetwalzenspindeln. Wie oben ausgeführt, können erfindungsgemäß verzahnte Planetwalzenspindeln mit normal verzahnten Planetwalzenspindeln kombiniert werden. Dabei ist es leicht, die Zahl der normal verzahnten Planetwalzenspindeln oder die Zahl der erfindungsgemäß verzahnten Planetwalzenspindeln zu erhöhen, um eine genaue Anpassung an die gewünschte Materialbehandlung, insbesondere die Trocknung und Temperaturführung von PET zu erreichen.
  • Auch die Innenverzahnung des Gehäuses kann mit der erfindungsgemäßen Verzahnung versehen werden. Wie bei der Zentralspindel ist es in der Regel von Vorteil, die Planetwalzenspindeln mit der erfindungsgemäßen Verzahnung zu versehen.
  • Denkbar ist auch, alle Planetwalzenteile gemeinsam in erfindungsgemäßer Weise zu verzahnen.
  • In der Zeichnung sind verschiedene Ausführungsbeispiele des älteren Vorschlages und der Erfindung dargestellt.
  • 1 zeigt einen Extruder mit folgenden Komponenten/Abschnitten: Antrieb 1, Einzug 2, Planetwalzenabschnitt 3, Austragschnecke 4, Schmelzepumpe 5, Breitschlitzdüse 6.
  • In den Einzug 2 mündet eine Dosierung mit zwei hintereinander geschalteten Schleusen. Zu beiden Schleusen gehören zwei Behälter 8 und 9 und ein zwischengeschalteter Schieber 10. Von dem Behälter 8 führt eine Dosierungsleitung in den Einzug 2.
  • Der Behälter 9 wird in nicht dargestellter Form mit PET-Granulat gefüllt und geschlossen. Anschließend wird mittels der Pumpe 11 ein Unterdruck an den Behälter 9 angelegt. Damit wird die eingeschlossene Luft weitgehend abgesaugt. Zugleich findet eine Erwärmung zur Trocknung des PET-Granulats statt.
  • Aus dem Behälter 9 wird das erwärmte PET-Granulat bei geöffnetem Schieber 10 in den Behälter 8 aufgegeben. Im Behälter 8 wird das PET-Granulat weiter erwärmt und weitere getrocknet. Anschließend wird der Schieber 10 geschlossen und das PET-Granulat weiter vorgewärmt und in den Einzug 2 eindosiert. Dabei besteht in der Leitung von dem Behälter 8 zum Einzug 2 ein Unterdruck, der mittels einer Pumpe 12 erzeugt wird.
  • Das PET-Granulat gelangt in den Einzug 2 und wird von dort in lockerer Schüttung in Extrusionsrichtung gefördert. Die Extrusionsrichtung weist in der Zeichnung von links nach rechts.
  • In dem Einzug 2 findet eine weitere Erwärmung statt.
  • Für die Erwärmung des PET-Granulats ist ein Heiz-Kühlkreis 15 vorgesehen.
  • Durch die Trocknung und durch den Unterdruck im Bereich der Dosierung und des Einzuges wird die dem PET-Granulat anhaftende oberflächliche Feuchtigkeit entfernt.
  • Das PET-Granulat gelangt im Ausführungsbeispiel mit einer Temperatur von 130 Grad Celsius in den nächsten Extruderabschnitt, nämlich den Planetwalzenextruderabschnitt 3. In dem Planetwalzenextruderabschnitt 3 wird das PET-Granulat zwischen den umlaufenden Planetwalzenspindeln, der Zentralspindel und dem innen verzahnten Extrudergehäuse vielfach geknetet, so daß sich immer neue Oberflächen bilden, von denen die eingeschlossene Feuchtigkeit abdampft. Dabei wird die Temperatur von 130 Grad Celsius im wesentlichen beigehalten. Das bedingt eine Kühlung, weil beim Kneten die eingebrachte Verformungsenergie in Wärme umgesetzt wird. Kühlung erfolgt mittels eines Heiz-Kühlkreises 16.
  • In dem dargestellten Planetwalzenextruderabschnitt finden nach 3 herkömmliche Planetwalzenspindeln 21 Anwendung. Im Ausführungsbeispiel sind fünf Planetwalzenspindeln vorgesehen, in anderen Ausführungsbeispielen mehr Spindeln oder weniger Spindeln.
  • Diese Planetwalzenspindeln 21 bilden mehrgängige Schnecken, die sich mit gleichbleibender Neigung über die gesamte Spindellänge erstrecken.
  • Die Schneckengänge sind in der Zeichnung durch schräg zur Spindellängsachse verlaufende Striche dargestellt.
  • Die Schneckengänge verlaufen im Ausführungsbeispiel in der Seitenansicht von rechts rechtsgängig, im Uhrzeigersinn. Die Schnecken besitzen außenseitig eine Verzahnung. Die korrespondierende spiegelbildliche Verzahnung findet sich an der Zentralspindel des Planetwalzenextruderabschnittes und dem innen verzahnten umgebenden Gehäuse, so daß die Planetwalzenspindeln 21 sowohl mit der Gehäuseverzahnung als auch mit der Zentralspindel kämmen können.
  • 4 zeigt Planetwalzenspindeln 22 eines weiteren Ausführungsbeispiels, welche einerseits die gleichen Schneckengänge wie die Schnecken/Spindeln nach 3 besitzen. Andererseits besitzen die Spindeln zugleich linksgängig verlaufende Nuten, welche die rechtsgängig verlaufenden Schneckengänge schneiden. Die linksgäng verlaufenden Nuten sind mit Strichen in der 4 dargestellt, welche die aus 3 bekannten Schneckengänge rechtwinklig kreuzen. Das ist mit kreuzenden Strichen dargestellt. Durch die kreuzenden Nuten werden die Stege zwischen den Schneckengängen, welche im Querschnitt die Zähne der Verzahnung bilden, unterbrochen. Die zwischen zwei Unterbrechungen verbleibenden Zähne bilden einen stachelartigen/noppenartigen Zahn. Die vielen nebeneinander entstehenden Stachel/Noppen erinnern an das Stachelkleid eines Noppens. Daraus resultiert die Bezeichnung Noppenverzahnung. Die Unterbrechungen werden im weiteren als Zahnlücken bezeichnet.
  • 2 zeigt weitere Planetenspindeln 23 mit einem Teil 25, welcher der Verzahnung nach 3 nachgebildet ist, und mit einem Teil 24, welcher der Verzahnung nach 4 nachgebildet ist.
  • Die abgedampfte Feuchtigkeit wird durch die Einzugschnecke hindurch abgezogen, weil die Schüttlage bzw. Bewegungslage des PET-Granulats in den Schneckengängen ausreichend locker bzw. die Schneckengänge durch das PET-Granulat auch am Ende der Einzugschnecke nur teilweise ausgefüllt werden.
  • An der Einzugschnecke vorbei gelangt der Abdampf hauptsächlich in die zur Pumpe 12 führende Leitung. In der Leitung wird der Dampf im Kondensator 13 kondensiert und ausgetragen.
  • Das PET-Granulat wird im wesentlichen mit gleichbleibender Temperatur aus dem Planetwalzenextruderabschnitt 3 in die Austragsschnecke 4 übergeben. Die Austragsschnecke hat gegenüber herkömmlichen Austragschnecken im Ausführungsbeispiel nicht die Aufgabe des Druckaufbaus. Dafür ist die in Extrusionsrichtung nachgeschaltete Schmelzepumpe 5 vorgesehen.
  • Die Austragschnecke 4 hat die Aufgabe, das PET-Granulat aufzuschmelzen.
  • Dazu wird das PET-Granulat auf 250 bis 260 Grad Celsius erhöht. Die Erwärmung erfolgt mittels eines Heiz-Kühlkreises 17 und aufgrund von Verformungsarbeit der Austragschnecke. Die Austragschnecke ist dabei hinsichtlich ihres Schneckenganges und des Schneckenquerschnittes so gestaltet, daß sich ein Druck aufbaut, der zusammen mit der weiteren Verformungsarbeit bei der erreichten Temperatur eine Plastifizierung des PET-Granulats bewirkt.
  • Der gesamte Extruder ist mit einer durchlaufenden Stange/Rohr 30 durchsetzt. Auf dem Rohr 30 sind verschiedene Aufsätze aufgesteckt und verspannt, so daß im Einzugsbereich 2 eine Einschnecke entsteht, im Bereich 3 eine Zentralspindel ensteht und im Bereich 4 wiederum eine Einschnecke entsteht. Das Rohr 30 ist temperiert. Zur Temperierung dient ein Heiz- und Kühlkreis 31.
  • Mit der Schmelzepumpe 5 wird der Druck der aus der Austragschnecke 4 austretenden Schmelze so weit erhöht, daß sich die Schmelze gleichmäßig in der Breitschlitzdüse 6 verteilt und aus der Breitschlitzdüse als dünne Schicht 20 austritt. Die dünne Schicht wird sofort von gekühlten Kalanderwalzen 7 aufgenommen und stark abgekühlt und auf ein gewünschtes Dickenmaß gebracht, so daß eine gewünschte PET-Folie entsteht.
  • Zur Kühlung der Kalanderwalzen 7 ist ein Kühlkreis 18 vorgesehen.
  • 5 zeigt die Materialzuführung eines anderen Ausführungsbeispiels.
  • Dabei ist eine Zuführung 37 für PET-Granulat vorgesehen.
  • Die Zuführung 37 führt in einen trichterförmigen Aufgabebehälter 31. Der Aufgabebehälter 31 ist über einem Schleusenbehälter 32 angeordnet.
  • Der Schleusenbehälter 32 ist über einem weiteren Schleusenbehälter 33 angeordnet. Von dem Schleusenbehälter 33 führt eine Austragsschnecke 36 zu einem Fall 37. Aus dem Fallrohr 37 gelangt das PET-Granulat in einen Extruder.
  • Zwischen den beiden Behältern 31 und 32 ist eine Schleuse/Schieber 34 vorgesehen, zwischen den Behältern 32 und 33 eine Schleuse/Schieber 35.
  • Alle Behälter 31, 32, 33 und das Fallrohr 37 werden beheizt.
  • Alle Behälter 31, 32, 33 und das Fallrohr 37 werden evakuiert. Dazu sind Saugleitungen 42, 41, 40, 46 und 45 und Pumpen 43 und 44 vorgesehen.
  • In den Saugleitungen 42, 41, 40, 46 und 45 sind Schieber 38, 39, 40 und 47 vorgesehen. Durch die Vorwärmung und die Evakuierung über die Saugleitungen findet eine Vorentgasung des Material statt.
  • Der Schleusenbetrieb wird über Schalter gesteuert, und zwar einen Min-Schalter 48 und einen Max-Schalter 49. Der Min-Schalter 48 gibt Kontakt zum Nachfüllen des Behälters 33, wenn die Behälterfüllung eine Mindestfüllung für die Materialaufgabe in den Extruder erreicht hat. Danach wird die Schleuse/Schieber 34 geschlossen und die Schleuse/Schieber 35 geöffnet, so daß der Materialinhalt des Behälters 32 in den Behälter 33 ablaufen kann. Das Volumen des Behälters 33 ist größer als das Volumen des Behälters 32 ausgelegt, so daß keine Überfüllung des Behälters 33 entstehen kann.
  • Nach der Entleerung des Behälters 32 wird die Schleuse/Schieber 35 geschlossen und die Schleuse/Schieber 34 geöffnet, so daß PET-Granulat aus dem Aufgabebehälter 31 in den Behälter 32 nachströmen kann. Der Füllvorgang wird durch Schließen der Schleuse/Schieber 34 beendet, wenn ein ausreichender Füllgrad erreicht ist und der Max-Schalter 49 Kontakt gibt.
  • Die Behälter 32 und 33 werden durch die Saugleitungen über verschiedene Pumpen 43 und 44 evakuiert, wenn die Schleuse/Schieber 34 geschlossen ist. Bei Öffnung der Schleuse/Schieber 34 wird durch Betätigung der Schieber 38 und 39 der Evakuierungsvorgang unterbrochen.
  • Die Schieber 38, 39, 40 und 47 finden zur Unterbrechung des Evakuierungsvorganges auch Anwendung, wenn über nicht dargestellte Klappen eine Reinigung der Behälter erfolgen soll.
  • 6 und 8 zeigen für die Verwendung eines Planetwalzenextruders in der Trocknungsstation einer PET-Aufbereitungsanlage eine erfindungsgemäße Planetwalzenspindel 60.
  • Die Planetwalzenspindel 60 besteht aus zwei Teilen 61 und 62. Der Teil 61 entspricht einer herkömmlichen Planetwalzenspindel mit vollem Zahnbesatz. Im Ausführungsbeispiel handelt es sich um eine Planetwalzenspindel mit einem Teilkreisdurchmesser von 34 mm, mit einem Außendurchmesser von 42 mm und einem Durchmesser von 26 mm am Zahnfuß des Zahnbesatzes. Im Ausführungsbeispiel hat der Teil 61 eine Länge von 200 mm. Die Gesamtlänge der Planetwalzenspindel 60 beträgt 1000 mm.
  • Dadurch ergibt sich für den Teil 62 eine Länge von 800 mm. Der Teil 62 definiert den Bereich erfindungsgemäßer Ausbildung der Planetwalzenspindel, Teil 61 definiert den Restbereich. Im Teil 61 hat die Spindel 7 Zähne 64, die ähnlich wie Gewindegänge, aber mit sehr großer Steigung an der Planetwalzenspindelaußenseite verlaufen. Dies ist in der 8 dargestellt.
  • Im Teil 62 sind 3 Zähne 64 abgefräst worden. Das ist vor einer Oberflächenhärtung der Zähne 64 erfolgt. Die Verteilung der verbliebenen Zähne ist in 7 dargestellt. Dabei liegen noch zwei Zähne 64 nebeneinander. Zu den übrigen Zähnen ergibt sich eine Zahnlücke.
  • Im Ausführungsbeispiel sind von diesen Planetwalzenspindeln sechs Stück zusammen mit weiteren sechs Planetwalzenspindeln als Besatz in dem Planetwalzenextruder vorgesehen, der für die PET-Trocknung vorgesehen ist. Die weiteren Planetwalzenspindeln besitzen eine Länge von 850 mm bei gleicher Länge des Restbereiches.

Claims (18)

  1. Verfahren zum Betrieb von Planetwalzenextrudern mit einer außen verzahnten Zentralspindel, auf der Zentralspindel umlaufenden, verzahnten Planetwalzenspindel und einem innen verzahnten, umgebenden Gehäuse, wobei die Planetwalzenspindeln zugleich mit der Zentralspindelverzahnung mit der Gehäuseverzahnung kämmen, wobei die Verzahnung eine Schrägverzahnung ist, so daß die einzelnen Zähne entsprechend der Steigung der Zähne zur Extruderlängsachse wie Schraubengänge an den verzahnten Flächen verlaufen, insbesondere mit einer Evolventenzerzahnung und insbesondere zur Entgasung und/oder Trocknung von thermoplastischen Kunststoffen gekennzeichnet durch a) die Verwendung von Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen, an denen mindestens ein Zahn, aber nicht alle Zähne nachträglich ganz oder teilweise herausgearbeitet worden ist und/oder b) eine Herstellung der Verzahnung nach einer festgelegten Zahnkontur an Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen, wobei die Zahnkontur so festgelegt ist, daß sie gleich einer Verzahnung mit nachträglich ganz oder teilweise herausgearbeiteten Zähnen ist.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch die Verwendung von Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen mit mindestens 3 verbliebenen Zähnen am Umfang der Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen.
  3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch Verwendung von Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen, denen jeder 4 bis 2 Zahn herausgearbeitet worden ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch die Verwendung von Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen, die entweder in dem Bereich des reduzierten Zahnbesatzes eine gerade Zahl von Zähnen besitzen, während die Verzahnung an dem korrespondierenden Planetwalzenteil eine ungerade Zahl von Zähnen besitzen oder in dem Bereich des reduzierten Zahnbesatzes eine ungerade Zahl von Zähnen besitzen, während die Verzahnung an dem korrespondierenden Planetwalzenteil eine gerade Zahl von Zähnen besitzen und/oder mit unbearbeiteten Planetwalzenspindeln kombiniert sind und/oder mit anders bearbeiteten Planetwalzenspindeln kombiniert sind
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die unterschiedliche Bearbeitung dadurch erfolgt, daß in unregelmäßigen Abständen die Zähne entfernt werden
  6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch die Verwendung von Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen, die in einem Restbereich einen vollen Zahnbesatz und/oder eine Noppenverzahnung oder eine andere Verzahnung aufweisen.
  7. Verfahren nach Anspruch 6, gekennzeichnet durch die Verwendung einteiliger oder mehrteiliger Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen.
  8. Verfahren nach Anspruch 6, gekennzeichnet durch die Verwendung von einteiligen Planetwalzenspindeln mit einem Teil mit reduziertem Zahnbesatz und einem Teil mit vollem Zahnbesatz, wobei die durch Reduzierung des Zahnbesatzes entstandenen Zahnlücken am Übergang zwischen beiden Teilen auslaufen.
  9. Verfahren nach Anspruch 7, gekennzeichnet durch die Verwendung von mehrteiligen Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen mit einem Teil mit reduziertem Zahnbesatz und einem Teil mit vollem Zahnbesatz, wobei die beiden Teile separat hergestellt und anschließend miteinander verbunden werden.
  10. Verfahren nach Anspruch 8, gekennzeichnet durch Verwendung von Planetwalzenspindeln und/oder Zentralspindeln und/oder Gehäuseverzahnungen mit Teilen, die mittig mit einer Bohrung versehen sind und zur Verbindung mit einem in der Bohrung angeordneten Anker gegeneinander verspannt werden.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß der Teil mit reduziertem Zahnbesatz bei einem Planetwalzenspindeldurchmesser a) kleiner 160 mm in Spindellängsrichtung eine Länge von mindesten 200 mm, vorzugsweise eine Länge von mindestens 300 mm und noch weiter bevorzugt eine Länge von mindestens 400 mm und höchst bevorzugt eine Länge bis 800 mm aufweist und b) von 160 mm und mehr in Spindellängsrichtung eine Länge von mindestens 400 mm, vorzugsweise mindestens 800 mm und weiter bevorzugt eine Länge von mindestens 1200 mm und höchst bevorzugt eine Länge bis 2500 mm aufweist.
  12. Verfahren nach einem der Ansprüche 1 bis 11, gekennzeichnet durch eine Teilfertigung der Planetwalzenspindeln und Vorratshaltung der teilgefertigten Planetwalzenspindeln, so daß die Fertigung je nach Bedarf ohne Reduzierung des vollen Zahnbesatzes oder unter Reduzierung des vollen Zahnbesatzes fortgesetzt werden kann.
  13. Verfahren nach einem der Ansprüche 1 bis 12. gekennzeichnet durch Verwendung der Planetwalzenspindeln mit reduziertem Zahnbesatz zur Trocknung und/oder Entgasung des Behandlungsgutes.
  14. Verfahren nach Anspruch 13, gekennzeichnet durch eine Trocknung von Kunststoffpartikeln, wobei die Partikel zumindest in Inneren eine Temperatur unterhalb des Schmelzpunktes aufweisen.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß durch Kombination der Planetwalzenspindeln mit reduziertem Zahnbesatz mit Planetwalzenspindeln mit Normalverzahnung oder anderer Verzahnung der Behandlungsvorgang und/oder die Behandlungstemperatur und oder die Förderwirkung verändert wird.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß nach der Reduzierung des Zahnbesatzes an den Planetenspindeln die reduzierte Förderleistung durch Erhöhung der Zahl der Planetenspindeln mindestens teilweise ausgeglichen wird.
  17. Verfahren nach einem der Ansprüche 1 bis 16, gekennzeichnet durch Herstellung eines Wechsels der Verzahnung über der Länge der Planetwalzenspindel und/oder Zentralspindeln und/oder Gehäuseverzahnungen.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Zahnlücke an einer Planetwalzenspindel und/oder Zentralspindel und/oder Gehäuseverzahnung zwischen zwei Zähnen im Bereich des reduzierten Zahnbesatzes größer als ein benachbarter Zahn ist.
DE102006033089A 2006-03-24 2006-07-14 Verfahren zur Verarbeitung von zu entgasenden Produkten Ceased DE102006033089A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102006033089A DE102006033089A1 (de) 2006-03-24 2006-07-14 Verfahren zur Verarbeitung von zu entgasenden Produkten

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102006014185.7 2006-03-24
DE102006014185 2006-03-24
DE102006014427 2006-03-27
DE102006014427.9 2006-03-27
DE102006033089A DE102006033089A1 (de) 2006-03-24 2006-07-14 Verfahren zur Verarbeitung von zu entgasenden Produkten

Publications (1)

Publication Number Publication Date
DE102006033089A1 true DE102006033089A1 (de) 2007-10-04

Family

ID=38460376

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006033089A Ceased DE102006033089A1 (de) 2006-03-24 2006-07-14 Verfahren zur Verarbeitung von zu entgasenden Produkten

Country Status (1)

Country Link
DE (1) DE102006033089A1 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997608A3 (de) * 2007-05-16 2009-05-27 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
WO2014056553A1 (de) 2012-10-11 2014-04-17 Entex Gmbh Rust & Mitschke Gmbh Extruder zur verarbeitung von kunststoffen, die zum kleben neigen
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
WO2017001048A1 (de) 2015-07-02 2017-01-05 Entex Rust & Mitschke Gmbh Verfahren zur verarbeitung von produkten im extruder
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
DE102016010082A1 (de) 2016-07-22 2018-01-25 Entex Rust & Mitschke Gmbh Verarbeitung von Polyvinylchloriden
EP3221107A4 (de) * 2014-11-18 2018-03-28 Mohawk Industries, Inc. Systeme und verfahren zur massenherstellung von endlosfilamenten
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
WO2018188716A1 (de) 2017-03-05 2018-10-18 Entex Rust & Mitschke Gmbh Entgasen beim extrudieren von stoffen, vorzugsweise von kunststoffen
US10124513B2 (en) 2012-05-31 2018-11-13 Mohawk Industries, Inc. Methods for manufacturing bulked continuous filament
DE102017005999A1 (de) 2017-05-28 2018-11-29 Entex Rust & Mitschke Gmbh Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren
DE102017005998A1 (de) 2017-06-23 2018-12-27 Entex Rust & Mitschke Gmbh Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
US10232542B2 (en) 2012-05-31 2019-03-19 Mohawk Industries, Inc. Methods for manufacturing bulked continuous filament
US10239247B2 (en) 2012-05-31 2019-03-26 Mohawk Industries, Inc. Methods for manufacturing bulked continuous filament
US20190118413A1 (en) 2012-05-31 2019-04-25 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament from colored recycled pet
DE102018001412A1 (de) 2017-12-11 2019-06-13 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen
WO2019166125A1 (de) 2018-02-28 2019-09-06 Entex Rust & Mitschke Gmbh Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US10538016B2 (en) 2012-05-31 2020-01-21 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US10751915B2 (en) 2016-11-10 2020-08-25 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
US11045979B2 (en) 2012-05-31 2021-06-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
DE102020007239A1 (de) 2020-04-07 2021-10-07 E N T E X Rust & Mitschke GmbH Kühlen beim Extrudieren von Schmelzen
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage
US11242622B2 (en) 2018-07-20 2022-02-08 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate
US11279071B2 (en) 2017-03-03 2022-03-22 Aladdin Manufacturing Corporation Method of manufacturing bulked continuous carpet filament
US11351747B2 (en) 2017-01-30 2022-06-07 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament from colored recycled PET
US11473216B2 (en) 2017-09-15 2022-10-18 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2289687A1 (de) * 2007-05-16 2011-03-02 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
EP1997608A3 (de) * 2007-05-16 2009-05-27 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
US11292174B2 (en) 2012-05-31 2022-04-05 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament
US10532495B2 (en) 2012-05-31 2020-01-14 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US11007673B2 (en) 2012-05-31 2021-05-18 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled PET
US10744681B2 (en) 2012-05-31 2020-08-18 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US10654211B2 (en) 2012-05-31 2020-05-19 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US10639818B2 (en) 2012-05-31 2020-05-05 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US10239247B2 (en) 2012-05-31 2019-03-26 Mohawk Industries, Inc. Methods for manufacturing bulked continuous filament
US10538016B2 (en) 2012-05-31 2020-01-21 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US11911930B2 (en) 2012-05-31 2024-02-27 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US11780145B2 (en) 2012-05-31 2023-10-10 Aladdin Manufacturing Corporation Method for manufacturing recycled polymer
US11724418B2 (en) 2012-05-31 2023-08-15 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US10532496B2 (en) 2012-05-31 2020-01-14 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US10124513B2 (en) 2012-05-31 2018-11-13 Mohawk Industries, Inc. Methods for manufacturing bulked continuous filament
US11426913B2 (en) 2012-05-31 2022-08-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US11427694B2 (en) 2012-05-31 2022-08-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US11045979B2 (en) 2012-05-31 2021-06-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10493660B2 (en) 2012-05-31 2019-12-03 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament
US10232542B2 (en) 2012-05-31 2019-03-19 Mohawk Industries, Inc. Methods for manufacturing bulked continuous filament
US10647046B2 (en) 2012-05-31 2020-05-12 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament
US20190118413A1 (en) 2012-05-31 2019-04-25 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament from colored recycled pet
US11273579B2 (en) 2012-05-31 2022-03-15 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament
US11179868B2 (en) 2012-05-31 2021-11-23 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
WO2014056553A1 (de) 2012-10-11 2014-04-17 Entex Gmbh Rust & Mitschke Gmbh Extruder zur verarbeitung von kunststoffen, die zum kleben neigen
DE102013000708A1 (de) 2012-10-11 2014-04-17 Entex Rust & Mitschke Gmbh Verfahren zur Extrusion von Kunststoffen, die zum Kleben neigen
US10112320B2 (en) 2012-10-11 2018-10-30 Entex Rust & Mitschke Gmbh Process for the extrusion of plastics tending to adherence
EP3221107A4 (de) * 2014-11-18 2018-03-28 Mohawk Industries, Inc. Systeme und verfahren zur massenherstellung von endlosfilamenten
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
US10589452B2 (en) 2015-07-02 2020-03-17 Entex Rust & Mitschke Gmbh Method for processing products in an extruder
DE102015008406A1 (de) 2015-07-02 2017-04-13 Entex Rust & Mitschke Gmbh Verfahren zur Bearbeitung von Produkten im Extruder
WO2017001048A1 (de) 2015-07-02 2017-01-05 Entex Rust & Mitschke Gmbh Verfahren zur verarbeitung von produkten im extruder
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
DE102016010082A1 (de) 2016-07-22 2018-01-25 Entex Rust & Mitschke Gmbh Verarbeitung von Polyvinylchloriden
US10751915B2 (en) 2016-11-10 2020-08-25 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
US11351747B2 (en) 2017-01-30 2022-06-07 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament from colored recycled PET
US11840039B2 (en) 2017-01-30 2023-12-12 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament from colored recycled PET
US11279071B2 (en) 2017-03-03 2022-03-22 Aladdin Manufacturing Corporation Method of manufacturing bulked continuous carpet filament
WO2018188716A1 (de) 2017-03-05 2018-10-18 Entex Rust & Mitschke Gmbh Entgasen beim extrudieren von stoffen, vorzugsweise von kunststoffen
US11613060B2 (en) 2017-03-05 2023-03-28 Entex Rust & Mitschke Gmbh Planetary roller extruder with a degassing section
US11446617B2 (en) 2017-04-17 2022-09-20 Entex Rust & Mitschke Gmbh Extruder with planetary roller section for cooling melts
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
WO2018192677A1 (de) 2017-04-17 2018-10-25 Entex Rust & Mitschke Gmbh Kühlen beim extrudieren von schmelzen
DE102017005999A1 (de) 2017-05-28 2018-11-29 Entex Rust & Mitschke Gmbh Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren
DE102017005998A1 (de) 2017-06-23 2018-12-27 Entex Rust & Mitschke Gmbh Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder
US11485298B2 (en) 2017-07-13 2022-11-01 Entex Rust & Mitschke Gmbh Feeder module in planetary roller extruder design
WO2019011461A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in planetwalzenextruderbauweise
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
US11473216B2 (en) 2017-09-15 2022-10-18 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
US11618973B2 (en) 2017-09-15 2023-04-04 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
DE102018001412A1 (de) 2017-12-11 2019-06-13 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen
WO2019166125A1 (de) 2018-02-28 2019-09-06 Entex Rust & Mitschke Gmbh Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder
US11242622B2 (en) 2018-07-20 2022-02-08 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate
US11926930B2 (en) 2018-07-20 2024-03-12 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage
DE102020007239A1 (de) 2020-04-07 2021-10-07 E N T E X Rust & Mitschke GmbH Kühlen beim Extrudieren von Schmelzen

Similar Documents

Publication Publication Date Title
DE102006033089A1 (de) Verfahren zur Verarbeitung von zu entgasenden Produkten
EP1844917A2 (de) Verfahren zur Verarbeitung von zu entgasenden Produkten
DE102007059299A1 (de) Vorrichtung zur Verarbeitung von zu entgasenden Produkten
DE102015008406A1 (de) Verfahren zur Bearbeitung von Produkten im Extruder
EP2101983B1 (de) Mischung von kunststoff mit holzpartikeln
DE3820320C2 (de)
EP2906406B1 (de) Extruder zur verarbeitung von kunststoffen, die zum verkleben neigen
DE10050295A1 (de) Mehrwellen-Extruder und Verfahren zur Aufbereitung und/oder Vorarbeitung von mit Füllstoff versetzten Elastomeren
WO2013052986A1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
DE102017006638A1 (de) Füllteilmodul in Planetwalzenextruderbauweise
DE102009013839A1 (de) Planetenspindeln
WO1995017293A1 (de) Vorrichtung zum aufbereiten thermoplastischen kunststoffgutes
DE102016002143A1 (de) Füllteilmodul in Planetwalzenextruderbauweise
DE1729307B1 (de) Extruder mit einer Schneckenwelle zur Verarbeitung von Thermoplasten
EP2335898A2 (de) Planetwalzenextruder und Verfahren zu seiner Herstellung
DE10334363A1 (de) Verfahren zur Verarbeitung von PET
DE102011112081A1 (de) Verfahren zur Verarbeitung von Elasten
EP3898160B1 (de) Aufbereitungsanlage sowie verfahren zur aufbereitung von kunststoffmaterial für dessen wiederverwertung
DE2905717A1 (de) Einschneckenextruder zum verarbeiten und strangpressen von thermoplastischen massen
DE102019106873B4 (de) Extruder
EP0855954A1 (de) Extruder für kunststoffe
EP1454734B1 (de) Verfahren zur Verarbeitung von PET
EP4010165A1 (de) Verfahren und extrusionsvorrichtung zur extrusion von faserverstärktem kunststoffmaterial für die additive fertigung eines bauteils
DE102018004322A1 (de) Herstellung von Kunststoff-Formteilen durch Spritzgießen
DE19726959B4 (de) Planetwalzenteil zum Granulieren plastischer Stoffe

Legal Events

Date Code Title Description
R012 Request for examination validly filed

Effective date: 20130417

R016 Response to examination communication
R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B29C0047420000

Ipc: B29C0048435000

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final