DE102006005614A1 - Formgegenstand mit selbstreinigender Oberflächenstruktur - Google Patents

Formgegenstand mit selbstreinigender Oberflächenstruktur Download PDF

Info

Publication number
DE102006005614A1
DE102006005614A1 DE102006005614A DE102006005614A DE102006005614A1 DE 102006005614 A1 DE102006005614 A1 DE 102006005614A1 DE 102006005614 A DE102006005614 A DE 102006005614A DE 102006005614 A DE102006005614 A DE 102006005614A DE 102006005614 A1 DE102006005614 A1 DE 102006005614A1
Authority
DE
Germany
Prior art keywords
nanoparticles
base material
layer
molded article
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102006005614A
Other languages
English (en)
Inventor
Volker Dr. Butz
Armin Elzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thor GmbH
Original Assignee
Thor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thor GmbH filed Critical Thor GmbH
Priority to DE102006005614A priority Critical patent/DE102006005614A1/de
Priority to PCT/EP2007/051067 priority patent/WO2007090808A1/de
Publication of DE102006005614A1 publication Critical patent/DE102006005614A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/06Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/188Monocarboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/44Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen containing nitrogen and phosphorus
    • D06M13/453Phosphates or phosphites containing nitrogen atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/05Lotus effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Formgegenstand aus einem Basismaterial mit einer künstlich erzeugten selbstreinigenden Oberflächenstruktur von auf der Oberfläche des Basismaterial aufgebrachten Nanopartikeln. Die selbstreinigende Oberflächenstruktur wird durch mindestens zwei übereinander angeordnete nanopartikuläre Lagen gebildet, wobei die Nanopartikel der ersten Lage fest mit der Oberfläche des Basismaterials verbunden sind und die Nanopartikel der darauf aufgebrachten und angeordneten weiteren Lage oder Lagen mit den Nanopartiklen der ersten bzw. der darunter liegenden Lage chemisch und/oder physikalisch verknüpft sind und eine hydrophobe Oberfläche aufweisen.

Description

  • Die Erfindung betrifft einen Formgegenstand aus einem Basismaterial und mit einer künstlich erzeugten selbstreinigenden Oberflächenstruktur von auf der Oberfläche des Basismaterials aufgebrachten Nanopartikeln.
  • Selbstreinigende Oberflächenstrukturen für Formgegenstände der verschiedensten Art, zum Beispiel aus Glas, Kunststoffen, Keramik, Metallen und insbesondere auch für textile Materialien, sind bekannt (vgl. z.B. WO 96/04123) und das Ziel intensiver weiterer Untersuchungen zur Fortentwicklung und Verbesserung der Eigenschaften der Produkte sowie auch ihrer Herstellverfahren sowohl unter technischen, anwendungstechnischen als auch ökonomischen Gesichtspunkten.
  • Als besonders vorteilhaft haben sich dabei Formgegenstände mit solchen künstlich erzeugten selbstreinigenden Oberflächenstrukturen erwiesen, bei denen die Oberfläche des Basismaterials, beispielsweise einer Glasscheibe, einer Kunststofffolie oder eines textilen Basismaterials, durch Aufbringung und/oder Einbringung von Nanopartikeln unter Ausbildung regelmäßiger oder unregelmäßiger Erhebungen, deren Höhe und Abstand zueinander im Bereich von einigen Nanometern bis einigen hundert Nanometern liegen, strukturiert ist.
  • Zur Herstellung einer permanenten, mechanisch widerstandsfähigen und witterungsbeständigen selbstreinigenden Oberflächenstruktur müssen dabei Nanopartikel hinreichend fest mit der Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, verbunden sein. Die Anbindung der Nanopartikel an die Oberfläche des Basismaterials erfolgt dabei in aller Regel mittels Träger- oder Haftschichten oder eines Haftvermittlers oder Bindemittels. Die Nanopartikel können aber auch in der Oberfläche durch direkte Einlage rung in das Basismaterial, zum Beispiel einem polymeren Formkörper, eingebunden sein. Die üblichen Haftvermittler oder Bindemittel zeigen häufig keine ausreichende Hydrophobie oder benötigen zur Dispergierung viel Netzmittel, was die Eigenschaften des Gesamtsystems verschlechtert. Des weiteren muss die Konzentration des Bindemittels gering gewählt werden, wenn die Oberflächenstruktur erhalten werden soll. Dies führt üblicherweise zu einer hohen Abrasionsanfälligkeit. Derart hergestellte selbstreinigende Oberflächenstrukturen sind daher häufig bezüglich ihres selbstreinigenden Effekts und Trockenverschmutzungsverhaltens oder auch anderer wesentlicher anwendungstechnischer Eigenschaften nicht immer zufriedenstellend und weiter verbesserungsbedürftig.
  • Es ist auch schon vorgeschlagen worden, Nanopartikel durch kovalente chemische Bindungen mit der Oberfläche des Basismaterials zu verankern (vgl. WO 02/75261). Dieses Verfahren bringt den Vorteil einer festen, dauerhaften Verankerung der Nanopartikel auf der Oberfläche des Basismaterials unter Erhalt einer gegebenenfalls vorhandenen Grundstruktur der Oberfläche des Basismaterials mit sich. Die Herstellung von selbstreinigenden Oberflächen wird in der WO 02/75261 A jedoch nicht erwähnt. Derart ausgerüstete Formgegenstände sind in aller Regel jedoch nur schwierig und aufwändig herzustellen.
  • Allgemein besteht das Problem, die für die Ausbildung selbstreinigender nanopartikulärer Oberflächenstrukturen eingesetzten hydrophoben oder hydrophob modifizierten Nanopartikel, insbesondere bei der wünschenswerten Verarbeitung aus wässrigen Medien, uniform auf die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, aufzubringen. Die Oberfläche des Basismaterials ist nicht immer vollständig und gleichmäßig mit den Nanopartikeln belegt und ausgerüstet, so dass die wünschenswerten oder angestrebten selbstreinigenden Eigenschaften nicht oder nicht in dem gewünschten Umfang erreicht werden. Weiterhin entstehen die Unregelmäßigkeiten auch häufig in Folge des mechanischen Abbaus der Oberflächen, insbesondere durch Ablösen von aufgebrachten Partikeln aufgrund einer schlechten Verbindung zur Oberfläche des Basismaterials. Daher ist generell auch in Fällen, in denen die Oberfläche uniform mit Partikeln belegt ist, ein Nachlassen der gewünschten Eigenschaften zu beobachten. Durch Verwendung von Mitteln, die eine stärkere Bindung der Partikel an die Oberfläche bewirken, kann zwar dem Problem der Ablösung begegnet werden. Im Allgemeinen ist damit jedoch eine Verschlechterung der gewünschten Eigenschaften verbunden.
  • Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, einen Formgegenstand aus einem Basismaterial mit einer auf der Oberfläche des Basismaterials künstlich erzeugten permanenten selbstreinigenden Oberflächenstruktur aufzuzeigen, die hydrophobe und ge gebenenfalls auch oleophobe Eigenschaften aufweist, wobei die Nachteile des Standes der Technik teilweise oder auch ganz überwunden werden. Der Formgegenstand soll nicht nur hohe Witterungsbeständigkeit und mechanische Widerstandsfähigkeit, sondern vorzugsweise auch im trockenen Zustand bereits eine geringe Neigung zur Verschmutzung, etwa durch atmosphärische Umweltbelastungen, aufweisen. Sofern es sich bei dem Formgegenstand um ein textiles Material handelt, soll das permanent selbstreinigend ausgerüstete textile Material zusätzlich zur Witterungsbeständigkeit und hohen mechanischen Beanspruchbarkeit und Stabilität gleichzeitig eine der praktischen Anwendung genügende Wasserundurchlässigkeit besitzen, ohne dass hierbei die Flexibilität oder auch die Gasdurchlässigkeit des textilen Materials verloren geht.
  • Aufgabe der vorliegenden Erfindung ist es weiterhin, einen derartigen Formgegenstand mit einer künstlich erzeugten permanenten selbstreinigenden Oberflächenstruktur und den vorgenannten Eigenschaften aufzuzeigen, der mittels konventioneller Ausrüstungsmethoden für das jeweilige Basismaterial, vorzugsweise in wässrigen Medien, ohne hohe Investitionskosten wirtschaftlich und effizient und gleichzeitig hinsichtlich seiner anwendungstechnischen Eigenschaften mit großer Variabilität und einfach hergestellt werden kann.
  • Aufgabe der Erfindung ist zudem die Zurverfügungstellung eines geeigneten Verfahrens zur Herstellung eines solchen Formgegenstands.
  • Gegenstand der Erfindung ist dementsprechend ein Formgegenstand aus einem Basismaterial mit einer künstlich erzeugten selbstreinigenden Oberflächenstruktur von auf der Oberfläche des Basismaterials aufgebrachten Nanopartikeln, wobei die selbstreinigende Oberflächenstruktur durch mindestens zwei übereinander angeordnete nanopartikuläre Lagen gebildet wird, wobei die Nanopartikel der ersten Lage fest mit der Oberfläche des Basismaterials verbunden sind und die Nanopartikel der darauf aufgebrachten und angeordneten weiteren Lage oder Lagen mit den Nanopartikeln der ersten bzw. der jeweils darunter liegenden Lage chemisch und/oder physikalisch verknüpft sind und eine hydrophobe Oberfläche aufweisen.
  • Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Formgegenstände gemäß nachfolgendem Anspruch.
  • Die selbstreinigenden Formgegenstände gemäß der vorliegenden Erfindung zeichnen sich in nicht vorhersehbarer Weise durch eine Kombination sehr vorteilhafter Eigenschaften aus. Sie sind permanent und dauerhaft selbstreinigend, halten einer hohen mechanischen Beanspruchung stand, ohne Einbußen bezüglich der selbstreinigenden Eigenschaften zu erleiden, und sind extrem witterungsbeständig. Insbesondere besitzen die erfindungsgemäßen Formgegenstände auch eine hohe UV-Beständigkeit. Im Vergleich zu anderen bekannten Materialien dieser Art zeigen die erfindungsgemäßen Formgegenstände nahezu keine, allenfalls nur eine geringe, Trockenverschmutzung. Trotz der erfindungsgemäßen Ausrüstung mit der selbstreinigenden strukturierten Oberfläche bleiben textile Materialien flexibel, sind gegen Biegen oder Friktion unempfindlich und haben einen angenehmen natürlichen Griff. Auch zeichnen sich erfindungsgemäße textile Materialien überraschenderweise durch gute Atmungsaktivität und eine hohe Wasserdruckdichtigkeit aus.
  • Es ist ein Vorteil der Erfindung, dass gleichermaßen beliebig große flächige Formgegenstände, wie Glasscheiben, Holzpanelen, Kunststofffolien, Metallbleche oder textile Flächenmaterialien, wie auch Formgegenstände mit komplexer Formgebung einfach und problemlos gleichmäßig und reproduzierbar ausgerüstet werden können. Darüber hinaus können die erfindungsgemäßen Formgegenstände bei Bedarf ohne Schwierigkeiten auch mit einer selbstreinigenden Oberflächenstruktur ausgerüstet werden, die nicht nur hydrophob, sondern gleichzeitig auch noch oleophob ist. Aufgrund seines Aufbaus und Herstellverfahrens kann der erfindungsgemäße Formgegenstand einfach und leicht in seinen Eigenschaften variiert und dem gewünschten Anwendungszweck angepasst werden.
  • Unter "selbstreinigend" werden im Rahmen dieser Erfindung superhydrophobe Oberflächen oder Oberflächenstrukturen verstanden, von denen Wasser selbsttätig abläuft und von denen allein unter dem Einfluss von bewegtem Wasser – ohne mechanische Unterstützung oder Zuhilfenahme weiterer Lösungsmittel oder Detergentien – Schmutzpartikel selbsttätig entfernt werden. Wesentlich für den selbstreinigenden Effekt ist neben der chemischen Beschaffenheit der Oberflächenstrukturen insbesondere auch die Geometrie der Oberflächenstruktur. Die erfindungsgemäßen selbstreinigenden Oberflächenstrukturen bilden mit Wasser in aller Regel einen Kontaktwinkel (Randwinkel) größer 120°, insbesondere von 135° und mehr, und haben eine niedrige Oberflächenenergie, üblicherweise kleiner als 31 dyn/cm. Die Oberflächenstruktur wird aus diskreten, von einander beabstandeten Erhebungen gebildet, wobei die Höhe der Erhebungen im allgemeinen im Bereich von 20 nm bis 500 nm, und insbesondere im Bereich von 30 nm bis 250 nm liegt. Der Abstand der Erhebungen zueinander beträgt im allgemeinen 20 nm bis 500 nm und liegt insbesondere im Bereich von 30 nm bis 250 nm. Das Aspektverhältnis, d.h. das Verhältnis von Höhe zu Breite der Erhebungen, ist dabei im allgemeinen gleich oder größer 1, und liegt insbesondere im Bereich von 1 bis 10.
  • Die erfindungsgemäßen Formgegenstände mit den selbstreinigenden nanopartikulären Oberflächenstrukturen können aus allen beliebigen Basismaterialien gebildet werden, die zur Herstellung von Formgegenständen mit selbstreinigender Oberfläche verwendet werden oder in Betracht kommen. Beispiele für geeignete Basismaterialien sind unter anderem Papier, Holz, Glas, Keramik, Kunststoffe, Kautschuk, Metalle oder insbesondere auch textile Basismaterialien. Der Ausdruck „Formgegenstand" bezeichnet im Zusammenhang mit der vorliegenden Erfindung dabei jedes dreidimensionale Gebilde, das mindestens eine zur Anbringung einer erfindungsgemäßen Oberflächenstruktur geeignete Oberfläche aufweist.
  • Basismaterialien aus Holz können naturbelassen oder, ebenso wie Basismaterialien aus Keramik, Kunststoffen oder Metallen, auch oberflächenbehandelt, zum Beispiel gestrichen, gebeizt, lackiert, eloxiert oder beschichtet, sein. Zu den Kunststoffen, die sich als Basismaterial eignen, gehören die Polyolefine, insbesondere Ethylen- und/oder Propylen-homo- oder copolymerisate, Polyvinylchlorid, Styrol-homo- und copolymeisate, einschließlich schlagfest ausgerüsteter Produkte, Poly(meth)acrylate, Polyurethane, Polyester, Polyamide, Polycarbonate, Polysulfone, Polyether, Polyketone, Formaldehydharze und dergleichen, ebenso wie Schaumstoffe hieraus. Ist der Formgegenstand aus einem Metall als Basismaterial hergestellt, können hierfür Metalle oder Metalllegierungen dienen, insbesondere Bleche oder Stähle. Bei den textilen Basismaterialien kann es sich sowohl um natürliche, als auch um synthetische Materialien handeln. Als natürliche textile Basismaterialien kommen hierbei zum Beispiel Baumwolle, Kapok, Flachs, Hanf, Jute, Sisal, Seide oder Wolle, aber auch Materialien mineralischen Ursprungs, wie etwa Glasfasern, Glaswolle oder Steinwolle, in Betracht. Als synthetische textile Basismaterialien eignen sich alle zur Herstellung von Fasern geeigneten Homo- oder Copolymere, wie Polyamide, etwa Nylon 6 oder Nylon 6,6, Polyester, etwa Ethylenterephthalat- oder Butylenterephthalat-homo- oder -copolymere, Polyethersulfone, Polycarbonate, Poly(meth)acrylate, Polyacrylnitrile oder Polyolefine. Vorzugsweise wird das textile Basismaterial zum Zwecke der Erfindung aus Baumwolle, Polyamiden, Polyestern, Polyacrylnitrilen oder Mischungen davon gebildet.
  • Die erfindungsgemäßen Formgegenstände können grundsätzlich beliebig gestaltet sein; ihre Formgebung richtet sich im allgemeinen nach ihrer technischen Verwendung und dem Gebrauchszweck. Bei den Formgegenständen kann es sich sowohl um einfache flächenförmige Gebilde, wie Folien, Platten, Scheiben, Panelen, Walzbleche oder dergleichen, handeln als auch um geformte Gebilde, wie Formteile, Formkörper oder Halbzeug der verschiedensten Art. Textile Basismaterialien im Sinne dieser Erfindung umfassen sowohl Fasern, Filamente, Faserbündel, Garne, Fäden und dergleichen, als auch insbesondere tex tile flächige Gebilde, wie zum Beispiel Gewebe, Geflechte, Gewirke, Gestricke, Gelege, Vliese, Filze und entsprechende Materialien.
  • Die künstliche selbstreinigende Oberflächenstruktur des Formgegenstandes wird erfindungsgemäß durch Aufbringen von Nanopartikeln auf die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, erzeugt.
  • Hierzu können die an sich für solche Anwendungen bekannten Nanopartikel eingesetzt werden. Auch wenn erfindungsgemäß grundsätzlich organische Nanopartikel, etwa pulverförmige fluorhaltige Polymere, oder Nanopartikel aus anorganischen Materialien eingesetzt werden können, werden bevorzugt anorganische Nanopartikel verwendet. Die anorganischen Nanopartikel können dabei ausgewählt werden aus Silikaten, dotierten oder pyrogenen Silikaten, Mineralien, Metalloxiden, Metallhydroxiden, Metallsalzen, Kieselsäuren oder Pigmenten. Beispiele hierfür sind Siliziumdioxid, Aluminiumoxid, Zirkonoxid, Titanoxid, Zinkoxid, gegebenenfalls dotierte Silikate, gegebenenfalls modifizierte Kieselsäuren, Fällungskieselsäuren, pyrogene Silikate oder pyrogene Kieselsäuren.
  • Die erfindungsgemäß zur Ausrüstung des Basismaterials des Formgegenstandes eingesetzten Nanopartikel haben im allgemeinen einen Partikeldurchmesser im Bereich von etwa 5 nm bis etwa 100 nm, vorteilhafterweise im Bereich von etwa 10 nm bis etwa 80 nm und insbesondere im Bereich von etwa 20 nm bis 60 nm. Die Partikel können dabei auch als Aggregate oder Agglomerate von kleineren Primärteilchen vorliegen, wobei unter Aggregaten flächig oder kantenförmig aneinander gelagerte Primärteilchen und unter Agglomeraten punktförmig aneinander gelagerte Primärteilchen verstanden werden. Es kann vorteilhaft sein, wenn die eingesetzten Nanopartikel eine strukturierte Oberfläche haben. Vorzugsweise weisen die eingesetzten Nanopartikel eine unregelmäßige Feinstruktur auf, wie Erhebungen, Vertiefungen, Poren oder dergleichen.
  • Zur Herstellung des erfindungsgemäßen Formgegenstandes werden die Nanopartikel auf die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, in mindestens zwei übereinander angeordneten Lagen aufgebracht. Unter dem Begriff "Lage" ist dabei in diesem Zusammenhang im Rahmen dieser Erfindung eine gleichmäßige flächendeckende oder zumindest weitgehend flächendeckende partikuläre Schicht aus den Nanopartikeln zu verstehen, so dass die Abstände zwischen den Nanopartikeln einer Schicht in dem nachstehend näher spezifizierten Bereichen liegen. Die Nanopartikel der ersten oder auch untersten Lage sind dabei mit der Oberfläche des Basismaterials fest verbunden, während die Nanopartikel der darüber angeordneten zweiten und gegebenenfalls aller weiteren Lagen mit den Nanopartikeln der jeweils darunter angeordneten Lage chemisch und/oder physikalisch verknüpft sind. Während es möglich ist und je nach Art und Anwendung des Formgegenstandes auch vorteilhaft sein kann, mehr als zwei Lagen von Nanopartikeln auf das Basismaterial aufzubringen, ist es in der Regel hinreichend und bevorzugt, wenn die auf der Oberfläche des Basismaterials aufgebrachte künstliche Oberflächenstruktur aus zwei Lagen von Nanopartikeln gebildet wird. Wenn das Basismaterial, aus dem der Formgegenstand gebildet ist, auf Grund seiner ungleichförmigen und unebenen Oberflächenbeschaffenheit bereits eine Grundstruktur im allgemeinen im Bereich von einigen Mikrometern bis mehreren hundert Mikrometern aufweist, wie es insbesondere bei textilen Basismaterialien in aller Regel der Fall und bevorzugt ist, erhält man so in sehr vorteilhafter Weise Formgegenstände, zum Beispiel textile Materialien, mit einer überlagerten Struktur, wobei die oberflächliche Mikrostruktur des Basismaterials von der Feinstruktur der darauf aufgebrachten Nanopartikel überlagert wird, ohne dass die Mikrostruktur des Basismaterials dabei verloren geht. Es hat sich gezeigt, dass Formgegenstände, wie vor allem textile Materialien, mit einer solchen überlagerten Struktur hinsichtlich ihres selbstreinigenden Effekts, ihrer Beständigkeit und anderer wesentlicher anwendungstechnischer Eigenschaften, wie zum Beispiel Trockenverschmutzungsverhalten und Wasserdruckdichtigkeit, besonders vorteilhaft sind.
  • Die für die erste oder auch unterste Lage der erfindungsgemäßen Ausrüstung eingesetzten Nanopartikel sind in aller Regel und vorteilhafterweise nicht hydrophob. In einer bevorzugten Ausführungsform der Erfindung werden für die Ausbildung der ersten oder untersten Lage hydrophile Nanopartikel eingesetzt. Hierdurch ist eine gleichmäßige und flächendeckende Aufbringung der Nanopartikel auf die Oberfläche des Basismaterials, insbesondere auch mittels wässriger Medien, einfach und problemlos möglich.
  • Zu den hydrophilen Nanopartikeln, die bevorzugt für die Ausbildung der ersten Lage der erfindungsgemäßen Oberflächenstruktur auf der Oberfläche des Basismaterials eingesetzt werden, gehören nanopartikuläre Silikate, dotierte Silikate, pyrogene Kieselsäuren, z.B. hydrophile Aerosile, Talkum, Diatomenerde, Metalloxide, insbesondere Aluminiumoxid, Siliziumdioxid, Titandioxid, Zinkoxid und Zirkondioxid, Metallhydroxide, wie Aluminiumhydroxid oder Zirkonhydroxid Zr(OH)4, sowie nanopartikuläre Metallsalze, wie zum Beispiel Metallphosphate, insbesondere des Calciums, Zirkons oder Silbers.
  • Bei dem erfindungsgemäßen Formgegenstand sind in der nanopartikulären Oberflächenstruktur die Nanopartikel der ersten oder auch untersten Lage mit den Nanopartikeln der darüber angeordneten zweiten Lage chemisch und/oder physikalisch verknüpft. Die für die Ausbildung der ersten oder auch untersten Lage der Oberflächenstruktur eingesetzten Nanopartikel weisen deshalb an ihrer Oberfläche chemisch reaktive Gruppen auf, die in der Lage sind, kovalente, ionische oder koordinative, d.h. komplexförmige, Bindungen einzugehen, und/oder sie haben eine Feinstruktur, die es ermöglicht, dass sie mit den Nanopartikeln der darüber angeordneten zweiten Lage eine feste und dauerhafte physikalische Verankerung oder Verschlingung eingehen. Als solche chemisch reaktiven Gruppen kommen zum Beispiel in Betracht: gebundene aktive Halogenatome, wie Fluor oder Chlor, gebundene aktive Wasserstoffatome, aktivierte Methylgruppen, Hydroxyl-, Carboxyl-, Caboxylat-, Alkoholat-, Phosphat-, Oxid-, Amid-, Ester-, Amin-, Nitril-, Keto-Gruppen und andere. In einer ersten Ausführungsform der Erfindung enthalten die Nanopartikel der ersten Lage solche chemisch reaktiven Gruppen, die zur Ausbildung von ionischen Bindungen befähigt sind. In einer weiteren Ausführungsform der Erfindung weisen die Nanopartikel der ersten Lage an ihrer Oberfläche solche chemisch reaktiven Gruppen auf, die zur Ausbildung von kovalenten Bindungen befähigt sind. Sofern die einzusetzenden Nanopartikel als solche nicht bereits derartige chemisch reaktive Gruppen aufweisen, können sie nach an sich bekannten Verfahren und Methoden entsprechend oberflächenmodifiziert werden. Für die Ausbildung einer physikalischen Verankerung oder Vernetzung eignen sich insbesondere solche Nanopartikel, die in Form von Aggregaten oder Agglomeraten kleinerer Primärteilchen vorliegen. Diese können bei der Verarbeitung in flüssiger, insbesondere wässrige, Phase anquellen und sich im angequollenen Zustand mit den dann ebenfalls angequollenen Nanopartikel der darüber anzuordnenden weiteren Lage zumindest partiell durchdringen und/oder verzahnen bzw. verhaken, so dass die Nanopartikel nach dem Trocknen im dann wieder ungequollenen Zustand fest miteinander verankert oder verschlungen sind. In einer insbesondere bevorzugten Ausführungsform werden für die Ausbildung der ersten Lage solche Nanopartikel eingesetzt, die sowohl chemisch reaktive Gruppen tragen als auch zu einer physikalischen Verankerung oder Verschlingung mit anderen Nanopartikeln fähig sind. Zu dieser Gruppe gehören beispielsweise die pyrogenen Kieselsäuren.
  • Die die erste oder auch unterste Lage der erfindungsgemäßen Oberflächenstruktur bildenden Nanopartikel können nach verschiedenen, an sich bekannten Methoden auf die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, aufgebracht und mit dieser fest verbunden werden. Das Auftragen der Nanopartikel auf die Oberfläche des Basismaterials kann dabei, je nach Art des Formgegenstandes, durch Sprühen, Streichen, Rollen, Tränken, Tauchen oder andere Auftragstechniken erfolgen, wobei die Nanopartikel in Form einer entsprechenden Zubereitung, zum Beispiel als Dispersion in flüssiger Phase, vorliegen und eingesetzt werden. Die Nanopartikel können aber auch mittels eines gasförmigen Mediums auf die Oberfläche des Basismaterials aufgebracht werden. Wichtig ist, dass das Aufbringen gleichförmig über die ganze Oberfläche des Basismaterials hinweg erfolgt und die Nanopartikel dabei fest mit dieser verbunden werden.
  • Auf welche Weise die Nanopartikel der ersten Lage mit der Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, fest verbunden werden, wird wesentlich durch die Art des Basismaterials mit bestimmt. Hierzu können prinzipiell polymere Trägerschichten, Haft- oder Klebschichten, Haftvermittler, Reaktionskleber, reaktive Verbindungen und dergleichen verwendet werden. Bei diesen Methoden ist darauf zu achten, dass die auf die Oberfläche des Basismaterials aufgebrachten Nanopartikel der ersten Lage noch hinreichend weit aus der Träger-, Haft- oder Klebschicht herausragen, so dass sie noch mit den Nanopartikeln der erfindungsgemäß darüber anzuordnenden zweiten Lage chemisch und/oder physikalisch verbunden werden können. Eventuell verwendete Träger-, Haft- oder Klebschichten haben daher eine Dicke, die kleiner ist als der Größe der verwendeten Nanopartikel.
  • In einer besonders günstigen und vorteilhaften Ausführungsform der Erfindung werden die Nanopartikel der ersten Lage chemisch mit der Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, fest verbunden. Die chemische Bindung kann eine kovalente Bindung, eine koordinative Bindung oder eine ionische Bindung sein. Die Bindung kann dabei direkt zwischen funktionellen Gruppen auftreten, die sich auf der Oberfläche des Basismaterials und den darüber befindlichen Nanopartikeln befinden. Es ist aber auch möglich, dass zwischen Basismaterial und Nanopartikeln chemische Einheiten angebracht sind, über die die Anbindung geschieht.
  • Die chemische Bindung kann dadurch ausgebildet werden, dass an der Oberfläche der Nanopartikel vorhandene chemisch reaktive Gruppen mit entsprechenden reaktiven Gruppen auf der Oberfläche des Basismaterials unter Ausbildung einer chemischen Bindung abreagieren. Es ist aber auch möglich und häufig von Vorteil, die chemische Anbindung der Nanopartikel der ersten Lage an die Oberfläche des Basismaterials mittels reaktiver Verbindungen, nachfolgend "reaktive Binder" genannt, vorzunehmen, die dann mit reaktiven Gruppen sowohl auf der Oberfläche des Basismaterials als auch auf der die erste Lage bildenden Nanopartikeln reagieren und somit als ein „Bindeglied" zwischen der Oberfläche des Basismaterials und den die erste Lage bildenden Nanopartikeln ausbilden. Die Art der für diese Anbindung eingesetzten reaktiven Binder wird durch die Art des Basismaterials und die Art der eingesetzten Nanopartikel bestimmt. Für die für die Ausbildung der ersten Lage bevorzugt eingesetzten hydrophilen Nanopartikel werden als solche reaktiven Binder bevorzugt auch hydrophile reaktive Verbindungen eingesetzt, wie zum Beispiel Diisocya nate, etwa Hexamethylendiisocyanat, Alkoxysilane, z.B. Dynasilan der Firma Degussa, Melamin-Formaldehyd-Harze oder Harnstoff-Formaldehyd-Harze, z.B. Quecodur DM 70 oder Quecodur UBN der Firma Thor GmbH, oder Metallsalze niederer Carbonsäuren mit 1-bis 3 C-Atomen, insbesondere Acetate. Die dabei eingesetzten Metalle umfassen dem Fachmann bekannte, zwei oder mehrwertige Metalle. Bevorzugt sind Calcium, Magnesium, Barium, Aluminium, Gallium, Titan, Zirkonium, Vanadium, Zink. Die Metalle verbleiben dabei nach dem Aufbringen und eventuell folgender Behandlung (beispielsweise thermisch) zwischen der Oberfläche des Basismaterials und den Nanopartikeln und verbinden diese durch Ausbildung einer chemischen Bindung. Es können neben den Salzen leichtflüchtiger Carbonsäuren Salze anderer leichtflüchtiger oder leicht zersetzlicher Säuren eingesetzt werden, die dem Fachmann bekannt sind. Es ist wichtig, dass das jeweilige Metallion als Salz einer Substanz eingesetzt wird, die entweder leicht zersetzlich oder leicht flüchtig ist, und dabei keine Rückstände verbleiben. Derartige Substanzen (im Allgemeinen Säruen) sind dem Fachmann bekannt. Beispiele umfassen Salze von Dicarbonsäuren oder Hydroxycarbonsäuren, etwa Oxalsäure, Zitronensäure oder Glykokolsäure.
  • Als reaktive Binder können gegebenenfalls auch wässrige Polymerdispersionen, zum Beispiel Polyacrylat-, Polyvinylacetat- oder Polyurethan-Dispersionen, herangezogen werden.
  • Die Anbindung über Metalle, wie vorstehend beschrieben, ist insbesondere im Fall der Aufbringung der Nanostrukturen auf Oberflächen von Textilien vorteilhaft. Dabei kann es sich um natürliche und synthetische Materialien handeln, wobei Beispiele weiter oben genannt sind.
  • Ein Vorteil der chemischen Anbindung der Nanopartikel der ersten Lage an die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, besteht neben einer festen und dauerhaften Anbindung auch darin, dass vorhandene Oberflächenstruktur des Basismaterials erhalten bleibt und nicht verdeckt wird. Diese Methode ist daher besonders günstig bei Basismaterialien, deren Oberfläche bereits Strukturen im Mikrometerbereich aufweist, wie insbesondere bei textilen Basismaterialien oder auch allgemein für Formkörper, Formteile oder Halbzeug, einschließlich Folien, Platten und dergleichen, deren Oberfläche vor dem Aufbringen der erfindungsgemäßen nanopartikulären Oberflächenstruktur eine Strukturierung im Mikrometerbereich besaß oder mit einer solchen versehen wurde.
  • Bei Einsatz von hydrophilen Nanopartikeln für die erste Lage lassen sich diese in aller Regel in einfacher und umweltfreundlicher Art und Weise auf die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet wird, aufbringen und mit dieser verbinden, indem man die chemisch reaktive Gruppen enthaltenden Nanopartikel in einem wässrigen Medium, insbesondere Wasser als solchem, dispergiert, gegebenenfalls hydrophile reaktive Binder zur Anbindung der Nanopartikel an die Oberfläche des Basismaterials sowie weiterhin gegebenenfalls Dispergierhilfsmittel und/oder Netzmittel zur besseren Benetzung der Oberfläche des Basismaterials zusetzt, das Basismaterial mit dieser Dispersion besprüht, bestreicht, berollt, es mit dieser tränkt oder es in diese Dispersion eintaucht und wieder herauszieht und anschließend trocknet unter chemischer Anbindung der Nanopartikel an die Oberfläche des Basismaterials.
  • Die auf die Oberfläche des Basismaterials aufgebrachten und mit dieser fest verbundenen Nanopartikel der ersten Lage bilden auf dieser eine Feinstruktur mit Erhebungen und Vertiefungen im Nanometerbereich. Die Nanopartikel sind dabei gleichmäßig über die Oberfläche des Basismaterials verteilt. Der Flächendeckungsgrad der Nanopartikel der ersten Lage sollte vorteilhafter Weise über 70% und insbesondere über 90% liegen. Bevorzugt ist die Oberfläche des Basismaterials vollkommen mit den Nanopartikeln der ersten Lage bedeckt.
  • Auf die auf die Oberfläche des Basismaterials aufgebrachte erste, also unterste, Lage von Nanopartikeln wird erfindungsgemäß eine zweite Lage von Nanopartikeln aufgebracht, wobei die Nanopartikel der zweiten Lage mit den Nanopartikeln der ersten Lage chemisch und/oder physikalisch verbunden sind.
  • Die für die Ausbildung der zweiten Lage eingesetzten Nanopartikel sind vorzugsweise nicht hydrophil. Insbesondere werden hierfür hydrophobe oder hydrophob modifizierte Nanopartikel verwendet. Zumindest sollten die für die Ausbildung der zweiten Lage eingesetzten Nanopartikel vor oder nach ihrem Aufbringen auf die Nanopartikel der ersten Lage gut hydrophobiert werden können, sofern sie nicht bereits von vornherein hydrophob waren. In einer besonderen Ausgestaltungsform der Erfindung sind die für die Ausbildung der zweiten Lage eingesetzten Nanopartikel zusätzlich oleophob oder oleophobierbar.
  • Als Beispiel für hydrophobe oder hydrophob modifizierte Nanopartikel, die für die Ausbildung der zweiten Lage eingesetzt werden können, seien genannt: hydrophobe oder hydrophob modifizierte Kieselsäuren, insbesondere hydrophobe oder hydrophob modifizierte pyrogene Kieselsäuren, z.B. entsprechende Aerosile, hydrophobe oder hydrophob modifizierte Kieselgele, hydrophobe oder hydrophob modifizierte Silikate, wie z.B. Zirkonsilikat, hydrophob modifizierte Metalloxide, z.B. hydrophob modifiziertes Aluminiumoxid, sowie hydrophobe oder hydrophob modifizierte nanopartikuläre Polymere. Insbesonders bevor zugte Nanopartikel für die Ausbildung der zweiten Lage sind die hydrophoben oder hydrophob modifizierten pyrogenen Kieselsäuren.
  • Wie erwähnt, sind die Nanopartikel der zweiten Lage mit den Nanopartikeln der ersten Lage chemisch und/oder physikalisch verknüpft. In einer Ausführungsform der Erfindung weisen die Nanopartikel, die für die Ausbildung der zweiten Lage eingesetzt werden, deshalb an ihrer Oberfläche chemisch reaktive Gruppen auf, die in der Lage sind, mit den Nanopartikeln der ersten Lage kovalente, ionische oder koordinative, d.h. komplexförmige, Bindungen einzugehen. Gemäß einer anderen Ausführungsform der Erfindung haben die Nanopartikel, die für die Ausbildung der zweiten Lage eingesetzt werden, eine Feinstruktur, die es ermöglicht, dass sie mit den Nanopartikeln der darunter befindlichen ersten Lage eine feste und dauerhafte physikalische Verankerung oder Verschlingung eingehen. Eine weitere Ausführungsform besteht darin, dass die Nanopartikel, die für die Ausbildung der zweiten Lage eingesetzt werden, sowohl reaktive Gruppen zur Ausbildung einer chemischen Bindung als auch eine Feinstruktur zur physikalischen Verankerung mit den Nanopartikeln der ersten Lage aufweisen.
  • Bevorzugt weisen die Nanopartikel, die für die Ausbildung der zweiten Lage eingesetzt werden, an ihrer Oberfläche chemisch reaktive Gruppen auf, die mit den reaktiven Gruppen der Nanopartikel, die die erste Lage bilden, eine insbesondere ionische oder kovalente Bindung auszubilden vermögen. Als solche reaktive Gruppen kommen prinzipiell solche in Betracht, wie sie vorstehend bereits für die die erste Lage bildenden Nanopartikel genannt worden sind. Sie sind jedoch so auszuwählen, dass sie mit den reaktiven Gruppen der Nanopartikel der ersten Lage reagieren können. Zur chemischen Verknüpfung der Nanopartikel der zweiten Lage mit den darunter liegenden Nanopartikeln der ersten Lage können auch reaktive Binder eingesetzt werden, die sowohl mit den Nanopartikeln der ersten als auch mit den Nanopartikeln der darüber liegenden zweite Lage reagieren und als Bindeglied zwischen diesen fungieren. Sofern die einzusetzenden Nanopartikel als solche nicht bereits chemisch reaktive Gruppen aufweisen, können sie nach an sich bekannten Verfahren und Methoden entsprechend oberflächenmodifiziert werden. Für die Ausbildung einer physikalischen Verankerung oder Vernetzung eignen sich, wie vorstehend bereits beschrieben, insbesondere solche Nanopartikel, die in Form von Aggregaten oder Agglomeraten kleinerer Primärteilchen vorliegen. In einer insbesondere bevorzugten Ausführungsform werden für die Ausbildung der zweiten Lage solche hydrophoben oder hydrophob modifizierten Nanopartikel eingesetzt, die sowohl chemisch reaktive Gruppen tragen als auch zu einer physikalischen Verankerung oder Verschlingung mit anderen Nanopartikeln fähig sind. Zu dieser Gruppe gehören beispielsweise die hydrophoben oder hydrophob mo difizierten pyrogenen Kieselsäuren. Schließlich werden in einer weiteren bevorzugten Ausführungsform die Partikel der zweiten Lage physikalisch von Materialien fixiert, die auf den Partikeln der ersten Lage angebracht sind. Die Anbringung kann dabei chemisch oder physikalisch erfolgen.
  • Die die zweite Lage bildenden Nanopartikel können nach an sich üblichen und bekannten Methoden, wie z.B. durch Sprühen, Streichen, Rollen, Tränken, Tauchen oder andere Auftragstechniken, auf die Nanopartikel der ersten Lage aufgebracht und mit diesen verbunden werden, wobei die die zweite Lage bildenden Nanopartikel in Form einer entsprechenden Zubereitung, zum Beispiel als Dispersion in flüssiger Phase, vorliegen und eingesetzt werden.
  • In einfacher und vorteilhafter Art und Weise können die die zweite Lage bildenden Nanopartikel auf die Nanopartikel der ersten Lage aufgebracht und mit diesen chemisch und/oder physikalisch verbunden werden, indem man die hydrophoben oder hydrophob modifizierten Nanopartikel, die chemisch reaktive Gruppen zur Anbindung an die Nanopartikel der ersten Lage enthalten können, in einem wässrigen Medium, insbesondere Wasser als solchem, unter Zugabe geeigneter Dispergiermittel dispergiert und die auf dem Basismaterial fest haftend aufgebrachte erste Lage Nanopartikel mit dieser Dispersion besprüht, bestreicht, berollt oder das mit der ersten Lage Nanopartikel ausgerüstete Basismaterial in diese Dispersion eintaucht und wieder herauszieht und anschließend trocknet unter chemischer und/oder physikalischer Verbindung der Nanopartikel der ersten und zweiten Lage. Es hat sich überraschend gezeigt, dass es hierbei trotz des hydrophoben Charakters der die zweite Lage bildenden Nanopartikel möglich ist, eine gleichmäßige und flächendeckende Aufbringung der hydrophoben oder hydrophob modifizierten Nanopartikel auf die hydrophilen Nanopartikel der ersten Lage und damit auch auf die Oberfläche des Basismaterials, aus dem der Formgegenstand gebildet ist, zu bewirken und gleichzeitig die hydrophoben oder hydrophob modifizierten Nanopartikel fest und dauerhaft mit dem Basismaterial zu verbinden.
  • Als Dispergiermittel für die Herstellung der wässrigen Dispersion der hydrophoben oder hydrophob modifizierten Nanopartikel für die Ausbildung der zweiten Lage der erfindungsgemäßen Oberflächenstruktur haben sich anionische Dispergiermittel aus der Klasse der Carboxylate, der Sulfonate oder der Phosphate, wie sie handelsüblich erhältlich sind, bewährt. Hierzu zählen Alkylcarboxylate, Perfluoralkylcarboxylate, Alkarylcarboxylate, Aralkylcarboxylate, Alkylsufonate, Perfluoralkylsulfonate, Alkarylsulfonate, Aralkylsulfonate, Alkylphosphate, Perfluoralkylphosphate, Alkarylphosphate und Aralkylphosphate mit langkettigen Alkylresten, im allgemeinen mit 10 bis 30, vorzugsweise 10 bis 20 Kohlenstoffatomen. Geeignete Kationen für die anionischen Dispergiermittel können dabei das Ammonium-Ion NH4+ oder Alkylammonium-Ionen aus niederen Alkylaminen, zum Beispiel Diethanolamin oder bevorzugt Dimethylaminomethylpropanol (DMAMP), sein. Sofern als Dispergiermittel solche Perfluoralkylgruppen eingesetzt werden, wird eine Oberflächenstruktur erhalten, die nicht nur hydrophob, sondern gleichzeitig auch oleophob ist.
  • In einer Ausführungsform der vorliegenden Erfindung wird eine physikalische Anbindung der zweiten Lage durch Adhäsion an einem Material mit entsprechenden Adhäsionseigenschaften erreicht, die mit der ersten Schicht chemisch verknüpft ist. Materialien mit entsprechenden Eigenschaften sind die weiter oben genannten anionischen Dispergiermittel aus der Klasse der Carboxylate, Sulfonate oder Phosphate mit langkettigen Alkylresten. Diese sind insbesondere im Fall der Beschichtung von Textilien vorteilhaft, bei denen die erste Schicht durch Metallionen auf dem Basismaterial fixiert ist. Da diese Metallionen nicht nur zwischen dem Basismaterial und der ersten Schicht, sondern auch auf der nach außen gerichteten Oberfläche der ersten Schicht sich befinden, können diese Ionen auch zur Fixierung des Materials dienen, durch das die zweite Schicht physikalisch fixiert wird. So kann eine Anbindung der oben erwähnten Alkylcarbooxylate mit langkettigen Alkylresten durch Bindung der Carboxylatfunktion an das Metallion eintreten. Der Alkylrest ist dann nach außen, also in Richtung der zweiten Schicht, gerichtet. Diese zweite Schicht wird so physikalisch fixiert.
  • Der erfindungsgemäß ausgerüstete Formgegenstand besitzt hervorragende selbstreinigende Eigenschaften. Er weist eine Oberflächenstruktur auf, bei der Höhe der aus den hydrophoben oder hydrophob modifizierten Nanopartikel der obersten Lage gebildeten Erhebungen im allgemeinen im Bereich von 20 nm bis 500 nm, vorzugsweise im Bereich von 30 nm bis 250 nm und insbesondere im Bereich von 50 nm bis 200 nm liegt. Weitere Oberflächenparameter sind bereits vorstehend im Zusammenhang mit der Erläuterung des Begriffs "selbstreinigend" angegeben. Der erfindungsgemäß ausgerüstete Formgegenstand zeichnet sich ferner durch eine Kombination vorteilhafter anwendungstechnischer Eigenschaften aus, wie mechanische Widerstandsfähigkeit und Abriebfestikeit, Witterungsbeständigkeit und eine äußerst geringe Trockenanschmutzung. Staub, Russ oder andere partikuläre Verschmutzungen, die beim praktischen Gebrauch des erfindungsgemäßen Formgegenstandes auftreten können, können allein schon durch die mechanische Beanspruchung des Gebrauchs, wie zum Beispiel durch Wind, Vibration, Klopfen, Schütteln und dergleichen, wieder entfernt werden. Sofern es sich bei dem erfindungsgemäßen Formgegenstand um ein textiles Material handelt, zeigt dieses trotz der selbstreinigenden Ausrüstung mit den nanopartikulären Schichten eine gute Haptik, gute Gasdurchlässigkeit und Atmungsaktivität sowie insbesondere auch eine hohe Wasserdruckdichtigkeit.
  • Erfindungsgemäß selbstreinigend ausgerüstete Formgegenstände können in vielfältiger und vorteilhafter Weise überall dort eingesetzt werden, wo selbstreinigende Eigenschaften von Oberflächen gewünscht und angestrebt werden. Auf Grund des erfindungsgemäßen Aufbaus und Herstellverfahrens der Oberflächenstruktur können die erfindungsgemäßen Formgegenstände leicht an die von der Anwendung her geforderten Anforderungen angepasst und hierauf abgestellt werden. Besonders vorteilhaft sind die erfindungsgemäßen Formgegenstände für Freiluftanwendungen; sie können aber selbstverständlich gleichermaßen auch innerhalb von Räumen und Gebäuden eingesetzt werden. Erfindungsgemäß selbstreinigend ausgerüstete textile Materialien können so zum Beispiel für die Herstellung von Bekleidung, insbesondere Schutzbekleidung, Regenbekleidung und Sicherheitsbekleidung, technische Textilien, insbesondere Abdeckplanen oder Zeltplanen, Geweben des textilen Bauens, wie beispielsweise Markisen, Sonnenschutzsegel, Sonnenschutzdächer, Sonnenschirme, Gardinen, Vorhängen, Vertikallamellen, Duschvorhängen und ähnlichem, aber auch für Gegenstände des täglichen Gebrauchs, wie zum Beispiel Regenschirme, Tischdecken und Sitzkissen verwendet werden.
  • Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert. Alle in den Beispielen angegebenen Teile und Prozente beziehen sich, sofern nicht anders vermerkt, auf das Gewicht. Die Wasserdruckdichtigkeit wird dabei über die Höhe einer Wassersäule bestimmt, die man auf ein textiles Material aufbringen kann, ohne dass Wasser durch das textile Material hindurch drückt (DIN-Test).
  • Beispiel 1
  • Eine naturbelassene, getrocknete Birkenholz-Platte wurde in ein wässriges Bad, enthaltend 2% Wacker HDK N 20 (hydrophile Kieselsäure) und 5% einer 15%igen wässrigen Aluminiumacetatlösung, 30 sec. getaucht und danach mit einem Heißluft-Fön bei 100°C 1 Minute getrocknet. Anschließend wurde der Probekörper in einem wässriges Bad, enthaltend 2% Wacker HDK H 30 RM (hydrophob modifizierte Kieselsäure), 1% Isopropanol und 0,5% Ammoniumdodecylphosphat, 30 sec. getaucht und danach bei 140°C 2 min. getrocknet. Der Abrollwinkel für Wasser auf der so imprägnierten Holzplatte betrug 4°. Die mit den nanopartikulären Schichten ausgerüstete Holzplatte war selbstreinigend und witterungsbeständig. Nach sechs Monaten Lagerung und Bewitterung im Freien war sie immer noch unverschmutzt.
  • Beispiel 2
  • Ein Polyester-Gewebe, 240 g/m2, Faserdurchmesser 20 μm, wurde in einem wässrigen Bad, enthaltend aus 3,5% Wacker HDK N 20 (hydrophile Kieselsäure), 1% eines Melamin-Formaldehyd-Kondensationsharzes und 9% einer 15%igen wässrigen Aluminiumacetatlösung (essigsaure Tonerde), getränkt, abgequetscht und bei 120°C ca. 1 Minute getrocknet. Anschließend wurde das Gewebe in einem wässriges Bad, enthaltend 2% Aeroxide LE1 (hydrophobe pyrogene Kieselsäure), 4% Isopropanol und 0,5% DMAMP-Stearat getaucht, abgequetscht und bei 140°C getrocknet. Das so imprägnierte selbstreinigende Polyestergewebe zeigte bei Benetzung mit Wasser einen Abrollwinkel von 4°. Nach einem Abrasions-Test nach Martindale (100 Touren) betrug der gemessene Abrollwinkel 5°. Russpartikel ließen sich nicht nur durch bewegtes Wasser, sondern auch durch einen einfachen Luftstrom oder Vibration leicht entfernen. Das imprägnierte selbstreinigende Polyestergewebe war atmungsaktiv und besaß eine Wasserdruckdichtigkeit von 600 mm Wassersäule. Bei einem vergleichbaren, nach dem Stand der Technik mit Fluorcarbonharzen ausgerüsteten Gewebe lag die Wasserdruckdichtigkeit unter 350 mm Wassersäule.
  • Beispiel 3
  • Ein Baumwoll-Leinwand-Gewebe, Flächengewicht 190 g/m2, wurde in einem wässrigen Bad, enthaltend 2% Wacker HDK N 20 (hydrophile Kieselsäure) und 0,4% Zirkonylacetat, getränkt, abgequetscht und bei 120°C ca. 1 Minute getrocknet. Anschließend wurde das Gewebe in ein wässriges Bad, enthaltend 2% Wacker HDK H 30 RM, 1% Isopropanol, 0,4% Ammonium-Stearat und 0,1% DMAMP-Stearat, getaucht, abgequetscht und bei 180°C getrocknet. Auf dem so imprägnierte Gewebe rollte Wasser bei einem Neigungswinkel des Gewebes von 4° ab. Das so imprägnierte Gewebe war selbstreinigend, atmungsaktiv und zeigte keine Trockenanschmutzung. Die Wasserdruckdichtigkeit lag über 500 mm Wassersäule.

Claims (8)

  1. Formgegenstand aus einem Basismaterial mit einer künstlich erzeugten selbstreinigenden Oberflächenstruktur von auf der Oberfläche des Basismaterials aufgebrachten Nanopartikeln, dadurch gekennzeichnet, dass die selbstreinigende Oberflächenstruktur durch mindestens zwei übereinander angeordnete nanopartikuläre Lagen gebildet wird, wobei die Nanopartikel der ersten Lage fest mit der Oberfläche des Basismaterials verbunden sind und die Nanopartikel der darauf aufgebrachten und angeordneten weiteren Lage oder Lagen mit den Nanopartikeln der ersten bzw. der darunter liegenden Lage chemisch und/oder physikalisch verknüpft sind und eine hydrophobe Oberfläche aufweisen.
  2. Formgegenstand nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Formgegenstand um einen Formkörper, ein Formteil oder ein Halbzeug handelt.
  3. Formgegenstand nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Formgegenstand um ein textiles Material handelt.
  4. Formgegenstand nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Nanopartikel der ersten Lage hydrophil sind.
  5. Formgegenstand nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Nanopartikel der zweiten Lage hydrophob oder hydrophob modifiziert sind.
  6. Formgegenstand nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Nanopartikel der ersten Lage mit der Oberfläche des Basismaterials chemisch verknüpft sind.
  7. Formgegenstand nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Nanopartikel der ersten Lage mit der Oberfläche des Basismaterials mittels eines reaktiven Binders verbunden sind.
  8. Verfahren zur Herstellung eines Formgegenstandes nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das den Formgegenstand bildende Basismaterial in einem ersten Schritt mit einer ersten Dispersion, die hydrophile Nanopartikel enthält, oberflächendeckend behandelt und anschließend getrocknet wird unter Anbindung der hydrophilen Nanopartikel an die Oberfläche des Basismaterials und danach in einem zweiten Schritt mit einer zweiten Dispersion, die hydrophobe Nanopartikel mit einem Dispergiermitell dispergiert enthält, oberflächendeckend behandelt und anschließend getrocknet wird unter Anbindung der hydrophoben Nanopartikel an die zuvor aufgebrachten und mit der Oberfläche des Basismaterials verbundenen hydrophilen Nanopartikel.
DE102006005614A 2006-02-06 2006-02-06 Formgegenstand mit selbstreinigender Oberflächenstruktur Withdrawn DE102006005614A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102006005614A DE102006005614A1 (de) 2006-02-06 2006-02-06 Formgegenstand mit selbstreinigender Oberflächenstruktur
PCT/EP2007/051067 WO2007090808A1 (de) 2006-02-06 2007-02-05 Formgegenstand mit selbstreinigender oberflächenstruktur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006005614A DE102006005614A1 (de) 2006-02-06 2006-02-06 Formgegenstand mit selbstreinigender Oberflächenstruktur

Publications (1)

Publication Number Publication Date
DE102006005614A1 true DE102006005614A1 (de) 2007-08-09

Family

ID=38197823

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006005614A Withdrawn DE102006005614A1 (de) 2006-02-06 2006-02-06 Formgegenstand mit selbstreinigender Oberflächenstruktur

Country Status (2)

Country Link
DE (1) DE102006005614A1 (de)
WO (1) WO2007090808A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007426A1 (de) * 2008-02-01 2009-08-06 Rheinische Friedrich-Wilhelms-Universität Bonn Unbenetzbare Oberflächen
WO2010000515A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Werkzeugmaschine, insbesondere handgehaltene werkzeugmaschine
WO2010127981A1 (en) 2009-05-04 2010-11-11 Airbus Operations Limited Self-regenerating biocatalytic and/or anti-icing surfaces
DE102010040826A1 (de) 2010-09-15 2012-03-15 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Immobilisierung von Nanopartikeln auf thermoplastischen Kunststoffoberflächen
DE102014214751A1 (de) 2014-07-28 2016-01-28 Leibniz-Institut Für Polymerforschung Dresden E.V. Modifizierte kunststoffoberflächen und verfahren zu ihrer herstellung
EP3431200A1 (de) * 2017-07-20 2019-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oberflächenbeschichtung und verfahren zur verringerung der verschmutzungsanfälligkeit einer objektoberfläche

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951162B (zh) * 2016-05-10 2018-04-10 大连理工大学 一种在金属基体上实现超亲水/超疏水润湿性图案的方法
CN106862039B (zh) * 2017-01-18 2020-05-22 华南理工大学 一种耐久性的亲水-超疏水双极自洁复合膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719948A1 (de) * 1997-05-13 1998-11-19 Inst Neue Mat Gemein Gmbh Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
DE19746885A1 (de) * 1997-10-23 1999-06-24 Inst Neue Mat Gemein Gmbh Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
CA2386241A1 (en) * 1999-10-05 2001-04-12 Commonwealth Scientific And Industrial Research Organisation Three dimensional array films
US6291070B1 (en) * 1997-05-13 2001-09-18 Institut für Neue Materialien Gemeinnützige GmbH Nanostructured moulded bodies and layers and method for producing same
DE10212961A1 (de) * 2002-03-22 2003-10-02 Inst Neue Mat Gemein Gmbh Kunststofffolie mit Mehrschicht-Interferenzbeschichtung
CN1536375A (zh) * 2003-04-03 2004-10-13 道麒科技股份有限公司 一种防晕眩、增艳、防静电及防辐射的光学栅板制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772514B1 (de) * 1994-07-29 1998-12-23 Wilhelm Barthlott Selbstreinigende oberflächen von gegenständen sowie verfahren zur herstellung derselben
US20030232916A1 (en) * 2002-06-14 2003-12-18 Lorah Dennis Paul Nonaqueous compositions
US7196043B2 (en) * 2002-10-23 2007-03-27 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
DE10301984B4 (de) * 2003-01-15 2008-07-03 Hahn-Meitner-Institut Berlin Gmbh Flexible, atmungsaktive Polymerfolie
TW200615424A (en) * 2004-07-20 2006-05-16 Schoeller Textil Ag Finishings for textile fibres and babrics to give hydrophobic oleophobic and self-cleaning surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719948A1 (de) * 1997-05-13 1998-11-19 Inst Neue Mat Gemein Gmbh Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
US6291070B1 (en) * 1997-05-13 2001-09-18 Institut für Neue Materialien Gemeinnützige GmbH Nanostructured moulded bodies and layers and method for producing same
DE19746885A1 (de) * 1997-10-23 1999-06-24 Inst Neue Mat Gemein Gmbh Nanostrukturierte Formkörper und Schichten sowie Verfahren zu deren Herstellung
CA2386241A1 (en) * 1999-10-05 2001-04-12 Commonwealth Scientific And Industrial Research Organisation Three dimensional array films
DE10212961A1 (de) * 2002-03-22 2003-10-02 Inst Neue Mat Gemein Gmbh Kunststofffolie mit Mehrschicht-Interferenzbeschichtung
CN1536375A (zh) * 2003-04-03 2004-10-13 道麒科技股份有限公司 一种防晕眩、增艳、防静电及防辐射的光学栅板制造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007426A1 (de) * 2008-02-01 2009-08-06 Rheinische Friedrich-Wilhelms-Universität Bonn Unbenetzbare Oberflächen
WO2010000515A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Werkzeugmaschine, insbesondere handgehaltene werkzeugmaschine
CN102083579A (zh) * 2008-07-02 2011-06-01 罗伯特·博世有限公司 工具机、尤其是手持工具机
WO2010127981A1 (en) 2009-05-04 2010-11-11 Airbus Operations Limited Self-regenerating biocatalytic and/or anti-icing surfaces
US9586243B2 (en) 2009-05-04 2017-03-07 Airbus Operations Limited Self-regenerating biocatalytic and/or anti-icing surfaces
DE102010040826A1 (de) 2010-09-15 2012-03-15 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Immobilisierung von Nanopartikeln auf thermoplastischen Kunststoffoberflächen
DE102010040826B4 (de) 2010-09-15 2020-06-18 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Immobilisierung von Nanopartikeln auf thermoplastischen Kunststoffoberflächen sowie immobilisierte Nanopartikel
DE102014214751A1 (de) 2014-07-28 2016-01-28 Leibniz-Institut Für Polymerforschung Dresden E.V. Modifizierte kunststoffoberflächen und verfahren zu ihrer herstellung
EP3431200A1 (de) * 2017-07-20 2019-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oberflächenbeschichtung und verfahren zur verringerung der verschmutzungsanfälligkeit einer objektoberfläche
EP3431199A1 (de) * 2017-07-20 2019-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oberflächenbeschichtung und verfahren zur verringerung der verschmutzungsanfälligkeit einer objektoberfläche

Also Published As

Publication number Publication date
WO2007090808A1 (de) 2007-08-16

Similar Documents

Publication Publication Date Title
DE102006005614A1 (de) Formgegenstand mit selbstreinigender Oberflächenstruktur
EP2444545B1 (de) Wasser, Öl und Schmutz abweisende Ausrüstungen auf Fasern und textilen Flächengebilden
EP2918629B1 (de) Verfahren zur herstellung eines atmungsaktiven films
EP1379725B1 (de) Textile flächengebilde mit selbstreinigender und wasserabweisender oberfläche
DE69823823T2 (de) Verfahren zur Herstellung von beschichtete structurelle Gegenstände
EP1674609A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
EP1674611A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
EP1597334B1 (de) Herstellung von suspension hydrophober oxidpartikel
EP1964966B1 (de) Antimikrobielles textiles Glasfasermaterial
DE102004062742A1 (de) Textile Substrate mit selbstreinigenden Eigenschaften (Lotuseffekt)
DE10242560A1 (de) Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
EP1623066B1 (de) Verwendung von mit fluorsilanen hydrophobierten partikeln zur herstellung von selbstreinigenden oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben eigenschaften
EP1485243A1 (de) Herstellung von bahnenwaren mit selbstreinigenden oberflächen mittels eines kalandrierprozesses, bahnenwaren selbst und die verwendung dieser
WO2018202381A1 (de) Verfahren zur herstellung eines atmungsaktiven mehrschichtigen kunstleders
EP1593775B1 (de) Beschichtete, wasserdampfdurchlässige und pilzresistente Gewebe
EP3337924B1 (de) Malervlies und verfahren zu dessen herstellung
EP0304550A2 (de) Verfahren zur Herstellung dreidimensionaler Muster oder Beschichtungen auf Trägerbahnen aus Papier, Textilien und/oder auf Kunststoffolien
EP2599915B1 (de) Abdecktapete
EP2061926B1 (de) Textilprodukt und verfahren zu seiner herstellung
DE102009005692A1 (de) Filtermedium, Verfahren zu dessen Herstellung und dessen Verwendung
DE10135157A1 (de) Verfahren zum Aufbringen einer selbstreinigenden Beschichtung auf Textilien
WO2019076823A1 (de) Verfahren zur herstellung eines textilen artikels mit hydrophobierter textiler oberfläche durch plasmabehandlung und nasschemische behandlung
EP0043580B1 (de) Kunststoffbeschichtete Textilbahn
EP1413669A1 (de) Witterungsbeständige, PVC-freie Flächenmaterialien auf Textilbasis
DE1901950C (de)

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8130 Withdrawal