EP1674609A1 - Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung - Google Patents

Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung Download PDF

Info

Publication number
EP1674609A1
EP1674609A1 EP20050110307 EP05110307A EP1674609A1 EP 1674609 A1 EP1674609 A1 EP 1674609A1 EP 20050110307 EP20050110307 EP 20050110307 EP 05110307 A EP05110307 A EP 05110307A EP 1674609 A1 EP1674609 A1 EP 1674609A1
Authority
EP
European Patent Office
Prior art keywords
particles
fabrics
fibers
microns
textile fabrics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20050110307
Other languages
English (en)
French (fr)
Inventor
Markus Dr. Oles
Gerhard Schöpping
Peter Rudek
Peter Dr. Mayr
Uwe Marg
Edwin Dr. Nun
Bernhard Dr. Schleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Evonik Operations GmbH
Original Assignee
Carl Freudenberg KG
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG, Degussa GmbH filed Critical Carl Freudenberg KG
Publication of EP1674609A1 publication Critical patent/EP1674609A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • D06M13/517Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond containing silicon-halogen bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/657Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Woven Fabrics (AREA)

Abstract

Die vorliegende Erfindung betrifft textile Flächengebilde mit einer erhöhten Wasserdichtigkeit sowie ein Verfahren zu deren Herstellung. Überraschenderweise konnte gefunden werden, dass die Wasserdichtigkeit von porösen textilen Flächengebilden dadurch erhöht werden kann, dass eine Beschichtung von hydrophoben Partikeln mit einer mittleren Partikelgröße von 0,02 bis 100 µm auf die Oberflächen der Fasern aufgebracht wird.
Die textilen Flächengebilde können z.B. als textile Baumaterialien oder zur Herstellung von Zelten, Schirmen oder ähnlichem verwendet werden.

Description

  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Erhöhung der Wasserdichtheit von Materialien, mit diesem Verfahren hergestellte Materialien sowie deren Verwendung.
  • Hydrophobe stoffdurchlässige Materialien sind seit langem bekannt. Vor allem Membranen aus Teflon, aber auch aus anderen organischen Polymeren sind hierbei zu nennen. Diese eignen sich für ein großes Anwendungsgebiet, bei dem es darauf ankommt, dass der Stoffdurchgang durch den porösen Werkstoff nur in Form von Gas oder Dampf, nicht aber als Flüssigkeit stattfindet. Hergestellt werden diese Materialien beispielsweise durch Verstrecken von Teflonfolien, wobei kleinste Risse entstehen, die dann den Dampf bzw. Gasdurchgang zulassen. Durch das hydrophobe Material werden Wassertröpfchen zurückgehalten, da sie aufgrund der großen Oberflächenspannung und der fehlenden Benetzbarkeit der Oberflächen der hydrophoben Materialien nicht in die Poren eindringen können.
  • Solche hydrophoben Materialien eignen sich für die Gas- und Dampfpermeation, aber auch für die Membranfiltration. Zudem werden sie in vielen Bereich als inerte Filtermaterialien eingesetzt. Ein Nachteil dieser Materialien besteht insbesondere in der relativ komplizierten Herstellung dieser Materialien, die zu relativ hohen Preisen führen und damit eine allgemeine Verbreitung dieser Materialien verhindern.
  • Relativ preisgünstige Systeme weisen als Grundmaterialien Gewebe oder Vliese auf. Zur Imprägnierung werden diese üblicherweise mit Flourkohlenwasserstoffen, insbesondere mit Teflon beschichtet. Diese Beschichtung wird üblicherweise als Fluorcarbonausrüstung bezeichnet (Begriff aus der chemischen Reinigung) Die Fluorcarbonausrüstungen hydrophobieren diese textilen Flächengebilde. Durch die Hydrophobierung kann eine erhöhte Wasserdichtehit erzielt werden. Die Technik kann am ehesten der Sol-Gel-Technik zugerechnet werden, da eine monomolekulare Beschichtung erzeugt wird. Die Wasserdampfpermeabilität wird dabei durch die Fluorcarbone nicht oder zumindest nahezu nicht beeinflusst. Die Fluorcarbonausrüstung von Geweben oder Vliesen ist allerdings ebenfalls aufwändig und deshalb teuer.
  • Ein günstigeres und einfacher durchzuführendes Verfahren zur Erhöhung der Wasserdichtheit von Materialien ist die Polyurethanbeschichtung von Materialien. Bei dieser Art der Beschichtung werden aber auf den Geweben oder Vliesen Folien-ähnliche Beschichtungen aufgebracht, die zwar eine überragende Wasserdichtheit aufweisen, gleichzeitig aber eine Wasserdampfdurchlässigkeit von nahezu Null aufweisen, da die Porosität des Gewebes oder Vlieses verloren geht.
  • Es bestand also die Aufgabe ein einfacheres Verfahren bereitzustellen, poröse textile Flächengebilde, also insbesondere Vliese, Gewebe, Gewirke oder Filze wasserdicht auszurüsten, wobei die Wasserdichtheit der Fasermaterialien möglichst hoch sein sollte und gleichzeitig eine im Vergleich zum unbehandelten Fasermaterial nahezu unveränderte Wasserdampfpermeabilität vorliegen sollte.
  • Überraschenderweise wurde gefunden, das die Wasserdichtheit textiler Flächengebilde dadurch erhöht werden kann, dass die textilen Flächengebilde bzw. die Fasern der textilen Flächengebilde mit hydrophoben Partikeln beschichtet werden, wie dies z.B. zur Erzielung des Lotus-Effekts bereits praktiziert wird.
  • Die Erfmdung basiert also auf dem sogenannten Lotus-Effekt, also dem Prinzip der Selbstreinigung, welches allgemein bekannt ist. Zum Erzielen einer guten Selbstreinigung (Superhydrophobizität) einer Oberfläche muss die Oberfläche neben einer sehr hydrophoben Oberfläche auch eine gewisse Rauhigkeit aufweisen. Eine geeignete Kombination aus Struktur und Hydrophobie macht es möglich, dass schon geringe Mengen bewegten Wassers auf der Oberfläche haftende Schmutzpartikel mitnehmen und die Oberfläche reinigen (WO 96/04123).
  • Stand der Technik ist gemäß EP 0 933 388, dass für solche selbstreinigenden Oberflächen ein Aspektverhältnis von > 1 und eine Oberflächenenergie von weniger als 20 mN/m erforderlich ist. Das Aspektverhältnis ist hierbei defmiert als der Quotient von Höhe zur Breite der Struktur. Vorgenannte Kriterien sind in der Natur, beispielsweise im Lotusblatt, realisiert. Die aus einem hydrophoben wachsartigen Material gebildete Oberfläche der Pflanze weist Erhebungen auf, die einige µm voneinander entfernt sind. Wassertropfen kommen im Wesentlichen nur mit den Spitzen der Erhebungen in Berührung. Solche wasserabstoßenden Oberflächen wurden in der Literatur vielfach beschrieben.
  • EP 0 909 747 lehrt ein Verfahren zur Erzeugung einer selbstreinigenden Oberfläche. Die Oberfläche weist hydrophobe Erhebungen mit einer Höhe von 5 bis 200 µm auf. Hergestellt wird eine derartige Oberfläche durch Aufbringen einer Dispersion von Pulverpartikeln und einem inerten Material in einer Siloxan-Lösung und anschließendem Aushärten. Die strukturbildenden Partikel werden also durch ein Hilfsmedium am Substrat fixiert.
  • WO 00/58410 kommt zu dem Ergebnis, dass es technisch möglich ist, Oberflächen von Gegenständen künstlich selbstreinigend zu machen. Die hierfür nötigen Oberflächenstrukturen aus Erhebungen und Vertiefungen haben einen Abstand zwischen den Erhebungen der Oberflächenstrukturen im Bereich von 0,1 bis 200 µm und eine Höhe der Erhebung im Bereich 0,1 bis 100 µm. Die hierfür verwendeten Materialien müssen aus hydrophoben Polymeren oder dauerhaft hydrophobiertem Material bestehen.
  • In DE 101 18 348 werden Polymerfasern mit selbstreinigenden Oberflächen beschrieben, bei denen die selbstreinigende Oberfläche durch Einwirken eines Lösemittels, welches strukturbildende Partikel aufweist, Anlösen der Oberfläche der Polymerfasern durch das Lösemittel, Anheften der strukturbildenden Partikel an die angelöste Oberfläche und Entfernen des Lösemittels, erhalten wird. Der Nachteil dieses Verfahrens besteht darin, dass beim Verarbeiten der Polymerfasern (Spinnen, Stricken etc.) die strukturbildenden Partikel und damit die Struktur, welche die selbstreinigende Oberfläche bewirkt, beschädigt werden können oder unter Umständen sogar ganz verloren gehen können und damit der Selbstreinigungseffekt ebenfalls verloren geht.
  • In DE 101 18 346 werden textile Flächengebilde mit selbstreinigender und wasserabweisender Oberfläche, aufgebaut aus mindestens einem synthetischen und/oder natürlichen textilen Basismaterial A und einer künstlichen, mindestens teilweise hydrophoben Oberfläche mit Erhebungen und Vertiefungen aus Partikeln, die ohne Klebstoffe, Harze oder Lacke mit dem Basismaterial A fest verbunden sind, beschrieben, die durch Behandlung des Basismaterials A mit zumindest einem Lösemittel, welches die Partikel ungelöst enthält, und Entfernen des Lösemittels, wobei zumindest ein Teil der Partikel mit der Oberfläche des Basismaterials A fest verbunden werden, erhalten werden.
  • Keinem dieser Dokumente konnte aber entnommen werden, dass sich durch Aufbringen von hydrophoben Partikeln bzw. von nicht hydrophoben Partikeln, die nach dem Aufbringen hydrophobiert werden, textile Flächengebilde herstellen lassen, die eine erhöhte Wasserdichtheit aufweisen.
  • Gegenstand der vorliegenden Erfindung ist deshalb ein Verfahren zur Erhöhung der Wasserdichtigkeit von porösen textilen Flächengebilden, welches dadurch gekennzeichnet ist, dass auf die textilen Flächengebilde hydrophobe Partikel oder nicht hydrophobe Partikel, die in einem anschließenden Verfahrensschritt hydrophobiert werden, mit einer mittleren Partikelgröße von 0,02 bis 100 µm trocken aufgebracht werden, welche an den Fasern der textilen Flächengebilde fixiert werden und die so die Oberflächen der Fasern mit einer Struktur aus Erhebungen und/oder Vertiefungen ausgerüstet werden, wobei die Erhebungen einen Abstand von 20 nm bis 100 µm und eine Höhe von 20 nm bis 100 µm aufweisen.
  • Ebenfalls Gegenstand der vorliegenden Erfindung sind textile Flächengebilde mit erhöhter Wasserdichtigkeit, welche dadurch gekennzeichnet sind, dass die Flächengebilde Fasern aufweisen, die eine hydrophobe Oberflächenstruktur aus Erhebungen mit einer mittleren Höhe von 50 nm bis 25 µm und einem mittleren Abstand von 50 nm bis 25 µm aufweisen.
  • Die erfindungsgemäßen Flächengebilde sind vielseitig verwendbar. Als Membranen haben sie gegenüber herkömmlichen rein organischen Membranen den Vorteil, dass auf Grund der selbstreinigenden Eigenschaften deutlich höhere Standzeiten auf als Membrane ohne selbstreinigende Oberflächen. Durch die Hydrophobierung der Oberflächen der Membrane durch die hydrophoben Partikel, werden die Poren, insbesondere die Anzahl der Poren sowie deren Größe im wesentlichen nicht durch die Hydrophobierung beeinflusst, weshalb ein erfindungsgemäßes Flächengebilde nahezu dieselben Fluss- bzw. Rückhalteeigenschaften aufweist, wie das entsprechende unbehandelte Flächengebilde (natürlich mit Ausnahme der Durchlässigkeit für Wasser).
  • Sowohl textile Flächengebilde als auch Membranen zeichnen sich durch eine hohe Porosität auf. Nach unseren Erkenntnissen können die Poren oder Löcher als Kanäle angesehen werden, deren Breite durch die Porengröße und deren Länge durch ihren Weg durch die Membran bzw. das Flächengebilde bestimmt wird. Üblicherweise ist die Länge dieser Kanäle länger als die Dicke der Textilien. Durch diese Kanäle muss Wasser diffundieren.
  • Auch als technische Textilien weisen die erfindungsgemäßen Flächengebilde erhebliche Vorteile auf. Die Wasserdampfpermeabilität wird nicht reduziert obwohl die Permeabilität für flüssiges Wasser erheblich verringert wird. Dieser Effekt wird auch bei der Dampfpermeation ausgenutzt, weshalb sich die erfindungsgemäßen Flächengebilde besonders gut als Membran in solchen Verfahren eigenen. Das Verfahren zur Herstellung der Flächengebilde hat den Vorteil, dass es auf sehr einfache Weise, z.B. durch Aufsprühen von Partikeln hergestellt werden kann.
  • Das erfindungsgemäße Verfahren sowie mit diesem Verfahren hergestellt textile Flächengebilde werden nachfolgend beschrieben, ohne dass die Erfindung auf diese Ausführungsformen beschränkt sein soll.
  • Das erfindungsgemäße Verfahren zur Erhöhung der Wasserdichtigkeit von porösen textilen Flächengebilden zeichnet sich dadurch aus, dass auf textile Flächengebilde Partikel, insbesondere hydrophobe Partikel oder nicht hydrophobe Partikel, die in einem anschließenden Verfahrensschritt hydrophobiert werden, mit einer mittleren Partikelgröße von 0,02 bis 100 µm trocken aufgebracht werden, welche an den Fasern bzw. dem Substart der textilen Flächengebilde fixiert werden und die so die Oberflächen der Fasern bzw. des Substarts mit einer Struktur aus Erhebungen und/oder Vertiefungen ausgerüstet werden, wobei die Erhebungen einen Abstand von 20 nm bis 100 µm und eine Höhe von 20 nm bis 100 µm aufweisen. Unter trockenem Aufbringen wird im Rahmen der vorliegenden Erfindung verstanden, dass keine Flüssigkeit bei diesem Verfahrensschritt anwesend ist.
  • Als textile Flächengebilde können Gewirke, Gewebe, Vliese oder Filze oder Membrane eingesetzt werden. Vorzugsweise weisen solche Flächengebilde eine mittlere Maschenweite bzw. mittlere Porengröße von 0,5 bis 200 µm vorzugsweise von 0,5 µm bis 50 µm und besonders bevorzugt von 0,5 µm bis 10 µm auf.
  • Die textilen Flächengebilde weisen vorzugsweise Fasern auf, die Polymere auf der Basis von Polycarbonaten, Poly(meth)acrylaten, Polyamiden, PVC, Polyethylenen, Polypropylenen, aliphatischen linearen- oder verzweigten Alkenen, cyclischen Alkenen, Polystyrolen, Polyestern, Polyethersulfonen, Polyacrylnitril oder Polyalkylenterephthalaten, sowie deren Gemische oder Copolymere, aufweisen oder aus solchen bestehen.
  • In einer ersten Ausführungsform des erfmdungsgemäßen Verfahrens werden die Partikel durch ein elektrostatisches Sprühverfahren auf die textilen Flächengebilde aufgebracht. Das Fixieren der Partikel kann einfach durch elektrostatische Anziehungskräfte erfolgen.
  • In einer zweiten Ausführungsform des erfmdungsgemäßen Verfahrens werden die Partikel durch einen mechanischen Impuls feinst verteilt auf die textilen Flächengebilde aufgebracht, beispielsweise mittels einer Gegenstrahlmühle. Hierbei werden die noch teilweise zusammenhängenden Partikel, auch Aufgabegut genannt, in die Gegenstrahlmühle gegeben und in einem Luftstrahl in der Mühle ganz oder teilweise vereinzelt und dann anschließend über ein Sichterrad beschleunigt aus der Gegenstrahlmühle auf das textile Flächengebilde aufgetragen.
  • Zum Erzielen einer haltbaren Fixierung kann es vorteilhaft sein, wenn vor dem Aufbringen der Partikel ein Bindersystem auf die textilen Flächengebilde aufgebracht wird, anschließend die Partikel aufgebracht werden und durch Verfestigen des Bindersystems die Partikel an den Oberflächen der Fasern fixiert werden. Das Bindersystem kann z.B. ein Lack- oder Klebstoffsystem sein, welches thermisch, chemisch oder Strahlen-induziert verfestigt wird. In einer bevorzugten Ausführungsart der erfmdungsgemäßen Verfahrens ist das Bindersystem ein mittels thermischer Energie und/oder Lichtenergie härtbarer Lack, ein Zweikomponenten-Lacksystem oder ein anderes reaktives Lacksystem, wobei die Härtung vorzugsweise durch Polymerisation oder Vernetzung erfolgt. Besonders bevorzugt weist der härtbare Lack Polymerisate und/oder Copolymerisate aus einfach und/oder mehrfach ungesättigten Acrylaten und/oder Methacrylaten auf. Die Mischungsverhältnisse können in weiten Grenzen variiert werden. Ebenso ist es möglich, dass der härtbare Lack Verbindungen mit funktionellen Gruppen, wie z.B. Hydroxy-Gruppen, Epoxid-Gruppen, Amin-Gruppen, oder fluorhaltige Verbindungen, wie z.B. perfluorierte Ester der Acrylsäure, aufweist. Dies ist insbesondere dann vorteilhaft, wenn die Verträglichkeit von Lack und hydrophoben Partikeln wie beispielsweise von Aerosil R 8200 mittels N-[2-(Acryloyloxy)-ethyl]-N-ethylperfluoroctan-1-sulfonsäureamid aufeinander abgestimmt werden. Als Lacke sind nicht nur Lacke auf Acrylharz-Basis einsetzbar, sondern auch Lacke auf Polyurethan-Basis oder aber Lacke, die Polyurethanacrylate oder Siliconacrylate aufweisen. Die Bindersysteme können durch Aufsprühen des Bindersystems auf das Flächengebilde oder durch Eintauchen des Flächengebildes in das Bindersystem auf das Flächengebilde aufgebracht werden.
  • Vor dem Verfestigen des Bindersystems werden die Partikel auf das Bindersystem bzw. die Oberfläche des Flächengebildes bzw. deren Fasern aufgebracht. Das Aufbringen kann durch elektrostatisches Sprühen, durch Sprühen, durch Aufstreuen oder Aufwalzen erfolgen.
  • Die eingesetzten Partikel sind vorzugsweise ausgewählt aus Silikaten, Mineralien, Metalloxiden, Metallpulvern, Kieselsäuren, Pigmenten oder Polymeren, ganz besonders bevorzugt aus pyrogenen Kieselsäuren, Fällungskieselsäuren, Aluminiumoxid, Mischoxiden, dotierten Silikaten, Titandioxiden oder pulverförmige Polymeren.
  • Die eingesetzten Partikel weisen bevorzugte eine mittlere Partikelgröße von 0,05 bis 30 µm, vorzugsweise von 0,1 bis 10 µm auf. Geeignete Partikel können aber auch einen Durchmesser von kleiner als 500 nm aufweisen oder sich aus Primärteilchen zu Agglomeraten oder Aggregaten mit einer Größe von 0,2 bis 100 µm zusammenlagern.
  • Besonders bevorzugte Partikel, welche die Erhebungen bilden, sind solche, die eine unregelmäßige Feinstruktur im Nanometerbereich auf der Oberfläche aufweisen. Dabei weisen die Partikel mit der unregelmäßigen Feinstruktur vorzugsweise Erhebungen bzw.
  • Feinsttukturen mit einem Aspektverhältnis von größer 1, besonders bevorzugt größer 1,5 auf. Das Aspektverhältnis ist wiederum definiert als Quotient aus maximaler Höhe zu maximaler Breite der Erhebung. In Fig. 1 wird der Unterschied der Erhebungen, die durch die Partikel gebildet werden und die Erhebungen, die durch die Feinstruktur gebildet werden schematisch verdeutlicht. Die Figur Fig. 1 zeigt die Oberfläche eines Flächengebildes X, die Partikel P aufweist (Zur Vereinfachung der Darstellung ist nur ein Partikel abgebildet). Die Erhebung, die durch den Partikel selbst gebildet wird, weist ein Aspektverhältnis von ca. 0,71 auf, berechnet als Quotient aus der maximalen Höhe des Partikels mH, die 5 beträgt, da nur der Teil des Partikels einen Beitrag zur Erhebung leistet, der aus der Oberfläche des Flächengebildes X herausragt, und der maximalen Breite mB, die im Verhältnis dazu 7 beträgt. Eine ausgewählte Erhebung der Erhebungen E, die durch die Feinstruktur der Partikel auf den Partikeln vorhanden sind, weist ein Aspektverhältnis von 2,5 auf, berechnet als Quotient aus der maximalen Höhe der Erhebung mH', die 2,5 beträgt und der maximalen Breite mB', die im Verhältnis dazu 1 beträgt.
  • Bevorzugte Partikel, die eine unregelmäßige Feinstruktur im Nanometerbereich an der Oberfläche aufweisen, sind solche Partikel, die zumindest eine Verbindung, ausgewählt aus pyrogener Kieselsäure, Fällungskieselsäuren, Aluminiumoxid, Mischoxiden, dotierten Silikaten, Titandioxiden oder pulverförmige Polymeren aufweisen.
  • Es kann vorteilhaft sein, wenn die Partikel hydrophobe Eigenschaften aufweisen, wobei die hydrophoben Eigenschaften auf die Materialeigenschaften der an den Oberflächen der Partikel vorhandenen Materialien selbst zurückgehen können oder aber durch eine Behandlung der Partikel mit einer geeigneten Verbindung erhalten werden kann. Die Partikel können vor oder nach dem Aufbringen auf die Oberfläche des Flächengebildes mit hydrophoben Eigenschaften ausgestattet worden sein.
  • Zur Hydrophobierung der Partikel vor oder nach dem Aufbringen auf das Flächengebilde können diese mit einer zur Hydrophobierung geeigneten Verbindung z.B. aus der Gruppe der Alkylsilane, der Fluoralkylsilane oder der Disilazane behandelt werden.
  • Im Folgenden werden ganz bevorzugte Partikel näher erläutert. Die Partikel können aus unterschiedlichen Bereichen kommen. Beispielsweise können es Silikate sein, dotierte Silikate, Mineralien, Metalloxide, Aluminiumoxid, Kieselsäuren oder Titandioxide, Aerosile oder pulverförmige Polymere, wie z. B. sprühgetrocknete und agglomerierte Emulsionen oder cryogemahlenes PTFE. Als Partikelsysteme eignen sich im Besonderen hydrophobierte pyrogene Kieselsäuren, sogenannte Aerosile® . Zur Generierung der selbstreinigenden Oberflächen ist neben der Struktur auch eine Hydrophobie nötig. Die eingesetzten Partikel können selbst hydrophob sein, wie beispielsweise pulverförmiges Polytetrafluorethylen (PTFE). Die Partikel können hydrophob ausgerüstet sein, wie beispielsweise das Aerosil VPR 411® oder Aerosil R 8200® . Sie können aber auch nachträglich hydrophobiert werden. Hierbei ist es unwesentlich, ob die Partikel vor dem Auftragen oder nach dem Auftragen hydrophobiert werden. Solche zu hydrophobierenden Partikel sind beispielsweise Aeroperl 90/30® , Sipernat Kieselsäure 350® , Aluminiumoxid C® , Zirkonsilikat, vanadiumdotiert oder Aeroperl P 25/20® . Bei letzteren erfolgt die Hydrophobierung zweckmäßig durch Behandlung mit Perfluoralkylsilanverbindungen und anschließender Temperung. Besonders bevorzugte Partikel sind die Aerosile® VPLE 8241, VPR411 und R202 der Degussa AG.
  • Mittels des erfmdungsgemäßen Verfahrens sind die erfmdungsgemäßen textilen Flächengebilde mit erhöhter Wasserdichtigkeit herstellbar, die sich dadurch auszeichnen, dass die Flächengebilde Fasern aufweisen, die eine hydrophobe Oberflächenstruktur aus Erhebungen mit einer mittleren Höhe von 50 nm bis 25 µm und einem mittleren Abstand von 50 nm bis 25 µm aufweisen.
  • Die durch die Partikel gebildete Oberflächenstruktur, die selbstreinigende Eigenschaften aufweisen kann, weist vorzugsweise Erhebungen mit einer mittleren Höhe von 20 nm bis 25 µm und einem mittleren Abstand von 20 nm bis 25 µm, vorzugsweise mit einer mittleren Höhe von 50 nm bis 10 µm und/oder einem mittleren Abstand von 50 nm bis 10 µm und ganz besonders bevorzugt mit einer mittleren Höhe von 50 nm bis 4 µm und/oder einen mittleren Abstand von 50 nm bis 4 µm auf. Ganz besonders bevorzugt weisen die erfindungsgemäßen Flächengebilde Fasern mit Oberflächen mit Oberflächen Erhebungen mit einer mittleren Höhe von 0,25 bis 1 µm und einem mittleren Abstand von 0,25 bis 1 µm auf. Unter dem mittleren Abstand der Erhebungen wird im Sinne der vorliegenden Erfindung der Abstand der höchsten Erhebung einer Erhebung zur nächsten höchsten Erhebung verstanden. Hat eine Erhebung die Form eines Kegels so stellt die Spitze des Kegels die höchste Erhebung der Erhebung dar. Handelt es sich bei der Erhebung um einen Quader, so stellte die oberste Fläche des Quaders die höchste Erhebung der Erhebung dar. Die Partikel liegen vorzugsweise in einem mittleren Abstand zueinander von 0 bis 10 Partikeldurchmessern, vorzugsweise 3 bis 5 Partikeldurchmesser zueinander vor.
  • Als Partikel können die oben beschriebenen Partikel vorhanden sein. Die Partikel können auf der Oberfläche der Fasern der textilen Flächengebilde direkt durch physikalische Kräfte fixiert sein oder aber in der Oberfläche der Fasern selbst oder mittels eines Bindersystems. Die textilen Flächengebilde können z.B. Fasern aufweisende Gewirke, Vliese, Gewebe oder Filze oder Membranen sein. Unter Fasern werden im Rahmen der vorliegenden Erfindung auch Filamente, Fäden oder ähnliche Objekte verstanden, die zu Vliesen, Geweben, Gewirken oder Filzen verarbeitet werden können.
  • Ganz besonders bevorzugte textile Flächengebilde weisen ein Polymervlies auf. Die Polymerfasern sind dabei bevorzugt ausgewählt aus Polyacrylnitril, Polyamiden, Polyimiden, Polyacrylaten, Polytetrafluorethylen, Polyester, wie z.B. Polyethylenterephthalat und/oder Polyolefinen, wie z.B. Polypropylen, Polyethylen oder Mischungen dieser Polymere. Es kann vorteilhaft sein, wenn die Polymerfasern des textilen Flächengebildes einen Durchmesser von 1 bis 25 µm, vorzugsweise von 2 bis 15 µm aufweisen. Sind die Polymerfasern deutlich dicker als die genannten Bereiche, leidet die Flexibilität des Flächengebildes. Sind die Polymerfasern deutlich dünner, nimmt die Reißfestigkeit des textilen Flächengebildes so stark ab, dass eine gewerbliche Nutzung und Weiterverarbeitung nur noch schwer möglich ist.
  • Weisen die erfindungsgemäßen Flächengebilde selbstreinigende Eigenschaften auf, so sind diese zurückzuführen auf die Benetzungseigenschaften, welche sich durch den Randwinkel, den ein Wassertropfen mit einer Oberfläche bildet, bestimmt. Ein Randwinkel von 0 Grad bedeutet dabei eine vollständige Benetzung der Oberfläche. Die Messung des statischen Randwinkels erfolgt in der Regel mittels Geräten, bei denen der Randwinkel optisch bestimmt wird. Auf glatten hydrophoben Oberflächen werden üblicherweise statische Randwinkel von kleiner 125 ° gemessen. Die vorliegenden Flächengebilde mit selbstreinigenden Eigenschaften weisen statische Randwinkel von vorzugsweise größer 130 ° auf, bevorzugt größer 140 ° und ganz besonders bevorzugt größer 145 ° auf. Es wurde außerdem gefunden, dass eine Oberfläche nur dann gute selbstreinigende Eigenschaften aufweist, wenn diese eine Differenz zwischen Fortschreit- und Rückzugswinkel von maximal 10 ° aufweist, weshalb erfindungsgemäße Flächengebilde mit selbstreinigenden Eigenschaften vorzugsweise eine Differenz zwischen Fortschreit- und Rückzugswinkel von kleiner 10°, vorzugsweise kleiner 5° und ganz besonders bevorzugt kleiner 4° aufweisen. Für die Bestimmung des Fortschreitwinkels wird ein Wassertropfen mittels einer Kanüle auf die Oberfläche gesetzt und durch Zugabe von Wasser durch die Kanüle der Tropfen auf der Oberfläche vergrößert. Während der Vergrößerung gleitet der Rand des Tropfens über die Oberfläche und der Kontaktwinkel wird Fortschreitwinkel bestimmt. Der Rückzugswinkel wird an dem selben Tropfen gemessen, nur wird durch die Kanüle dem Tropfen Wasser entzogen und während des Verkleinerns des Tropfens der Kontaktwinkel gemessen. Der Unterschied zwischen beiden Winkeln wird als Hysterese bezeichnet. Je kleiner der Unterschied ist, desto geringer ist die Wechselwirkung des Wassertropfens mit der Oberfläche der Unterlage und desto besser ist der Lotus-Effekt (die selbstreinigende Eigenschaft).
  • Je nach Herstellungsart der erfindungsgemäßen Flächengebilde werden Oberflächenstrukturen auf den Fasern erhalten, die ein unterschiedliches durch die Partikel gebildetes Aspektverhältnis aufweisen. Werden die Partikel in der Oberfläche der Fasern verankert oder werden die Partikel mit einem Bindersystem verankert, so weist die Oberflächenstruktur bevorzugt ein Aspektverhältnis der Erhebungen von größer 0,15 auf. Vorzugsweise weisen die Erhebungen, die durch die Partikel selbst gebildet werden, ein Aspektverhältnis von 0,3 bis 0,9 auf, besonders bevorzugt von 0,5 bis 0,8 auf. Das Aspektverhältnis ist dabei defmiert als der Quotient von maximaler Höhe zur maximalen Breite der Struktur der Erhebungen.
    Um die genannten Aspektverhältnisse zu erzielen ist es vorteilhaft, wenn zumindest ein Teil der Partikel, vorzugsweise mehr als 50 % der Partikel nur bis zu 90 % ihres Durchmessers in die Oberfläche bzw. in das Bindersystem eingebettet sind. Die Oberfläche weist deshalb bevorzugt Partikel auf, die mit 10 bis 90 %, bevorzugt 20 bis 50 % und ganz besonders bevorzugt von 30 bis 40 % ihres mittleren Partikeldurchmessers in der Oberfläche bzw. in dem Bindersystem verankert sind und damit mit Teilen ihrer inhärent zerklüfteten Oberfläche noch aus der Oberfläche herausragen. Auf diese Weise ist gewährleistet, dass die Erhebungen, die durch die Partikel selbst gebildet werden, ein genügend großes Aspektverhältnis von vorzugsweise zumindest 0,15 aufweisen. Auf diese Weise wird außerdem erreicht, dass die fest verbundenen Partikel sehr haltbar mit der Oberfläche der Folie verbunden sind. Das Aspekt-Verhältnis ist dabei definiert als das Verhältnis von maximaler Höhe zu maximaler Breite der Erhebungen. Ein als ideal kugelförmiger angenommener Partikel, der zu 70 % aus der Oberfläche der Faser des Flächengebildes herausragt weist gemäß dieser Definition ein Aspektverhältnis von 0,7 auf.
  • Es kann vorteilhaft sein, wenn das erfindungsgemäße textile Flächengebilde ein zweites oder mehrere, behandelte oder unbehandelte Flächengebilde aufweist, welche auf einer oder beiden Seiten des mit Partikeln ausgerüsteten Flächengebildes vorhanden sind. Die zusätzlich vorhandenen Flächengebilde können mit dem ersten Flächengebilde verbunden sein. Dies kann z.B. durch Verkleben, insbesondere an den Rändern erfolgen. Die Flächengebilde können aber auch mit dem ersten Flächengebilde aber auch untereinander vernäht oder versteppt sein, so dass ein fester Verbund als textiles Flächengebilde vorliegt. Durch das Aufbringen von nicht mit oder mit Partikeln ausgerüsteten Flächengebilden auf eine oder zwei Seiten des mit Partikeln ausgerüsteten Flächengebildes kann erreicht werden, dass, insbesondere bei nicht fest mit der Oberfläche der Fasern verankerten Partikeln, diese Partikel nicht von dem textilen Flächengebilde fortgetragen werden sondern auf der Oberfläche fest fixiert bleiben. Durch die Verwendung von unterschiedlichen Flächengebilden auf einer oder beiden Seiten können Flächengebilde hergestellt werden, deren eine Seite eine besondere hohe Wasserdichtigkeit aufweist, während die andere Seite eine etwas hydrophile Oberfläche aufweist. Auf diese Weise sind textile Flächengebilde erhältlich, die insbesondere im Sportbereicht bestens geeignet sind, Feuchtigkeit in Form von Schweiß durch das Flächengebilde nach außen zu führen und gleichzeitig ein Eindringen von Regenwasser zu verhindern.
  • Die erfindungsgemäßen textilen Flächengebilde weisen eine Wasserdichtigkeit auf, die deutlich besser ist als die Wasserdichtigkeit von textilen Flächengebilden, die keine Partikel aufweisen. Die maximale Maschenweite bzw. Porenweite von zu behandelnden Flächengebilden nimmt mit steigender Dicke der Flächengebilde zu, da die Kanäle auf Grund der steigenden Dicke länger werden. Vorzugsweise weisen erfindungsgemäße Flächengebilde eine Wasserdichtigkeit von größer 20 cm, vorzugsweise größer 25 cm Wassersäule, gemessen gemäß DIN EN 13562, auf.
  • Die erfindungsgemäßen textilen Flächengebilde können zur Herstellung von Schirmen, Markisen, Zelten, Dachunterspannbahnen, Hygieneartikeln, Windeln, textilen Baumaterialien und ähnliches verwendet werden. Das Verfahren kann zur Ausrüstung von Schirmen, Zelten, Markisen, textilen Baumaterialien, Dachunterspannbahnen und ähnlichem mit erfindungsgemäßen textilen Flächengebilden verwendet werden. Die erfindungsgemäß ausgerüsteten Artikel zeigen eine besonders gute Wasserdichtigkeit.
  • An Hand der Figur Fig. 1 wird das erfindungsgemäße Verfahren und das erfmdungsgemäße textile Flächengebilde näher erläutert, ohne darauf beschränkt zu sein.
  • In Fig. 1 wird der Unterschied der Erhebungen, die durch die Partikel gebildet werden und die Erhebungen, die durch die Feinstruktur gebildet werden, schematisch verdeutlicht. Die Figur zeigt vereinfacht die Oberfläche eines Flächengebildes X, die Partikel P aufweist (Zur Vereinfachung der Darstellung ist nur ein Partikel abgebildet). Die Erhebung, die durch den Partikel selbst gebildet wird, weist ein Aspektverhältnis von ca. 0,71 auf, berechnet als Quotient aus der maximalen Höhe des Partikels mH, die 5 beträgt, da nur der Teil des Partikels einen Beitrag zur Erhebung leistet, der aus der Oberfläche des Flächengebildes bzw. der Fasern des Flächengebildes X herausragt, und der maximalen Breite mB, die im Verhältnis dazu 7 beträgt. Eine ausgewählte Erhebung der Erhebungen E, die durch die Feinstruktur der Partikel auf den Partikeln vorhanden sind, weist ein Aspektverhältnis von 2,5 auf, berechnet als Quotient aus der maximalen Höhe der Erhebung mH', die 2,5 beträgt und der maximalen Breite mB', die im Verhältnis dazu 1 beträgt.
  • Das erfmdungsgemäße Verfahren wird an Hand der folgenden Beispiele beispielhaft beschrieben, ohne dass die Erfindung darauf beschränkt sein soll.
  • Beispiel 1: Gegenstrahlmühle
  • Eine Polypropylen-Vlies mit einem Flächengewicht von 50 g/m2 wurde mit einer Gegenstrahlmühle der Firma Ulf Noll beschichtet. Das Mahlprinzip basiert auf der Beschleunigung von Partikeln durch Preßluft, die mit hohe Geschwindigkeit aufeinander Prallen und dadurch zerkleinert werden. Der große Vorteil des Prinzips "Produkt auf Produkt mahlen" besteht darin, dass keine Kontamination mit anderen Stoffen erfolgt und der Verschleiß gering ist. Die Probe wurde am Ausgang der Gegenstrahlmühle vorbei geführt und mit einem Gemisch aus Partikeln und Luft besprüht. Die Mahlluft hatte einen Druck von 0,5 bar und der Abstand des Ausgangs der Gegenstrahlmühle zur Vliesprobe betrug 450 mm. Das Sichterrad der Gegenstrahlmühle hatte eine Drehzahl von 1560 U/min bei einem Düsendurchmesser von 0,5 mm und einem Abstand von 40 mm.
  • Zur Überprüfung der Wasserdichtheit wird das Gewebe unter eine Glassäule mit einem Durchmesser von 2,5 cm gespannt. Die Glassäule wird nun langsam von oben mit Wasser gefüllt. Die Befüllung wurde gestoppt, als der zweite Tropfen Wasser durch das erfindungsgemäße behandelte Gewebe gedrückt worden ist. Die bis zu diesem Zeitpunkt in der Glassäule erzeugte Wassersäule wurde gemessen. Auf die gleiche Weise wurde ein unbehandeltes Gewebe getestet. Es wurde festgestellt, dass sich auf das erfindungsgemäß behandelte Gewebe eine Wassersäule von 102 cm Höhe aufbauen ließ, bevor der zweite Tropfen Wasser durch das Gewebe gedrückt wurde. Auf das zu Vergleichszwecken getestete unbehandelte Gewebe konnte nur eine Wassersäule von 11 cm Höhe aufgebaut werden, bevor der zweite Tropfen Wasser durch das Gewebe gedrückt wurde. Durch die erfindungsgemäße Behandlung konnte die Wasserdichtheit des Polyestergewebes um über 600 % gesteigert werden.
  • Beispiel 2:
  • Eine Polypropylen-Vlies mit einem Flächengewicht von 50 g/m2 wird in eine elektrostatische Beschichtungskammer (Surecoat, Nordson) gelegt. Für die elektrostatische Beschichtung wurden die nachfolgend aufgelisteten Parameter gewählt:
    Druck der Zerstäubungsluft: 0,5 bar
    Druck der Pistolenzufuhr: 1 bar
    Druck der Wirbelluft: 1 bar
    Stromstärke: 25 mA bei 40 kV
    Verwendete Partikel: Aerosil VPLE 8241
  • Das Aerosil® VPLE 8241 (Degussa AG) wurde direkt auf das liegende Vlies aufgetragen. Die Pistole wurde mit einer Geschwindigkeit von ca. 6 m/min über die Oberfläche geführt. Das überstehende VPLE 8241 wurde mit einer elektrisch nicht geladenen Metallwalze, die über das behandelte Vlies gefährt wurde, aufgesammelt.
  • Anschließend wurde das Verhalten des behandelten Vlieses charakterisiert. Wassertropfen perlten sehr gut ab. Der Wasserdurchtritt durch das so ausgerüstete Vlies erfolgte erst, als die Wassersäule ein Höhe von 30 cm überschritt (gemessen nach DIN EN 13562). Bei einem nicht behandelten Polypropylen-Vlies konnte keine Wassersäule aufgebaut werden.

Claims (13)

  1. Verfahren zur Erhöhung der Wasserdichtigkeit von porösen textilen Flächengebilden,
    dadurch gekennzeichnet,
    dass auf die textilen Flächengebilde hydrophobe Partikel oder nicht hydrophobe Partikel, die in einem anschließenden Verfahrensschritt hydrophobiert werden, mit einer mittleren Partikelgröße von 0,02 bis 100 µm trocken aufgebracht werden, welche an den Fasern der textilen Flächengebilde fixiert werden und so die Oberflächen der Fasern mit einer Struktur aus Erhebungen und/oder Vertiefungen ausgerüstet werden, wobei die Erhebungen einen Abstand von 20 nm bis 100 µm und eine Höhe von 20 nm bis 100 µm aufweisen.
  2. Verfahren gemäß Anspruch 1,
    dadurch gekennzeichnet,
    dass als textile Flächengebilde Gewirke, Gewebe, Vliese oder Filze oder Membrane eingesetzt werden.
  3. Verfahren gemäß Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Fasern der textilen Flächengebilde, Polymere auf der Basis von Polycarbonaten, Poly(meth)acrylaten, Polyamiden, PVC, Polyethylenen, Polypropylenen, aliphatischen linearen- oder verzweigten Alkenen, cyclischen Alkenen, Polystyrolen, Polyestern, Polyethersulfonen, Polyacrylnitril oder Polyalkylenterephthalaten, sowie deren Gemische oder Copolymere, aufweisen oder aus diesen bestehen.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Partikel durch ein elektrostatisches Sprühverfahren auf die textilen Flächengebilde aufgebracht werden.
  5. Verfahren gemäß einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Partikel durch einen mechanischen Impuls feinst verteilt auf die textilen Flächengebilde aufgebracht werden.
  6. Verfahren gemäß Anspruch 4,
    dadurch gekennzeichnet,
    dass vor dem Aufbringen der Partikel ein Bindersystem auf die textilen Flächengebilde aufgebracht wird, anschließend die Partikel aufgebracht werden und durch Verfestigen des Bindersystems die Partikel an den Oberflächen der Fasern fixiert werden.
  7. Verfahren nach mindestens einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Partikel eine mittlere Partikelgröße von 0,05 bis 30 µm aufweisen.
  8. Verfahren gemäß einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass die nicht hydrophoben Partikel durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, Fluoralkylsilane und/oder Disilazane mit hydrophoben Eigenschaften ausgestattet werden.
  9. Textile Flächengebilde mit erhöhter Wasserdichtigkeit,
    dadurch gekennzeichnet,
    dass die Flächengebilde Fasern aufweisen, die eine hydrophobe Oberflächenstruktur aus Erhebungen mit einer mittleren Höhe von 50 nm bis 25 µm und einem mittleren Abstand von 50 nm bis 25 µm aufweisen.
  10. Flächengebilde gemäß Anspruch 9,
    dadurch gekennzeichnet,
    hergestellt durch ein Verfahren gemäß zumindest einem der Ansprüche 1 bis 8.
  11. Flächengebilde gemäß Anspruch 9 oder 10,
    dadurch gekennzeichnet,
    dass sie eine Wasserdichtigkeit von größer 20 cm Wassersäule, gemessen gemäß DIN EN 13562, aufweisen.
  12. Flächengebilde gemäß Anspruch 11,
    dadurch gekennzeichnet,
    dass sie eine Wasserdichtigkeit von größer 25 cm Wassersäule aufweisen.
  13. Flächengebilde gemäß zumindest einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet,
    dass sie zur Herstellung von Schirmen, Zelten, Markisen, Dachunterspannbahnen, Hygieneartikeln, Windeln oder textilen Baumaterialien eingesetzt werden.
EP20050110307 2004-12-27 2005-11-03 Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung Withdrawn EP1674609A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410062740 DE102004062740A1 (de) 2004-12-27 2004-12-27 Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung

Publications (1)

Publication Number Publication Date
EP1674609A1 true EP1674609A1 (de) 2006-06-28

Family

ID=36061545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050110307 Withdrawn EP1674609A1 (de) 2004-12-27 2005-11-03 Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung

Country Status (4)

Country Link
US (1) US20060156475A1 (de)
EP (1) EP1674609A1 (de)
JP (1) JP2006193882A (de)
DE (1) DE102004062740A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124960A1 (de) * 2007-04-17 2008-10-23 Tex-A-Tec Ag Wasser, öl und schmutz abweisende ausrüstungen auf fasern und textilen flächengebilden
WO2009053205A2 (de) * 2007-10-25 2009-04-30 Evonik Degussa Gmbh Filtermaterialien mit erhöhtem staubabscheidegrad
US20150133013A1 (en) * 2013-11-11 2015-05-14 Mark D. Shaw Waterproof apertured surfaces or materials using nanoparticle hydrophobic treatments
US20150189960A1 (en) * 2013-11-11 2015-07-09 Mark D. Shaw Waterproof apertured surfaces or materials using nanoparticle hydrophobic treatments

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134477A1 (de) 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10208208B4 (de) * 2002-02-26 2012-03-08 Eaton Industries Gmbh Bausatz aus mehreren Bausatzelementen und einer Welle
DE10347569A1 (de) * 2003-10-14 2005-06-02 Degussa Ag Keramische, flexible Membran mit verbesserter Haftung der Keramik auf dem Trägervlies
DE102004006612A1 (de) * 2004-02-10 2005-08-25 Degussa Ag Keramischer Wandverkleidungsverbund
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates
DE102006008130A1 (de) * 2006-02-20 2007-08-23 Degussa Gmbh Verfahren zur Beschichtung von Substraten und Trägersubstraten
DE102004036073A1 (de) 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
DE102005052940A1 (de) * 2005-11-03 2007-05-10 Degussa Gmbh Verfahren zur Beschichtung von Substraten
DE102005052939A1 (de) * 2005-11-03 2007-05-10 Degussa Gmbh Herstellung von beschichteten Substraten
DE102005052938A1 (de) * 2005-11-03 2007-05-10 Degussa Gmbh Verfahren zur Beschichtung von Substraten mit Beschichtungssystemen enthaltend reaktive hydrophobe anorganische Füllstoffe
FR2894164B1 (fr) * 2005-12-01 2008-02-29 Centre Nat Rech Scient Preparation de substrats fibreux superhydrophobes
DE102006001641A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Substrate mit bioziden und/oder antimikrobiellen Eigenschaften
DE102006001639A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit elektromagnetisch abschirmenden Eigenschaften
DE102006001640A1 (de) 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit IR-Strahlung reflektierenden Eigenschaften
KR101161189B1 (ko) * 2006-07-31 2012-07-02 닛뽕소다 가부시키가이샤 막 물성 개선 처리 방법을 사용하여 이루어지는 유기 박막의 제조 방법
DE102006053326A1 (de) * 2006-11-10 2008-05-15 Bühler PARTEC GmbH Ausrüstung von Substraten
US20090042469A1 (en) * 2007-08-10 2009-02-12 Ut-Battelle, Llc Superhydrophilic and Superhydrophobic Powder Coated Fabric
US8153834B2 (en) * 2007-12-05 2012-04-10 E.I. Dupont De Nemours And Company Surface modified inorganic particles
US9441131B2 (en) * 2008-08-26 2016-09-13 Xerox Corporation CNT/fluoropolymer coating composition
US9062219B2 (en) * 2009-01-21 2015-06-23 Xerox Corporation Superhydrophobic nano-fabrics and coatings
US9217968B2 (en) 2009-01-21 2015-12-22 Xerox Corporation Fuser topcoats comprising superhydrophobic nano-fabric coatings
JP5455520B2 (ja) * 2009-09-24 2014-03-26 ユニ・チャーム株式会社 通気性、水解性及び不透水性を有するシート
US9329544B2 (en) 2010-01-25 2016-05-03 Xerox Corporation Polymer-based long life fusers and their methods of making
US9471019B2 (en) 2010-01-25 2016-10-18 Xerox Corporation Polymer-based long life fusers
NO2697473T3 (de) * 2014-01-13 2018-07-07
WO2016069027A1 (en) * 2014-10-29 2016-05-06 Nanonanousa, Llc Anti-microbial compositions and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076168A1 (de) * 2002-03-12 2003-09-18 Degussa Ag Herstellung von bahnenwaren mit selbstreinigenden oberflächen mittels eines kalandrierprozesses, bahnenwaren selbst und die verwendung dieser
WO2004015022A1 (de) * 2002-07-25 2004-02-19 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur flammpulverbeschichtung von oberflächen zur erzeugung des lotus-effektes
WO2004101880A1 (de) * 2003-05-15 2004-11-25 Degussa Ag Verwendung von mit fluorsilanen hydrophobierten partikeln zur herstellung von selbstreinigenden oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben eigenschaften

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20006010U1 (de) * 2000-03-31 2000-07-13 Creavis Tech & Innovation Gmbh Behälter mit strukturierten flüssigkeitsabweisenden und flüssigkeitsbenetzenden Teilbereichen der inneren Oberfläche
DE10061920A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende keramische Membran auf Basis einer Hydroxysilylsäure, Verfahren zu deren Herstellung und die Verwendung der Membran
DE10065797A1 (de) * 2000-12-30 2002-07-04 Creavis Tech & Innovation Gmbh Vorrichtung zur Kondensationsbeschleunigung mit Hilfe strukturierter Oberflächen
DE10100383A1 (de) * 2001-01-05 2002-07-11 Degussa Verfahren zur Aufbringung einer fluoralkylfunktionellen Organopolysiloxan-Beschichtung mit beständigen Wasser und Öl abweisenden Eigenschaften auf polymere Substrate
DE10110589A1 (de) * 2001-03-06 2002-09-12 Creavis Tech & Innovation Gmbh Geometrische Formgebung von Oberflächen mit Lotus-Effekt
DE10118349A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118351A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118345A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
DE10118346A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Textile Flächengebilde mit selbstreinigender und wasserabweisender Oberfläche
DE10118352A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10134477A1 (de) * 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10139574A1 (de) * 2001-08-10 2003-02-20 Creavis Tech & Innovation Gmbh Erhalt des Lotus-Effektes durch Verhinderung des Mikrobenwachstums auf selbstreinigenden Oberflächen
DE10159767A1 (de) * 2001-12-05 2003-06-18 Degussa Verfahren zur Herstellung von Gegenständen mit antiallergischen Oberflächen
DE10160055A1 (de) * 2001-12-06 2003-06-18 Degussa Diffus reflektierende Oberflächen zu deren Herstellung
DE10205007A1 (de) * 2002-02-07 2003-08-21 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von Schutzschichten mit schmutz- und wasserabweisenden Eigenschaften
DE10205783A1 (de) * 2002-02-13 2003-08-21 Creavis Tech & Innovation Gmbh Formkörper mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Formkörper
DE10208208B4 (de) * 2002-02-26 2012-03-08 Eaton Industries Gmbh Bausatz aus mehreren Bausatzelementen und einer Welle
DE10210666A1 (de) * 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Formgebungsverfahren zur Herstellung von Formkörpern mit zumindest einer Oberfläche, die selbstreinigende Eigenschaften aufweist sowie mit diesem Verfahren hergestellte Formkörper
DE10210673A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Spritzgusskörper mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Spritzgusskörper
DE10210668A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Vorrichtung, hergestellt durch Spritzgussverfahren, zur Aufbewahrung von Flüssigkeiten und Verfahren zur Herstellung dieser Vorrichtung
DE10210671A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Entformungsmittel, welches hydrophobe, nanoskalige Partikel aufweist sowie Verwendung dieser Entformungsmittel
DE10210674A1 (de) * 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Flächenextrudate mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Extrudate
DE10231757A1 (de) * 2002-07-13 2004-01-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
DE10242560A1 (de) * 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
EP1475426B1 (de) * 2003-04-24 2006-10-11 Goldschmidt GmbH Verfahren zur Herstellung von ablösbaren schmutz- und wasserabweisenden flächigen Beschichtungen
US7213309B2 (en) * 2004-02-24 2007-05-08 Yunzhang Wang Treated textile substrate and method for making a textile substrate
DE102004062743A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
DE102004062742A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Textile Substrate mit selbstreinigenden Eigenschaften (Lotuseffekt)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076168A1 (de) * 2002-03-12 2003-09-18 Degussa Ag Herstellung von bahnenwaren mit selbstreinigenden oberflächen mittels eines kalandrierprozesses, bahnenwaren selbst und die verwendung dieser
WO2004015022A1 (de) * 2002-07-25 2004-02-19 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur flammpulverbeschichtung von oberflächen zur erzeugung des lotus-effektes
WO2004101880A1 (de) * 2003-05-15 2004-11-25 Degussa Ag Verwendung von mit fluorsilanen hydrophobierten partikeln zur herstellung von selbstreinigenden oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben eigenschaften

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112204A1 (en) * 2007-03-27 2010-05-06 Heiq Materials Ag Water-, oil-, and dirt-repellent finishes on fibers and textile fabrics
WO2008124960A1 (de) * 2007-04-17 2008-10-23 Tex-A-Tec Ag Wasser, öl und schmutz abweisende ausrüstungen auf fasern und textilen flächengebilden
EP2444545A1 (de) * 2007-04-17 2012-04-25 HeiQ Materials AG Wasser, Öl und Schmutz abweisende Ausrüstungen auf Fasern und textilen Flächengebilden
WO2009053205A2 (de) * 2007-10-25 2009-04-30 Evonik Degussa Gmbh Filtermaterialien mit erhöhtem staubabscheidegrad
WO2009053205A3 (de) * 2007-10-25 2009-08-13 Evonik Degussa Gmbh Filtermaterialien mit erhöhtem staubabscheidegrad
US20150133013A1 (en) * 2013-11-11 2015-05-14 Mark D. Shaw Waterproof apertured surfaces or materials using nanoparticle hydrophobic treatments
US20150189960A1 (en) * 2013-11-11 2015-07-09 Mark D. Shaw Waterproof apertured surfaces or materials using nanoparticle hydrophobic treatments
EP3068248A4 (de) * 2013-11-11 2017-08-02 Mark D. Shaw Perforierte wasserdichte oberflächen oder materialien mit bearbeitung hydrophober nanopartikel

Also Published As

Publication number Publication date
DE102004062740A1 (de) 2006-07-13
JP2006193882A (ja) 2006-07-27
US20060156475A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
EP1674609A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
EP1674611A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
DE102004062742A1 (de) Textile Substrate mit selbstreinigenden Eigenschaften (Lotuseffekt)
WO2004033788A1 (de) Herstellung von selbstreinigenden oberflächen auf textilen beschichtungen
EP1379725B1 (de) Textile flächengebilde mit selbstreinigender und wasserabweisender oberfläche
EP1249280B1 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1597334B1 (de) Herstellung von suspension hydrophober oxidpartikel
DE10308379A1 (de) Dispersion von Wasser in hydrophoben Oxiden zur Herstellung von hydrophoben nanostrukturierten Oberflächen
EP1623066B1 (de) Verwendung von mit fluorsilanen hydrophobierten partikeln zur herstellung von selbstreinigenden oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben eigenschaften
EP1472011A1 (de) VERFAHREN ZUR HERSTELLUNG VON SCHUTZSCHICHTEN MIT SCHMUTZ− UND WASSERABWEISENDEN EIGENSCHAFTEN
DE10210667A1 (de) Herstellung von Bahnenwaren mit selbstreinigenden Oberflächen mittels eines Kalandrierprozesses, Bahnenwaren selbst und die Verwendung dieser
EP1474280A1 (de) Formk rper mit selbstreinigenden eigenschaften und verfahren zur herstellung solcher formk rper
DE10231757A1 (de) Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
EP1249468A2 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1490184A1 (de) Flächenextrudate mit selbstreinigenden eigenschaften und verfahren zur herstellung solcher extrudate
WO2002084013A2 (de) Polymerfaser mit selbstreinigender und wasserabweisender oberfläche
DE102006005614A1 (de) Formgegenstand mit selbstreinigender Oberflächenstruktur
DE10254718A1 (de) Hydrophober, stoffdurchlässiger Verbundwerkstoff mit selbstreinigenden Eigenschaften
DE10135157A1 (de) Verfahren zum Aufbringen einer selbstreinigenden Beschichtung auf Textilien
WO2004014575A1 (de) Verfahren zur pulverbeschichtung von oberflächen zur erzeugung des lotus-effektes
EP2061926B1 (de) Textilprodukt und verfahren zu seiner herstellung
DE10129116A1 (de) Polymerfasern mit selbstreinigenden Eigenschaften, die in der Oberfläche Partikel aufweisen sowie ein Verfahren zu deren Herstellung
DE10226022A1 (de) Verfahren zur Herstellung von Oberflächen mit coagulationshemmenden Eigenschaften
WO2004014574A2 (de) Verfahren zur herstellung von strukturierten oberflächen
DE10205784A1 (de) Reparaturharz für selbstreinigende Oberflächen sowie ein Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20060913

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL FREUDENBERG KG

Owner name: EVONIK DEGUSSA GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL FREUDENBERG KG

Owner name: EVONIK DEGUSSA GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100608