WO2004033788A1 - Herstellung von selbstreinigenden oberflächen auf textilen beschichtungen - Google Patents

Herstellung von selbstreinigenden oberflächen auf textilen beschichtungen Download PDF

Info

Publication number
WO2004033788A1
WO2004033788A1 PCT/EP2003/008280 EP0308280W WO2004033788A1 WO 2004033788 A1 WO2004033788 A1 WO 2004033788A1 EP 0308280 W EP0308280 W EP 0308280W WO 2004033788 A1 WO2004033788 A1 WO 2004033788A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
transfer medium
hydrophobic
textile fabric
coated textile
Prior art date
Application number
PCT/EP2003/008280
Other languages
English (en)
French (fr)
Inventor
Edwin Nun
Markus Oles
Original Assignee
Degussa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Ag filed Critical Degussa Ag
Priority to US10/526,559 priority Critical patent/US7517428B2/en
Priority to DE10393372T priority patent/DE10393372D2/de
Priority to JP2004542278A priority patent/JP4708028B2/ja
Priority to AU2003253339A priority patent/AU2003253339A1/en
Publication of WO2004033788A1 publication Critical patent/WO2004033788A1/de
Priority to US12/272,092 priority patent/US7858538B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/248Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing chlorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/02Processes in which the treating agent is releasably affixed or incorporated into a dispensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/1476Release layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/149Sectional layer removable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2049Each major face of the fabric has at least one coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2049Each major face of the fabric has at least one coating or impregnation
    • Y10T442/209At least one coating or impregnation contains particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2123At least one coating or impregnation contains particulate material
    • Y10T442/2131At least one coating or impregnation functions to fix pigments or particles on the surface of a coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2213Coating or impregnation is specified as weather proof, water vapor resistant, or moisture resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2221Coating or impregnation is specified as water proof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2279Coating or impregnation improves soil repellency, soil release, or anti- soil redeposition qualities of fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption

Definitions

  • the invention relates to a method for producing self-cleaning surfaces on coated textile fabrics, and to the coated textile fabrics produced by means of the method according to the invention and their use.
  • the state of the art for self-cleaning surfaces is that an aspect ratio of> 1 and a surface energy of less than 20 mN / m is required for such self-cleaning surfaces.
  • the aspect ratio is defined here as the quotient of the medium height to the medium width of the structure.
  • hydrophobic materials such as perfluorinated polymers
  • hydrophobic surfaces are structured and have a low adherence to snow and ice.
  • JP 11171592 describes a water-repellent product and its production, the dirt-repellent surface being produced by applying a film to the surface to be treated which has fine particles of metal oxide and the hydrolyzate of a metal alkoxide or a metal chelate. To solidify this film, the substrate to which the film was applied must be sintered at temperatures above 400 ° C. This method can therefore only be used for substrates that can be heated to temperatures above 400 ° C without damage and without distortion.
  • self-cleaning surfaces can be produced, for example, by applying hydrophobic, pyrogenic silicas to textiles.
  • the hydrophobic, pyrogenic silicas are incorporated into the polymer matrix of the textile fiber under the influence of a solvent.
  • DE 101 18 348 describes polymer fibers with self-cleaning surfaces in which the self-cleaning surface is characterized by
  • DE 101 18 346 describes textile fabrics with a self-cleaning and water-repellent surface, made up of at least one synthetic and / or natural textile base material A and an artificial, at least partially hydrophobic surface with elevations and depressions made of particles which are free from adhesives, resins or paints
  • Base material A are firmly connected, which are obtained by treating the base material A with at least one solvent which contains the particles in undissolved form and removing the solvent, at least some of the particles being firmly connected to the surface of the base material A.
  • the disadvantage of this process is based on a very complex finishing of the textile surfaces. With this process it is necessary that the solvent has to be matched exactly to the base material of the textiles. In the case of garments, however, there are usually mixed fabrics, which makes this coordination even more complicated. If the solvents are not properly matched, parts of the garment may be destroyed. Treatment of the textile surfaces is therefore necessary before tailoring.
  • DE 101 35 157 describes a process for the coating of textiles during a chemical cleaning process, in which structure-forming particles are added to the cleaning agent.
  • Organic solvents that are relatively harmful to health such as e.g. Trichlorethylene or perchlorethylene, the use of which leads to mechanical anchoring of the particles to the structure of the textiles.
  • the object of the present invention to provide a process for producing self-cleaning surfaces on coated textile fabrics, the coated textile fabrics obtained being able to be bent or kinked with as little cracks as possible.
  • the use of adhesives, binders, adhesion promoters and other additional materials should therefore be avoided in addition to the coating itself, in order to maintain the flexibility of the coated textile fabrics.
  • an embossing technique with regard to the production of the self-cleaning surfaces on coated textile fabrics is to be dispensed with, since appropriate techniques are only at the beginning of their development and large investments would be required.
  • the application of the particles to the surface of the coated textile fabrics should not be carried out by a complex subsequent process step, e.g.
  • the object of this invention was to integrate the method step of applying the particles into a method according to the prior art. Furthermore, the object of the invention was to anchor the particles permanently on or in the surface of the coated textile fabric in order to achieve a durability of the self-cleaning surfaces.
  • coated textile fabrics with a self-cleaning surface can be produced in a first process step applying the particles to at least one surface of a flat transfer medium, in a further process step applying a coating material and a textile fabric to the surface of the transfer medium to which the particles have been applied in the first process step.
  • the composite material produced in this way is then mixed and the transfer medium is removed.
  • coated textile fabrics which have a permanently self-cleaning surface can be produced.
  • the sufficient number and density of the hydrophobic nanostructured particles can be firmly bound into or onto the surface of the coating composition. This is particularly surprising since the coating composition is generally hydrophilic and the hydrophobic particles were not expected to bind.
  • the present invention relates to a method for producing self-cleaning surfaces on coated textile fabrics, the method comprising the following process steps: i.) Applying hydrophobic nanostructured particles to a surface of a flat transfer medium, ii.) Applying a coating composition and a textile fabric the surfaces of the transfer medium to which the hydrophobic nanostructured particles were applied in process step i.), iii.) thermal treatment of the resultant from process steps i.) to ii.)
  • the present invention also relates to coated textile fabrics which have hydrophobic nanostructured particles on the coating surface, and to their use for the production of clothing, technical textiles and fabrics for textile construction.
  • the process according to the invention makes it possible to obtain coated textile fabrics with self-cleaning properties, which (fabric) inserts can have.
  • the self-cleaning properties are generated without any further application of material, such as a binder or adhesive, apart from the particles themselves.
  • the method according to the invention is characterized in that it is possible to dispense with a subsequent finishing process for the coated textile fabrics. In this way, coated textile fabrics with self-cleaning properties can be produced, which also have good flexibility with respect to kinking and bending compared to the coated textile fabrics according to the prior art. It has proven to be particularly advantageous that the method according to the invention can be used for surfaces of textile fabrics of almost any size.
  • the method according to the invention can also be used, for example, by means of a coating on the rear of the rear side for finishing the coated textile fabric on both sides with self-cleaning properties.
  • the coated textile fabrics according to the invention with surfaces which have self-cleaning properties and surface structures with elevations are distinguished by the fact that the coatings are preferably plastic surfaces into which the particles are anchored directly and are not connected via carrier systems or the like.
  • the process for producing self-cleaning surfaces on coated textile fabrics is characterized in that the process has the following process steps: i.) Application of hydrophobic nanostructured particles on a surface of a flat transfer medium, ii.) Application of a coating material and a textile fabric the
  • hydrophobic nanostructured particles are applied to a surface of a flat transfer medium.
  • the surface of the transfer medium preferably has hydrophobic properties. With decreasing hydrophobicity of the transfer medium, there is an even distribution of the nanostructured hydrophobic particles, and thus also an even transfer to the Coating of the textile fabric, increasingly difficult and is almost impossible with hydrophilic transfer media.
  • a lamination paper is preferably used as the transfer medium, particularly preferably a siliconized or otherwise hydrophobized lamination paper.
  • the hydrophobic nanostructured particles used in process step i.) of the process according to the invention are those which have at least one material selected from minerals, aluminum oxide, silicates, hydrophobically modified silicas, metal oxides, mixed oxides, metal powders, pigments or polymers.
  • Particularly preferred are the particulate silicates, doped silicates, minerals, metal oxides, aluminum oxide, precipitated silicas (Sipernate ®), fumed silicas can (Aerosils ”) or pulverulent polymers, such as spray-dried and agglomerated emulsions or cryogenically milled PTFE, in.
  • Particularly preferred hydrophobic particles hydrophobized silicas used are particularly preferred.
  • Hydrophobic nanostructured particles are preferably used in process step i.) Of the process according to the invention which have an average particle diameter of from 0.01 ⁇ m to 100 ⁇ m, particularly preferably from 0.02 ⁇ m to 50 ⁇ m and very particularly preferably from 0.05 ⁇ m to 30 ⁇ m. Also suitable are particles that accumulate in the suspension medium from primary particles to form agglomerates or aggregates with a size of 0.02 ⁇ m to 100 ⁇ m.
  • the hydrophobic nanostructured particles used in process step i.) Of the process according to the invention have a structured surface.
  • Particles are preferably used which have an irregular fine structure in the nanometer range, that is to say in the range from 1 nm to 1000 nm, preferably from 2 nm to 750 nm and very particularly preferably from 10 nm to 100 nm, on the surface.
  • Fine structure is understood to mean structures which have heights, serrations, gaps, burrs, cracks, undercuts, notches and / or holes in the distances and regions mentioned.
  • Such nanosized particles preferably have at least one compound selected from pyrogenic silica, pyrogenic mixed oxides or oxides, such as titanium dioxide or zirconium dioxide, precipitated silicas, aluminum oxide, silicon dioxide or powdered polymers.
  • the hydrophobic properties of the particles used in process step i.) Of the process according to the invention may be inherent due to the material used for the particles, such as, for example, in the case of polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • hydrophobic particles which, after suitable treatment, have hydrophobic properties, such as particles treated with at least one compound from the group consisting of the alkylsilanes, the fluoroalkylsilanes and / or the disilazanes.
  • Particularly suitable particles are hydrophobicized pyrogenic silicas, so-called Aerosile ® .
  • hydrophobic particles are, for example, Aerosil ® VPR 411, Aerosil ® VP LE 8241 or Aerosil ® R 8200.
  • particles which can be rendered hydrophobic by treatment with perfluoroalkylsilane and subsequent tempering are, for example, Aeroperl 90/30 ® , Sipernat silica 350 ® , aluminum oxide C ® , Zirconium silicate, vanadium-doped or Aeroperl P 25/20 ® .
  • the hydrophobic nanostructured particles are preferably applied as a suspension to the transfer medium; this can be done, for example, by spraying or knife coating, in particular by means of a doctor blade.
  • This suspension preferably has from 1% by weight to 20% by weight, preferably from 2% by weight to 15% by weight and very particularly preferably from 3% by weight to 12% by weight of particles, based on the suspension.
  • the organic solvent used is preferably acetone, tetrahydrofuran, butyl acetate, toluene, dimethylformamide, acetonitrile, dimethyl sulfoxide, decalin or an alcohol which is liquid at room temperature, in particular methanol, ethanol, n-propanol or isopropanol. Ethanol is very particularly preferably used as the alcohol. However, it can also be advantageous if the suspension used has a mixture of these organic solvents.
  • the suspension medium of the suspension comprising particles is advantageously removed by evaporation or volatilization, wherein the evaporation or volatilization can be accelerated by using elevated temperatures or by using negative pressure or vacuum.
  • a coating The mass and the textile fabric are applied to the surfaces of the transfer medium to which the hydrophobic nanostructured particles have been applied in process step i.).
  • the coating composition preferably has at least one polymer selected from polyvinyl chloride, polyurethane, acrylonitrile-butadiene-styrene terpolymer (ABS), polychloroprene, as a suspension alone or together with a reactive monomer mixture which forms at least one of the aforementioned polymers after a reaction , on, preferably, a reactive paste, particularly preferably by a well-suited for the particular application, commercial product, such as coating materials from product lines Impraperm ® (Bayer AG), Impranil ® (Bayer AG), Baystal ® (polymer latex GmbH), Plextol ® (Polymer Latex GmbH), Liopur ® (Synthopol Chemie), Larithane ® and Laripur ® (both Novotex Italy).
  • the coating composition preferably has hydrophilic properties.
  • the coating composition is first applied to the surfaces of the transfer medium to which the hydrophobic nanostructured particles have been applied in process step i.), And then the textile fabric is applied to this coating composition.
  • step ii.) The coating composition is first applied to the surfaces of the textile fabric and then this composite is applied to the surfaces of the transfer medium to which the hydrophobic nanostructured particles have been applied in step i.) , wherein the coating composition is located between the particle-containing transfer medium and the textile fabric.
  • the coating composition can be applied by means of methods which are common to the person skilled in the art.
  • the coating composition is preferably applied to the surface of the transfer medium to which the particles have already been applied in process step i.) Or to the textile fabric by means of a roller coating.
  • process step iii.) Of the process according to the invention, the composite material resulting from process steps i.) To ii.) Is thermally treated. This process step of the process according to the invention preferably serves to harden the coating composition.
  • the transfer medium is preferably removed from the coating composition and then rolled up.
  • the transfer medium can be used several times, preferably 2 to 15 times, for this method according to the invention. For each new application, it is preferred to ensure that the applied coating composition uniformly assumes a lotus effect during the curing process.
  • the coating of a second surface, e.g. the back, the textile fabric is carried out for the back surface of the textile fabric which has already been coated on a surface according to the invention.
  • This invention furthermore relates to coated textile fabrics which have hydrophobic nanostructured particles on at least one coating surface; these coated textile fabrics are preferably produced by the process according to the invention.
  • coated textile fabrics according to the invention preferably have hydrophobic nanostructured particles on or in their surface which have at least one material selected from minerals, aluminum oxide, silicates, silicas, preferably hydrophobically modified silicas, metal oxides, mixed oxides, metal powders, pigments or polymers.
  • Particularly preferred are the particulate silicates, doped silicates, minerals, metal oxides, Alumim 'oxide, precipitated silicas or fumed silicas (Aerosils ”) or pulverulent polymers may, for example, spray-dried and agglomerated emulsions or cryogenically milled PTFE, be particularly preferably, the coated fabric as. hydrophobic nanostructured particles of silica.
  • the coated textile fabrics according to the invention preferably have hydrophobic nanostructured particles which have an average particle diameter of from 0.01 ⁇ m to 100 ⁇ m, particularly preferably from 0.02 ⁇ m to 50 ⁇ m and very particularly preferably from 0.05 ⁇ m to 30 ⁇ m. They can also have particles which are aggregated in the suspension medium from primary particles to form agglomerates or aggregates with a size of 0.02 ⁇ m to 100 ⁇ m.
  • the particles of the coated textile fabrics according to the invention have a structured surface.
  • the particles preferably have an irregular fine structure in the nanometer range, that is to say in the range from 1 nm to 1000 nm, preferably from 2 nm to 750 nm and very particularly preferably from 10 nm to 100 nm, on the surface.
  • Fine structure is understood to mean structures which have heights, serrations, gaps, burrs, cracks, undercuts, notches and / or holes in the distances and regions mentioned.
  • Such nanostructured particles preferably have at least one compound selected from pyrogenic silica or pyrogenic oxides, such as titanium dioxide or zirconium dioxide, or mixed oxides, precipitated silicas, aluminum oxide, silicon dioxide or powdery polymers.
  • the hydrophobic properties of the particles of the coated textile fabrics according to the invention may be inherent due to the material used for the particles, such as, for example, in the case of polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the coated textile fabrics according to the invention can also have hydrophobic particles which, after suitable treatment, have hydrophobic properties, such as e.g. with at least one
  • Compound from the group of alkylsilanes, fluoroalkylsilanes and / or disilazanes treated particles are hydrophobicized pyrogens
  • Aerosile ® Silicas, so-called Aerosile ® .
  • hydrophobic particles Aerosil ®
  • VPR 411 Aerosil ® VP LE 8241 or Aerosil ® R 8200.
  • particles which can be rendered hydrophobic by treatment with perfluoroalkylsilane and subsequent tempering are, for example
  • Aeroperl 90/30 ® Sipernat silica 350 ® , aluminum oxide C ® , zirconium silicate, vanadium-doped or Aeroperl P 25/20 ® .
  • the surfaces of the coated textile fabrics according to the invention preferably have a layer with elevations which are formed by the particles themselves an average height of 0.02 to 25 ⁇ m and a maximum distance of 25 ⁇ m, preferably with an average height of 0.05 to 10 ⁇ m and / or a maximum distance of 10 ⁇ m and very particularly preferably with an average height of 0, 03 to 4 ⁇ m and / or a maximum distance of 4 ⁇ m.
  • the surfaces of the coated textile fabrics according to the invention very particularly preferably have elevations with an average height of 0.05 to 1 ⁇ m and a maximum distance of 1 ⁇ m.
  • the distance between the elevations is understood to mean the distance between the highest elevation of one elevation of a particle and the next highest elevation of a directly adjacent other particle. If an elevation has the shape of a cone, the tip of the cone represents the highest elevation of the elevation. If the elevation is a cuboid, the top surface of the cuboid represents the highest elevation of the elevation.
  • the wetting of bodies and thus the self-cleaning property can be described by the contact angle that a drop of water forms with the surface.
  • a contact angle of 0 ° means complete wetting of the surface.
  • the static contact angle is generally measured using devices in which the contact angle is optically determined.
  • Static contact angles of less than 125 ° are usually measured on smooth hydrophobic surfaces.
  • the present surfaces of the coated textile fabrics with self-cleaning properties have static contact angles of preferably greater than 130 °, preferably greater than 140 ° and very particularly preferably greater than 145 °.
  • a surface has particularly good self-cleaning properties if it has a difference between the advancing and retracting angles of at most 10 °, which is why the surfaces of the coated textile fabrics according to the invention preferably have a difference between the advancing and retracting angles of less than 10 ° , preferably less than 7 ° and very particularly preferably less than 6 °.
  • a drop of water is placed on the surface by means of a cannula and the drops on the surface are enlarged by adding water through the cannula. During the enlargement, the edge of the drop glides over the surface and the contact angle is determined as the advancing angle.
  • the retraction angle is measured on the same drop, only the water is withdrawn from the drop through the cannula and the contact angle is measured while the drop is being reduced.
  • the difference between both angles is called hysteresis. The smaller the difference, the less the interaction of the water drop with the surface of the surface and the better the self-cleaning effect.
  • the surfaces of the coated textile fabrics according to the invention with self-cleaning properties preferably have an aspect ratio of the elevations which are formed by the particles themselves of greater than 0.15.
  • the elevations which are formed by the particles themselves preferably have an aspect ratio of 0.3 to 0.9, particularly preferably 0.5 to 0.8.
  • the aspect ratio is defined as the quotient from the maximum height to the maximum width of the structure of the surveys.
  • Particularly preferred coated textile fabrics according to the invention have on their surface particles with an irregular, airy-fissured fine structure, which preferably have elevations with an aspect ratio in the fine structures of greater than 1, particularly preferably greater than 1.5.
  • the aspect ratio is in turn defined as the quotient from the maximum height to the maximum width of the survey.
  • FIG. 1 shows the surface of a textile fabric coated according to the invention, which has a particle P (only one particle is shown to simplify the illustration).
  • the elevation, which is formed by the particle itself, has an aspect ratio of approx.
  • a selected elevation E of the elevations which is present on the particles due to the fine structure of the particles, has an aspect ratio of 2.5, calculated as the quotient of the maximum height of the elevation mH ′, which is 2.5 and the maximum width mB ', which is 1 in proportion.
  • the surface of the coated textile fabric therefore preferably has hydrophobic nanostructured Particles which are anchored in the surface of the coating of the textile fabric with from 10 to 90%, preferably from 20 to 50% and very particularly preferably from 30 to 40% of their mean particle diameter and thus still with parts of their inherently fissured surface from the Stick out the coating of the textile fabric.
  • This ensures that the elevations which are formed by the particles themselves have a sufficiently large aspect ratio of preferably at least 0.15. In this way it is also achieved that the firmly connected particles are very durable connected to the coating of the textile fabric.
  • the aspect ratio is defined here as the ratio of the maximum height to the maximum width of the elevations. According to this definition, a particle assumed to be ideally spherical, which projects 70% from the surface of the coated textile fabric according to the invention, has an aspect ratio of 0.7. It should be explicitly pointed out that the particles of the coated textile fabric according to the invention must not have a spherical shape.
  • the coated textile fabrics preferably have hydrophobic nanostructured particles as elevations on all coated surfaces, but preferably only on one side of the coated textile fabric.
  • the hydrophobic nanostructured particles are located only in partial areas on all sides of the surface, but preferably only on one side of the surface.
  • coated textile fabrics according to the invention can be used for the production of clothing, in particular for the production of protective clothing, rainwear and safety clothing with a signal effect, technical textiles, in particular for the production of tarpaulins, tent tarpaulins, protective covers for truck tarpaulins, and fabrics for textile construction, in particular for the manufacture of sun protection roofs, such as awnings, sun sails, parasols.
  • coated textile fabrics according to the invention can be used, for example, for the production of textiles for personal clothing purposes, for the production of textiles for protective clothing and materials for textile construction.
  • Such coated textile fabrics according to the invention can, for example, on Buildings or vehicles are applied so that they also have self-cleaning properties.
  • the coated textile fabrics according to the invention can, however, also be used, for example, in the field of textile construction for the manufacture of awnings or sun protection roofs, as well as for tarpaulins, truck tarpaulins, tent tarpaulins or protective covers.
  • the aforementioned tarpaulins are therefore also the subject of the present invention.
  • Rain outer clothing and safety clothing dyed with a signal effect are preferred uses of the coated textile fabrics according to the invention.
  • Example 1 It was prepared by weight suspension of Aerosil ® VP LE 8241 in a solvent a 10 wt .-%. This suspension was applied to a kraft laminating paper (from SCA Flex Pack Papers GmbH, Mannheim) using a pump spray. The aerosil content on the pretreated laminating paper was 5 g / m 2 . After the solvent had evaporated at room temperature, LARITHANE AL 227 - an aliphatic polyurethane dispersion from Novotex Italy - was applied to the pretreated laminating paper using a film squeegee with a layer thickness of 50 ⁇ m.
  • a tricot fabric made of a polyamide fabric (DECOTEX from IBENA Textiltechnike Beckmann GmbH) was laminated into the still moist surface of the polyurethane coating.
  • the polyurethane coating was thermally cured at a temperature of 150 ° C for 2 minutes and then the lamination paper was removed.
  • Example 2 A 10 wt .-% suspension of Aerosil ® VP LE 8241 in denatured ethanol manufactured. This suspension was applied to a kraft laminating paper (from SCA Flex Pack Papers GmbH, Mannheim) using a pump spray. The aerosil content on the pretreated laminating paper was 5 g / m 2 . After evaporation of the solvent at room temperature, a polyurethane dispersion according to Table 2 was applied to the pretreated laminating paper using a film squeegee with a layer thickness of 50 ⁇ m. A tricot fabric made of a polyamide fabric (DECOTEX from IBENA Textiltechnike Beckmann GmbH) was laminated into the still moist surface of the polyurethane coating. The polyurethane coating was thermally cured at a temperature of 150 ° C for 2 minutes and then the lamination paper was removed.
  • a polyurethane dispersion according to Table 2 was applied to the pretreated laminating paper using a film squeege
  • Aerosil ® VP LE 8241 in denatured ethanol. This suspension was applied to a kraft laminating paper (from SCA Flex Pack Papers GmbH, Mannheim) using a propellant spray, which has a propane / butane mixture as the propellant.
  • the aerosil content on the pretreated laminating paper was 5 g / m 2 .
  • a polyurethane dispersion according to Table 2 was applied to the pretreated laminating paper using a film squeegee with a layer thickness of 50 ⁇ m.
  • a tricot fabric made of a polyamide fabric (DECOTEX from IBENA Textiltechnike Beckmann GmbH) was placed in the still moist surface of the polyurethane coating. laminated in. The polyurethane coating was thermally cured at a temperature of 150 ° C for 2 minutes and then the lamination paper was removed.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von selbstreinigenden Oberflächen auf beschichteten textilen Flächengebilden, wobei das Verfahren folgende Verfahrensschritte aufweist: i.) Aufbringen von hydrophoben nanostrukturierten Partikeln auf einer Oberfläche eines flächiges Transfermediums, ii.) Aufbringen einer Beschichtungsmasse und eines textilen Flächengebildes auf die Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht wurden, iii.) thermische Behandlung des aus den Verfahrensschritten i.) bis iii.) resultierenden Verbundstoffes und iv.) Entfernen des Transfermediums, sowie die mittels dem erfindungsgemässen Verfahren hergestellten beschichteten textilen Flächengebilden und deren Verwendung.

Description

Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
Die Erfindung betrifft ein Verfahren zur Herstellung von selbstreinigenden Oberflächen auf beschichteten textilen Flächengebilden, sowie die mittels des erfindungsgemäßen Verfahrens hergestellten beschichteten textilen Flächengebilden und deren Verwendung.
Aus der Oberflächentechnik sind verschiedene Verfahren zur Behandlung von Oberflächen bekannt, die diese Oberflächen schmutz- und wasserabweisend ausrüsten. So ist z.B. bekannt, dass zum Erzielen einer guten Selbstreinigung einer Oberfläche, diese Oberfläche neben hydrophoben Eigenschaften auch eine gewisse Rauhigkeit aufweisen muss. Eine geeignete Kombination aus Struktur und Hydrophobie macht es möglich, dass schon geringe Mengen bewegtem Wassers auf der Oberfläche haftende Schmutzpartikel mitnehmen und die Oberfläche reinigen (WO 96/04123; US 3,354,022; C. Neinhuis, W. Barthlott, Annais of Botany 79 (1997), 667).
Dass Wassertropfen auf hydrophoben Oberflächen besonders dann, wenn sie strukturiert sind, schon bei sehr kleinen Neigungswinkeln abrollen, allerdings ohne die Selbstreinigung zu erkennen, wurde bereits 1982 von A. A. Abramson in Chimia i Shisn russ. 11, 38 und 1994 in der japanischen Patentanmeldung JP 07328532 A beschrieben.
Stand der Technik bezüglich selbstreinigender Oberflächen ist, gemäß EP 0 933 388, dass für solche selbstreinigenden Oberflächen ein Aspektverhältnis von > 1 und eine Oberflächenenergie von kleiner 20 mN/m erforderlich ist. Das Aspektverhältnis ist hierbei definiert als der Quotient von mittlerer Höhe zur mittleren Breite der Struktur. Vorgenannte Kriterien sind in der Natur, beispielsweise auf einem Lotusblatt, realisiert. Die aus einem hydrophoben, wachsartigen Material gebildete Blattoberfläche einer Lotuspflanze weist Erhebungen auf, die bis zu einigen μm voneinander entfernt sind. Wassertropfen kommen im Wesentlichen nur mit den Spitzen der Erhebungen in Berührung. Solche wasserabstoßenden Oberflächen werden in der Literatur vielfach beschrieben. Ein Beispiel dafür ist ein Artikel in Langmuir 16 (2000), 5754 von Masashi Miwa et al, der beschreibt, dass Kontakt- und Abrollwinkel mit zunehmender Strukturierung künstlicher Oberflächen, gebildet aus Böhmit, aufgetragen auf eine spingecoatete Lackschicht und anschließend kalziniert, zunehmen. Die Schweizer Patentschrift CH-PS 268 258 beschreibt ein Verfahren, bei dem durch Aufbringen von Pulvern, wie Kaolin, Talkum, Ton oder Silicagel, strukturierte Oberflächen erzeugt werden. Die Pulver werden durch Öle und Harze auf Basis von Organosilizium- Verbindungen auf der Oberfläche fixiert. Eines Haftvermittlers bedient sich auch die Offenlegungsschrift DE 100 22 246 AI .
Der Einsatz von hydrophoben Materialien, wie perfluorierten Polymeren, zur Herstellung von hydrophoben Oberflächen ist bekannt. DE 197 15 906 AI beschreibt, dass perfluorierte Polymere, wie Polytetrafluorethylen, oder Copolymere aus Polytetrafluorethylen mit Perfluoroalkylvinylethem hydrophobe Oberflächen erzeugen, die strukturiert sind und ein geringes Anhaf vermögen gegenüber Schnee und Eis aufweisen. In JP 11171592 wird ein wasserabweisendes Produkt und dessen Herstellung beschrieben, wobei die schmutzabweisende Oberfläche dadurch hergestellt wird, dass ein Film auf die zu behandelnde Oberfläche aufgetragen wird, der feine Partikel aus Metalloxid und das Hydrolysat eines Metallalkoxids bzw. eines Metallchelates aufweist. Zur Verfestigung dieses Films muss das Substrat, auf welches der Film aufgebracht wurde, bei Temperaturen von oberhalb 400 °C gesintert werden. Dieses Verfahren ist deshalb nur für Substrate einsetzbar, welche unbeschädigt und verzugsfrei auf Temperaturen von oberhalb 400 °C aufgeheizt werden können.
In neuerer Zeit ist versucht worden, selbstreinigende Oberflächen auch auf Textilien bereitzustellen. Es wurde gefunden, dass beispielsweise durch Aufbringen von hydrophoben, pyrogenen Kieselsäuren auf Textilien selbstreinigende Oberflächen erzeugt werden können. Die hydrophoben, pyrogenen Kieselsäuren werden hierbei unter Einwirkung eines Löse- mittels in die Polymermatrix der Textilfaser eingebunden.
In DE 101 18 348 werden Polymerfasern mit selbstreinigenden Oberflächen beschrieben, bei denen die selbstreinigende Oberfläche durch
• Einwirken eines Lösemittels, welches strukturbildende Partikel aufweist, • Anlösen der Oberfläche der Polymerfasern durch dieses Lösemittel,
• Anheften der staikturbildenden Partikel an die angelöste Oberfläche und
• Entfernen des Lösemittels erhalten wird. Ein Nachteil dieses Verfahrens besteht darin, dass beim Verarbeiten der Polymerfasern (Spinnen, Stricken, etc.) die strukturbildenden Partikel und damit die Struktur, welche die selbstreinigende Oberfläche bewirkt, beschädigt werden kann oder unter Umständen sogar ganz verloren gehen kann und damit der Selbstreinigungseffekt ebenfalls verloren geht.
In DE 101 18 346 werden textile Flächengebilde mit selbstreinigender und wasserabweisender Oberfläche, aufgebaut aus mindestens einem synthetischen und/oder natürlichen textilen Basismaterial A und einer künstlichen, mindestens teilweise hydrophoben Oberfläche mit Erhebungen und Vertiefungen aus Partikeln, die ohne Klebstoffe, Harze oder Lacke mit dem Basismaterial A fest verbunden sind, beschrieben, die durch Behandlung des Basismaterials A mit zumindest einem Lösemittel, welches die Partikel ungelöst enthält, und Entfernen des Lösemittels, wobei zumindest ein Teil der Partikel mit der Oberfläche des Basismaterials A fest verbunden werden, erhalten werden. Der Nachteil dieses Verfahrens beruht allerdings auf einer sehr aufwändigen Veredelung der Textiloberflächen. Bei diesem Prozess ist es nötig, dass das Lösemittel genau auf das Basismaterial der Textilien abgestimmt werden muss. Bei Kleidungsstücken liegen in der Regel aber Mischgewebe vor, wodurch diese Abstimmung zusätzlich kompliziert wird. Bei ungenauer Abstimmung der Lösemittel kann es zur Zerstörung von Teilen des Kleidungsstückes kommen. Eine Behandlung der textilen Oberflächen ist also vor dem Schneidern nötig.
In DE 101 35 157 wird ein Verfahren zur Beschichtung von Textilien während eines chemischen Reinigungsvorgangs beschrieben, bei dem stnikturbildende Partikel dem Reinigungsmittel zugegeben werden. Als Reinigungsmittel werden relativ gesundheitsbe- denkliche organische Lösemittel, wie z.B. Trichlorethylen oder Perchlorethylen, vorgeschlagen, deren Verwendung zu einer mechanischen Verankerung der Partikel an der Struktur der Textilien fuhrt.
Die bisher üblichen Verfahren zur Herstellung von selbstreinigenden Oberflächen sind aufwändig und vielfach nur begrenzt einsetzbar. So sind Prägetechniken unflexibel, was das Aufbringen von Strukturen auf verschieden geformte, dreidimensionale Körper oder Flächengebilden mit und ohne Gewebeeinlagen betrifft. Zur Erzeugung planer, großflächiger Bahnenware, besonders für Bahnenware mit Gewebeeinlage, fehlt heute noch eine geeignete Technologie. Verfahren, bei denen strukturbildende Partikel mittels eines Trägers - wie beispielsweise eines Klebers oder Binders - auf Oberflächen aufgebracht werden, haben den Nachteil, dass Oberflächen aus verschiedenen Materialkombinationen erhalten werden, die z.B. bei Wärmebelastung unterschiedliche Ausdehnungskoeffizienten aufweisen, was zu einer Beschädigung der Oberfläche führen kann. Starkes Biegen oder Knicken kann zu Rissen in solchen Oberflächen aus verschiedenen Materialkombinationen fuhren, weshalb so hergestellte Produkte als Abdeckfolien oder Planen, weniger geeignet sind, da diese sich den Konturen der abzudeckenden Gegenstände zumindest zum Teil anpassen sollten. Beschichtungen für textile Flächengebilde konnten bisher nicht permanent wasserabweisend oder gar selbstreinigend ausgerüstet werden.
Es war deshalb die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung von selbstreinigenden Oberflächen auf beschichteten textilen Flächengebilden bereitzustellen, wobei die erhaltenen beschichteten textilen Flächengebilde möglichst rissfrei gebogen oder geknickt werden können. Bei der Herstellung beschichteter textiler Flächengebilde soll daher außer auf die Beschichtung selbst auf die Verwendung von Klebern, Bindern, Haftvermittlern und weiteren zusätzlichen Materialien verzichtet werden, um so die Flexibilität der beschichteten textilen Flächengebilde zu erhalten. Des weiteren soll auf eine Prägetechnik bzgl. der Erzeugung der selbstreinigenden Oberflächen auf beschichteten textilen Flächen- gebilden verzichtet werden, da entsprechende Techniken erst am Anfang ihrer Entwicklung stehen und hohe Investitionen vonnöten wären. Das Aufbringen der Partikel auf die Oberfläche der beschichteten textilen Flächengebilde soll des weiteren nicht durch einen aufwändigen nachgeschalteten Verfahrensschritt, wie z.B. durch Aufbringen der Partikel, bei dessen Prozess die Oberfläche des beschichteten textilen Flächengebildes mit Hilfe eines Lösemittels vorübergehend angelöst wird, um so eine Haftung der Partikel an der Oberfläche zu erreichen, erfolgen. Aufgabe dieser Erfindung war es daher auch, den Verfahrensschritt des Aufbringens der Partikel in ein Verfahren gemäß dem Stand der Technik zu integrieren. Des weiteren war die Aufgabe der Erfindung die Partikel dauerhaft an bzw. in der Oberfläche des beschichteten textilen Flächengebildes zu verankern, um so eine Dauerhaftigkeit der selbstreinigenden Oberflächen zu erzielen.
Überraschenderweise wurde gefunden, dass sich beschichtete textile Flächengebilde mit einer selbstreinigenden Oberfläche herstellen lassen, indem man in einem ersten Verfahrensschritt die Partikel auf zumindest einer Oberfläche eines flächigen Transfermediums aufbringt, in einem weiteren Verfahrensschritt eine Beschichtungsmasse und ein textiles Flächengebilde auf die Oberfläche des Transfermediums, auf die im ersten Verfahrensschritt die Partikel aufgebracht worden sind, aufbringt. Anschließend erfolgt eine ermische Behandlung des auf diese Weise hergestellten Verbundstoffes und die Entfernung des Transfermediums. Gemäß dem erfindungsgemäßen Verfahren lassen sich beschichtete textile Flächengebilde, die eine dauerhaft selbstreinigende Oberfläche aufweisen, herstellen. Die hydrophoben nano- strukturierten Partikel können in ausreichender Anzahl und Dichte fest in bzw. an die Oberfläche der Beschichtungsmasse eingebunden werden. Dies ist in besonderem Maße überraschend, da die Beschichtungsmasse in aller Regel hydrophil ist und eine Anbindung der hydrophoben Partikel nicht zu erwarten war.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von selbstreinigenden Oberflächen auf beschichteten textilen Flächengebilden, wobei das Verfahren folgende Verfahrensschritte aufweist: i.) Aufbringen von hydrophoben nanostrukturierten Partikeln auf einer Oberfläche eines flächiges Transfermediums, ii.) Aufbringen einer Beschichtungsmasse und eines textilen Flächengebildes auf die Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht wurden, iii.) thermische Behandlung des aus den Verfahrensschritten i.) bis ii.) resultierenden
Verbundstoffes und iv.) Entfernen des Transfermediums.
Ebenfalls sind Gegenstand der vorliegenden Erfindung beschichtete textile Flächengebilde, die auf der Beschichtungsoberfläche hydrophobe nanostrakturierte Partikel aufweisen, und deren Verwendung für die Herstellung von Bekleidung, technische Textilien und Geweben des textilen Bauens.
Durch das erfindungsgemäße Verfahren sind beschichtete textile Flächengebilde mit selbstreinigenden Eigenschaften, die (Gewebe-)Einlagen aufweisen können, zugänglich. Die Erzeugung der selbstreinigenden Eigenschaften erfolgt bei diesem Verfahren ohne einen weiteren Materialauftrag, wie beispielsweise eines Binders oder Klebstoffs, - abgesehen von den Partikeln selber. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass auf einen nachgeschalteten Veredelungsprozess der beschichteten textilen Flächengebilden verzichtet werden kann. Auf diese Art und Weise lassen sich beschichtete textile Flächengebilde mit selbstreinigenden Eigenschaften herstellen, die weiterhin eine gute Flexibilität bzgl. Knicken und Biegen gegenüber den beschichteten textilen Flächengebilden gemäß dem Stand der Technik aufweisen. Als besonders vorteilhaft erweist sich, dass das erfmdungs- gemäße Verfahren für nahezu beliebig große Flächen von textilen Flächengebilden eingesetzt werden kann. Des weiteren kann das erfindungsgemäße Verfahren beispielsweise durch eine zeitlich nachgeschaltete Rückseitenbeschichtung auch für eine beidseitige Ausrüstung des beschichteten textilen Flächengebildes mit selbstreinigenden Eigenschaften angewandt werden. Die erfindungsgemäßen beschichteten textilen Flächengebilde mit Oberflächen, die selbstreinigende Eigenschaften und Oberflächenstrukturen mit Erhebungen aufweisen, zeichnen sich dadurch aus, dass die Beschichtungen vorzugsweise Kunststoffoberflächen sind, in die die Partikel direkt verankert und nicht über Trägersysteme oder ähnliches angebunden sind.
Das Verfahren zur Herstellung von selbstreinigenden Oberflächen auf beschichteten textilen Flächengebilden, zeichnet sich dadurch aus, dass das Verfahren folgende Verfahrensschritte aufweist: i.) Aufbringen von hydrophoben nanosttukturierten Partikeln auf einer Oberfläche eines flächiges Transfermediums, ii.) Aufbringen einer Beschichtungsmasse und eines textilen Flächengebildes auf die
Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht wurden, iii.) thermische Behandlung des aus den Verfahrensschritten i.) bis ii.) resultierenden
Verbundstoffes und iv.) Entfernen des Transfermediums.
In dem Verfahrensschritt i.) des erfindungsgemäßen Verfahrens werden hydrophobe nanostrukturierte Partikel auf eine Oberfläche eines flächigen Transfermediums aufgebracht. Die Oberfläche des Transfermedium weist vorzugsweise hydrophobe Eigenschaften auf. Mit abnehmender Hydrophobie des Transfermediums wird eine gleichmäßige Verteilung der nanostrukturierten hydrophoben Partikel, und damit auch ein gleichmäßiger Übertrag auf die Beschichtung des textilen Flächengebildes, zunehmend schwieriger und ist bei hydrophilen Transfermedien nahezu unmöglich. Bevorzugt wird als Transfermedium ein Kaschierpapier, besonders bevorzugt ein silikonisiertes oder anderweitig hydrophobiertes Kaschierpapier eingesetzt.
Als hydrophobe nanostrukturierte Partikel können in dem Verfahrensschritt i.) des erfindungsgemäßen Verfahrens solche eingesetzt werden, die zumindest ein Material, ausgewählt aus Mineralien, Aluminiumoxid, Silikaten, hydrophob modifizierte Kieselsäuren, Metalloxiden, Mischoxiden, Metallpulvern, Pigmenten oder Polymeren, aufweisen. Besonders bevorzugt können die Partikel Silikate, dotierte Silikate, Mineralien, Metalloxide, Aluminiumoxid, Fällungskieselsäuren (Sipernate®), pyrogene Kieselsäuren (Aerosile") oder pulverförmige Polymere, wie z.B. sprühgetrocknete und agglomerierte Emulsionen oder cryogemahlenes PTFE, sein. Besonders bevorzugt werden als hydrophobe Partikel hydrophobierte Kieselsäuren eingesetzt.
Vorzugsweise werden hydrophobe nanostrukturierte Partikel in dem Verfahrensschritt i.) des erfindungsgemäßen Verfahrens eingesetzt, die einen mittleren Partikeldurchmesser von 0,01 μm bis 100 μm, besonders bevorzugt von 0,02 μm bis 50 μm und ganz besonders bevorzugt von 0,05 μm bis 30 μm aufweisen. Geeignet sind aber auch Partikel, die sich im Suspensionsmedium aus Primärteilchen zu Agglomeraten oder Aggregaten mit einer Größe von 0,02 μm bis 100 μm zusammenlagern.
Es kann vorteilhaft sein, wenn die in dem Verfahrensschritt i.) des erfindungsgemäßen Verfahrens eingesetzten hydrophoben nanostrukturierten Partikel eine slirukturierte Oberfläche aufweisen. Vorzugsweise werden Partikel eingesetzt, die eine unregelmäßige Feinstruktur im Nanometerbereich, also im Bereich von 1 nm bis 1000 nm, vorzugsweise von 2 nm bis 750 nm und ganz besonders bevorzugt von 10 nm bis 100 nm, auf der Oberfläche aufweisen. Unter Feinstruktur werden Strukturen verstanden, die Höhen, Zacken, Spalten, Grate, Risse, Hinterschnitte, Kerben und/oder Löcher in den genannten Abständen und Bereichen aufweisen. Solche nanosliπ icturierte Partikel weisen vorzugsweise zumindest eine Verbindung, ausgewählt aus pyrogener Kieselsäure, pyrogene Mischoxide oder Oxide, wie Titandioxid oder Zirkoniumdioxid, Fällungskieselsäuren, Aluminiumoxid, Siliziumdioxid oder pulverförmige Polymeren, auf. Die hydrophoben Eigenschaften der in dem Verfahrensschritt i.) des erfindungsgemäßen Verfahrens verwendeten Partikel können durch das verwendete Material der Partikel inhärent vorhanden sein, wie beispielsweise beim Polytetrafluorethylen (PTFE). Es können aber auch hydrophobe Partikel eingesetzt werden, die nach einer geeigneten Behandlung hydrophobe Eigenschaften aufweisen, wie z.B. mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, der Fluoralkylsilane und/oder der Disilazane behandelte Partikel. Als Partikel eignen sich im Besonderen hydrophobierte pyrogene Kieselsäuren, sogenannte Aerosile®. Beispiele für hydrophobe Partikel sind z.B. Aerosil® VPR 411, Aerosil® VP LE 8241 oder Aerosil® R 8200. Beispiele für durch eine Behandlung mit Perfluoralkylsilan und anschließende Temperung hydrophobierbare Partikel sind z.B. Aeroperl 90/30®, Sipernat Kieselsäure 350®, Aluminiumoxid C®, Zirkonsilikat, vanadiumdotiert oder Aeroperl P 25/20®.
Die hydrophoben nanosttukturierten Partikel werden vorzugsweise als Suspension auf das Transfermedium aufgetragen, dies kann beispielsweise durch Aufsprühen oder Rakeln, insbesondere mittels eines Streichrakels, erfolgen. Diese Suspension weist vorzugsweise von 1 Gew.-% bis 20 Gew.-%, bevorzugt von 2 Gew.-% bis 15 Gew.-% und ganz besonders bevorzugt von 3 Gew.-% bis 12 Gew.-% an Partikeln bezogen auf die Suspension auf.
Als organisches Lösemittel wird vorzugsweise Aceton, Tetrahydrofuran, Butylacetat, Toluol, Dimethylformamid, Acetonitril, Dimethylsulfoxid, Dekalin oder ein bei Raumtemperatur flüssiger Alkohol, insbesondere Methanol, Ethanol, n-Propanol oder Isopropanol, eingesetzt. Ganz besonders bevorzugt wird Ethanol als Alkohol eingesetzt. Es kann aber auch vorteilhaft sein, wenn die verwendete Suspension eine Mischung dieser organischen Lösemittel aufweist.
Nach dem Aufbringen der hydrophoben nanostrukturierten Partikel wird vorteilhafterweise das Suspensionsmedium der partikelaufweisenden Suspension durch Verdampfung oder Verflüchtigung entfernt, wobei das Verdampfen oder Verflüchtigen durch den Einsatz erhöhter Temperaturen oder durch den Einsatz von Unterdruck bzw. Vakuum beschleunigt werden kann.
In dem Verfahrensschritt ii.) des erfindungsgemäßen Verfahrens wird eine Beschichtungs- masse und das textile Flächengebilde auf die Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanosttukturierten Partikel aufgebracht worden sind, aufgebracht.
Die Beschichtungsmasse weist vorzugsweise zumindest ein Polymer, ausgewählt aus Polyvinylchlorid, Polyurethan, Acrylnitril-Butadien-Styrol-Terpolymer (ABS), Poly- chloropren, als Suspension allein oder zusammen mit einer reaktiven Monomermischung, die nach einer Reaktion zumindest eines der zuvor genannten Polymere bildet, auf, bevorzugt handelt es um eine reaktive Paste, besonders bevorzugt um ein für die jeweilige Anwendung gut geeignetes, käufliches Produkt, wie z.B. Beschichtungsmassen aus den Produktserien Impraperm® (Bayer AG), Impranil® (Bayer AG), Baystal® (Polymer Latex GmbH), Plextol® (Polymer Latex GmbH), Liopur® (Synthopol Chemie), Larithane® und Laripur® (beide Novotex Italien). Bevorzugt weist die Beschichtungsmasse hydrophile Eigenschaften auf.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens wird in Verfahrensschritt ii.) zunächst die Beschichtungsmasse auf die Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht worden sind, aufgetragen und anschließend das textile Flächengebilde auf diese Beschichtungsmasse aufgebracht.
In einer weiteren besonderen Ausführungsform des erfindungsgemäßen Verfahrens wird in Verfahrensschritt ii.) zunächst die Beschichtungsmasse auf die Oberflächen des textilen Flächengebildes aufgetragen und anschließend dieser Verbund auf die Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht worden sind, aufgebracht, wobei die Beschichtungsmasse sich zwischen dem partikelaufweisenden Transfermedium und dem textilen Flächengebilde befindet.
Die Beschichtungsmasse kann in beiden genannten Ausführungsformen des erfindungsgemäßen Verfahrens mittels dem Fachmann gängigen Verfahren aufgebracht werden. Bevorzugt erfolgt das Aufbringen der Beschichtungsmasse auf die Oberfläche des Transfermediums, auf die in Verfahrensschritt i.) bereits die Partikel aufgebracht worden sind, bzw. auf das textile Flächengebilde mittels einer Walzenbeschichtung. In Verfahrensschritt iii.) des erfindungsgemäßen Verfahrens erfolgt eine thermische Behandlung des aus den Verfahrensschritten i.) bis ii.) resultierenden Verbundstoffes. Dieser Verfahrensschritt des erfindungsgemäßen Verfahrens dient vorzugsweise zur Härtung der Beschichtungsmasse.
In Verfahrensschritt iv.) wird vorzugsweise das Transfermedium von der Beschichtungsmasse abgezogen und anschließend aufgerollt. Das Transfermedium kann auf diese Weise mehrmals, bevorzugt 2 bis 15 mal für dieses erfindungsgemäße Verfahren eingesetzt werden. Für jeden neuen Einsatz ist vorzugsweise, um sicherzustellen, dass die aufgetragene Beschichtungsmasse während des Härtens gleichmäßig einen Lotus-Effekt übernimmt, eine erfindungsgemäße Neuausrüstung vonnöten.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens kann in einem nachgeschalteten Prozessschritt auch die Beschichtung einer zweiten Oberfläche, z.B. der Rückseite, des textilen Flächengebildes erfolgen. Hierfür werden die Verfahrensschritte i.) bis iv.) für die Rückseitenoberfläche des bereits auf einer Oberfläche erfindungsgemäß beschichteten textilen Flächengebildes durchgeführt.
Gegenstand dieser Erfindung sind des weiteren beschichtete textile Flächengebilde, die auf zumindest einer Beschichtungsoberfläche hydrophobe nanostrukturierte Partikel aufweisen, bevorzugt werden diese beschichteten textilen Flächengebilde mittels des erfindungsgemäßen Verfahrens hergestellt.
Diese erfindungsgemäßen beschichteten textilen Flächengebilde weisen vorzugsweise an bzw. in ihrer Oberfläche hydrophobe nanostrukurierte Partikel auf, die zumindest ein Material, ausgewählt aus Mineralien, Aluminiumoxid, Silikaten, Kieselsäuren, vorzugsweise hydrophob modifizierte Kieselsäuren, Metalloxiden, Mischoxiden, Metallpulvern, Pigmenten oder Polymeren, aufweisen. Besonders bevorzugt können die Partikel Silikate, dotierte Silikate, Mineralien, Metalloxide, Alumim'umoxid, Fällungskieselsäuren oder pyrogene Kieselsäuren (Aerosile") oder pulverförmige Polymere, wie z.B. sprühgetrocknete und agglomerierte Emulsionen oder cryogemahlenes PTFE, sein. Besonders bevorzugt weisen die beschichteten textilen Flächengebilde als hydrophobe nanostrukturierte Partikel Kieselsäuren auf. Vorzugsweise weisen die erfindungsgemäßen beschichteten textilen Flächengebilde hydrophobe nanoslxukturierte Partikel auf, die einen mittleren Partikeldurchmesser von 0,01 μm bis 100 μm, besonders bevorzugt von 0,02 μm bis 50 μm und ganz besonders bevorzugt von 0,05 μm bis 30 μm aufweisen. Sie können auch Partikel, die sich in dem Suspensionsmedium aus Primärteilchen zu Agglomeraten oder Aggregaten mit einer Größe von 0,02 μm bis 100 μm zusammenlagern, aufweisen.
Es kann vorteilhaft sein, wenn die Partikel der erfindungsgemäßen beschichteten textilen Flächengebilde eine strukturierte Oberfläche aufweisen. Vorzugsweise weisen die Partikel eine unregelmäßige Feinstruktur im Nanometerbereich, also im Bereich von 1 nm bis 1000 nm, vorzugsweise von 2 nm bis 750 nm und ganz besonders bevorzugt von 10 nm bis 100 nm, auf der Oberfläche auf. Unter Feinstruktur werden Strukturen verstanden, die Höhen, Zacken, Spalten, Grate, Risse, Hinterschnitte, Kerben und/oder Löcher in den genannten Abständen und Bereichen aufweisen. Solche nanostrukturierte Partikel weisen vorzugsweise zumindest eine Verbindung, ausgewählt aus pyrogener Kieselsäure oder pyrogenen Oxiden, wie Titandioxid oder Zirkoniumdioxid, bzw. Mischoxiden, Fällungskieselsäuren, Aluminiumoxid, Siliziumdioxid oder pulverförmige Polymeren, auf.
Die hydrophoben Eigenschaften der Partikel der erfindungsgemäßen beschichteten textilen Flächengebilde können durch das verwendete Material der Partikel inhärent vorhanden sein, wie beispielsweise beim Polytetrafluorethylen (PTFE). Die erfindungsgemäßen beschichteten textilen Flächengebilde können aber auch hydrophobe Partikel aufweisen, die nach einer geeigneten Behandlung hydrophobe Eigenschaften aufweisen, wie z.B. mit zumindest einer
Verbindung aus der Gruppe der Alkylsilane, der Fluoralkylsilane und/oder der Disilazane behandelte Partikel. Als Partikel eignen sich im Besonderen hydrophobierte pyrogene
Kieselsäuren, sogenannte Aerosile®. Beispiele für hydrophobe Partikel sind z.B. Aerosil®
VPR 411, Aerosil® VP LE 8241 oder Aerosil® R 8200. Beispiele für durch eine Behandlung mit Perfluoralkylsilan und anschließende Temperung hydrophobierbare Partikel sind z.B.
Aeroperl 90/30®, Sipernat Kieselsäure 350®, Aluminiumoxid C®, Zirkonsilikat, vanadiumdotiert oder Aeroperl P 25/20®.
Die Oberflächen der erfindungsgemäßen beschichteten textilen Flächengebilde weisen vorzugsweise eine Lage mit Erhebungen, die durch die Partikel selbst gebildet werden, mit einer mittleren Höhe von 0,02 bis 25 μm und einem maximalen Abstand von 25 μm, vorzugsweise mit einer mittleren Höhe von 0,05 bis 10 μm und/oder einem maximalen Abstand von 10 μm und ganz besonders bevorzugt mit einer mittleren Höhe von 0,03 bis 4 μm und/oder einem maximalen Abstand von 4 μm auf. Ganz besonders bevorzugt weisen die Oberflächen der erfmdungsgemäßen beschichteten textilen Flächengebilde Erhebungen mit einer mittleren Höhe von 0,05 bis 1 μm und einem maximalen Abstand von 1 μm auf. Unter dem Abstand der Erhebungen wird im Sinne der vorliegenden Erfindung der Abstand der höchsten Erhebung einer Erhebung eines Partikels zur nächsten höchsten Erhebung eines direkt benachbarten anderen Partikels verstanden. Hat eine Erhebung die Form eines Kegels so stellt die Spitze des Kegels die höchste Erhebung der Erhebung dar. Handelt es sich bei der Erhebung um einen Quader, so stellt die oberste Fläche des Quaders die höchste Erhebung der Erhebung dar.
Die Benetzung von Körpern und damit die selbstreinigende Eigenschaft lässt sich durch den Randwinkel, den ein Wassertropfen mit der Oberfläche bildet, beschreiben. Ein Randwinkel von 0° bedeutet dabei eine vollständige Benetzung der Oberfläche. Die Messung des statischen Randwinkels erfolgt in der Regel mittels Geräten, bei denen der Randwinkel optisch bestimmt wird. Auf glatten hydrophoben Oberflächen werden üblicherweise statische Randwinkel von kleiner 125° gemessen. Die vorliegenden Oberflächen der erfindungs- gemäßen beschichten textilen Flächengebilden mit selbstreinigenden Eigenschaften weisen statische Randwinkel von vorzugsweise größer 130° auf, bevorzugt größer 140° und ganz besonders bevorzugt größer 145° auf. Es wurde außerdem gefunden, dass eine Oberfläche dann besonders gute selbstreinigende Eigenschaften aufweist, wenn diese eine Differenz zwischen Fortschreit- und Rückzugswinkel von maximal 10° aufweist, weshalb die Oberflächen der erfindungsgemäßen beschichteten textilen Flächengebilden vorzugsweise eine Differenz zwischen Fortschreit- und Rückzugswinkel von kleiner 10°, vorzugsweise kleiner 7° und ganz besonders bevorzugt kleiner 6° aufweisen. Für die Bestimmung des Fortschreitwinkels wird ein Wassertropfen mittels einer Kanüle auf die Oberfläche gesetzt und durch Zugabe von Wasser durch die Kanüle der Tropfen auf der Oberfläche vergrößert. Während der Vergrößerung gleitet der Rand des Tropfens über die Oberfläche und der Kontaktwinkel wird als Fortschreitwinkel bestimmt. Der Rückzugswinkel wird an dem selben Tropfen gemessen, nur wird durch die Kanüle dem Tropfen Wasser entzogen und während des Verkleinerns des Tropfens der Kontaktwinkel gemessen. Der Unterschied zwischen beiden Winkeln wird als Hysterese bezeichnet. Je kleiner der Unterschied ist, desto geringer ist die Wechselwirkung des Wassertropfens mit der Oberfläche der Unterlage und desto besser ist der Selbstreinigungseffekt.
Die Oberflächen der erfindungsgemäßen beschichteten textilen Flächengebilden mit selbstreinigenden Eigenschaften weisen bevorzugt ein Aspektverhältnis der Erhebungen, die durch die Partikel selbst gebildet werden, von größer 0,15 auf. Vorzugsweise weisen die Erhebungen, die durch die Partikel selbst gebildet werden, ein Aspektverhältnis von 0,3 bis 0,9 auf, besonders bevorzugt von 0,5 bis 0,8 auf. Das Aspektverhältnis ist dabei definiert als der Quotient von maximaler Höhe zur maximalen Breite der Struktur der Erhebungen.
Besonders bevorzugte erfindungsgemäße beschichtete textile Flächengebilde weisen an ihrer Oberfläche Partikel mit einer unregelmäßigen, luftig-zerklüfteten Feinstruktur auf, die vorzugsweise Erhebungen mit einem Aspektverhältnis in den Feinstrukturen von größer 1, besonders bevorzugt größer 1,5 aufweisen. Das Aspektverhältnis ist wiederum definiert als Quotient aus maximaler Höhe zu maximaler Breite der Erhebung. In Fig. 1 wird der Unterschied zwischen den Erhebungen, die durch die Partikel gebildet werden, und den Erhebungen, die durch die Feinsttuktur gebildet werden, schematisch verdeutlicht. Die Figur Fig. 1 zeigt die Oberfläche eines erfindungsgemäß beschichteten textilen Flächengebildes, das einen Partikel P aufweist (Zur Vereinfachung der Darstellung ist nur ein Partikel abgebildet). Die Erhebung, die durch den Partikel selbst gebildet wird, weist ein Aspektverhältnis von ca. 0,71 auf, berechnet als Quotient aus der maximalen Höhe des Partikels mH, die 5 beträgt, da nur der Teil des Partikels, der aus der Oberfläche des beschichteten textilen Flächengebildes X herausragt, einen Beitrag zur Erhebung leistet, und der maximalen Breite mB, die im Verhältnis dazu 7 beträgt. Eine ausgewählte Erhebung E der Erhebungen, die durch die Feinstruktur der Partikel auf den Partikeln vorhanden ist, weist ein Aspektverhältnis von 2,5 auf, berechnet als Quotient aus der maximalen Höhe der Erhebung mH', die 2,5 beträgt und der maximalen Breite mB', die im Verhältnis dazu 1 beträgt.
Es ist vorteilhaft, wenn zumindest ein Teil der hydrophoben nanostrukturierten Partikel, vorzugsweise mehr als 50 % der Partikel, nur bis zu 90 % ihres Durchmessers in die Beschichtung des textilen Flächengebildes eingedrückt werden. Die Oberfläche des beschichteten textilen Flächengebildes weist deshalb bevorzugt hydrophobe nanostrukturierte Partikel auf, die mit von 10 bis 90 %, bevorzugt von 20 bis 50 % und ganz besonders bevorzugt von 30 bis 40 % ihres mittleren Partikeldurchmessers in die Oberfläche der Beschichtung des textilen Flächengebildes verankert sind und damit mit Teilen ihrer inhärent zerklüfteten Oberfläche noch aus der Beschichtung des textilen Flächengebildes herausragen. Auf diese Weise ist gewährleistet, dass die Erhebungen, die durch die Partikel selbst gebildet werden, ein genügend großes Aspektverhältnis von vorzugsweise zumindest 0,15 aufweisen. Auf diese Weise wird außerdem erreicht, dass die fest verbundenen Partikel sehr haltbar mit der Beschichtung des textilen Flächengebildes verbunden sind. Das Aspektverhältnis ist hierbei definiert als das Verhältnis von maximaler Höhe zu maximaler Breite der Erhebungen. Ein als ideal kugelförmiger angenommener Partikel, der zu 70 % aus der Oberfläche des erfindungsgemäßen beschichteten textilen Flächengebildes herausragt, weist gemäß dieser Definition ein Aspektverhältnis von 0,7 auf. Es sei explizit daraufhingewiesen, dass die Partikel des erfindungsgemäßen beschichteten textilen Flächengebildes keine kugelige Form aufweisen dürfen.
Die beschichteten textilen Flächengebilde weisen hydrophobe nanostrukturierte Partikel als Erhebungen vorzugsweise auf allen beschichteten Oberflächen, bevorzugt jedoch nur auf einer Seite des beschichteten textilen Flächengebildes auf. In einer weiteren Ausführungsform des beschichteten textilen Flächengebildes befinden sich die hydrophoben nanostrukturierten Partikel nur in Teilbereichen aller Seiten der Oberfläche, bevorzugt jedoch nur auf einer Seite der Oberfläche.
Die erfmdungsgemäßen beschichteten textilen Flächengebilde können für die Herstellung von Bekleidung, insbesondere für die Herstellung von Schutzbekleidung, Regenbekleidung und Sicherheitsbekleidung mit Signalwirkung, technische Textilien, insbesondere für die Herstellung von Abdeckplanen, Zeltplanen, Schutzabdeckungen LKW-Planen, und Geweben des textilen Bauens, insbesondere für die Herstellung von Sonnenschutzdächer, wie beispielsweise Markisen, Sonnensegel, Sonnenschirme, verwendet werden.
Die erfindungsgemäßen beschichteten textilen Flächengebilde lassen sich beispielsweise für die Herstellung von Textilien zum persönlichen Bekleidungszwecke, für die Herstellung von Textilien für Schutzbekleidungen und Materialien des textilen Bauens verwenden. Solche erfindungsgemäßen beschichteten textilen Flächengebilde können beispielsweise auf Gebäuden oder Fahrzeugen aufgebracht werden, so dass diese ebenfalls selbstreinigende Eigenschaften aufweisen. Die erfmdungsgemäßen beschichteten textilen Flächengebilde können aber auch beispielsweise im Bereich des textilen Bauens für die Herstellung von Markisen oder Sonnenschutzdächer, sowie für Abdeckplanen, LKW-Planen, Zeltplanen oder Schutzabdeckungen verwendet werden. Die vorgenannten Planen sind deshalb ebenfalls Gegenstand der vorliegenden Erfindung. Regenoberbekleidung und mit Signalwirkung eingefärbte Sicherheitsbekleidung sind bevorzugte Verwendungen der erfindungsgemäßen beschichteten textilen Flächengebilde.
Die nachfolgenden Beispiele sollen das erfindungsgemäße Verfahren sowie die erfmdungsgemäßen beschichteten textilen Flächengebilde näher erläutern, ohne dass die Erfindung auf diese Ausführungsform beschränkt sein soll.
Beispiel 1: Es wurde eine 10 Gew.-%ige Suspension von Aerosil® VP LE 8241 in einem Lösemittel hergestellt. Diese Suspension wurde mittels eines Pumpsprays auf ein Kraft-Kaschierpapier (der Firma SCA Flex Pack Papers GmbH, Mannheim) aufgetragen. Der Aerosil-Anteil auf dem vorbehandelten Kaschierpapier betrug 5 g/m2. Nach dem Verdampfen des Lösemittels bei Raumtemperatur wurde LARITHANE AL 227 - eine aliphatische Polyurethandispersion der Firma Novotex Italien - mittels eines Filmziehrakels mit einer Schichtdicke von 50 μm auf das vorbehandelte Kaschierpapier aufgetragen. In die noch feuchte Oberfläche der Polyurethanbeschichtung wurde ein Trikotgewebe aus einem Polyamidgewebe (DECOTEX der Firma IBENA Textilwerke Beckmann GmbH) einkaschiert. Die Polyurethanbeschichtung wurde bei einer Temperatur von 150 °C 2 Minuten lang thermisch gehärtet und anschließend das Kaschierpapier entfernt.
Tabelle 1: Nersuchsparameter und Charakterisierungsergebnisse zu Beispiel 1
Figure imgf000016_0001
Beispiel 2: Es wurde eine 10 Gew.-%ige Suspension von Aerosil® VP LE 8241 in vergälltem Ethanol hergestellt. Diese Suspension wurde mittels eines Pumpsprays auf ein Kraft-Kaschierpapier (der Firma SCA Flex Pack Papers GmbH, Mannheim) aufgetragen. Der Aerosil-Anteil auf dem vorbehandelten Kaschierpapier betrug 5 g/m2. Nach dem Verdampfen des Lösemittels bei Raumtemperatur wurde eine Polyurethandispersion gemäß der Tabelle 2 mittels eines Filmziehrakels mit einer Schichtdicke von 50 μm auf das vorbehandelte Kaschierpapier aufgetragen. In die noch feuchte Oberfläche der Polyurethanbeschichtung wurde ein Trikotgewebe aus einem Polyamidgewebe (DECOTEX der Firma IBENA Textilwerke Beckmann GmbH) einkaschiert. Die Polyurethanbeschichtung wurde bei einer Temperatur von 150 °C 2 Minuten lang thermisch gehärtet und anschließend das Kaschierpapier entfernt.
Tabelle 2: Versuchsparameter zu den Beispielen 2 und 3
Figure imgf000017_0001
Die Charakterisierung der beschichteten textilen Flächengebilde erfolgte anfänglich visuell und ist für alle vier Versuche mit +++ protokolliert. +++ bedeutet, Wassertropfen bilden sich nahezu vollständig aus. Der Abrollwinkel liegt unterhalb von 10°.
Beispiel 3:
Es wurde eine 1,3 Gew.-%ige Suspension von Aerosil® VP LE 8241 in vergälltem Ethanol hergestellt. Diese Suspension wurde mittels eines Treibmittelsprays, das als Treibmittel ein Propan/Butan-Gemisch aufweist, auf ein Kraft-Kaschierpapier (der Firma SCA Flex Pack Papers GmbH, Mannheim) aufgetragen. Der Aerosil-Anteil auf dem vorbehandelten Kaschierpapier betrug 5 g/m2. Nach dem Verdampfen des Lösemittels bei Raumtemperatur wurde eine Polyurethandispersion gemäß der Tabelle 2 mittels eines Filmziehrakels mit einer Schichtdicke von 50 μm auf das vorbehandelte Kaschierpapier aufgetragen. In die noch feuchte Oberfläche der Polyurethanbeschichtung wurde ein Trikotgewebe aus einem Polyamidgewebe (DECOTEX der Firma IBENA Textilwerke Beckmann GmbH) einkaschiert. Die Polyurethanbeschichtung wurde bei einer Temperatur von 150 °C 2 Minuten lang thermisch gehärtet und anschließend das Kaschierpapier entfernt.
Die Charakterisierung der beschichteten textilen Flächengebilde erfolgte anfanglich visuell und ist für alle vier Versuche mit +++ protokolliert. +++ bedeutet, Wassertropfen bilden sich nahezu vollständig aus. Der Abrollwinkel liegt unterhalb von 10°.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von selbstreinigenden Oberflächen auf beschichteten textilen Flächengebilden, dadurch gekennzeichnet, dass das Verfahren folgende Verfahrensschritte aufweist: i.) Aufbringen von hydrophoben nanostrukturierten Partikeln auf einer Oberfläche eines flächigen Transfermediums, ii.) Aufbringen einer Beschichtungsmasse und eines textilen Flächengebildes auf die Oberflächen des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht wurden, iii.) thermische Behandlung des aus den Verfahrensschritten i.) bis ii.) resultierenden
Verbundstoffes und iv.) Entfernen des Transfermediums.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das Transfermedium eine hydrophobe Oberfläche aufweist.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass das Transfermedium ein Kaschierpapier ist.
4. Verfahren gemäß zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Partikel eingesetzt werden, die einen mittleren Partikeldurchmesser von 0,01 μm bis 100 μm aufweisen.
5. Verfahren gemäß zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Partikel eingesetzt werden, die einen mittleren Partikeldurchmesser von 0,02 μm bis 50 μm aufweisen.
6. Verfahren gemäß zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Partikel ausgewählt aus Mineralien, Aluminiumoxid, Silikaten, hydrophob modifizierte Kieselsäuren, Metalloxiden, Mischoxiden, Metallpulvern, Pigmenten oder Polymeren eingesetzt werden.
7. Verfahren gemäß zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Partikel nach einer Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, Fluoralkylsilane und/oder Disilazane hydrophobe Eigenschaften aufweisen.
8. Verfahren gemäß zumindest einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Beschichtungsmasse hydrophile Eigenschaften aufweist.
9. Verfahren gemäß zumindest einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Beschichtungsmasse Polyvinylchlorid, Acrylnitril-Butadien-Styrol-Terpolymer (ABS), Polychloropren oder Polyurethan aufweist.
10. Verfahren gemäß zumindest einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in Verfahrensschritt ii.) zunächst die Beschichtungsmasse auf die Oberfläche des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten
Partikel aufgebracht worden sind, aufgetragen und anschließend das textile Flächengebilde auf diese Beschichtungsmasse aufgebracht wird.
11. Verfahren gemäß zumindest einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in Verfahrensschritt ii.) zunächst die Beschichtungsmasse auf die Oberfläche des textilen Flächengebildes aufgetragen und anschließend dieser Verbund auf die Oberfläche des Transfermediums, auf die in Verfahrensschritt i.) die hydrophoben nanostrukturierten Partikel aufgebracht worden sind, aufgebracht wird, wobei die Beschichtungsmasse sich zwischen dem partikelaufweisenden Transfermedium und dem textilen Flächengebilde befindet.
12. Beschichtete textile Flächengebilde, dadurch gekennzeichnet, dass diese auf zumindest einer Beschichtungsoberfläche hydrophobe nanostrukturierte Partikel aufweist.
13. Beschichtete textile Flächengebilde gemäß Anspruch 12, dadurch gekennzeichnet, dass diese nach einem Verfahren gemäß zumindest einem der Ansprüche 1 bis 11 hergestellt wird.
14. Verwendung des beschichteten textilen Flächengebildes hergestellt nach einem Verfahren gemäß zumindest einem der Ansprüche 1 bis 11 für die Herstellung von Bekleidung, technische Textilien und Geweben des textilen Bauens.
15. Verwendung des beschichteten textilen Flächengebildes gemäß Anspruch 14 für die Herstellung von Regenbekleidung und Sicherheitsbekleidung mit Signalwirkung.
16. Verwendung des beschichteten textilen Flächengebildes gemäß Anspruch 14 für die Herstellung von Sonnenschutzdächer.
17. Verwendung des beschichteten textilen Flächengebildes gemäß Anspruch 14 für die Herstellung von Abdeckplanen, Zeltplanen, Schutzabdeckungen und LKW-Planen.
PCT/EP2003/008280 2002-09-13 2003-07-26 Herstellung von selbstreinigenden oberflächen auf textilen beschichtungen WO2004033788A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/526,559 US7517428B2 (en) 2002-09-13 2003-07-26 Production of self-cleaning surfaces on textile coatings
DE10393372T DE10393372D2 (de) 2002-09-13 2003-07-26 Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
JP2004542278A JP4708028B2 (ja) 2002-09-13 2003-07-26 テキスタイル被覆上の自浄性表面の製造
AU2003253339A AU2003253339A1 (en) 2002-09-13 2003-07-26 Production of self-cleaning surfaces on textile coatings
US12/272,092 US7858538B2 (en) 2002-09-13 2008-11-17 Coated textile with self-cleaning surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002142560 DE10242560A1 (de) 2002-09-13 2002-09-13 Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
DE10242560.4 2002-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10526559 A-371-Of-International 2003-07-26
US12/272,092 Division US7858538B2 (en) 2002-09-13 2008-11-17 Coated textile with self-cleaning surface

Publications (1)

Publication Number Publication Date
WO2004033788A1 true WO2004033788A1 (de) 2004-04-22

Family

ID=31895948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008280 WO2004033788A1 (de) 2002-09-13 2003-07-26 Herstellung von selbstreinigenden oberflächen auf textilen beschichtungen

Country Status (5)

Country Link
US (2) US7517428B2 (de)
JP (1) JP4708028B2 (de)
AU (1) AU2003253339A1 (de)
DE (2) DE10242560A1 (de)
WO (1) WO2004033788A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214076A (ja) * 2004-12-27 2006-08-17 Degussa Ag テキスタイル平面構造物の水密性を高めるための方法、そのように加工されたテキスタイル平面構造物並びにその使用

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134477A1 (de) 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10208208B4 (de) * 2002-02-26 2012-03-08 Eaton Industries Gmbh Bausatz aus mehreren Bausatzelementen und einer Welle
DE10242560A1 (de) 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
DE10347569A1 (de) * 2003-10-14 2005-06-02 Degussa Ag Keramische, flexible Membran mit verbesserter Haftung der Keramik auf dem Trägervlies
DE102004006612A1 (de) * 2004-02-10 2005-08-25 Degussa Ag Keramischer Wandverkleidungsverbund
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates
DE102004036073A1 (de) 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
DE102004062740A1 (de) * 2004-12-27 2006-07-13 Degussa Ag Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
WO2009018327A2 (en) * 2007-07-30 2009-02-05 Soane Labs, Llc Ultraphobic compositions and methods of use
US8153834B2 (en) * 2007-12-05 2012-04-10 E.I. Dupont De Nemours And Company Surface modified inorganic particles
US9108880B2 (en) * 2008-08-18 2015-08-18 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
US9956743B2 (en) 2010-12-20 2018-05-01 The Regents Of The University Of California Superhydrophobic and superoleophobic nanosurfaces
WO2014016855A1 (en) * 2012-07-25 2014-01-30 D'appolonia S.P.A. Bituminous based waterproofing composite with solar reflective properties, manufacturing method thereof and multiple prefabricated layer for such composite
EP2892859A2 (de) 2012-09-04 2015-07-15 OCV Intellectual Capital, LLC Dispersion von kohlenstoffverstärkten verstärkungsfasern in wässrigen und nichtwässrigen medien
JP6089250B2 (ja) * 2013-02-14 2017-03-08 平岡織染株式会社 ファブリック調日除け膜材
CN103993320B (zh) * 2014-05-26 2016-08-24 宁波诺沃新材料科技有限公司 一种获得超疏水性铝或铝合金表面的表面处理方法
CN107530744A (zh) * 2015-03-19 2018-01-02 帕拉姆工业(1990)有限公司 自动清洁表面及其制备方法
CA3021580A1 (en) 2015-06-25 2016-12-29 Barry L. Merriman Biomolecular sensors and methods
US11624725B2 (en) 2016-01-28 2023-04-11 Roswell Blotechnologies, Inc. Methods and apparatus for measuring analytes using polymerase in large scale molecular electronics sensor arrays
WO2017132567A1 (en) 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Massively parallel dna sequencing apparatus
EP3882616A1 (de) 2016-02-09 2021-09-22 Roswell Biotechnologies, Inc Elektronische markierungsfreie dna- und genomsequenzierung
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
WO2018132457A1 (en) 2017-01-10 2018-07-19 Roswell Biotechnologies, Inc. Methods and systems for dna data storage
CA3052140A1 (en) 2017-01-19 2018-07-26 Roswell Biotechnologies, Inc. Solid state sequencing devices comprising two dimensional layer materials
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110546276A (zh) 2017-04-25 2019-12-06 罗斯威尔生命技术公司 用于分子传感器的酶电路
WO2018208505A1 (en) 2017-05-09 2018-11-15 Roswell Biotechnologies, Inc. Binding probe circuits for molecular sensors
CN111373049A (zh) 2017-08-30 2020-07-03 罗斯威尔生命技术公司 用于dna数据存储的进行性酶分子电子传感器
CN111373051A (zh) 2017-10-10 2020-07-03 罗斯威尔生命技术公司 用于无扩增dna数据存储的方法、装置和系统
US11730398B2 (en) 2019-07-05 2023-08-22 The Board Of Regents, The University Of Texas Syst Motion powered wearable devices and uses thereof in health monitoring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022246A1 (de) * 2000-05-08 2001-11-15 Basf Ag Beschichtungsmittel für die Herstellung schwer benetzbarer Oberflächen
DE10135157A1 (de) * 2001-07-19 2003-02-06 Creavis Tech & Innovation Gmbh Verfahren zum Aufbringen einer selbstreinigenden Beschichtung auf Textilien

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1233543A (de) * 1967-06-01 1971-05-26
US4121745A (en) * 1977-06-28 1978-10-24 Senco Products, Inc. Electro-mechanical impact device
JPS6089361A (ja) * 1983-10-22 1985-05-20 住友電気工業株式会社 可撓性膜材料
DE3810757A1 (de) * 1988-03-30 1989-10-26 Freudenberg Carl Fa Verfahren zur herstellung einer mikroporoesen folie
JPH0282795A (ja) * 1988-09-19 1990-03-23 Mitsubishi Electric Corp 情報伝送方法
JPH0633317A (ja) * 1992-07-09 1994-02-08 Toray Ind Inc 耐久発水性に優れた繊維およびその製造方法
JP3375707B2 (ja) * 1993-12-27 2003-02-10 出光石油化学株式会社 絹フィブロイン超微粉末含有溶剤系樹脂組成物の製造方法、フィルム又はシートの製造方法及び積層体の製造方法
US6337129B1 (en) * 1997-06-02 2002-01-08 Toto Ltd. Antifouling member and antifouling coating composition
JPH1161636A (ja) * 1997-08-08 1999-03-05 Toray Ind Inc ポリエステルコーティング加工布およびその製造方法
US6638603B1 (en) * 1997-08-15 2003-10-28 Kimberly-Clark Worldwide, Inc. Screen printed coating on water-sensitive film for water protection
JPH11170461A (ja) * 1997-12-15 1999-06-29 Toray Ind Inc 防水布帛およびそれからなる衣料、靴類およびテント類
JPH11192673A (ja) * 1998-01-05 1999-07-21 Nissha Printing Co Ltd 抗菌防臭シートとその製造方法
JPH11227143A (ja) * 1998-02-10 1999-08-24 Unitika Ltd ソフトな透湿防水性布帛の製造方法
JP4067177B2 (ja) * 1998-05-21 2008-03-26 小松精練株式会社 消臭、抗菌および防汚機能を有する繊維布帛およびその製造方法
ES2191387T3 (es) * 1998-07-08 2003-09-01 Nitto Denko Corp Procedimiento para la eliminacion de una capa protectora.
DE19851945A1 (de) * 1998-11-11 2000-05-18 Rhein Chemie Rheinau Gmbh Formtrennmittel
DE20006010U1 (de) 2000-03-31 2000-07-13 Creavis Tech & Innovation Gmbh Behälter mit strukturierten flüssigkeitsabweisenden und flüssigkeitsbenetzenden Teilbereichen der inneren Oberfläche
CH695946A5 (de) * 2000-04-04 2006-10-31 Schoeller Technologies Ag Ausrüstung von textilen Fasern, Geweben und Flächengebilden.
ATE260307T1 (de) * 2000-06-13 2004-03-15 Basf Ag Verwendung von polymeren, die urethan- und/oder harnstoffgruppen aufweisen, zur modifizierung von oberflächen
JP3651583B2 (ja) * 2000-08-11 2005-05-25 平岡織染株式会社 曝露汚れ防止シート及びその製造方法
DE10060373A1 (de) * 2000-12-05 2002-06-06 Basf Ag Reaktiv modifizierte, teilchenförmige Polymerisate zur Behandlung der Oberflächen textiler und nicht-textiler Materialien
DE10061920A1 (de) 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende keramische Membran auf Basis einer Hydroxysilylsäure, Verfahren zu deren Herstellung und die Verwendung der Membran
DE10065797A1 (de) 2000-12-30 2002-07-04 Creavis Tech & Innovation Gmbh Vorrichtung zur Kondensationsbeschleunigung mit Hilfe strukturierter Oberflächen
DE10100383A1 (de) 2001-01-05 2002-07-11 Degussa Verfahren zur Aufbringung einer fluoralkylfunktionellen Organopolysiloxan-Beschichtung mit beständigen Wasser und Öl abweisenden Eigenschaften auf polymere Substrate
DE10110589A1 (de) 2001-03-06 2002-09-12 Creavis Tech & Innovation Gmbh Geometrische Formgebung von Oberflächen mit Lotus-Effekt
DE10118352A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118345A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
DE10118351A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118349A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118346A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Textile Flächengebilde mit selbstreinigender und wasserabweisender Oberfläche
DE10128894A1 (de) * 2001-06-15 2002-12-19 Basf Ag Verfahren zur schmutzablösungsfördernden Behandlung von Oberflächen textiler und nicht-textiler Materialien
DE10134477A1 (de) 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10139574A1 (de) 2001-08-10 2003-02-20 Creavis Tech & Innovation Gmbh Erhalt des Lotus-Effektes durch Verhinderung des Mikrobenwachstums auf selbstreinigenden Oberflächen
DE10159767A1 (de) 2001-12-05 2003-06-18 Degussa Verfahren zur Herstellung von Gegenständen mit antiallergischen Oberflächen
DE10160055A1 (de) 2001-12-06 2003-06-18 Degussa Diffus reflektierende Oberflächen zu deren Herstellung
DE10205007A1 (de) 2002-02-07 2003-08-21 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von Schutzschichten mit schmutz- und wasserabweisenden Eigenschaften
DE10205783A1 (de) 2002-02-13 2003-08-21 Creavis Tech & Innovation Gmbh Formkörper mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Formkörper
DE10208208B4 (de) 2002-02-26 2012-03-08 Eaton Industries Gmbh Bausatz aus mehreren Bausatzelementen und einer Welle
DE10210667A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Herstellung von Bahnenwaren mit selbstreinigenden Oberflächen mittels eines Kalandrierprozesses, Bahnenwaren selbst und die Verwendung dieser
DE10210674A1 (de) 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Flächenextrudate mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Extrudate
DE10210668A1 (de) 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Vorrichtung, hergestellt durch Spritzgussverfahren, zur Aufbewahrung von Flüssigkeiten und Verfahren zur Herstellung dieser Vorrichtung
DE10210666A1 (de) 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Formgebungsverfahren zur Herstellung von Formkörpern mit zumindest einer Oberfläche, die selbstreinigende Eigenschaften aufweist sowie mit diesem Verfahren hergestellte Formkörper
DE10210671A1 (de) 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Entformungsmittel, welches hydrophobe, nanoskalige Partikel aufweist sowie Verwendung dieser Entformungsmittel
DE10210673A1 (de) 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Spritzgusskörper mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Spritzgusskörper
DE10231757A1 (de) 2002-07-13 2004-01-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
DE10233830A1 (de) 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Flammpulverbeschichtung von Oberflächen zur Erzeugung des Lotus-Effektes
DE10242560A1 (de) 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
DE10308379A1 (de) * 2003-02-27 2004-09-09 Creavis Gesellschaft Für Technologie Und Innovation Mbh Dispersion von Wasser in hydrophoben Oxiden zur Herstellung von hydrophoben nanostrukturierten Oberflächen
EP1475426B1 (de) 2003-04-24 2006-10-11 Goldschmidt GmbH Verfahren zur Herstellung von ablösbaren schmutz- und wasserabweisenden flächigen Beschichtungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022246A1 (de) * 2000-05-08 2001-11-15 Basf Ag Beschichtungsmittel für die Herstellung schwer benetzbarer Oberflächen
DE10135157A1 (de) * 2001-07-19 2003-02-06 Creavis Tech & Innovation Gmbh Verfahren zum Aufbringen einer selbstreinigenden Beschichtung auf Textilien

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214076A (ja) * 2004-12-27 2006-08-17 Degussa Ag テキスタイル平面構造物の水密性を高めるための方法、そのように加工されたテキスタイル平面構造物並びにその使用

Also Published As

Publication number Publication date
DE10393372D2 (de) 2005-10-06
AU2003253339A1 (en) 2004-05-04
JP4708028B2 (ja) 2011-06-22
US20060128239A1 (en) 2006-06-15
US20090137169A1 (en) 2009-05-28
US7517428B2 (en) 2009-04-14
JP2005538271A (ja) 2005-12-15
US7858538B2 (en) 2010-12-28
DE10242560A1 (de) 2004-03-25

Similar Documents

Publication Publication Date Title
WO2004033788A1 (de) Herstellung von selbstreinigenden oberflächen auf textilen beschichtungen
EP1674609A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
WO2003076168A1 (de) Herstellung von bahnenwaren mit selbstreinigenden oberflächen mittels eines kalandrierprozesses, bahnenwaren selbst und die verwendung dieser
WO2003076091A1 (de) Flächenextrudate mit selbstreinigenden eigenschaften und verfahren zur herstellung solcher extrudate
EP1674610A1 (de) Textile Substrate mit selbstreinigenden Eigenschaften (Lotuseffekt)
EP1472011B1 (de) Verfahren zur herstellung von schutzschichten mit schmutz- und wasserabweisenden eigenschaften
EP1597334B1 (de) Herstellung von suspension hydrophober oxidpartikel
EP1623066B1 (de) Verwendung von mit fluorsilanen hydrophobierten partikeln zur herstellung von selbstreinigenden oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben eigenschaften
EP1249280B1 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1674611A1 (de) Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
EP1249467B1 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
WO2003076169A2 (de) Spritzgusskörper mit selbstreinigenden eigenschaften und verfahren zur herstellung solcher spritzgusskörper
EP1525285A1 (de) Verfahren zur flammpulverbeschichtung von oberflächen zur erzeugung des lotus-effektes
WO2004007625A1 (de) Verfahren zur herstellung einer tensidfreien suspension auf wässriger basis von nanostrukturierten, hydrophoben partikeln und deren verwendung
EP1674535A1 (de) Selbstreinigende Oberflächen mit durch hydrophobe strukturgebende Partikel und Wachspartikel gebildeten Erhebungen
WO2007048630A1 (de) Superhydrophobe beschichtung eines polymervlieses, insbesondere eines polypropylenvlieses
DE10308379A1 (de) Dispersion von Wasser in hydrophoben Oxiden zur Herstellung von hydrophoben nanostrukturierten Oberflächen
WO2007090808A1 (de) Formgegenstand mit selbstreinigender oberflächenstruktur
WO2002084013A2 (de) Polymerfaser mit selbstreinigender und wasserabweisender oberfläche
EP1826257A1 (de) Nano-funktionelles Schleifmittel
WO2004014575A1 (de) Verfahren zur pulverbeschichtung von oberflächen zur erzeugung des lotus-effektes
DE10233831A1 (de) Verfahren zur Herstellung von strukturierten Oberflächen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006128239

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526559

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004542278

Country of ref document: JP

REF Corresponds to

Ref document number: 10393372

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393372

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10526559

Country of ref document: US