EP1249280B1 - Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung - Google Patents

Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP1249280B1
EP1249280B1 EP02003960A EP02003960A EP1249280B1 EP 1249280 B1 EP1249280 B1 EP 1249280B1 EP 02003960 A EP02003960 A EP 02003960A EP 02003960 A EP02003960 A EP 02003960A EP 1249280 B1 EP1249280 B1 EP 1249280B1
Authority
EP
European Patent Office
Prior art keywords
particles
self
process according
carrier
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02003960A
Other languages
English (en)
French (fr)
Other versions
EP1249280A3 (de
EP1249280A2 (de
EP1249280B2 (de
Inventor
Edwin Dr. Nun
Markus Dr. Oles
Bernhard Dr. Schleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7681415&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1249280(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP1249280A2 publication Critical patent/EP1249280A2/de
Publication of EP1249280A3 publication Critical patent/EP1249280A3/de
Application granted granted Critical
Publication of EP1249280B1 publication Critical patent/EP1249280B1/de
Publication of EP1249280B2 publication Critical patent/EP1249280B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/786Fluidic host/matrix containing nanomaterials
    • Y10S977/787Viscous fluid host/matrix containing nanomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • Y10T428/24388Silicon containing coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to self-cleaning surfaces and methods for their production.
  • Articles having extremely difficult to wet surfaces have a number of economically important features.
  • the economically most important feature is the self-cleaning effect of difficult-to-wet surfaces, since the cleaning of surfaces is time consuming and costly.
  • Self-cleaning surfaces are therefore of the highest economic interest.
  • Adhesive mechanisms are usually conditioned by interfacial energy parameters between the two contacting surfaces. As a rule, the systems try to lower their free surface energy. If the free interfacial energies between two components are inherently very low, it can generally be assumed that the adhesion between these two components is weak. Important here is the relative lowering of the free surface energy. For pairings with high and low interfacial energy, the possibilities of interactions are very often important.
  • hydrophobic materials such as perfluorinated polymers
  • hydrophobic surfaces are known.
  • a further development of these surfaces is to structure the surfaces in the ⁇ m range to the nm range.
  • US Pat. No. 5,599,489 discloses a method in which a surface can be provided in a particularly repellent manner by bombardment with particles of a corresponding size and subsequent perfluorination.
  • Another method is described by H. Saito et al., Service Coatings International 4, 1997, p. 168 et seq.
  • particles of fluoropolymers are applied to metal surfaces, whereby a markedly reduced wettability of the surfaces thus produced to water has been determined with a considerably reduced tendency to freeze.
  • U.S. Patent Nos. 3,354,022 and WO 96/04123 disclose further methods of reducing the wettability of articles by surface topological changes.
  • artificial elevations or depressions with a height of about 5 to 1000 microns and a distance of about 5 to 500 microns are applied to hydrophobic or hydrophobized after structuring materials.
  • Surfaces of this type lead to rapid droplet formation, whereby the rolling drops absorb dirt particles and thus clean the surface.
  • WO 00/58410 describes the structures and claims the formation thereof by spraying hydrophobic alcohols, such as nonakosan-10-ol, or alkanediols, such as nonakosan-5,10-diol.
  • hydrophobic alcohols such as nonakosan-10-ol, or alkanediols, such as nonakosan-5,10-diol.
  • the disadvantage here is the lack of stability of the self-cleaning surfaces, since detergents lead to the replacement of the structure.
  • EP 1 040 874 A2 describes the embossing of microstructures and claims the use of such structures in analytics (microfluidics).
  • a disadvantage of these structures is the insufficient mechanical stability.
  • JP 11171592 describes a water-repellent product and its preparation in which the soil-repellent surface is produced by applying a film to the surface to be treated comprising fine particles of metal oxide and the hydrolyzate of a metal alkoxide or chelate.
  • the substrate to which the film has been applied must be sintered at temperatures above 400 ° C. The method can therefore only be used for substrates which are stable even at temperatures above 400 ° C.
  • WO 00/39 239 describes a process for producing a surface with ultraphobic properties, in which one is coated with Ni (OH) 2 particles, if appropriate coated with an adhesion promoter and then provided with a hydrophobic and / or oleophobic coating ,
  • the object of the present invention was to provide particularly well self-cleaning surfaces with structures in the nanometer range, as well as a simple method for producing such self-cleaning surfaces.
  • an object of the present invention to provide a method for producing self-cleaning surfaces, in which the coated material must be exposed to only low chemical or physical loads.
  • the present invention is therefore a self-cleaning surface having an artificial, at least partially hydrophobic surface structure of elevations and depressions, wherein the elevations and depressions are formed by fixed by means of a carrier on the surface particles, which is characterized in that the particles have a rugged structure with elevations and / or depressions in the nanometer range.
  • the present invention also provides a process for the production of self-cleaning surfaces, in which a suitable, at least partially hydrophobic surface structure is provided by fixing particles by means of a carrier on a surface, which is characterized in that particles, the rugged structures with elevations and / or depressions in the nanometer range can be used.
  • a further advantage of the method according to the invention is that scratch-sensitive surfaces during application of the particles are not damaged by particles present in the carrier since the use of paints and subsequent application of the particles to the carrier already protect the scratch-sensitive surface by the carrier.
  • the self-cleaning surface according to the invention which has an artificial, at least partially hydrophobic surface structure of elevations and depressions, wherein the elevations and depressions are formed by particles fixed on the surface by means of a carrier, is characterized in that the particles have a rugged structure with elevations and or pits in the nanometer range aur mars.
  • the elevations have on average a height of 20 to 500 nm, particularly preferably of 50 to 200 nm.
  • the spacing of the elevations or depressions on the particles is preferably less than 500 nm, very particularly preferably less than 200 nm.
  • the rugged structures with elevations and / or pits in the nanometer range can be e.g. cavities, pores, grooves, peaks and / or spikes are formed.
  • the particles themselves have an average size of less than 50 .mu.m, preferably of less than 30 .mu.m and most preferably of less than 20 .mu.m.
  • the particles preferably have a BET surface area of from 50 to 600 square meters per gram. Most preferably, the particles have a BET surface area of from 50 to 200 m 2 / g.
  • the particles comprise at least one material selected from silicates, doped silicates, minerals, metal oxides, silicas, polymers and silica-coated metal powders.
  • the particles have fumed silicas or precipitated silicas, in particular aerosils, Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , coated with Aerosil R974 zinc powder, preferably with a particle size of 1 micron or powdery polymers, such as cryogenically ground or spray-dried polytetrafluoroethylene (PTFE) or perfluorinated copolymers or copolymers with tetrafluoroethylene, on.
  • PTFE polytetrafluoroethylene
  • the particles preferably also have hydrophobic properties in addition to the fissured structures in order to generate the self-cleaning surfaces.
  • the particles themselves may be hydrophobic, e.g. PTFE-containing particles, or the particles used may have been rendered hydrophobic.
  • the hydrophobing of the particles can be carried out in a manner known to those skilled in the art.
  • Typical hydrophobized particles are e.g. Fine powders such as Aerosil-R 8200 (Degussa AG), which are available for purchase.
  • the preferably used silicic acids preferably have a dibutyl phthalate adsorption, based on DIN 53 601, of between 100 and 350 ml / 100 g, preferably values between 250 and 350 ml / 100 g.
  • the particles are fixed to the surface by means of a carrier.
  • the self-cleaning surface can be generated.
  • the support is a lacquer cured by means of thermal energy and / or light energy, a two-component lacquer system or another reactive lacquer system, wherein the curing preferably takes place by polymerization or crosslinking.
  • the cured lacquer particularly preferably comprises polymers and / or copolymers of mono- and / or polyunsaturated acrylates and / or methacrylates.
  • the mixing ratios can be in wide limits are varied. It is also possible that the cured lacquer compounds having functional groups, such as hydroxyl groups, epoxide groups, amine groups, or fluorine-containing compounds, such as perfluorinated esters of acrylic acid.
  • lacquer and hydrophobic particles such as Aerosil R 8200 by means of N- [2- (acryloyloxy) ethyl] -N-ethylperfluoroctan-1-sulfonklamid be coordinated.
  • lacquers not only lacquers based on acrylic resin can be used, but also lacquers based on polyurethane or lacquers which have polyurethane acrylates or silicone acrylates.
  • the self-cleaning surfaces according to the invention have an unrolling angle of less than 20 °, particularly preferably less than 10 °, the unrolling angle being defined such that a drop of water applied from a 1 cm height rolls onto a plane surface resting on an inclined plane.
  • the advancing angle and the retreating angle are above 140 °, preferably above 150 ° and have a hysteresis of less than 15 °, preferably less than 10 °. Because the surfaces according to the invention have an advancing and retreating angle above at least 140 °, preferably above 150 °, particularly good self-cleaning surfaces become accessible.
  • the self-cleaning surfaces are semitransparent.
  • the surfaces according to the invention can be contact-transparent, that is to say that after the creation of a surface according to the invention on a labeled object, this inscription, depending on the size of the writing, can still be read.
  • the self-cleaning surfaces according to the invention are preferably produced by the process according to the invention for producing these surfaces.
  • This inventive method for producing self-cleaning surfaces in which a suitable, at least partially hydrophobic surface structure is created by fixing particles by means of a support on a surface, is characterized in that particles, the rugged structures with elevations and / or depressions in the nanometer range have to be used.
  • those particles which comprise at least one material selected from silicates, doped silicates, minerals, metal oxides, silicic acids or polymers are used.
  • the particles very particularly preferably have pyrogenic silicates or silicic acids, in particular aerosils, minerals such as magadiite Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 with Zn powder coated with Aerosil R 974 or pulverulent polymers, such as, for example, cryogenically ground or spray-dried polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • particles having a BET surface area of 50 to 600 m 2 / g Particular preference is given to using particles having a BET surface area of 50 to 600 m 2 / g. Very particular preference is given to using particles which have a BET surface area of from 50 to 200 m 2 / g.
  • the particles preferably also have hydrophobic properties in addition to the fissured structures in order to generate the self-cleaning surfaces.
  • the particles themselves may be hydrophobic, e.g. PTFE-containing particles, or the particles used may have been rendered hydrophobic.
  • the hydrophobing of the particles can be carried out in a manner known to those skilled in the art.
  • Typical hydrophobized particles are e.g. Fine powders such as Aerosil R 974 or Aerosil-R 8200 (Degussa AG), which are available for purchase.
  • the application of the curable substance can be done for example by spraying, knife coating, brushing or spraying.
  • the curable substance is applied in a thickness of 1 to 100 microns, preferably in a thickness of 5 to 50 microns.
  • the viscosity of the curable substance it may be advantageous to allow the substance to harden or to dry before the particles are applied.
  • the viscosity of the curable substance is chosen so that the applied particles at least partially sink into the curable substance However, the curable substance or the particles applied to it no longer run when the surface is placed vertically.
  • the application of the particles can be carried out by conventional methods such as spraying or powdering.
  • the application of the particles can be effected by spraying using an electrostatic spray gun.
  • excess particles that is to say particles which do not adhere to the hardenable substance, can be removed from the surface by shaking, brushing or blowing off. These particles can be collected and reused.
  • the curable substance used may be a lacquer which comprises at least mixtures of mono- and / or polyunsaturated acrylates and / or methacrylates.
  • the mixing ratios can be varied within wide limits. Particular preference is given to using a lacquer curable by means of thermal or chemical energy and / or light energy.
  • a lacquer or a lacquer system is selected which has hydrophobic properties if the particles used have hydrophobic properties.
  • a lacquer is selected which has hydrophilic properties when the particles used have hydrophilic properties.
  • the mixtures used as lacquer have compounds with functional groups, such as, for example, hydroxyl groups, epoxide groups, amine groups or fluorine-containing compounds, for example perfluorinated esters of acrylic acid.
  • functional groups such as, for example, hydroxyl groups, epoxide groups, amine groups or fluorine-containing compounds, for example perfluorinated esters of acrylic acid.
  • hydrophobic particles such as Aerosil VPR 411 using N- [2- (acryloyloxy) ethyl] -N-ethylperfluoroctan-1-sulfonic acid amide matched become.
  • curable substances not only acrylic resin-based paints can be used, but also polyurethane-based paints, or polyurethane acrylates or silicone acrylates. It is likewise possible to use two-component coating systems or other reactive coating systems as curable substances.
  • the fixing of the particles on the carrier takes place by hardening of the carrier, this being done, depending on the paint system used, preferably by thermal and / or chemical energy and / or light energy.
  • the hardening of the support triggered by chemical or thermal energy and / or light energy, may be e.g. by polymerization or crosslinking of the components of the paints or paint systems.
  • the carrier is particularly preferably cured by light energy, and the carrier is most preferably polymerized by the light of an Hg medium-pressure lamp in the UV range.
  • the curing of the support takes place under an inert gas atmosphere, most preferably under a nitrogen atmosphere.
  • the curable substance is cured within 0.1 to 10 minutes, preferably within 1 to 5 minutes after application of the particles.
  • particles which have hydrophobic properties and / or which have hydrophobic properties by treatment with at least one compound from the group of alkylsilanes, alkyldisilazanes or perfluoroalkylsilanes.
  • the hydrophobization of particles is known and may be e.g. in the series Pigments, number 18, the Degussa AG be read.
  • the particles with hydrophobic properties after fixing on the support may also be advantageous to provide the particles with hydrophobic properties after fixing on the support.
  • This can be done, for example, by providing the particles of the treated surface with hydrophobic properties by treatment with at least one compound from the group of the alkylsilanes, the perfluoroalkylsilanes, which can for example be obtained from Sivento GmbH.
  • the treatment is carried out in that the surface having particles which is to be rendered hydrophobic is immersed in a solution comprising a hydrophobing reagent such as alkylsilanes, excess hydrophobing agent is drained off and the surface is dripped off annealed as high as possible.
  • the maximum applicable temperature is limited by the softening temperatures of the carrier or substrate.
  • the process according to at least one of claims 8 to 17 can be used excellently for producing self-cleaning surfaces on planar or non-planar objects, in particular on non-planar objects. This is only possible to a limited extent with the conventional methods. In particular, by methods in which prefabricated films are applied to a surface or in processes in which a structure is to be created by embossing, are non-planar objects, such as. Sculptures, not or only partially accessible. Naturally, however, the process according to the invention can also be used to produce self-cleaning surfaces on objects with planar surfaces, such as e.g. Greenhouses or public transport.
  • the use of the method according to the invention for the production of self-cleaning surfaces on greenhouses has advantages since the method self-cleaning surfaces e.g. can also be produced on transparent materials such as glass or Plexiglas® and the self-cleaning surface can be formed at least as transparent that sufficient sunlight can penetrate through the equipped with a self-cleaning surface transparent surface for the growth of the plants in the greenhouse.
  • greenhouses having a surface according to the invention according to one of claims 1 to 7, can be operated with longer cleaning intervals.
  • the method of the invention may also be used to make self-cleaning surfaces on non-rigid surfaces of articles, such as screens or other surfaces which are kept flexible.
  • the method according to the invention can be used according to at least one of claims 8 to 17, for the production of self-cleaning surfaces on flexible or inflexible walls in the sanitary area.
  • Such walls may be, for example, partitions in public toilets, walls of shower cubicles, swimming pools or saunas, but also shower curtains (flexible wall).
  • SEM Scattered electron micrographs
  • the support was cured at a wavelength of 308 nm under nitrogen. After curing the backing, excess Aerosil VPR 411 was brushed off. The characterization of the surface was initially visual and is logged with +++. +++ means, water droplets are almost completely formed. The roll-off angle was 2.4 °. Progressive and retreatment angles greater than 150 ° each were measured. The associated hysteresis is below 10 °.
  • Example 1 The experiment of Example 1 was repeated, wherein particles of aluminum oxide C (Degussa AG), an aluminum oxide having a BET surface area of 100 m 2 / g, were sprayed electrostatically.
  • the cured, brushed plate for hydrophobing was dipped in a formulation of tridecafluorooctyltriethoxysilane in ethanol (Dynasilan 8262, Sivento GmbH). After draining off excess Dynasilan 8262, the plate was annealed at a temperature of 80 ° C. The surface is rated ++, ie the shape of the water droplets is not ideal, the rolling angle is below 20 °.
  • Silica acid Sipernat 350 from Degussa AG is sprinkled onto the support-treated plate from Example 1. After a penetration time of 5 minutes, the treated plate is cured under nitrogen in UV light at 308 nm. Excess particles are brushed off again and the plate is then immersed again in Dynasilan 8262 and then annealed at 80 ° C. The surface is classified as +++.
  • Example 1 The experiment of Example 1 is repeated, but instead of Aerosil VPR 411 Aerosil R 8200 (Degussa AG), which uses a BET surface area of 200 ⁇ 25 m 2 / g.
  • the assessment of the surface is +++.
  • the roll angle has been determined to be 1.3 °.
  • progression and retraction angles were measured, each of which exceeded 150 °.
  • the associated hysteresis is below 10 °.
  • the rolling angle was 0.5 °. Progressive and retreatment angles greater than 150 ° each were measured. The associated hysteresis is below 10 °.
  • Example 1 On the dried support of Example 1 applied in a thickness of 200 ⁇ is a suspension of 10 wt .-% spray-dried fumed silica, Aeroperl 90 / 30Degussa AG, a silica having a BET surface area of 90 m 2 / g, in ethanol, knife.
  • the surface After curing in UV light and treatment with the hydrophobing agent Dynasilan 8262, the surface is evaluated only with +, ie, the droplet forms poorly and sticks to high angles of inclination at the surface.
  • the poor cleaning effect is due to the smearing of the fissured structures. This is probably done by dissolving monomers of the not yet cured paint system in ethanol. The ethanol vaporizes before curing and the monomers remain in the fissured structures where they also harden during the hardening process, thereby greasing and filling the fissured structures. In this way, the self-cleaning effect deteriorates significantly.

Landscapes

  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Laminated Bodies (AREA)

Description

  • Die vorliegende Erfindung betrifft selbstreinigende Oberflächen und Verfahren zu deren Herstellung.
  • Gegenstände mit extrem schwer benetzbaren Oberflächen weisen eine Reihe von wirtschaftlich bedeutsamen Merkmalen auf. Das wirtschaftlich bedeutendste Merkmal ist dabei die selbstreinigende Wirkung von schwerbenetzbaren Oberflächen, da die Reinigung von Oberflächen zeit- und kostenintensiv ist. Selbstreinigende Oberflächen sind somit von höchstem wirtschaftlichen Interesse. Haftmechanismen werden in der Regel durch grenzflächenenergetische Parameter zwischen den beiden sich berührenden Oberflächen bedingt. In der Regel versuchen dabei die Systeme ihre freie Grenzflächenenergie zu erniedrigen. Liegen die freien Grenzflächenenergien zwischen zwei Komponenten von sich aus schon sehr niedrig, so kann allgemein davon ausgegangen werden, dass die Haftung zwischen diesen beiden Komponenten schwach ausgeprägt ist. Wichtig ist dabei die relative Erniedrigung der freien Grenzflächenenergie. Bei Paarungen mit einer hohen und einer niedrigen Grenzflächenenergie kommt es sehr oft auf die Möglichkeiten der Wechselwirkungen an. So ist beispielsweise beim Aufbringen von Wasser auf eine hydrophobe Oberfläche nicht möglich, eine merkliche Erniedrigung der Grenzflächenenergie herbeizuführen. Dies ist daran erkennbar, dass die Benetzung schlecht ist. Aufgebrachtes Wasser bildet Tropfen mit sehr hohem Kontaktwinkel. Perfluorierte Kohlenwasserstoffe, z.B. Polytetrafluorethylen, haben sehr niedrige Grenzflächenenergie. Auf solchen Oberflächen haften kaum irgendwelche Komponenten bzw. auf solchen Oberflächen abgelagerte Komponenten können sehr leicht wieder entfernt werden.
  • Der Einsatz von hydrophoben Materialien, wie perfluorierten Polymeren, zur Herstellung von hydrophoben Oberflächen ist bekannt. Eine Weiterentwicklung dieser Oberflächen besteht darin, die Oberflächen im µm-Bereich bis nm-Bereich zu strukturieren. US-PS 5 599 489 offenbart ein Verfahren, bei dem eine Oberfläche durch Beschuss mit Partikeln einer entsprechenden Größe und anschließender Perfluorierung besonders abweisend ausgestattet werden kann. Ein anderes Verfahren beschreiben H. Saito et al in "Service Coatings International" 4, 1997, S. 168 ff. Hier werden Partikel aus Fluorpolymeren auf Metalloberflächen aufgebracht, wobei eine stark erniedrigte Benetzbarkeit der so erzeugten Oberflächen gegenüber Wasser mit einer erheblich reduzierten Vereisungsneigung festgestellt wurde.
  • In US-PS 3 354 022 und WO 96/04123 sind weitere Verfahren zur Erniedrigung der Benetzbarkeit von Gegenständen durch topologische Veränderungen der Oberflächen beschrieben. Hier werden künstliche Erhebungen bzw. Vertiefungen mit einer Höhe von ca. 5 bis 1 000 µm und einem Abstand von ca. 5 bis 500 µm auf hydrophobe oder nach der Strukturierung hydrophobierte Werkstoffe aufgebracht. Oberflächen dieser Art führen zu einer schnellen Tropfenbildung, wobei die abrollenden Tropfen Schmutzteilchen aufnehmen und somit die Oberfläche reinigen.
  • Dieses Prinzip ist der Natur entlehnt. Kleine Kontaktflächen erniedrigen die Van-der-Waal's-Wechselwirkung, die für die Haftung an ebenen Oberflächen mit niedriger Oberflächenenergie verantwortlich ist. Beispielsweise sind die Blätter der Lotus-Pflanze mit Erhebungen aus einem Wachs versehen, die die Kontaktfläche zu Wasser herabsetzen. WO 00/58410 beschreibt die Strukturen und beansprucht die Ausbildung selbiger durch Aufsprühen von hydrophoben Alkoholen, wie Nonakosan-10-ol, oder Alkandiolen, wie Nonakosan-5,10-diol. Nachteilig hieran ist die mangelhafte Stabilität der selbstreinigenden Oberflächen, da Detergentien zur Ablösung der Struktur führen.
  • Eine weitere Methode, leicht reinigbare Oberflächen zu erzeugen, ist in DE 199 17 367 A1 beschrieben. Überzüge auf Basis fluorhaltiger Kondensate sind aber nicht selbstreinigend. Die Kontaktfläche zwischen Wasser und Oberfläche ist zwar reduziert, jedoch nicht in ausreichendem Maße.
  • EP 1 040 874 A2 beschreibt das Abprägen von Mikrostrukturen und beansprucht die Verwendung solcher Strukturen in der Analytik (Mikrofluidik). Nachteilig an diesen Strukturen ist die ungenügende mechanische Stabilität.
  • In JP 11171592 wird ein Wasser abweisendes Produkt und dessen Herstellung beschrieben, wobei die Schmutz abweisende Oberfläche dadurch hergestellt wird, dass ein Film auf die zu behandelnde Oberfläche aufgetragen wird, der feine Partikel aus Metalloxid und das Hydrolysat eines Metallalkoxids oder - chelats aufweist. Zur Verfestigung dieses Films muss das Substrat, auf welches der Film aufgebracht wurde, bei Temperaturen oberhalb 400 °C gesintert werden. Das Verfahren ist deshalb nur für Substrate einsetzbar, welche auch bei Temperaturen oberhalb von 400 °C stabil sind.
  • In WO 00/39 239, wird es ein Verfahren zur Herstellung einer Oberfläche mit ultraphoben Eigenschaften beschrieben, bei dem eine mit Ni(OH)2 - Partikeln beschichtet, gegebenfalls mit einem Haftvermittler überzogen und anschließend mit einem Hydrophoben und/oder oleophoben Überzug versehen wird.
  • Aufgabe der vorliegenden Erfindung war die Bereitstellung von besonders gut selbstreinigenden Oberflächen mit Strukturen im Nanometerbereich, sowie ein einfaches Verfahren zur Herstellung solcher selbstreinigenden Oberflächen.
  • Außerdem war Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung von selbstreinigenden Oberflächen bereitzustellen, bei denen das beschichtete Material nur geringen chemischen oder physikalischen Belastungen ausgesetzt werden muss.
  • Gegenstand der vorliegenden Erfindung ist deshalb eine selbstreinigende Oberfläche, die eine künstliche, zumindest teilweise hydrophobe Oberflächenstruktur aus Erhebungen und Vertiefungen aufweist, wobei die Erhebungen und Vertiefungen durch mittels eines Trägers auf der Oberfläche fixierten Partikel gebildet werden, welche dadurch gekennzeichnet ist, dass die Partikel eine zerklüftete Struktur mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen.
  • Ebenfalls ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung von selbstreinigenden Oberflächen, bei dem eine geeignete, zumindest teilweise hydrophobe Oberflächenstruktur durch Fixieren von Partikeln mittels eines Trägers auf einer Oberfläche geschaffen wird, welches dadurch gekennzeichnet ist, dass Partikel, die zerklüftete Strukturen mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen, eingesetzt werden.
  • Durch das erfindungsgemäße Verfahren sind selbstreinigende Oberflächen zugänglich, die Partikel mit einer zerklüfteten Struktur aurweisen. Durch die Verwendung von Partikeln, welche eine zerklüftete Struktur aufweisen, werden auf einfache Weise Oberflächen zugänglich, die bis in den Nanometerbereich strukturiert sind. Um diese Struktur im Nanometerbereich zu erhalten ist es notwendig, dass die Partikel nicht durch den Träger, mit welchem sie an der Oberfläche fixiert sind, benetzt sind, da sonst die Struktur im Nanobereich verloren gehen würde.
  • Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass kratzempfindliche Oberflächen beim Auftragen der Partikel nicht durch in dem Träger vorhandenen Partikeln beschädigt wird, da bei der Verwendung von Lacken und anschließendem Aufbringen der Partikel auf den Träger die kratzempfindliche Oberfläche bereits durch den Träger geschützt ist.
  • Im nachfolgenden werden Substanzen, die zur Fixierung von Partikeln auf einer Oberfläche eingesetzt werden, als Träger bezeichnet.
  • Die erfindungsgemäße selbstreinigende Oberfläche, die eine künstliche, zumindest teilweise hydrophobe Oberflächenstruktur aus Erhebungen und Vertiefungen aufweist, wobei die Erhebungen und Vertiefungen durch mittels eines Trägers auf der Oberfläche fixierten Partikel gebildet werden, zeichnet sich dadurch aus, dass die Partikel eine zerklüftete Struktur mit Erhebungen und/oder Vertiefungen im Nanometerbereich aurweisen. Vorzugsweise weisen die Erhöhungen im Mittel eine Höhe von 20 bis 500 nm, besonders bevorzugt von 50 bis 200 nm auf. Der Abstand der Erhöhungen bzw. Vertiefungen auf den Partikeln beträgt vorzugsweise weniger als 500 nm, ganz besonders bevorzugt weniger als 200 nm.
  • Die zerklüfteten Strukturen mit Erhebungen und/oder Vertiefungen im Nanometerbereich können z.B. über Hohlräume, Poren, Riefen, Spitzen und/oder Zacken gebildet werden. Die Partikel selbst weisen eine durchschnittliche Größe von kleiner 50 µm, vorzugsweise von kleiner 30 µm und ganz besonders bevorzugt von kleiner 20 µm auf.
  • Bevorzugt weisen die Partikel eine BET-Oberfläche von 50 bis 600 Quadratmeter pro Gramm auf Ganz besonders bevorzugt weisen die Partikel eine BET-Oberfläche von 50 bis 200 m2/g auf.
  • Als strukturbildende Partikel können verschiedenste Verbindungen aus vielen Bereichen der Chemie eingesetzt werden. Vorzugsweise weisen die Partikel zumindest ein Material, ausgewählt aus Silikaten, dotierten Silikaten, Mineralien, Metalloxiden, Kieselsäuren, Polymeren und mit Kieselsäure beschichteten Metallpulvern, auf. Ganz besonders bevorzugt weisen die Partikel pyrogene Kieselsäuren oder Fällungskieselsäuren, insbesondere Aerosile, Al2O3, SiO2, TiO2, ZrO2, mit Aerosil R974 ummanteltes Zinkpulver, vorzugsweise mit einer Teilchengrößen von 1 µm oder pulverförmige Polymere, wie z.B. kryogen gemahlenes oder sprühgetrocknetes Polytetrafluorethylen (PTFE) oder perfluorierte Copolymere bzw. Copolymere mit Tetrafluorethylen, auf.
  • Vorzugsweise weisen die Partikel zur Generierung der selbstreinigenden Oberflächen neben den zerklüfteten Strukturen auch hydrophobe Eigenschaften auf. Die Partikel können selbst hydrophob sein, wie z.B. PTFE aufweisende Partikel, oder die eingesetzten Partikel können hydrophobiert worden sein. Das Hydrophobieren der Partikel kann auf eine dem Fachmann bekannte Weise erfolgen. Typische hydrophobierte Partikel sind z.B. Feinstpulver wie Aerosil-R 8200 (Degussa AG), die käuflich zu erwerben sind.
  • Die vorzugsweise verwendeten Kieselsäuren weisen vorzugsweise eine Dibutylphthalat-Adsorbption, angelehnt an DIN 53 601, von zwischen 100 und 350 ml/100 g, bevorzugt Werte zwischen 250 und 350 ml/100 g.
  • Die Partikel werden an der Oberfläche mittels eines Trägers fixiert. Durch Auftrag der Partikel auf die Oberfläche in einer dicht gepackten Schicht, lässt sich die selbstreinigende Oberfläche generieren.
  • In einer bevorzugten Ausführungsart der erfindungsgemäßen selbstreinigenden Oberfläche ist der Träger ein mittels thermischer Energie und/oder Lichtenergie gehärteter Lack, ein Zweikomponenten-Lacksystem oder ein anderes reaktives Lacksystem, wobei die Härtung vorzugsweise durch Polymerisation oder Vernetzung erfolgt. Besonders bevorzugt weist der gehärtete Lack Polymerisate und/oder Copolymerisate aus einfach und/oder mehrfach ungesättigten Acrylaten und/oder Methacrylaten auf. Die Mischungsverhältnisse können in weiten Grenzen variiert werden. Ebenso ist es möglich, dass der gehärtete Lack Verbindungen mit funktionellen Gruppen, wie z.B. Hydroxy-Gruppen, Epoxid-Gruppen, Amin-Gruppen, oder fluorhaltige Verbindungen, wie z.B. perfluorierte Ester der Acrylsäure, aufweist. Dies ist insbesondere dann vorteilhaft, wenn die Verträglichkeit von Lack und hydrophoben Partikeln wie beispielsweise von Aerosil R 8200 mittels N-[2-(Acryloyloxy)-ethyl]-N-ethylperfluoroctan-1-sulfonsäureamid aufeinander abgestimmt werden. Als Lacke sind nicht nur Lacke auf Acrylharz-Basis einsetzbar, sondern auch Lacke auf Polyurethan-Basis oder aber Lacke, die Polyurethanacrylate oder Siliconacrylate aufweisen.
  • Die erfindungsgemäßen selbstreinigenden Oberflächen weisen eine Abrollwinkel von kleiner 20°, besonders bevorzugt kleiner 10° auf, wobei der Abrollwinkel so definiert ist, dass ein aus 1 cm Höhe auf eine auf einer schiefen Ebene ruhenden planen Oberfläche aufgebrachter Wassertropfen abrollt. Die Fortschreitwinkel und die Rückzugswinkel liegen oberhalb von 140°, bevorzugt oberhalb von 150° und weisen eine Hysterese von kleiner 15°, vorzugsweise kleiner 10° auf. Dadurch, dass die erfindungsgemäßen Oberflächen einen Fortschreit- und Rückzugswinkel oberhalb von zumindest 140°, vorzugsweise oberhalb von 150° aufweisen, werden besonders gute selbstreinigende Oberflächen zugänglich.
  • Je nach verwendetem Lacksystem und je nach Größe und Material der eingesetzten Partikel kann erreicht werden, dass die selbstreinigenden Oberflächen semitransparent sind. Insbesondere können die erfindungsgemäßen Oberflächen kontakttransparent sein, dass heißt das nach Erstellen einer erfindungsgemäßen Oberfläche auf einem beschrifteten Gegenstand diese Beschriftung, in Abhängigkeit von der Größe der Schrift, weiterhin lesbar ist.
  • Die erfindungsgemäßen selbstreinigenden Oberflächen werden vorzugsweise durch das erfindungsgemäße Verfahren zur Herstellung dieser Oberflächen hergestellt. Diese erfindungsgemäße Verfahren zur Herstellung von selbstreinigenden Oberflächen, bei dem eine geeignete, zumindest teilweise hydrophobe Oberflächenstruktur durch Fixieren von Partikeln mittels eines Trägers auf einer Oberfläche geschaffen wird, zeichnet sich dadurch aus, dass Partikel, die zerklüftete Strukturen mit Erhebungen und/oder Vertiefungen im Nanometerbereich aufweisen, eingesetzt werden.
  • Vorzugsweise werden solche Partikel, die zumindest ein Material, ausgewählt aus Silikaten, dotierten Silikaten, Mineralien, Metalloxiden, Kieselsäuren oder Polymeren aufweisen, eingesetzt. Ganz besonders bevorzugt weisen die Partikel pyrogene Silikate oder Kieselsäuren, insbesondere Aerosile, Mineralien wie Magadiit Al2O3, SiO2, TiO2, ZrO2 mit Aerosil R 974 ummanteltes Zn-Pulver oder pulverförmige Polymere, wie z.B. kryogen gemahlenes oder sprühgetrocknet Polytetrafluorethylen (PTFE), auf.
  • Besonders bevorzugt werden Partikel mit einer BET-Oberfläche von 50 bis 600 m2/g eingesetzt. Ganz besonders bevorzugt werden Partikel eingesetzt, die eine BET-Oberfläche von 50 bis 200 m2/g aufweisen.
  • Vorzugsweise weisen die Partikel zur Generierung der selbstreinigenden Oberflächen neben den zerklüfteten Strukturen auch hydrophobe Eigenschaften auf. Die Partikel können selbst hydrophob sein, wie z.B. PTFE aufweisende Partikel, oder die eingesetzten Partikel können hydrophobiert worden sein. Das Hydrophobieren der Partikel kann auf eine dem Fachmann bekannte Weise erfolgen. Typische hydrophobierte Partikel sind z.B. Feinstpulver wie Aerosil R 974 oder Aerosil-R 8200 (Degussa AG), die käuflich zu erwerben sind.
  • Das erfindungsgemäße Verfahren weist vorzugsweise die Schritte
    • a) Aufbringen einer härtbaren Substanz als Träger auf eine Oberfläche,
    • b) Aufbringen von Partikeln, die zerklüftete Strukturen aufweisen, auf den Träger und
    • c) Fixieren der Partikel durch Härten des Trägers,
    auf.
  • Das Aufbringen der härtbaren Substanz kann z.B. durch Aufsprühen, Aufrakeln, Aufstreichen oder Aufspritzen erfolgen. Vorzugsweise wird die härtbare Substanz in einer Dicke von 1 bis 100 µm, vorzugsweise in einer Dicke von 5 bis 50 µm aufgebracht. Je nach Viskosität der härtbaren Substanz kann es vorteilhaft sein, die Substanz vor dem Aufbringen der Partikel anhärten bzw. antrocknen zu lassen. Idealerweise wird die Viskosität der härtbaren Substanz so gewählt, dass die aufgebrachten Partikel zumindest teilweise in die härtbare Substanz einsinken können, die härtbare Substanz bzw. die auf ihr aufgebrachten Partikel aber nicht mehr verlaufen, wenn die Oberfläche senkrecht gestellt wird.
  • Das Aufbringen der Partikel kann durch gängige Verfahren wie Aufsprühen oder Bepudern erfolgen. Insbesondere kann das Aufbringen der Partikel durch Aufsprühen unter Verwendung einer elektrostatischen Sprühpistole erfolgen. Nach dem Aufbringen der Partikel können überschüssige Partikel, also Partikel die nicht an der härtbaren Substanz haften, durch Schütteln, Abbürsten oder Abblasen von der Oberfläche entfernt werden. Diese Partikel können gesammelt und wieder eingesetzt werden.
  • Als härtbare Substanz kann als Träger ein Lack, der zumindest Mischungen aus einfach und/oder mehrfach ungesättigten Acrylaten und/oder Methacrylaten aufweist, eingesetzt werden. Die Mischungsverhältnisse können in weiten Grenzen variiert werden. Besonders bevorzugt wird ein mittels thermischer oder chemischer Energie und/oder Lichtenergie härtbarer Lack eingesetzt.
  • Als härtbare Substanz wird ein Lack oder ein Lacksystem ausgewählt, die hydrophobe Eigenschaften aufweist, wenn die eingesetzten Partikel hydrophobe Eigenschaften aufweisen. Umgekehrt wird als härtbare Substanz ein Lack ausgewählt der hydrophile Eigenschaften aufweist, wenn die eingesetzten Partikel hydrophile Eigenschaften aufweisen.
  • Es kann vorteilhaft sein, wenn die als Lack eingesetzten Mischungen Verbindungen mit funktionellen Gruppen, wie z.B. Hydroxy-Gruppen, Epoxid-Gruppen, Amin-Gruppenoder fluorhaltige Verbindungen, wie z.B. perfluorierte Ester der Acrylsäure, aufweist. Dies ist insbesondere dann vorteilhaft, wenn die Verträglichkeit (in Bezug auf die hydrophoben Eigenschaften) von Lack und hydrophoben Partikeln wie beispielsweise von Aerosil VPR 411 mittels N-[2-(Acryloyloxy)-ethyl]-N-ethylperfluoroctan-1-sulfonsäureamid aufeinander abgestimmt werden. Als härtbare Substanzen können nicht nur Lacke auf Acrylharz-Basis eingesetzt werden, sondern auch Lacke auf Polyurethan-Basis, oder aber Polyurethanacrylate oder Siliconacrylate. Ebenfalls sind als härtbare Substanzen Zweikomponentenlacksysteme oder andere reaktive Lacksysteme einsetzbar.
  • Das Fixieren der Partikel auf dem Träger erfolgt durch Härten des Trägers, wobei dieses, je nach verwendetem Lacksystem, vorzugsweise durch thermische und/oder chemische Energie und/oder Lichtenergie erfolgt. Das Härten des Trägers, ausgelöst durch chemische oder thermische Energie und/oder Lichtenergie, kann z.B. durch Polymerisation oder Vernetzung der Bestandteile der Lacke bzw. Lacksysteme erfolgen. Besonders bevorzugt erfolgt das Härten des Trägers durch Lichtenergie und ganz besonders bevorzugt erfolgt das Polymerisieren des Trägers durch Licht einer Hg-Mitteldrucklampe im UV-Bereich. Vorzugsweise erfolgt das Härten des Trägers unter einer Inertgas-Atmosphäre, ganz besonders bevorzugt unter einer Stickstoffatmosphäre.
  • Je nach Dicke der aufgebrachten härtbaren Substanz und Durchmesser der verwendeten Partikel kann es notwendig sein, die Zeit, die zwischen Aufbringen der Partikel und Härten der härtbaren Substanz verstreicht, zu begrenzen, um ein vollständiges Eintauchen der Partikel in die härtbare Substanz zu vermeiden. Vorzugsweise wird die härtbare Substanz innerhalb von 0,1 bis 10 min, vorzugsweise innerhalb von 1 bis 5 min nach dem Aufbringen der Partikel gehärtet.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens kann es vorteilhaft sein, Partikel einzusetzen, die hydrophobe Eigenschaften aufweisen und/oder die durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, Alkyldisilazane oder Perfluoralkylsilane, hydrophobe Eigenschaften aufweisen. Die Hydrophobierung von Partikeln ist bekannt und kann z.B. in der Schriftenreihe Pigmente, Nummer 18, der Degussa AG nachgelesen werden.
  • Es kann ebenso vorteilhaft sein, die Partikel nach dem Fixieren auf dem Träger mit hydrophoben Eigenschaften auszustatten. Dies kann z.B. dadurch erfolgen, dass die Partikel der behandelten Oberfläche durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, der Perfluoralkylsilane, die z.B. bei der Sivento GmbH zu beziehen sind, mit hydrophoben Eigenschaften ausgestattet werden. Vorzugsweise erfolgt die Behandlung dadurch, dass die Partikel aufweisende Oberfläche, die hydrophobiert werden soll, in eine Lösung, die ein Hydrophobierungsreagenz wie z.B. Alkylsilane aufweist, getaucht wird, überschüssiges Hydrophobierungsreagenz abgetropft wird und die Oberfläche bei einer möglichst hohen Temperatur getempert. Die maximal anwendbare Temperatur ist durch die Erweichungstemperaturen von Träger oder Substrat limitiert.
  • Das erfindungsgemäße Verfahren gemäß zumindest einem der Ansprüche 8 bis 17 kann hervorragend zur Herstellung von selbstreinigenden Oberflächen auf planaren oder nichtplanaren Gegenständen, insbesondere auf nichtplanaren Gegenständen verwendet werden. Dies ist mit den herkömmlichen Verfahren nur eingeschränkt möglich. Insbesondere über Verfahren, bei denen vorgefertigte Filme auf eine Oberfläche aufgebracht werden oder bei Verfahren, bei denen eine Struktur durch Prägen erstellt werden soll, sind nichtplanare Gegenstände, wie z.B. Skulpturen, nicht oder nur eingeschränkt zugänglich. Naturgemäße kann das erfindungsgemäße Verfahren aber auch zur Herstellung von selbstreinigenden Oberflächen auf Gegenständen mit planaren Oberflächen, wie z.B. Gewächshäusern oder öffentlichen Verkehrsmitteln verwendet werden. Insbesondere die Anwendung des erfindungsgemäßen Verfahrens zur Herstellung von selbstreinigenden Oberflächen an Gewächshäusern weist Vorteile auf, da mit dem Verfahren selbstreinigende Oberflächen z.B. auch auf transparenten Materialien wie Glas oder Plexiglas® hergestellt werden können und die selbstreinigende Oberfläche zumindest soweit transparent ausgebildet werden kann, dass für das Wachstum der Pflanzen im Gewächshaus genügend Sonnenlicht durch die mit einer selbstreinigenden Oberfläche ausgerüstete transparente Oberfläche dringen kann. Im Gegensatz zu herkömmlichen Gewächshäusern, die regelmäßig von Laub-, Staub-, Kalk- und biologischem Material, wie z.B. Algen, gereinigt werden müssen, können Gewächshäuser, die eine erfindungsgemäße Oberfläche gemäß einem der Ansprüche 1 bis 7, aufweisen, mit längeren Reinigungsintervallen betrieben werden.
  • Das erfindungsgemäße Verfahrens kann außerdem zur Herstellung von selbstreinigenden Oberflächen auf nicht starren Oberflächen von Gegenständen, verwendet werden, wie z.B. Schirmen oder anderen Oberflächen die flexibel gehalten sind. Ganz besonders bevorzugt kann das erfindungsgemäße Verfahren gemäß zumindest einem der Ansprüche 8 bis 17, zur Herstellung selbstreinigender Oberflächen auf flexiblen oder unflexiblen Wänden im Sanitärbereich verwendet werden. Solche Wände können z.B. Trennwände in öffentlichen Toiletten, Wände von Duschkabinen, Schwimmbädern oder Saunen, aber auch Duschvorhänge (flexible Wand) sein.
  • In den Fig. 1 und 2 sind Rasterelektronenmikroskopische- (REM-) Aufnahmen von als Strukturbildnern eingesetzten Partikeln wiedergegeben.
  • Fig. 1 zeigt eine REM-Aufnahme des Aluminiumoxids Aluminiumoxide C (Degussa AG).
  • Fig. 2 zeigt eine REM-Aufnahme der Oberfläche von Partikeln der Kieselsäure Sipernat FK 350 (Degussa AG) auf einem Träger.
  • Die nachfolgenden Beispiele sollen die erfindungsgemäßen Oberflächen bzw. das Verfahren zur Herstellung der Oberflächen näher erläutern, ohne dass die Erfindung auf diese Ausführungsarten beschränkt sein soll.
  • Beispiel 1:
  • 20 Gew.-% Methylmethacrylat, 20 Gew.-% Pentaeritrittetraacrylat und 60 Gew.-% Hexandioldimethacrylat wurden miteinander vermischt. Bezogen auf diese Mischung werden 14 Gew.-% Plex 4092 F, ein acrylisches Copolymerisat der Röhm GmbH und 2 Gew.-% UV-Härter Darokur 1173 zugesetzt und mindestens 60 min lang gerührt. Diese Mischung wurde als Träger auf eine 2 mm dicken PMMA-Platte in einer Dicke von 50 µm aufgetragen. Die Schicht wurde für 5 min angetrocknet. Anschließend wurden als Partikel hydrophobierte, pyrogene Kieselsäure Aerosil VPR 411 (Degussa AG) mittels einer elektrostatischen Sprühpistole aufgesprüht. Nach 3 min wurde der Träger bei einer Wellenlänge von 308 nm unter Stickstoff gehärtet. Nach dem Härten des Trägers wurde überschüssiges Aerosil VPR 411 abgebürstet. Die Charakterisierung der Oberfläche erfolgte anfänglich visuell und ist mit +++ protokolliert. +++ bedeutet, Wassertropfen bilden sich nahezu vollständig aus. Der Abrollwinkel betrug 2,4°. Gemessen wurden Fortschreit- und Rückzugswinkel zu jeweils größer als 150°. Die zugehörige Hysterese liegt unterhalb von 10°.
  • Beispiel 2:
  • Der Versuch aus Beispiel 1 wurde wiederholt, wobei Partikel aus Aluminiumoxid C (Degussa AG), ein Aluminiumoxid mit einer BET-Oberfläche von 100 m2/g, elektrostatisch aufgesprüht wurden. Nach erfolgter Härtung des Trägers gemäß Beispiel 1 und Abbürsten überschüssiger Partikel, wurde die gehärtete, abgebürstete Platte zum Hydrophobieren in eine Formulierung von Tridecafluoroctyltriethoxysilan in Ethanol (Dynasilan 8262, Sivento GmbH) getaucht. Nach Abtropfen von überschüssigem Dynasilan 8262 wurde die Platte bei einer Temperatur von 80 °C getempert. Die Oberfläche wird mit ++ eingestuft, d.h., die Ausformung der Wassertropfen ist nicht ideal, der Abrollwinkel liegt unterhalb von 20°.
  • Beispiel 3:
  • Auf die mit dem Träger behandelte Platte aus Beispiel 1 wird Kieselsäure Sipernat 350 der Degussa AG gestreut. Nach 5 min Eindringzeit wird die behandelte Platte unter Stickstoff im UV-Licht bei 308 nm gehärtet. Überschüssige Partikel werden wiederum abgebürstet und die Platte wird anschließend wiederum in Dynasilan 8262 getaucht und anschließend bei 80 °C getempert Die Oberfläche wird mit +++ eingestuft.
  • Beispiel 4:
  • Der Versuch aus Beispiel 1 wird wiederholt, aber an Stelle von Aerosil VPR 411 wird Aerosil R 8200 (Degussa AG), welches eine BET-Oberfläche von 200 ± 25 m2/g eingesetzt. Die Beurteilung der Oberfläche ist +++. Der Abrollwinkel ist zu 1,3° bestimmt worden. Gemessen wurden außerdem Fortschreit- und Rückzugswinkel, die jeweils größer als 150° betrugen. Die zugehörige Hysterese liegt unterhalb von 10°.
  • Beispiel 5:
  • Dem Lack aus Beispiel 1, der mit dem UV-Härter bereits vermischt wurde, wurden zusätzlich 10 Gew.-% (bezogen auf das Gesamtgewicht der Lackmischung) 2-(N-Ethylperfluoroctansulfonamido)-ethylacrylat zugesetzt. Auch dieses Gemisch wurde wieder mindestens 60 min lang gerührt. Diese Mischung wurde als Träger auf eine 2 mm dicken PMMA-Platte in einer Dicke von 50 µm aufgetragen. Die Schicht wurde für 5 min angetrocknet. Anschließend wurden als Partikel hydrophobierte, pyrogene Kieselsäure Aerosil VPR 411 (Degussa AG) mittels einer elektrostatischen Sprühpistole aufgesprüht. Nach 3 min wurde der Träger bei einer Wellenlänge von 308 nm unter Stickstoff gehärtet. Nach dem Härten des Trägers wurde überschüssiges Aerosil VPR 411 abgebürstet. Die Charakterisierung der Oberfläche erfolgte anfänglich visuell und ist mit +++ protokolliert. +++ bedeutet, Wassertropfen bilden sich nahezu vollständig aus.
  • Der Abrollwinkel betrug 0,5°. Gemessen wurden Fortschreit- und Rückzugswinkel zu jeweils größer als 150°. Die zugehörige Hysterese liegt unterhalb von 10°.
  • Vergleichsbeispiel 1:
  • Auf den angetrockneten Träger aus Beispiel 1 aufgetragen in einer Dicke von 200 µ wird eine Suspension von 10 Gew.-% sprühgetrocknete pyrogene Kieselsäure, Aeroperl 90/30Degussa AG, eine Kieselsäure mit einer BET-Oberfläche von 90 m2/g, in Ethanol, aufgerakelt. Nach Härtung im UV-Licht und Behandlung mit dem Hydrophobierungsmittel Dynasilan 8262 wird die Oberfläche nur mit + beurteilt, d.h., der Tropfen bildet sich schlecht aus und klebt bis zu hohen Neigungswinkeln an der Oberfläche.
  • Der schlechte Reinigungseffekt ist auf das Zuschmieren der zerklüfteten Strukturen zurückzuführen. Dies geschieht vermutlich durch Lösen von Monomeren des noch nicht gehärteten Lacksystems in Ethanol. Vor dem Härten verdampft das Ethanol und die Monomeren bleiben in den zerklüfteten Strukturen zurück, in der sie beim Vorgang des Härtens ebenfalls aushärten, wodurch die zerklüfteten Strukturen zugeschmiert bzw. ausgefüllt werden. Auf diese Weise verschlechtert sich der Selbstreinigungseffekt deutlich.

Claims (19)

  1. Selbstreinigende Oberfläche, die aus einer künstlichen, zumindest teilweise hydrophoben Oberflächenstruktur besteht, wobei die Oberflächenstruktur durch mittels eines gehärteten Trägers auf der Oberfläche fixierten Partikel gebildet werden,
    dadurch gekennzeichnet,
    dass die Partikel eine BET-Oberfläche von 50 bis 600 m2/g aufweisen.
  2. Selbstreinigende Oberfläche gemäß Anspruch 1,
    dadurch gekennzeichnet,
    dass der Träger ein mittels thermischer oder chemischer Energie oder Lichtenergie gehärteter Lack ist.
  3. Selbstreinigende Oberfläche nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass der gehärtete Lack Mischungen aus einfach und/oder mehrfach ungesättigten Acrylaten und/oder Methacrylaten oder Polyurethan aufweist.
  4. Selbstreinigende Oberfläche nach zumindest einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Partikel eine durchschnittliche Größe von kleiner 50 µm aufweisen.
  5. Selbstreinigende Oberfläche gemäß Anspruch 4,
    dadurch gekennzeichnet,
    dass die Partikel eine durchschnittliche Größe von kleiner 30 µm aufweisen.
  6. Selbstreinigende Oberfläche gemäß zumindest einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Partikel aus zumindest einem Material, ausgewählt aus Silikaten, dotierten Silikaten, Mineralien, Metalloxiden, Kieselsäuren, Polymeren und Metallpulvern ausgewählt sind.
  7. Selbstreinigende Oberfläche gemäß Anspruch 6,
    dadurch gekennzeichnet,
    dass die Partikel hydrophobe Eigenschaften aufweisen.
  8. Verfahren zur Herstellung von selbstreinigenden Oberflächen, bei dem eine geeignete, zumindest teilweise hydrophobe Oberflächenstruktur durch Fixieren von Partikeln mittels eines Trägers auf einer Oberfläche geschaffen wird,
    dadurch gekennzeichnet,
    dass es aus den Schritten
    a) Aufbringen einer härtbaren Substanz als Träger auf eine Oberfläche,
    b) Aufbringen von Partikeln, die eine BET-Oberfläche von 50 bis 600 m2/g aufweisen, auf den Träger und
    c) Fixieren der Partikel durch Härten des Trägers,
    besteht.
  9. Verfahren gemäß Anspruch 8,
    dadurch gekennzeichnet,
    dass Partikel, die zumindest ein Material, ausgewählt aus Silikaten, dotierten Silikaten, Mineralien, Metalloxiden, Kieselsäuren, Metallpulvem oder Polymeren aufweisen, eingesetzt werden.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass das Härten des Trägers durch thermische oder chemische Energie und/oder Lichtenergie erfolgt.
  11. Verfahren gemäß Anspruch 9 oder 10,
    dadurch gekennzeichnet,
    dass als härtbare Substanz ein Lack der zumindest Mischungen aus einfach und/oder mehrfach ungesättigten Acrylaten und/oder Methacrylaten und/oder Polyurethane und/oder Silikonacrylate und/oder Urethanacrylate aufweist, eingesetzt wird.
  12. Verfahren gemäß Anspruch 11,
    dadurch gekennzeichnet,
    dass als härtbare Substanz ein Lack ausgewählt wird der hydrophobe Eigenschaften aufweist, wenn die eingesetzten Partikel hydrophobe Eigenschaften aufweist und als härtbare Substanz ein Lack ausgewählt wird der hydrophile Eigenschaften aufweist, wenn die eingesetzten Partikel hydrophile Eigenschaften aufweist.
  13. Verfahren gemäß zumindest einem der Ansprüche 8 bis 12,
    dadurch gekennzeichnet,
    dass Partikel eingesetzt werden, die hydrophobe Eigenschaften aufweisen.
  14. Verfahren gemäß zumindest einem der Ansprüche 8 bis 13,
    dadurch gekennzeichnet,
    dass Partikel eingesetzt werden, die durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, Perfluoralkylsilane oder Alkyldisilazane, hydrophobe Eigenschaften aufweisen.
  15. Verfahren gemäß zumindest einem der Ansprüche 8 bis 14,
    dadurch gekennzeichnet,
    dass die Partikel nach dem Fixieren auf dem Träger mit hydrophoben Eigenschaften ausgestattet werden.
  16. Verfahren gemäß Anspruch 15,
    dadurch gekennzeichnet,
    dass die Partikel durch eine Behandlung mit zumindest einer Verbindung aus der Gruppe der Alkylsilane, Perfluoralkylsilane oder Alkyldisilazane, mit hydrophoben Eigenschaften ausgestattet werden.
  17. Verwendung des Verfahrens gemäß zumindest einem der Ansprüche 8 bis 16, zur Herstellung von selbstreinigenden Oberflächen auf planaren oder nichtplanaren Gegenständen.
  18. Verwendung des Verfahrens gemäß zumindest einem der Ansprüche 8 bis 16, zur Herstellung von selbstreinigenden Oberflächen auf nicht starren Oberflächen von Gegenständen.
  19. Verwendung des Verfahrens gemäß zumindest einem der Ansprüche 8 bis 16, zur Herstellung selbstreinigenden Oberflächen auf flexible oder unflexible Wände im Sanitärbereich.
EP02003960A 2001-04-12 2002-02-22 Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung Expired - Lifetime EP1249280B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118352 2001-04-12
DE10118352A DE10118352A1 (de) 2001-04-12 2001-04-12 Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung

Publications (4)

Publication Number Publication Date
EP1249280A2 EP1249280A2 (de) 2002-10-16
EP1249280A3 EP1249280A3 (de) 2003-01-02
EP1249280B1 true EP1249280B1 (de) 2006-09-27
EP1249280B2 EP1249280B2 (de) 2009-07-01

Family

ID=7681415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02003960A Expired - Lifetime EP1249280B2 (de) 2001-04-12 2002-02-22 Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung

Country Status (7)

Country Link
US (1) US6858284B2 (de)
EP (1) EP1249280B2 (de)
JP (1) JP2002346469A (de)
AT (1) ATE340654T1 (de)
CA (1) CA2381134A1 (de)
DE (2) DE10118352A1 (de)
ES (1) ES2271131T5 (de)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118345A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
DE10118346A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Textile Flächengebilde mit selbstreinigender und wasserabweisender Oberfläche
DE10118352A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118351A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10134477A1 (de) * 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10159767A1 (de) * 2001-12-05 2003-06-18 Degussa Verfahren zur Herstellung von Gegenständen mit antiallergischen Oberflächen
DE10205007A1 (de) * 2002-02-07 2003-08-21 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von Schutzschichten mit schmutz- und wasserabweisenden Eigenschaften
DE10210668A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Vorrichtung, hergestellt durch Spritzgussverfahren, zur Aufbewahrung von Flüssigkeiten und Verfahren zur Herstellung dieser Vorrichtung
DE10210671A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Entformungsmittel, welches hydrophobe, nanoskalige Partikel aufweist sowie Verwendung dieser Entformungsmittel
DE10210667A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Herstellung von Bahnenwaren mit selbstreinigenden Oberflächen mittels eines Kalandrierprozesses, Bahnenwaren selbst und die Verwendung dieser
DE10210673A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Spritzgusskörper mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Spritzgusskörper
DE10210674A1 (de) * 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Flächenextrudate mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Extrudate
GB0206930D0 (en) 2002-03-23 2002-05-08 Univ Durham Method and apparatus for the formation of hydrophobic surfaces
DE10231757A1 (de) 2002-07-13 2004-01-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
DE10233830A1 (de) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Flammpulverbeschichtung von Oberflächen zur Erzeugung des Lotus-Effektes
DE10233831A1 (de) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Herstellung von strukturierten Oberflächen
DE10242560A1 (de) * 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
US7196043B2 (en) * 2002-10-23 2007-03-27 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
DE10250328A1 (de) * 2002-10-29 2004-05-13 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von Suspensionen hydrophober Oxidpartikel
DE10308379A1 (de) * 2003-02-27 2004-09-09 Creavis Gesellschaft Für Technologie Und Innovation Mbh Dispersion von Wasser in hydrophoben Oxiden zur Herstellung von hydrophoben nanostrukturierten Oberflächen
DE10315128A1 (de) * 2003-04-03 2004-10-14 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Unterdrückung von Schimmelbildung unter Verwendung hydrophober Stoffe sowie ein schimmelpilzhemmendes Mittel für Gebäudeteile
ES2275039T3 (es) * 2003-04-24 2007-06-01 Goldschmidt Gmbh Procedimiento para la produccion de revestimientos laminares desprendibles, repelentes de la suciedad y del agua.
DE10321851A1 (de) * 2003-05-15 2004-12-02 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verwendung von mit Fluorsilanen hydrophobierten Partikeln zur Herstellung von selbstreinigenden Oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben Eigenschaften
DE10325863A1 (de) * 2003-06-06 2005-01-05 Infineon Technologies Ag Verfahren zum Herstellen eines integrierten Fingerabdrucksensors sowie Sensorschaltungsanordnung und Einspritzanordnung
TW200526406A (en) * 2003-10-10 2005-08-16 Inventqjaya Sdn Bhd Self-cleaning window structure
DE10356752A1 (de) * 2003-12-04 2005-06-30 Roche Diagnostics Gmbh Beschichtete Testelemente
US8034173B2 (en) * 2003-12-18 2011-10-11 Evonik Degussa Gmbh Processing compositions and method of forming the same
US7828889B2 (en) 2003-12-18 2010-11-09 The Clorox Company Treatments and kits for creating transparent renewable surface protective coatings
US8974590B2 (en) 2003-12-18 2015-03-10 The Armor All/Stp Products Company Treatments and kits for creating renewable surface protective coatings
US20110018249A1 (en) * 2004-02-16 2011-01-27 Horst Sonnendorfer Shopping cart or transport container, and production method
US9016221B2 (en) * 2004-02-17 2015-04-28 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
US7650848B2 (en) * 2004-02-17 2010-01-26 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
US7213309B2 (en) 2004-02-24 2007-05-08 Yunzhang Wang Treated textile substrate and method for making a textile substrate
DE102004036073A1 (de) * 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
DE102004046232B4 (de) * 2004-09-22 2024-10-24 Sew-Eurodrive Gmbh & Co Kg Antriebskomponente
US7390760B1 (en) 2004-11-02 2008-06-24 Kimberly-Clark Worldwide, Inc. Composite nanofiber materials and methods for making same
US20060094320A1 (en) * 2004-11-02 2006-05-04 Kimberly-Clark Worldwide, Inc. Gradient nanofiber materials and methods for making same
DE102004062740A1 (de) * 2004-12-27 2006-07-13 Degussa Ag Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
DE102004062742A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Textile Substrate mit selbstreinigenden Eigenschaften (Lotuseffekt)
DE102004062743A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
DE102004062739A1 (de) 2004-12-27 2006-07-06 Degussa Ag Selbstreinigende Oberflächen mit durch hydrophobe Partikel gebildeten Erhebungen, mit verbesserter mechanischer Festigkeit
GB2421727B (en) * 2004-12-30 2007-11-14 Ind Tech Res Inst Method for forming coating material and the material formed thereby
DE102005017384A1 (de) * 2005-04-14 2006-10-19 Ropimex R. Opel Gmbh Desinfektionsmittel mit keimabtötenden Eigenschaften, Verfahren zur Herstellung und Verwendung
US20060240218A1 (en) * 2005-04-26 2006-10-26 Nanosys, Inc. Paintable nonofiber coatings
US7772393B2 (en) * 2005-06-13 2010-08-10 Innovative Surface Technologies, Inc. Photochemical crosslinkers for polymer coatings and substrate tie-layer
EP1926562A1 (de) * 2005-09-12 2008-06-04 Perlen Converting AG Verfahren zum aufbringen eines strukturierten überzugs auf eine glatte fläche
AU2006326053A1 (en) * 2005-12-15 2007-06-21 Ashland Licensing And Intellectual Property Llc Spray wax composition
DE102006001641A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Substrate mit bioziden und/oder antimikrobiellen Eigenschaften
WO2007102960A2 (en) * 2006-01-30 2007-09-13 Ashland Licensing And Intellectual Property Llc Hydrophobic self-cleaning coating compositions
US20080221263A1 (en) * 2006-08-31 2008-09-11 Subbareddy Kanagasabapathy Coating compositions for producing transparent super-hydrophobic surfaces
US20080221009A1 (en) * 2006-01-30 2008-09-11 Subbareddy Kanagasabapathy Hydrophobic self-cleaning coating compositions
US8258206B2 (en) 2006-01-30 2012-09-04 Ashland Licensing And Intellectual Property, Llc Hydrophobic coating compositions for drag reduction
EP1844863A1 (de) * 2006-04-12 2007-10-17 General Electric Company Artikel enthaltend eine Oberfläche mit niedriger Benetzbarkeit und dessen Herstellungsverfahren
IL175477A (en) * 2006-05-08 2013-09-30 Efraim Kfir A kit for lifting the sinus membranes for use in dental implant surgery
DE102006027480A1 (de) * 2006-06-14 2008-01-10 Evonik Degussa Gmbh Kratz- und abriebfeste Beschichtungen auf polymeren Oberflächen
DE102006054158A1 (de) * 2006-11-16 2008-05-21 Wacker Chemie Ag Ultrahydrophobe Beschichtungen
GB0624729D0 (en) * 2006-12-12 2007-01-17 Univ Leeds Reversible micelles and applications for their use
US20080145631A1 (en) * 2006-12-19 2008-06-19 General Electric Company Articles having antifouling surfaces and methods for making
FR2910315B1 (fr) * 2006-12-20 2010-04-02 Oreal Composition cosmetique a film hydrophobe
WO2008075282A2 (en) * 2006-12-20 2008-06-26 L'oreal Cosmetic kit for providing a hydrophobic film
TWI384039B (zh) * 2006-12-27 2013-02-01 Ind Tech Res Inst 透明疏水自潔塗料的製作方法、所製得之塗料以及塗膜
DE102007009590A1 (de) * 2007-02-26 2008-08-28 Evonik Degussa Gmbh Glänzender und kratzfester Nagellack durch Zusatz von Sol-Gel-Systemen
DE102007009589A1 (de) * 2007-02-26 2008-08-28 Evonik Degussa Gmbh Glänzender und kratzfester Nagellack durch Zusatz von Silanen
US7943234B2 (en) * 2007-02-27 2011-05-17 Innovative Surface Technology, Inc. Nanotextured super or ultra hydrophobic coatings
DE102007012924A1 (de) 2007-03-19 2008-09-25 Robert Bosch Gmbh Wischgummi und Verfahren zu seiner Herstellung
US7732497B2 (en) * 2007-04-02 2010-06-08 The Clorox Company Colloidal particles for lotus effect
US20080250978A1 (en) * 2007-04-13 2008-10-16 Baumgart Richard J Hydrophobic self-cleaning coating composition
EP2011630A1 (de) * 2007-07-03 2009-01-07 F. Hoffmann-La Roche AG Verfahren zur Herstellung eines Analyseelementes
US20090064894A1 (en) * 2007-09-05 2009-03-12 Ashland Licensing And Intellectual Property Llc Water based hydrophobic self-cleaning coating compositions
US20100247862A1 (en) * 2007-11-19 2010-09-30 E.I. Dupont De Nemours And Company Treated plastic surfaces having improved cleaning properties
US8153834B2 (en) * 2007-12-05 2012-04-10 E.I. Dupont De Nemours And Company Surface modified inorganic particles
US7878056B2 (en) * 2007-12-19 2011-02-01 Siargo Ltd. Micromachined thermal mass flow sensor with self-cleaning capability and methods of making the same
US8870839B2 (en) 2008-04-22 2014-10-28 The Procter & Gamble Company Disposable article including a nanostructure forming material
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US20100028604A1 (en) * 2008-08-01 2010-02-04 The Ohio State University Hierarchical structures for superhydrophobic surfaces and methods of making
CA2739920C (en) 2008-10-07 2017-12-12 Ross Technology Corporation Spill-resistant surfaces having hydrophobic and oleophobic borders
AU2009314119B2 (en) * 2008-11-11 2016-03-03 University Of Florida Research Foundation, Inc. Method of patterning a surface and articles comprising the same
US8691983B2 (en) * 2009-03-03 2014-04-08 Innovative Surface Technologies, Inc. Brush polymer coating by in situ polymerization from photoreactive surface
US8147607B2 (en) * 2009-10-26 2012-04-03 Ashland Licensing And Intellectual Property Llc Hydrophobic self-cleaning coating compositions
WO2011056742A1 (en) 2009-11-04 2011-05-12 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern and methods of making the same
US20110118686A1 (en) * 2009-11-13 2011-05-19 The Procter & Gamble Company Substrate with adherence for feces and menses
MX2012010669A (es) * 2010-03-15 2013-02-07 Ross Technology Corp Destacadores y metodos para producir supreficies hidrofobas.
US8443483B2 (en) 2010-08-30 2013-05-21 GM Global Technology Operations LLC Wiper blade for vehicle window wiper
WO2012115986A1 (en) 2011-02-21 2012-08-30 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low voc binder systems
US9937655B2 (en) 2011-06-15 2018-04-10 University Of Florida Research Foundation, Inc. Method of manufacturing catheter for antimicrobial control
GB201111439D0 (en) 2011-07-04 2011-08-17 Syngenta Ltd Formulation
DE102011085428A1 (de) 2011-10-28 2013-05-02 Schott Ag Einlegeboden
EP2791255B1 (de) 2011-12-15 2017-11-01 Ross Technology Corporation Zusammensetzung und beschichtung für superhydrophobe leistung
DE102012201899A1 (de) * 2012-02-09 2013-09-19 Robert Bosch Gmbh Wischgummi mit Oberflächenstrukturierung und hochhydrophober Schicht
CA2876151C (en) * 2012-06-08 2021-05-25 University Of Houston Self-cleaning coatings and methods for making same
EP2864430A4 (de) 2012-06-25 2016-04-13 Ross Technology Corp Elastomerische beschichtungen mit hydrophoben und/oder oleophoben eigenschaften
DE102012022757A1 (de) 2012-11-22 2013-01-24 Sew-Eurodrive Gmbh & Co. Kg Antriebskomponente
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating
US10072241B2 (en) 2013-03-13 2018-09-11 Innovative Surface Technologies, Inc. Conical devices for three-dimensional aggregate(s) of eukaryotic cells
CA3024264A1 (en) * 2016-05-10 2017-11-16 The Australian National University Interpenetrating polymer networks
CN106675305A (zh) * 2016-12-28 2017-05-17 华南理工大学 一种可自修复的紫外光固化聚丙烯酸酯‑聚硅氧烷‑白炭黑超疏水涂层及其制备方法
JP6333454B1 (ja) * 2017-08-18 2018-05-30 株式会社フェクト 撥水・撥油性コーティングの形成方法及び撥水・撥油性コーティング
CN111545432A (zh) * 2020-05-11 2020-08-18 中国工程物理研究院化工材料研究所 一种高稳定性的疏黏液表面的制备方法
CN111484723B (zh) * 2020-05-14 2022-09-16 上海金山锦湖日丽塑料有限公司 一种自清洁阻燃pc树脂及其制备方法
CN111763100B (zh) * 2020-06-10 2021-10-26 大理大学 一种天然青石自清洁表面的制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US5432000A (en) 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
US5141915A (en) * 1991-02-25 1992-08-25 Minnesota Mining And Manufacturing Company Dye thermal transfer sheet with anti-stick coating
DE4238380B4 (de) * 1992-11-13 2004-02-19 Merck Patent Gmbh Verfahren zum Beschichten von Substratmaterialien mit einer glänzenden Beschichtung
KR940018419A (ko) 1993-01-18 1994-08-18 이마무라 가즈수케 발수성을 향상시킨 불소 함유 고분자 성형체 및 이로 부터 제조된 세정용 지그
DK0772514T3 (da) 1994-07-29 1999-08-23 Wilhelm Barthlott Selvrensende overflader af genstande samt fremgangsmåde til fremstilling deraf
DE19860139C1 (de) * 1998-12-24 2000-07-06 Bayer Ag Verfahren zur Herstellung einer ultraphoben Oberfläche auf der Basis von Nickelhydroxid, ultraphobe Oberfläche und ihre Verwendung
ES2203450T3 (es) 1999-03-25 2004-04-16 Wilhelm Barthlott Procedimiento para la preparacion de superficies autolimpiables, desprendibles.
DE19914007A1 (de) 1999-03-29 2000-10-05 Creavis Tech & Innovation Gmbh Strukturierte flüssigkeitsabweisende Oberflächen mit ortsdefinierten flüssigkeitsbenetzenden Teilbereichen
DE19917367A1 (de) 1999-04-16 2000-10-19 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Überzügen auf Basis fluorhaltiger Kondensate
DK1144773T3 (da) * 1999-05-26 2007-01-15 Basf Corp Metaltagpladeudgangsmateriale og fremgangsmåde til fremstilling af det
DE10015855A1 (de) * 2000-03-30 2001-10-11 Basf Ag Anwendung des Lotus-Effekts in der Verfahrenstechnik
DE10022246A1 (de) * 2000-05-08 2001-11-15 Basf Ag Beschichtungsmittel für die Herstellung schwer benetzbarer Oberflächen
WO2002055446A1 (de) 2001-01-12 2002-07-18 Basf Aktiengesellschaft Verfahren zur schmutzabweisenden ausrüstung von oberflächen
DE10118345A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
DE10118349A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118352A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118351A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
ES2271131T5 (es) 2009-10-30
EP1249280A3 (de) 2003-01-02
US20020150724A1 (en) 2002-10-17
EP1249280A2 (de) 2002-10-16
ATE340654T1 (de) 2006-10-15
CA2381134A1 (en) 2002-10-12
EP1249280B2 (de) 2009-07-01
JP2002346469A (ja) 2002-12-03
DE50208229D1 (de) 2006-11-09
ES2271131T3 (es) 2007-04-16
DE10118352A1 (de) 2002-10-17
US6858284B2 (en) 2005-02-22

Similar Documents

Publication Publication Date Title
EP1249280B1 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1283076B1 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1249281B1 (de) Selbstreinigende Oberfläche mit hydrophober Oberflächenstruktur und Verfahren zu deren Herstellung
EP1249467B1 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1317967B1 (de) Diffus reflektierende Oberflächen und Verfahren zu deren Herstellung
EP1674535A1 (de) Selbstreinigende Oberflächen mit durch hydrophobe strukturgebende Partikel und Wachspartikel gebildeten Erhebungen
EP1472011B1 (de) Verfahren zur herstellung von schutzschichten mit schmutz- und wasserabweisenden eigenschaften
EP1283077A1 (de) Erhalt des Lotus-Effektes durch Verhinderung des Mikrobenwachstums auf selbstreinigenden Oberflächen
EP1249468A2 (de) Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
EP1171529A1 (de) Verfahren zur herstellung von selbstreinigenden, ablösbaren oberflächen
WO2003013827A1 (de) Strukturierte oberflächen mit lotus-effekt
DE10210027A1 (de) Hydrophile Oberflächen
DE10231757A1 (de) Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
EP1318165A1 (de) Lichtstreuende Werkstoffe die selbstreinigende Oberflächen aufweisen
DE10134362A1 (de) Strukturierte Oberflächen mit Lotus-Effekt
WO2003013748A1 (de) Erhalt des lotus-effektes durch verhinderung des mikrobenwachstums nach beschädigung der selbstreinigenden oberfläche
WO2004014575A1 (de) Verfahren zur pulverbeschichtung von oberflächen zur erzeugung des lotus-effektes
DE10233831A1 (de) Verfahren zur Herstellung von strukturierten Oberflächen
DE102013218380A1 (de) Selbstgenerierende strukturierte Oberflächen mit selbstreinigenden Eigenschaften und ein Verfahren zur Herstellung dieser Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030407

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060927

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50208229

Country of ref document: DE

Date of ref document: 20061109

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DEGUSSA GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2271131

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DEGUSSA GMBH

Effective date: 20070221

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 20070627

NLR1 Nl: opposition has been filed with the epo

Opponent name: BASF AKTIENGESELLSCHAFT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK DEGUSSA GMBH

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK DEGUSSA GMBH

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061228

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK DEGUSSA GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK DEGUSSA GMBH

Effective date: 20080806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090218

Year of fee payment: 8

Ref country code: ES

Payment date: 20090219

Year of fee payment: 8

Ref country code: LU

Payment date: 20090216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090219

Year of fee payment: 8

Ref country code: NL

Payment date: 20090217

Year of fee payment: 8

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090217

Year of fee payment: 8

Ref country code: GB

Payment date: 20090219

Year of fee payment: 8

27A Patent maintained in amended form

Effective date: 20090701

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090223

Year of fee payment: 8

NLR2 Nl: decision of opposition

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090408

Year of fee payment: 8

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090213

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090818

Kind code of ref document: T5

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20100223

Ref country code: NL

Ref legal event code: SD

Effective date: 20100223

BERE Be: lapsed

Owner name: EVONIK DEGUSSA G.M.B.H.

Effective date: 20100228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222