DE102005061813B4 - Empfängerschaltung - Google Patents

Empfängerschaltung Download PDF

Info

Publication number
DE102005061813B4
DE102005061813B4 DE102005061813A DE102005061813A DE102005061813B4 DE 102005061813 B4 DE102005061813 B4 DE 102005061813B4 DE 102005061813 A DE102005061813 A DE 102005061813A DE 102005061813 A DE102005061813 A DE 102005061813A DE 102005061813 B4 DE102005061813 B4 DE 102005061813B4
Authority
DE
Germany
Prior art keywords
signal
feedback
integrator
digital
receiver circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102005061813A
Other languages
English (en)
Other versions
DE102005061813A1 (de
Inventor
Lukas Doerrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Deutschland GmbH
Original Assignee
Intel Mobile Communications GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Mobile Communications GmbH filed Critical Intel Mobile Communications GmbH
Priority to DE102005061813A priority Critical patent/DE102005061813B4/de
Priority to US11/645,002 priority patent/US7983640B2/en
Publication of DE102005061813A1 publication Critical patent/DE102005061813A1/de
Application granted granted Critical
Publication of DE102005061813B4 publication Critical patent/DE102005061813B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/438Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
    • H03M3/454Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with distributed feedback, i.e. with feedback paths from the quantiser output to more than one filter stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/402Arrangements specific to bandpass modulators
    • H03M3/404Arrangements specific to bandpass modulators characterised by the type of bandpass filters used
    • H03M3/406Arrangements specific to bandpass modulators characterised by the type of bandpass filters used by the use of a pair of integrators forming a closed loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/424Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Empfängerschaltung (1) zum Empfang eines analogen Empfangssignals (AIN) mit:
a) einer Mischereinrichtung (2), welche das analoge Empfangssignal (AIN) mit einer Lokaloszillatorfrequenz (LO) mischt und ein Mischerstromsignal (MS1) ausgibt;
b) einer an die Mischereinrichtung (2) gekoppelten ersten Integratoreinrichtung (4), welche das mit einem ersten Rückkopplungsstromsignal (FB1) summierten Mischerstromsignal (MS1) zu einem ersten Zwischensignal (Z1) integriert;
c) einer zweiten Integratoreinrichtung (6), welcher der ersten Integratoreinrichtung (4) nachgeschaltet ist, und welche das mit einem zweiten Rückkopplungsstromsignal (FB2) summierte erste Zwischensignal (Z1) zu einem Quantisierereingangssignal (QIN) integriert;
d) einer Quantisierereinrichtung (7), welche das Quantisierereingangssignal (QIN) zu einem digitalen Ausgangssignal (DOUT) quantisiert;
e) einem ersten Rückkopplungs-Digital-Analog-Wandler (9), welcher das Ausgangssignal (DOUT) in das erste Rückkopplungsstromsignal (FB1) wandelt; und
f) einem zweiten Rückkopplungs-Digital-Analog-Wandler (8), welcher das Ausgangssignal (DOUT) in das zweite Rückkopplungsstromsignal (FB2) wandelt,
g) wobei die Integratoreinrichtungen (4, 6), die Quantisierereinrichtung (7) und die Rückkopplungs-Digital-Analog-Wandler (8, 9) einen...

Description

  • Die vorliegende Erfindung betrifft eine Empfängerschaltung zum Empfang eines analogen Empfangssignals und zur Ausgabe eines digitalen Ausgangssignals.
  • Bei modernen drahtlosen Übertragungssystemen wie bspw. DECT, GSM, EDGE, IS95, WCDMA 2000 sind integrierte Schaltungen gewünscht, die ein analoges Empfangssignal zuverlässig in ein digitales Signal umsetzen, welches weiterverarbeitet werden kann.
  • In der 1 sind schematisch die Komponenten einer üblichen Empfängeranordnung dargestellt. Eine Antenne AT empfängt ein ausgesendetes Signal und liefert ein Antennensignal A1 an einen Vorverstärker LNA (low noise amplifier) welcher ein vorverstärktes Signal A2 bereitstellt. Ein üblicherweise als Bandpassfilter ausgeführtes Eingangsfilter EF filtert das vorverstärkte Antennensignal A2 und liefert ein gefiltertes analoges Empfangssignal A3 an eine Mischereinrichtung M1, M2 die das gefilterte Empfangssignal A3 jeweils mit der Lokaloszillatorfrequenz LO mischt und ein jeweiliges Mischerstromsignal A4, A4' ausgibt. In der 1 ist ein oberer Mischerzweig M1 und ein unterer Mischerzweig M2 dargestellt, wobei die gemischten Signale jeweils um 90° phasenverschoben sind.
  • Dem Mischer ist ein Nachbarkanalfilter NF, NF' nachgeschaltet, dass üblicherweise als Tiefpassfilter, beispielsweise als Butterworth-Filter vierter oder fünfter Ordnung, ausgeführt ist. Das Nachbarkanalfilter verhindert im Wesentlichen eine Störung des mit der Lokaloszillatorfrequenz LO gemischten Empfangssignals A4 durch benachbarte Kanäle bzw. Frequenzen.
  • Das derart gefilterte Empfangssignal A5, A5' wird jeweils durch einen Analog-Digital-Wandler ADC, ADC' in ein digitales Signal D6, D6' gewandelt, welches in einem Basisbandprozessor BBP weiterverarbeitet werden kann, und welches die entsprechenden übertragenen digitalen Daten rekonstruiert. Bei der Verwendung einzelner Schaltungen für Mischer, Nachbarkanalfilter und Analog-Digital-Wandler treten eine Reihe von Nachteilen auf.
  • Ein üblicher Mischer weist beispielsweise einen Verstärker, eine Schaltereinrichtung und einen Strom-Spannungswandler auf. Dabei wird das zu mischende Hochfrequenzsignal verstärkt und durch eine von der jeweiligen Lokaloszillatorfrequenz geschalteten Schaltereinrichtung gemischt. Anschließend ist eine Strom-Spannungswandlung erforderlich um ein gemischtes Ausgangspannungssignal zu erzeugen.
  • Eine gängige Strom-Spannungswandlung erfolgt dabei über einen Operationsverstärker, der gleichzeitig eine Signalfilterung durch einen rückgekoppelten Widerstand und einen dazu parallel geschalteten Kondensator durchführt. Die entsprechenden Rückkopplungskondensatoren unterdrücken dabei eine Übertragung des Hochfrequenzeingangssignals in das Ausgangssignal des jeweiligen Operationsverstärkers. Durch den Rückkopplungswiderstandwert ist jedoch die Verstärkung des Mischers festgelegt, wobei die Verstärkung nur moderat eingestellt werden darf, da sonst das Mischerausgangssignal begrenzt würde. Ein kleiner Widerstandswert erhöht jedoch die entsprechende Filterungsbandbreite, da bei einem kapazitiv und resistiv rückgekoppelten Operationsverstärker die entsprechende Bandbreite fbw ∝ 1/2π·C·R ist, wobei R und C die Werte der entsprechenden Rückkopplungswiderstände und Kondensatoren ist. Ein kleiner Widerstand erhöht somit die entsprechend benötigte Rückkopplungskapazität und damit den Flächenbedarf einer derartigen Schaltung auf einem Halbleiterchip. Die Filterbandbreite sollte beispielsweise für GSM-Anwendungen um 100 KHz liegen. Damit ist bei Rückkopplungswiderständen R 1 kOhm eine große Kapazität von C = 100 pF – 10 nF notwendig, was auf dem entsprechenden Halbleiterchip eine große Fläche erfordert und den Stromverbrauch der Mischereinrichtung erhöht.
  • Bevor das entsprechend gemischte Analogsignal an einen Analog-Digital-Wandler geführt wird müssen Nachbarkanalsignale zuverlässig unterdrückt werden. Um eine entsprechende Filterung mit der Analog-Digital-Wandlung zu kombinieren wurde in der Vergangenheit vorgeschlagen, zeitkontinuierliche Sigma-Delta-(Analog-Digital)-Wandler einzusetzen.
  • Bei der Sigma-Delta-Wandlung wird von einem zu wandelnden analogen Eingangssignal ein Rückkopplungssignal subtrahiert und das resultierende Signal zunächst einer Filterung unterzogen, meist einer Integration und anschließend quantisiert. Das derart erhaltene digitale quantisierte Ausgangssignal wird von einem Rückkopplungs-Digital-Analog-Wandler gewandelt und als Rückkopplungssignal verwendet. Das digitale Ausgangssignal des Quantisierers liefert beispielsweise bei einem ansteigenden analogen Eingangssignals überwiegend High-Pegel, bei einem fallenden analogen Eingangssignal Low-Pegel und bei einem im Wesentlichen konstanten analogen Eingangssignal abwechselnd High- und Low-Pegel. Durch einfaches digitales Integrieren erhält man dann den digitalen Signalwert aus dem Ausgangssignal.
  • Ein Vorteil von zeitkontinuierlichen Filtern bzw. Integratoren im Sigma-Delta-Wandler besteht insbesondere darin, dass eine inhärente Filterfunktion des entsprechenden Analog-Digital-Wandlers vorliegt. Zwischen dem Eingang eines kontinuierlichen Sigma-Delta-Wandlers und dem Quantisierereingang des Sigma-Delta-Wandlers ist daher ein Anti-Aliasing Filter häufig höherer Ordnung realisiert, das bei einem Einsatz des Sigma-Delta-Wandlers in einer Empfängerschaltung als Nachbarkanalfilter verwendet werden kann.
  • In Kapitel 4.4 in L. Breems, J. H. Huijsing: ”Continuous-Time Sigma-Delta Modulation for A/D Conversion in Radio Receivers”, Kluwer Academic Publishers, 2001, ISBN 0792374924 ist beispielsweise die Kombination eines Mischers mit einem Sigma-Delta-Wandler vorgestellt.
  • Die 2 zeigt eine entsprechende schematische Darstellung einer derartigen Empfängeranordnung. Es ist eingangsseitig ein Mischer M vorgesehen, dem das analoge Empfangssignal A3 zugeführt ist, und der eine Mischung mit der Lokaloszillatorfrequenz LO vornimmt. Am Ausgang des Mischers ist ein Kondensator Cl vorgesehen, der eine Entkopplung des hochfrequenten Empfangssignals A3 gewährleistet. Der Wert dieses Kondensators Cl muss hoch gewählt werden, um eine gute Entkopplung zu erreichen. Dem Ausgangsstromsignal A4 des Mischers M wird das Rückkopplungssignal FB welches von einem Rückkopplungs-Digital-Analog-Wandler DAC geliefert wird, abgezogen. Die Eingangsstufe aus einem spannungsverstärkenden Operationsverstärker EV und einer seriellen Rückkopplungsschleife aus eifern Widerstand R1 und einem Kondensator C2 wirkt als Integrator. Das entsprechende analoge integrierte Signal A5 wird einer seriellen Kette von Transkonduktanz-Integratoren TV1, TV2, TV3, TV4 zugeführt. Zwischen den Transkonduktanz-Integratoren TV1, TV2, TV3, TV4 werden entsprechende Zwischensignale A5, A6, A7, A8 abgegriffen und in Vorwärtskopplungsschleifen FF1, FF2, FF3 durch Transkonduktanz-Verstärker V1, V2, V3 gewichtet. Die entsprechenden Vorwärtskopplungssignale F1, F2, F3 werden an einem vor dem Quantisierer Q liegenden Knoten K mit dem die Integratorkette TV1, TV2, TV3, TV4 durchlaufenden Signal A9 zusammengeführt. Der Quantisierer Q liefert schließlich das digitale Ausgangssignal D welches auch dem Rückkopplungs-Digital-Analog-Wandler zugeführt ist.
  • Bei der in der 2 dargestellten Empfängerschaltung ergibt sich zwischen dem ersten Integrator EV, R1, C2 und dem Eingang des Quantisierers Q immer einen Signalpfad ohne weitere Filterung. Dies ist der erste Vorwärtskopplungszweig FF1. Da der der Sigma-Delta-Wandler Anordnung vorgeschaltete Mischer M an dem Eingang des Integrators EV, R1, C2 anliegt, und das entsprechende Signal A9 in dem Signalpfad nur einer Filterung 1. Ordnung unterworfen ist, ist der Eingang der Sigma-Delta-Anordnung empfindlich gegenüber Störsignalen aus dem Empfangssignal A3.
  • Die Druckschrift DE 101 03 811 A1 offenbart einen Tiefpass-Sigma-Delta-Modulator zweiter Ordnung, welcher ein analoges Eingangssignal in ein digitales Ausgangssignal wandelt. Dabei wird das digitale Ausgangssignal über zwei Rückkoppelschleifen über Tiefpass-Digital-Analog-Wandler rückgekoppelt und von dem analogen Eingangssignal subtrahiert.
  • Die Druckschrift Schreier, R. et al.: ”A flexible 10–300 MHz Receiver IC employing a Bandpass Sigma-Delta ADC”. In: IEEE Radio Frequency Integrated Circuits Symposium 2001, S. 71–74 offenbart einen Bandpass-Sigma-Delta-Analog-Digital-Wandler mit zwei Resonatoren mit geschalteten Kapazitäten und einer Quantisierereinrichtung.
  • Die Druckschrift DE 198 31 369 A1 offenbart einen Delta-Sigma-Wandler für Bandpasssignale mit einem aus Resonatoren bestehenden Schleifenfilter im Modulatorkreis.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung eine verbesserte Empfängerschaltung zum Empfang eines analogen Empfangssignals und Ausgabe eines digitalen Signals zu schaffen.
  • Diese Aufgabe wird durch eine Empfängerschaltung mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Demgemäß ist eine Empfängerschaltung zum Empfang eines analogen Empfangssignals vorgesehen mit:
    • a) einer Mischereinrichtung, welche das analoge Empfangssignal mit einer Lokaloszillatorfrequenz mischt und ein Mischerstromsignal ausgibt;
    • b) einer an die Mischereinrichtung gekoppelten ersten Integratoreinrichtung, welche das mit einem ersten Rückkopplungsstromsignal summierten Mischerstromsignal zu einem ersten Zwischensignal integriert;
    • c) einer zweiten Integratoreinrichtung, welcher der ersten Integratoreinrichtung nachgeschaltet ist, und welche das mit einem zweiten Rückkopplungsstromsignal summierte erste Zwischensignal zu einem Quantisierereingangssignal integriert;
    • d) einer Quantisierereinrichtung, welche das Quantisierereingangssignal zu einem digitalen Ausgangssignal quantisiert;
    • e) einem ersten Rückkopplungs-Digital-Analog-Wandler, welcher das Ausgangssignal in das erste Rückkopplungsstromsignal wandelt;
    • f) einem zweiten Rückkopplungs-Digital-Analog-Wandler, welcher das Ausgangssignal in das zweite Rückkopplungsstromsignal wandelt;
    • g) wobei die Integratoreinrichtungen, die Quantisierereinrichtung und die Rückkopplungs-Digital-Analog-Wandler einen zeitkontinuierlichen Sigma-Delta-Wandler realisieren;
    • h) wobei die Integratoreinrichtungen jeweils aus einem Oprerationsverstärker und einem Rückkopplungskondensatior aufgebaut sind; und
    • i) wobei mindestens eine lokale Resonatorschleife ausgebildet ist, durch die mindestens zwei seriell verschaltete Integratoreinrichtungen über einen Widerstand rückgekoppelt sind.
  • Aufgrund der beiden rückgekoppelten und digital-analog gewandelten Rückkopplungssignale ergibt sich bei der erfindungsgemäßen Empfängerschaltung immer eine Filterung mindestens 2. Ordnung für einen Signalweg zwischen einem Ausgang der Mischereinrichtung und einem Eingang der Quantisierereinrichtung. Dadurch ist der aus den Integratoreinrichtungen, der Quantisierereinrichtung und den Rückkopplungs-Digital-Analog-Wandlern gebildete Sigma-Delta-Wandler deutlich robuster gegenüber Störungen im Mischerstromsignal als ein Aufbau mit Vorwärtskopplungen. Durch die mindestens 2. Ordnung ist auch eine verbesserte Filterwirkung gegeben, so dass eine Nachbarkanalfilterung effizienter ausfällt. Die Entkopplung der Hochfrequenzanteile aus dem analogen Empfangssignal durch einen Kondensator mit großer Kapazität ist bei der erfindungsgemäßen Empfängerschaltung nicht notwendig. Vielmehr ist der den Sigma-Delta-Wandler ausbildende Schaltungsteil auch gegenüber parasitär auftretenden Kapazitäten am Mischerausgang relativ unempfindlich. Die erfindungsgemäße Empfängerschaltung hat also den Vorteil, dass etwaig vorliegende Entkopplungskapazitäten kaum Einfluss auf die Stabilität der Regelschleife des Sigma-Delta-Modulators hat.
  • Unter Zwischensignal werden bei der weiteren Beschreibung der Erfindung lediglich Signale verstanden, die zwischen dem Eingang und dem Ausgang der Empfängerschaltung auftreten, ohne dass ein Bezug zu einer Zwischenfrequenz im Sinne der Differenzfrequenz zwischen Empfangsfrequenz und Lokaloszillatorfrequenz hergestellt wird.
  • Vorzugsweise ist mindestens einem Rückkopplungs-Digital-Analog-Wandler eine Gewichtungseinrichtung nachgeschaltet, welche das jeweilige Rückkopplungssignal mit einem Gewichtungsfaktor gewichtet. Beispielsweise können Verstärker dazu verwendet werden. Vorteilhafterweise werden die Gewichtungsfaktoren derart eingestellt, dass durch die Empfängerschaltung eine vorgegebene Filterung des Empfangssignals erfolgt. Mittels der Gewichtungsfaktoren lässt sich die Filterübertragungsfunktion des inhärenten Anti-Aliasing Filters der Sigma-Delta-Anordnung im Wesentlichen frei vorgeben. Somit kann die Einrichtung zum dynamischen Elementeabgleich vorgeschaltet. Dadurch lässt sich die Linearitätseigenschaft des Sigma-Delta-Wandlers weiter verbessern.
  • In einer Weiterbildung der Erfindung sind weitere Integratoreinrichtungen, Rückkopplungs-Digital-Analog-Wandler und/oder Gewichtungseinrichtungen vorgesehen. Dabei sind die weiteren Integratoreinrichtungen seriell zwischen der ersten Integratoreinrichtung und der zweiten Integratoreinrichtung geschaltet. Eine jeweilige weitere Integratoreinrichtung integriert eine mit einem zugeordneten weiteren Rückkopplungsstromsignal summiertes Zwischensignal, welches durch eine der jeweiligen weiteren Integratoreinrichtung vorgeschaltete Integratoreinrichtung erzeugt ist. Dabei ist das jeweilige weitere Rückkopplungsstromsignal von einem zugeordneten weiteren Rückkopplungs-Digital-Analog-Wandler aus dem digitalen Ausgangssignal erzeugt. Diese weiteren in einer Feedbackstruktur vorgehaltenen Rückkopplungsschleifen ermöglichen die Realisierung von Nachbarkanalfilterfunktionen höherer Ordnung.
  • In einer bevorzugten Ausführungsform der Empfängerschaltung. ist ferner mindestens eine Vorwärtskopplungsschleife mit einer Vorwärtskopplungs-Gewichtungseinrichtung vorgesehen, wobei die Vorwärtskopplungs-Gewichtungseinrichtung ein Zwischensignal einer Integratoreinrichtung gewichtet und das Gewicht des Zwischensignal dem Quantisierereingangssignal aufaddiert ist.
  • Vorzugsweise sind die Quantisierereinrichtung und die Rückkopplungs-Digital-Analog-Wandler als Multibit-Quantisierer und Multibit-Analog-Wandler ausgeführt. Bevorzugt ist der Mischereinrichtung ein Vorverstärker vorgeschaltet, welcher das analoge Empfangssignal vorverstärkt. In einer bevorzugten Ausführungsform ist dann dem Vorverstärker ein Empfangsmittel, insbesondere eine Antenne vorgeschaltet.
  • In noch einer weiteren bevorzugten Ausführungsform ist mindestens einem der Rückkopplungs-Digital-Analog-Wandler eine Einrichtung dynamischen Elementeabgleich vorgeschaltet. Dadurch lässt sich die Linearitätseigenschaft des Sigma-Delta-Wandlers weiter verbessern.
  • Erfindungsgemäß weisen die Integratoreinrichtungen einen Operationsverstärker mit einem Rückkopplungskondensator auf.
  • Vorzugsweise ist die Empfängerschaltung vollständig differenziell ausgeführt.
  • Vorzugsweise ist das Quantisierereingangssignal vor einer Einkopplung in die Quantisierereinrichtung einer Filtereinrichtung, die insbesondere als Integrierer ausgeführt ist, zugeführt. Die zweite Integratoreinrichtung, welche eingangsseitig ein Rückkopplungsstromsignal und ein Ausgangssignal einer im Signalweg vorherig angeordneten Integratoreinrichtung integriert, kann somit an beliebiger Stelle zwischen dem Ausgang der ersten Integrierereinrichtung und dem Eingang der Quantisierereinrichtung angeordnet sein.
  • Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche und der in Folgenden beschriebenen Ausführungsbeispiele. Im Folgenden wird die Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahmen auf Figuren beispielhaft näher erläutert. Es zeigt dabei:
  • 1: eine schematische Darstellung einer Empfängeranordnung;
  • 2: eine Empfängerschaltung nach dem Stand der Technik mit Vorwärtskopplung;
  • 3: eine schematische Darstellung der erfindungsgemäßen Empfängerschaltung;
  • 4: ein Blockschaltbild einer bevorzugten Ausführungsform der erfindungsgemäßen Empfängerschaltung; und
  • 5: ein Schaltbild einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Empfängerschaltung.
  • In den Figuren sind, soweit nichts anderes angegeben ist gleiche bzw. funktionsgleiche Elemente mit demselben Bezugszeichen versehen worden.
  • Die 3 zeigt eine schematische Darstellung der erfindungsgemäßen Empfängerschaltung 1. Es ist ein Mischer 2 vorgesehen, dem ein analoges Empfangssignal AIN zugeführt wird, und der dieses mit einer Lokaloszillatorfrequenz LO zu einem Mischerstromsignal MS1 mischt. Die Mischereinrichtung weist einen Eingangsverstärker 26 und eine von dem Lokaloszillatorsignal bzw. der Lokaloszillatorfrequenz LO gesteuerten Schalteinrichtung auf. Der Mischerausgang ist direkt an die Schalteinrichtung 27 verbunden, ohne dass eine weitere Filterung in der Mischereinrichtung 2 erfolgt. Von dem Mischerstromsignal MS1 wird ein erstes Rückkopplungsstromsignal FB1 über eine Addierereinrichtung 3 subtrahiert.
  • Das somit erhaltene analoge Signal MS2 wird einer ersten Integratoreinrichtung 4 zugeführt, die integriert und ein erstes Zwischensignal Z1 ausgibt. Von dem ersten Zwischensignal Z1 wird über eine zweite Addierereinrichtung 5 ein zweites Rückkopplungsstromsignal FB2 subtrahiert und als zweites Zwischensignal Z2 einer zweiten Integratoreinrichtung 6 zugeführt. Die Integratoreinrichtung 6 integriert das zweite Zwischensignal Z2 und liefert ein Quantisierereingangssignal QIN. Ein Quantisierer 7 quantisiert das Quantisierereingangssignal QIN zu dem digitalen Ausgangssignal DOUT. Als Rückkopplungsschleife ist ein erster Rückkopplungs-Digital-Analog-Wandler 9 vorgesehen der aus dem digitalen Ausgangssignal DOUT das erste Rückkopplungsstromsignal FB1 erzeugt. Ein zweiter Rückkopplungs-Digital-Analog-Wandler 8 wandelt das digitale Ausgangssignal derart in das zweite Rückkopplungsstromsignal FB2.
  • Gemäß der Erfindung ist in der Mischereinrichtung kein zusätzlicher Strom-Spannungsumsetzer vorgesehen, da die erste Integratorstufe bzw. die erste Integratoreinrichtung 4 des Sigma-Delta-Wandlers ein Stromsignal verarbeiten kann. Dadurch entfällt beispielsweise ein Rückkopplungswiderstand für einen in einer Ausgangsstufe der Mischereinrichtung vorgehaltenen Operationsverstärker, wodurch die erfindungsgemäße Empfängerschaltung auf einem Halbleiterchip deutlich platzsparender ausgeführt werden kann. Es sind auch keine Widerstände zwischen dem Ausgang des Mischers 2 und dem ersten Integrator 4 erforderlich. Erfindungsgemäß ist ein in konventionellen Mischern verwendeter Strom-Spannungswandler nicht mehr notwendig, dieser ist praktisch in die Sigma-Delta-Wandlerschleife verlegt. Die sonst notwendige Funktion wird von der ersten Integratoreinrichtung übernommen. Während ein üblicher Mischer vor seinem Ausgang einen Operationsverstärker mit rückgekoppelten Widerständen und Kondensatoren erfordert, um eine Filterung zu gewährleisten, müssen in den Integrierereinrichtungen der Erfindung lediglich Kondensatoren vorgehalten werden. Daher hat die erfindungsgemäß vorgeschlagene Empfängerschaltung 1 deutlich geringeren Platzbedarf auf einem Halbleiterchip. Die Integration einer erfindungsgemäßen Empfängerschaltung ist also einfacher und günstiger durchzuführen.
  • Gegenüber einem Tiefpassfilter bei Mischereinrichtungen des Standes der Technik werden erfindungsgemäß die Integratoreinrichtungen des einen Sigma-Delta ausbildenden Schaltungsteils verwendet. Die Integratoreinrichtung 4 weist in der Regel eine höhere Verstärkung auf als ein übliches Tiefpassfilter, wodurch die Rauschempfindlichkeit der Empfängerschaltung 1 verbessert ist. Die Integration eines Nachbarkanalfilters in Form des Anti-Aliasing Filters für den Sigma-Delta-Wandler liefert zusätzliche Flächeneinsparungen. Gegenüber Vorwärtskopplungen ist die Rückkopplung, wie sie erfindungsgemäß durch die beiden Rückkopplungs-Digital-Analog-Wandler erfolgt, wesentlich unempfindlicher hinsichtlich einer parasitären Kapazität am Ausgang der Mischereinrichtung 2.
  • Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Empfängerschaltung 100 ist in der 4 dargestellt. Es ist eine Antenne 10 vorgesehen, die ein Antennensignal AS an einen Vorverstärker 11 liefert, welcher das analoge Empfangssignal AIN erzeugt. Der Mischer 2 mischt mit der Lokaloszillatorfrequenz LO und liefert das Mischerstromsignal MS1. Dem Mischerstromsignal MS1 wird über den Addierer 3 das erste Rückkopplungsstromsignal FB1 subtrahiert. Das erzeugte Stromsignal MS2 ist einem ersten Integrator 4 zugeführt, der ein erstes Zwischensignal Z1 liefert. Das erste Zwischensignal Z1 ist einem weiteren Integrator 18, welcher ein weiteres Zwischensignal Z3 liefert. Von dem Zwischensignal Z3 wird über die Addierereinrichtung 17 ein Rückkopplungsstromsignal FB3 subtrahiert und einem weiteren Integrator 18 zugeführt.
  • Die in der 4 dargestellte Ausführungsform der erfindungsgemäßen Empfängerschaltung 100 sieht zwischen dem ersten Integrator 4 und dem zweiten Integrator 6, welcher dem Quantisierer 7 direkt vorgeschaltet ist, weitere in Serie geschaltete Integratoreinrichtung bzw. Integratoren 18 vor, wobei hier nur beispielhaft ein weiterer Integrator 18 eingezeichnet ist. Vor dem weiteren Integrator 18 ist ein Addierer 17 vorgesehen der das von dem vorhergehenden Integrator 4 ausgegebene Signal Z1 mit einem jeweiligen weiteren Rückkopplungsstromsignal FB3 verknüpft, bzw. das Rückkopplungsstromsignal FB3 von dem Signal Z1 subtrahiert und als Signal Z2 dem weiteren Integrator 18 geführt. Das weitere Rückkopplungssignal FB3 wird durch einen weiteren Rückkopplungs-Digital-Analog-Wandler 15 und einer weiteren Gewichtungseinrichtung 16 erzeugt.
  • Die den jeweiligen Rückkopplungs-Digital-Analog-Wandlern 8, 9, 15 nachgeschalteten Gewichtungseinrichtungen 14, 13, 16 beaufschlagen das jeweilige analoge Ausgangssignal D1, D2, D3 der Digital-Analog-Wandler 8, 9, 15 mit einem jeweiligen Gewichtungsfaktor c1, c2, cn.
  • Der zweite Integrator 6 liefert das Quantisierereingangssignal QIN. Der Quantisierer 7 quantisiert des Quantisierereingangssignal QIN zu den digitalen Ausgangssignal DOUT. Optinal ist in der 4 eine Vorwärtskopplungsschleife dargestellt, die einen Verstärker 25 aufweist und das Ausgangssignal Z3 des Integrators 18 unter Gewichtung mit einem Gewichtungsfaktor b1 dem Qunatisiereingangssignal QIN zuführt.
  • Das erste Rückkopplungsstromsignal FB1 wird durch den ersten Rückkopplungs-Digital-Analog-Wandler 9 erzeugt, dem eine Gewichtungseinrichtung 14 nachgeschaltet ist die das von dem Rückkopplungs-Digital-Analog-Wandler 9 gelieferte analoge Signal mit einem Gewichtungsfaktor beaufschlagt. Analog wird das zweite Rückkopplungstromsignal FB2 durch einen Rückkopplungs-Digital-Analog-Wandler 8 und einer Gewichtungseinrichtung 16 erzeugt.
  • Es ist eine Einrichtung für einen dynamischen Elementeabgleich 15 vorgesehen die das digitale Ausgangssignal DOUT einen dynamischen Elementeabgleich unterzieht und ein entsprechendes digitales DS liefert. Beim digitalen Elementeabgleich werden bei einem in einem Thermometercode vorliegenden digitalen Signal die Positionen der die jeweiligen Bits darstellenden Signale regelmäßig vertauscht. Da die jeweiligen Bits in den nachgeschalteten Rückkopplungs-Digital-Analog-Wandlern 8, 9, 15 jeweils Quantisierungselemente steuern, beispielsweise Stromquellen, werden durch ein Vertauschen der Bitpositionen in dem Thermometercode des digitalen Signals DS im Mittel alle Stromquellen in den Digital-Analog-Wandlern 8, 9 gleich häufig angesteuert. Dadurch ergibt sich eine verbesserte Linearität der Analog-Digital-Wandlung durch den Sigma-Delta-Modulator.
  • Der den Sigma-Delta-Wandler realisierenden Schaltungsteil umfasst in dem beschriebenen Beispiel die Addierer 3, 5, 17, die Integratoren 4, 18, 6, die Digital-Analog-Wandler 8, 9, 15, die Gewichtungseinrichtung 13, 14, 16, den Quantisierer 7 sowie die Einrichtung für den dynamischen Elementeabgleich 15.
  • Dem Mischer 2 ist ausgangsseitig eine Entkopplungskapazität 12 nachgeschaltet die etwaige Hochfrequenzanteile aus dem Antennensignal AS bzw. dem vorverstärkenden Antennensignal AIN entkoppelt. Der Kondensator 12 kann auch als parasitäre Kapazität am Mischerausgang verstanden werden.
  • Die in Serie geschalteten Integratoren 4, 6, 18 weisen jeweils Stromverstärkungen auf, die in der 4 als Verstärkungsfaktoren a1, a2, an dargestellt sind. Bei einer Anzahl von n Integratoren ergibt sich immer eine Filterordnung für ein Signal welches vom Mischerausgang zum Quantisierer 7 verläuft der Ordnung n. Durch geeignete Wahl der Gewichtungsfaktoren c1, c2, cn und der Verstärkungen a1, a2, an lässt sich zur inhärenten Ausbildung eines Nachbarkanalfilters für die Empfängerschaltung eine beliebige vorgegebene Filterfunktion realisieren.
  • Die 5 zeigt ein weiteres Ausführungsbeispiel der erfindungsgemäßen Empfängerschaltung 200. Es ist ein Vorverstärker 11 zum Verstärken eines Antennensignals AS vorgesehen, ein Mischer 2 zum Mischen des vorverstärkten Signals AIN mit der jeweiligen Lokaloszillatorfrequenz LO, wobei die Mischer ausgangsseitig ein Entkopplungskondensator 12 nachgeschaltet ist. Der einen Sigma-Delta Modulator ausbildenden Teil der Empfängerschaltung 200 weist vier in Serie geschaltete Integratoren 4, 6, 18, 19 auf, die jeweils aus einem Operationsverstärker 21 und einem Rückkopplungskondensator 22 aufgebaut sind. Ein besonderer Vorteil bei der Verwendung von sogenannten normalen Operationsverstärkern 21 gegenüber Transkonduktanz-Verstärkern liegt in der verbesserten Linearität. Dabei ist der erste Integrator 4 dem Mischer direkt nachgeschaltet und der zweite Integrator 6 dem Quantisierer 7 vorgeschaltet. Zwischen den Integratoren 4, 6, 18, 19 sind Widerstände 23 vorgesehen.
  • Rückkopplungs-Digital-Analog-Wandler 8, 9, 15, 20 liefern aus dem digitalen Ausgangssignal DOUT jeweilige Rückkopplungsstromsignale FB1, FB2, FB3, FB4. Durch Wahl der in den Rückkopplungs-Digital-Analog-Wandlern 8, 9, 15, 20 vorgehaltenen Wandlerelemente, beispielsweise Stromquellen, erfolgt die jeweilige Gewichtung der Rückkopplungsstromsignale mit Gewichtungsfaktoren. Die Rückkopplungsstromsignale FB1, FB2, FB3, FB4 sind jeweils an Leitungsknoten 25 vor den Operationsverstärkern 21 der Integratoren 4, 6, 18, 19 geführt. Der Eingang des ersten Operationsverstärkers 21 ist direkt an den Mischerausgang angeschlossen, an dem der Mischerstrom abgreifbar ist.
  • Zur Ausbildung von lokalen Resonatorschleifen sind bei der Empfängerschaltung 200 jeweils zwei Integratoren über einen Widerstand 24 rückgekoppelt.
  • Das Ausführungsbeispiel der Empfängerschaltung 200 stellt somit einen zeitkontinuierlicher Sigma-Delta-Wandler 4. Ordnung dar mit zwei lokalen Resonatoren wobei Mischer und Analog-Digital-Wandler in einer Schaltungsanordnung kombiniert sind und einfach in einem Halbleiterchip integrierbar sind. Das implizite Nachbarkanalfilter durch die Ausführung des Sigma-Delta-Wandlers 4. Ordnung ist ebenfalls 4. Ordnung. Die lokalen Resonatoren liefern eine verbesserte Dynamik des erfindungsgemäßen Mischer Sigma-Delta-Analog-Digital-Wandlers bzw. der Empfängerschaltung.
  • Bezugszeichenliste
  • AT
    Antenne
    LNA
    Vorverstärker
    EF
    Eingangsfilter
    M1, M2
    Mischer
    NF, NF'
    Nachbarkanalfilter
    ADC, ADC'
    Analog-Digital-Wandler
    DBP
    Basisbandprozessor
    A1, A2, A3, A4,
    A4', A5, A5'
    analoges Signal
    Di
    digitales Signal
    LO
    Lokaloszillatorfrequenz
    c1, c2
    Kondensator
    M
    Mischer
    R1
    Widerstand
    EV
    Eingangsverstärker
    V1, V2, V3
    Transkonduktanz-Verstärker
    TV1, TV2, TV3, TV4
    Transkonduktanz-Integratoren
    A6, A7, A8, A9
    analoges Signal
    K
    Leitungsknoten
    F1, F2, F3
    Vorwärtskopplungssignal
    FF1, FF2, FF3
    Vorwärtskopplungsschleife
    DRC
    Digital-Analog-Wandler
    FB
    Rückkopplungssignal
    1
    erfindungsgemäße Empfängerschaltung
    2
    Mischer
    3
    Addierer
    4
    Integrator
    5
    Addierer
    6
    Integrator
    7
    Quantisierer
    8, 9
    Rückkopplungs-Digital-Analog-Wandler
    10
    Antenne
    11
    Vorverstärker
    12
    Kondensator
    13,
    14 Gewichtungseinrichtung
    15
    Rückkopplungs-Digital-Analog-Wandler
    16
    Gewichtungseinrichtung
    17
    Addierer
    18, 19
    Integrator
    20
    Rückkopplungs-Digital-Analog-Wandler
    21
    Operationsverstärker
    22
    Rückkopplungskondensator
    23
    Widerstand
    24
    Rückkopplungswiderstand
    25
    Verstärker
    MS1,
    MS2 Mischersignal
    Z1, Z2, Z3, Z4
    Zwischensignal
    FB1, FB2, FB3, FB4
    Rückkopplungsstromsignal
    QIN
    Quantisierereingangssignal
    AIN
    analoges Empfangssignal
    DOUT
    digitales Ausgangssignal

Claims (11)

  1. Empfängerschaltung (1) zum Empfang eines analogen Empfangssignals (AIN) mit: a) einer Mischereinrichtung (2), welche das analoge Empfangssignal (AIN) mit einer Lokaloszillatorfrequenz (LO) mischt und ein Mischerstromsignal (MS1) ausgibt; b) einer an die Mischereinrichtung (2) gekoppelten ersten Integratoreinrichtung (4), welche das mit einem ersten Rückkopplungsstromsignal (FB1) summierten Mischerstromsignal (MS1) zu einem ersten Zwischensignal (Z1) integriert; c) einer zweiten Integratoreinrichtung (6), welcher der ersten Integratoreinrichtung (4) nachgeschaltet ist, und welche das mit einem zweiten Rückkopplungsstromsignal (FB2) summierte erste Zwischensignal (Z1) zu einem Quantisierereingangssignal (QIN) integriert; d) einer Quantisierereinrichtung (7), welche das Quantisierereingangssignal (QIN) zu einem digitalen Ausgangssignal (DOUT) quantisiert; e) einem ersten Rückkopplungs-Digital-Analog-Wandler (9), welcher das Ausgangssignal (DOUT) in das erste Rückkopplungsstromsignal (FB1) wandelt; und f) einem zweiten Rückkopplungs-Digital-Analog-Wandler (8), welcher das Ausgangssignal (DOUT) in das zweite Rückkopplungsstromsignal (FB2) wandelt, g) wobei die Integratoreinrichtungen (4, 6), die Quantisierereinrichtung (7) und die Rückkopplungs-Digital-Analog-Wandler (8, 9) einen zeitkontinuierlichen Sigma-Delta-Wandler realisieren; h) wobei die Integratoreinrichtungen (4, 6) jeweils aus einem Operationsverstärker (21) und einem Rückkopplungskondensator (22) aufgebaut sind; und i) wobei mindestens eine lokale Resonatorschleife ausgebildet ist, durch die mindestens zwei seriell verschaltete Integratoreinrichtungen (6, 19; 4, 18) über einen Widerstand (24) rückgekoppelt sind.
  2. Empfängerschaltung (100) nach Anspruch 1, dadurch gekennzeichnet, dass mindestens einem Rückkopplungs-Digital-Analog-Wandler (8, 9, 15) eine Gewichtungseinrichtung (13, 14, 16) nachgeschaltet ist, welche das jeweilige Rückkopplungssignal (D1, D2, D3) mit einem Gewichtungsfaktor (c1, c2, cn) gewichtet.
  3. Empfängerschaltung (100) nach Anspruch 2, dadurch gekennzeichnet, dass die Gewichtungsfaktoren (c1, c2, cn) derart eingestellt sind, dass durch die Empfängerschaltung (100) eine vorgegebene Filterung des Empfangssignals (AIN) erfolgt.
  4. Empfängerschaltung (100) nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass weitere Integratoreinrichtungen (18), Rückkopplungs-Digital-Analog-Wandler (15) und/oder Gewichtungseinrichtungen (16) vorgesehen sind, wobei die weiteren Integratoreinrichtungen (15) seriell zwischen der ersten Integratoreinrichtung (4) und der zweiten Integratoreinrichtung (6) geschaltet sind und eine jeweilige weitere Integratoreinrichtung (15) ein mit einem zugeordneten weiteren Rückkopplungsstromsignal (FB3) summiertes Zwischensignal (Z1), welches durch eine der jeweiligen weiteren Integratoreinrichtung (18) vorgeschalteten Integratoreinrichtung (4) erzeugt ist, integriert, wobei das jeweilige weitere Rückkopplungsstromsignal (FB3) von einem zugeordneten weiteren Rückkopplungs-Digital-Analog-Wandler (15) aus dem digitalen Ausgangssignal (DOUT) erzeugt ist.
  5. Empfängerschaltung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens eine Vorwärtskopplungsschleife mit einer Vorwärtskopplungs-Gewichtungseinrichtung (25) vorgesehen ist, wobei die Vorwärtskopplungs-Gewichtungseinrichtung (25) ein Zwischensignal (Z3) einer Integratoreinrichtung (18) gewichtet und das gewichtete Zwischensignal (F1) dem Quantisierereingangssignal (QIN) aufaddiert ist.
  6. Empfängerschaltung (1, 100) nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Quantisierereinrichtung (7) und die Rückkopplungs-Digital-Analog-Wandler (8, 9, 15) als Multibit-Quantisierer und Multibit-Digital-Analog-Wandler ausgeführt sind.
  7. Empfängerschaltung (100) nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Mischereinrichtung (2) ein Vorverstärker (11) vorgeschaltet ist, welcher das analoge Empfangssignal verstärkt.
  8. Empfängerschaltung (100) nach Anspruch 7, dadurch gekennzeichnet, dass dem Vorverstärker (11) ein Empfangsmittel (10) vorgeschaltet ist.
  9. Empfängerschaltung (100) nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens einem der Rückkopplungs-Digital-Analog-Wandler (8, 9, 15) eine Einrichtung zum dynamischen Elementeabgleich (15) vorgeschaltet ist.
  10. Empfängerschaltung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Empfängerschaltung vollständig differenziell ausgeführt ist.
  11. Empfängerschaltung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Quantisierereingangssignal (QIN) vor einer Einkopplung in die Quantisierereinrichtung (7) einer Filtereinrichtung zugeführt ist.
DE102005061813A 2005-12-23 2005-12-23 Empfängerschaltung Expired - Fee Related DE102005061813B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102005061813A DE102005061813B4 (de) 2005-12-23 2005-12-23 Empfängerschaltung
US11/645,002 US7983640B2 (en) 2005-12-23 2006-12-22 Receiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005061813A DE102005061813B4 (de) 2005-12-23 2005-12-23 Empfängerschaltung

Publications (2)

Publication Number Publication Date
DE102005061813A1 DE102005061813A1 (de) 2007-07-05
DE102005061813B4 true DE102005061813B4 (de) 2012-10-11

Family

ID=38135597

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005061813A Expired - Fee Related DE102005061813B4 (de) 2005-12-23 2005-12-23 Empfängerschaltung

Country Status (2)

Country Link
US (1) US7983640B2 (de)
DE (1) DE102005061813B4 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679443B2 (en) * 2006-08-31 2010-03-16 Texas Instruments Incorporated System and method for common mode translation
EP2301156B1 (de) * 2008-07-16 2013-08-14 Signal Processing Devices Sweden AB Einrichtung und verfahren zur blockierungssignalreduktion
WO2010079539A1 (ja) * 2009-01-08 2010-07-15 パナソニック株式会社 積分器回路およびこれを備えたδς変調器
US8422588B2 (en) * 2009-04-01 2013-04-16 Intel Mobile Communications GmbH Variable-size mixer for high gain range transmitter
US8711980B2 (en) * 2010-09-10 2014-04-29 Intel IP Corporation Receiver with feedback continuous-time delta-sigma modulator with current-mode input
DE112012000529B4 (de) * 2011-01-21 2021-10-28 Mediatek Singapore Pte. Ltd. Direkte Rückkopplung für zeitkontinuierliche überabgetastete Wandler
US9001941B2 (en) 2012-01-31 2015-04-07 Analog Devices, Inc. Method and apparatus to independently control front end gain and baseband gain
US9054731B2 (en) * 2013-11-06 2015-06-09 Analog Devices Global Integrator output swing reduction
US9319011B2 (en) 2014-04-21 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Class-D amplifier having mixed signal feedback control
US9160356B1 (en) * 2014-07-17 2015-10-13 Analog Devices Global Analog to digital convertor and a method of calibrating same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831369A1 (de) * 1998-07-13 2000-01-20 Christoph Braun Bandpaß Delta-Sigma Analog/Digital-Wandler
DE10103811A1 (de) * 2001-01-29 2002-08-29 Siemens Ag Sigma-Delta-Modulator zur Digitalisierung von analogen Hochfrequenzsignalen
WO2005027339A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V., Mixer circuit, receiver comprising a mixer circuit, method for generating an output signal by mixing an input signal with an oscillator signal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008765A2 (en) * 1998-08-06 2000-02-17 Steensgaard Madsen Jesper Delta-sigma a/d converter
JP2004518378A (ja) * 2001-01-29 2004-06-17 シーメンス アクチエンゲゼルシヤフト 高周波信号の再現によって発生する遅延時間差の遅延時間調整装置
US6577258B2 (en) * 2001-10-01 2003-06-10 Nokia Corporation Adaptive sigma-delta data converter for mobile terminals
US7057540B2 (en) * 2001-10-26 2006-06-06 Texas Instruments Incorporated Sigma-delta (ΣΔ) analog-to-digital converter (ADC) structure incorporating a direct sampling mixer
US6809672B2 (en) * 2002-03-22 2004-10-26 Broadcom Corporation Low power, high SNR, high order delta sigma modulator stage having integrators with pipelined cross coupled input circuits
US7561635B2 (en) * 2003-08-05 2009-07-14 Stmicroelectronics Nv Variable coder apparatus for resonant power conversion and method
US6980144B1 (en) * 2004-06-03 2005-12-27 Texas Instruments Incorporated Method for reducing DAC resolution in multi-bit sigma delta analog-to digital converter (ADC)
US7860189B2 (en) * 2004-08-19 2010-12-28 Intrinsix Corporation Hybrid heterodyne transmitters and receivers
US7183955B1 (en) * 2005-06-14 2007-02-27 Faraday Technology Corp. Sigma-delta modulator, D/A conversion system and dynamic element matching method
US7482852B1 (en) * 2005-09-21 2009-01-27 Atheros Communications, Inc. Inductor-less local oscillator buffer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831369A1 (de) * 1998-07-13 2000-01-20 Christoph Braun Bandpaß Delta-Sigma Analog/Digital-Wandler
DE10103811A1 (de) * 2001-01-29 2002-08-29 Siemens Ag Sigma-Delta-Modulator zur Digitalisierung von analogen Hochfrequenzsignalen
WO2005027339A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V., Mixer circuit, receiver comprising a mixer circuit, method for generating an output signal by mixing an input signal with an oscillator signal

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BREEMS,L.J. et al.: A 1.8-mW CMOS SigmaDelta Modulator with Integrated Mixer for A/D Conversion of IF Signals. In: IEEE Journal of Soldid-State Circuits, Vol.35, No.4, April 2000, S.468-475 *
BREEMS,L.J. et al.: A 1.8-mW CMOS ΣΔ Modulator with Integrated Mixer for A/D Conversion of IF Signals. In: IEEE Journal of Soldid-State Circuits, Vol.35, No.4, April 2000, S.468-475
CHERRY, J.A., SNELGROVE, W.M.: Continuous-Time Delta-Sigma Modulations for High-Speed A/D Conversion. 1edition, 2printing, Dordrecht, Netherlands: Kluwer Academics, 2002, S. 7-12.-ISBN 0-7923-8625-6 *
CHERRY, J.A., SNELGROVE, W.M.: Continuous-Time Delta-Sigma Modulations for High-Speed A/D Conversion. 1st edition, 2nd printing, Dordrecht, Netherlands: Kluwer Academics, 2002, S. 7-12.-ISBN 0-7923-8625-6
SCHREIER,R., et al.: A flexivle 10-300 MHz Receiver IC employing a Bandpass Sigma-Delta ADC. In: IEEE Radio Frequency Integrated Circuits Symposium, 2001, S.71-74 *
TIETZE, U., SCHENK, Ch.: Halbleiter-Schaltungstechnik. 9. Aufl., Berlin: Springer, 1989, S. 320.-ISBN 3-540-19475-4 *
TIETZE, U., SCHENK, Ch.: Halbleiter-Schaltungstechnik. 9. Aufl., Berlin: Springer, 1989, S. 9-12.-ISBN 3-540-19475-4 *

Also Published As

Publication number Publication date
DE102005061813A1 (de) 2007-07-05
US7983640B2 (en) 2011-07-19
US20070207762A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
DE102005061813B4 (de) Empfängerschaltung
DE60025726T2 (de) Sigma-delta modulator variabler ordnung
DE69818916T2 (de) Verfahren zur Abtastung, Abwärtswandlung, und Digitalisierung eines Bandpass-Signals mit Hilfe eines digitalen Prädiktionscodierers
DE69917431T2 (de) Rundfunkempfänger
DE69927084T2 (de) Sigma-delta Modulator und Modulationsverfahren
DE102010040965B4 (de) Zum Betrieb mit niedriger Zwischenfrequenz oder einer Nullzwischenfrequenz geeigneter Signalprozessor
DE102006004012B3 (de) Zeitkontinuierlicher Delta-Sigma-Analog-Digital-Wandler mit Operationsverstärkern
DE60032116T2 (de) Rundfunkempfänger
DE102006002901B4 (de) Multibit-Sigma-Delta-Wandler
DE102008025367B4 (de) Filter mit kapazitiver Vorwärtskopplung
DE69838216T2 (de) Datenwandler
EP1177634A1 (de) Sigma-delta-analog/digital-wandleranordnung
DE102010036819B4 (de) Gekoppelte Delta-Sigma-Modulatoren
DE602005000134T2 (de) Bandpass-Delta-Sigma Analog-Digital-Wandler
DE10341063A1 (de) Vorwärtsverstärkende Filterschaltung
EP2102987B1 (de) Bandpass sigma-delta-analog/digital-wandler zur wandlung eines zf-signals
DE19722434C1 (de) Vorrichtung zur Digital-Analog-Wandlung mit hoher Linearität
WO2006024317A1 (de) Sigma-delta-analog-digital-wandler für eine xdsl-multistandard-eingangsstufe
DE102005028726B4 (de) Verfahren und Vorrichtung zur Analog-Digital-Wandlung
EP1456956B1 (de) Sigma-delta-wandler mit rauschunterdrückung
WO2003005582A2 (de) Multipliziererschaltung
DE102010036341A1 (de) Delta-Sigma Analog-Digital-Wandler
DE102008064744B3 (de) Empfängeranordnung
DE112019002369T5 (de) Delta-sigma-schleifenfilter mit eingangsvorwärtskopplung
DE60203145T2 (de) Sigma-Delta analog-digital Wandler

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: INTEL DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: INFINEON TECHNOLOGIES AG, 81669 MUENCHEN, DE

Effective date: 20120503

Owner name: INTEL MOBILE COMMUNICATIONS GMBH, DE

Free format text: FORMER OWNER: INFINEON TECHNOLOGIES AG, 81669 MUENCHEN, DE

Effective date: 20120503

R082 Change of representative

Representative=s name: ,

Effective date: 20120503

Representative=s name: ISARPATENT GBR PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120503

Representative=s name: ISARPATENT, DE

Effective date: 20120503

R082 Change of representative

Representative=s name: ,

R082 Change of representative

Representative=s name: ,

R020 Patent grant now final

Effective date: 20130112

R081 Change of applicant/patentee

Owner name: INTEL DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: INTEL MOBILE COMMUNICATIONS GMBH, 85579 NEUBIBERG, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee