DE102005014291A1 - Verfahren zur Herstellung wasserabsorbierender Polymere - Google Patents

Verfahren zur Herstellung wasserabsorbierender Polymere Download PDF

Info

Publication number
DE102005014291A1
DE102005014291A1 DE102005014291A DE102005014291A DE102005014291A1 DE 102005014291 A1 DE102005014291 A1 DE 102005014291A1 DE 102005014291 A DE102005014291 A DE 102005014291A DE 102005014291 A DE102005014291 A DE 102005014291A DE 102005014291 A1 DE102005014291 A1 DE 102005014291A1
Authority
DE
Germany
Prior art keywords
hydrogel
drying
gas
belt
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005014291A
Other languages
English (en)
Inventor
Matthias Weismantel
Stefan Dr. Bruhns
Dominicus Van Esbroeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36581968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102005014291(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to DE102005014291A priority Critical patent/DE102005014291A1/de
Priority to US11/816,769 priority patent/US8592516B2/en
Priority to JP2008502424A priority patent/JP5992134B2/ja
Priority to DE502006008808T priority patent/DE502006008808D1/de
Priority to CN2006800094407A priority patent/CN101146832B/zh
Priority to EP10182068.6A priority patent/EP2298819B1/de
Priority to EP10182067.8A priority patent/EP2305718B1/de
Priority to KR1020077024310A priority patent/KR20070121804A/ko
Priority to AT06725287T priority patent/ATE496945T1/de
Priority to EP06725287A priority patent/EP1863852B1/de
Priority to BRPI0608923A priority patent/BRPI0608923B1/pt
Priority to PCT/EP2006/061010 priority patent/WO2006100300A1/de
Priority to TW095110464A priority patent/TW200640951A/zh
Publication of DE102005014291A1 publication Critical patent/DE102005014291A1/de
Priority to ZA200709067A priority patent/ZA200709067B/xx
Priority to JP2012257965A priority patent/JP6184082B2/ja
Priority to JP2012257964A priority patent/JP6184081B2/ja
Priority to US14/063,129 priority patent/US9238215B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/07Stiffening bandages
    • A61L15/12Stiffening bandages containing macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, wobei DOLLAR A - die Trocknung in mindestens zwei Temperaturzonen durchgeführt wird und/oder DOLLAR A - der Gasstrom das Hydrogel im vorderen Abschnitt eines Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 15 bis 45 Gew.-% stattfindet und/oder DOLLAR A - die Hydrogelschicht in einem Bandtrockner zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 5 bis 30% der Gasgeschwindigkeit beträgt, die notwendig ist, um das Hydrogel vom Band zu lösen, DOLLAR A eine Vorrichtung zur Durchführung des Verfahrens sowie die Verwendung der nach dem Verfahren hergestellten wasserabsorbierenden Polymere zur Herstellung von Hygieneartikeln.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymere mit niedrigem Trocknungsqualitätsindex durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, eine Vorrichtung zur Durchführung des Verfahrens sowie die Verwendung der nach dem Verfahren hergestellten wasserabsorbierenden Polymere zur Herstellung von Hygieneartikeln.
  • Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemäßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.
  • Wasserabsorbierende Polymere sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Solche Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
  • Die Herstellung der wasserabsorbierenden Polymere wird beispielsweise in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, oder in Ulimann's Encyclopedia of Industrial Chemistry, 6. Auflage, Band 35, Seiten 73 bis 103, beschrieben.
  • Üblicherweise wird nach der Polymerisation ein wässriges Polymergel erhalten, das getrocknet werden muss. Die Trocknung des Polymergels wird ebenfalls in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seiten 87 bis 93, offenbart.
  • Den Trocknungsverfahren ist gemein, dass aufgrund der breiten Gelgrößenverteilung des zu trocknenden Polymerguts eine vollständige Trocknung aller Hydrogelpartikel nur unter solchen Bedingungen erfolgt, unter denen der Großteil der Hydrogelpartikel bereits übertrocknet ist. Diese Trocknungsbedingungen stellen aber eine unwirtschaftliche Ausnutzung der Trocknerkapazität dar. Bei einer wirtschaftlich optimierten Ausnutzung der Trocknerkapazität sind die Trocknungsbedingungen jedoch derart, dass der Großteil der Hydrogelpartikel bereits trocken ist, während ein kleinerer Teil der Hydrogelpartikel noch feucht ist. Feuchte Hydrogelpartikel sind gummielastisch und neigen zu Verklebungen, so dass sie zu erheblichen Störungen bei dem sich anschließenden Mahl- und Siebprozess des Trocknungsgutes führen, welche unerwünscht sind. Es besteht daher die Notwendigkeit, die feuchten, gummielastischen Hydrogelteilchen von den spröden, teilweise übertrockneten Hydrogelteilchen vor der Mahlung abzutrennen. In der Praxis werden daher Trocknungsbedingungen gewählt, die einen Kompromiss zwischen Ausnutzung der Trocknerkapazität und Verarbeitbarkeit des Trocknungsgutes darstellen.
  • Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung wasserabsorbierender Polymerpartikel, insbesondere eine verbesserte Trocknung der während des Verfahrens anfallenden wässrigen Polymergele.
  • Das Trocknungsverfahren sollte einerseits wirtschaftlich sein und bereits nach kurzen Verweilzeiten zu einem Produkt mit niedrigem Wassergehalt führen, andererseits sollte das Trocknungsverfahren sehr schonend sein, so dass die Produktqualität durch die Trocknung nur wenig verändert wird.
  • Gelöst wurde die Aufgabe durch Verfahren zur Herstellung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, dadurch gekennzeichnet, dass
    • – die Trocknung in mindestens zwei Temperaturzonen durchgeführt wird, wobei die Gaseingangstemperaturen der mindestens zwei Temperaturzonen die Bedingung Tn ungleich Tn+a erfüllen, wobei die Indizes n und a jeweils eine ganze Zahl größer 0, vorzugsweise eine ganze Zahl von 1 bis 20, besonders bevorzugt eine ganze Zahl von 1 bis 10, ganz besonders bevorzugt eine ganze Zahl von 1 bis 5, bedeuten, und/oder
    • – der Gasstrom das Hydrogel im vorderen Abschnitt eines Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 15 bis 45 Gew.-% stattfindet, und/oder
    • – die Hydrogelschicht in einem Bandtrockner zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 5 bis 30% der Gasgeschwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen,
  • Die Temperatur des erwärmten Gasstroms beträgt vorzugsweise mindestens 50°C, besonders bevorzugt mindestens 100°C, ganz besonders bevorzugt mindestens 150°C, und vorzugsweise bis zu 250°C, besonders bevorzugt bis zu 220°C, ganz besonders bevorzugt bis zu 200°C.
  • Die Indizes geben die zeitliche Abfolge der Temperaturzonen an, die das zu trocknende Gut in aufsteigender Abfolge durchläuft, wobei Temperaturzonen mit höheren Indizes später durchlaufen werden. Eine Temperaturzone ist ein Bereich, in dem die Gaseingangstemperatur unabhängig eingestellt werden kann.
  • Der vordere Abschnitt besteht aus Temperaturzonen mit niedrigeren Indizes, der hintere Abschnitt besteht aus Temperaturzonen mit höheren Indizes. Damit durchläuft das zu trocknende Gut zuerst den vorderen Abschnitt.
  • Der Wassergehalt wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt.
  • Die Gas- bzw. Luftgeschwindigkeit, bei der sich die Hydrogelschicht vom Band ablöst (Wirbelpunkt), kann experimentell bestimmt oder gemäß
    Figure 00030001
    berechnet werden, wobei vmax die maximale Gas- bzw. Luftgeschwindigkeit ist, bei der sich das Hydrogel vom Band ablöst ρB das Schüttgewicht des Hydrogels, g die Gravitationskonstante, Δh der Druckverlust über die Hydrogelschicht und cD der Gas- bzw. Luftwiderstandsbeiwert ist. Am Wirbelpunkt heben sich die auf die Hydrogelschicht wirkende Schwerkraft und der Gas- bzw Luftwiderstand auf. Der Wirbelpunkt markiert die Grenze zwischen Festbett und Wirbelbett. Das Schüttgewicht des Hydrogels ist der Quotient aus Gewicht und Schüttvolumen des Hydrogels auf dem Band. Das Schüttvolumen des Hydrogels schließt neben dem Hydrogel noch die im Hydrogel enthaltenen Hohlräume mit ein.
  • Vorzugsweise erfüllen die mindestens zwei Gaseingangstemperaturen die Bedingung Tn größer Tn+a.
  • Bevorzugt wird die Trocknung in mindestens drei Temperaturzonen durchgeführt, wobei die Gaseingangstemperaturen die Bedingungen Tn ungleich Tn+a, vorzugsweise Tn größer Tn+a, und Tn+a kleiner Tn+b erfüllen, wobei der Index b eine ganze Zahl größer a, vorzugsweise eine ganze Zahl von (a + 1) bis (a + 20), besonders bevorzugt eine ganze Zahl von (a + 1) bis (a + 10), ganz besonders bevorzugt eine ganze Zahl von (a + 1) bis (a + 5), bedeutet, wobei vorzugsweise gilt Tn größer Tn+b.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfüllen die Gaseingangstemperaturen in mindestens zwei der a Temperaturzonen Tn bis Tn+a–1, die Bedingung Tn+r größer Tn+s, wobei der Index a eine ganze Zahl größer 1, der Index r eine ganze Zahl von 0 bis (a – 2) und der Index s eine ganze Zahl von (r + 1) bis (a – 1) bedeuten.
  • In einer weiteren besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfüllen die Gaseingangstemperaturen in mindestens zwei der (c – b) Temperaturzonen Tn+b bis Tn+c–1 die Bedingung Tn+u größer Tn+v, wobei der Index c eine ganze Zahl größer (b + 1), vorzugsweise eine ganze Zahl von (b + 1) bis (b + 20), besonders bevorzugt eine ganze Zahl von (b + 1) bis (b + 10), ganz besonders bevorzugt eine ganze Zahl von (b + 1) bis (b + 5), der Index u eine ganze Zahl von b bis (c – 2) und der Index v eine ganze Zahl von (u + 1) bis (c – 1) bedeuten.
  • In einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfüllen die Gaseingangstemperaturen in mindestens drei der (c – b) Temperaturzonen Tn+b bis Tn+c–1, die Bedingung Tn+u größer Tn+v größer Tn+w, wobei der Index c eine ganze Zahl größer (b + 2), vorzugsweise eine ganze Zahl von (b + 2) bis (b + 20), besonders bevorzugt eine ganze Zahl von (b + 2) bis (b + 10), ganz besonders bevorzugt eine ganze Zahl von (b + 2) bis (b + 5), der Index u eine ganze Zahl von b bis (c – 3), der Index v eine ganze Zahl von (u + 1) bis (c – 2) und der Index w eine ganze Zahl von (v + 1) bis (c – 1) bedeuten.
  • Ganz besonders bevorzugt ist ein Verfahren zur Trocknung von wässrigen Hydrogelen in mindestens sechs Temperaturzonen, wobei a mindestens 2, b mindestens 3 und c mindestens 6 beträgt. Vorzugsweise werden die Gaseingangstemperaturen so eingesellt, dass gilt Tn größer Tn+b, Tn+1, größer Tn+b+1, sowie Tn+1, nicht kleiner Tn+b.
  • Die optimale und damit bevorzugte Temperaturverteilung läßt sich auch als Welle, bestehend aus zwei Wellenbergen und einem Wellental, darstellen. Dabei ist der erste Wellenberg Tn, der zweite Wellenberg Tn+b und das Wellental dazwischen Tn+a, wobei der erste Wellenberg höher ist als der zweite.
  • Der Temperaturdifferenz der Gaseingangstemperaturen beträgt, sofern eine Temperaturdifferenz gefordert, üblicherweise mindesten 0,5°C, vorzugsweise mindestens 1 °C, besonders bevorzugt mindestens 5°C, ganz besonders bevorzugt mindestens 10°C, und üblicherweise bis zu 50°C, vorzugsweise bis zu 40°C, besonders bevorzugt bis zu 30°C, ganz besonders bevorzugt bis zu 20°C.
  • Die Geschwindigkeit des die Hydrogelschicht anströmenden Gasstromes beträgt vorzugsweise mindestens 0,5 m/s, besonders bevorzugt mindestens 0,8 m/s, ganz besonders bevorzugt mindestens 1 m/s, und vorzugsweise bis zu 5 m/s, besonders bevorzugt bis zu 3 m/s, ganz besonders bevorzugt bis zu 2 m/s.
  • Das zu verwendende Gas unterliegt keiner Beschränkung. Zur Trocknung können Luft, Stickstoff oder andere unter den Trockenbedingungen inerte Gase eingesetzt werden. Luft ist bevorzugt.
  • Der das Hydrogel anströmende Gasstrom kann Wasserdampf enthalten. Der Wasserdampfanteil sollte aber einen Wert, der einem Taupunkt von vorzugsweise höchstens 50°C, besonders bevorzugt höchstens 40°C, ganz besonders bevorzugt höchstens 30°C, entspricht, nicht übersteigen.
  • Die Gaseingangstemperaturen Tn bis Tn+a–1, betragen vorzugsweise höchstens 200°C, besonders bevorzugt von 175 bis 180°C.
  • Die Gaseingangstemperaturen Tn+a bis Tn+b–1, betragen vorzugsweise mindestens 150°C, besonders bevorzugt mindestens 155°C, ganz besonders bevorzugt von 155 bis 160°C.
  • Die Gaseingangstemperaturen Tn+b bis Tn+c–1, betragen vorzugsweise höchstens 185°C, besonders bevorzugt höchstens 180°C, ganz besonders bevorzugt von 170 bis 175°C.
  • Die Verweilzeit bei der Trocknung beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und vorzugsweise bis zu 120 Minuten, besonders bevorzugt bis zu 90 Minuten, ganz besonders bevorzugt bis zu 60 Minuten.
  • Die relative Verweilzeit beträgt für die Summe der Verweilzeiten der Temperaturzonen mit den Gaseingangstemperaturen Tn bis Tn+a–1 vorzugsweise mindestens 10%, besonders bevorzugt mindestens 15%, vorzugsweise bis zu 25%, ganz besonders bevorzugt bis zu 20%, ganz besonders bevorzugt 18%, für die Summe der Verweilzeiten der Temperaturzonen mit den Gaseingangstemperaturen Tn+a bis Tn+b–1, vorzugsweise mindestens 5%, besonders bevorzugt mindestens 10%, vorzugsweise bis zu 20%, ganz besonders bevorzugt bis zu 16%, ganz besonders bevorzugt 14%, und für die Summe der Verweilzeiten der Temperaturzonen mit den Gaseingangstemperaturen Tn+b bis Tn+c–1 vorzugsweise mindestens 80%, besonders bevorzugt mindestens 70%, vorzugsweise bis zu 40%, ganz besonders bevorzugt bis zu 60%, ganz besonders bevorzugt 68%, jeweils bezogen auf die Gesamtverweilzeit auf dem Trockner.
  • Die relative Verweilzeit in den a einzelnen Temperaturzonen Tn bis Tn+a–1 wird vorzugsweise so eingestellt, dass die relativen Verweilzeiten gleich sind.
  • Die relative Verweilzeit in den (b – a) einzelnen Temperaturzonen Tn+a bis Tn+b–1 wird vorzugsweise so eingestellt, dass die relativen Verweilzeiten gleich sind.
  • Die relative Verweilzeit in den (c – b) einzelnen Temperaturzonen Tn+b bis Tn+c–1 wird vorzugsweise so eingestellt, dass die relativen Verweilzeiten gleich sind.
  • Wird das zu trocknende Hydrogel im vorderen Abschnitt des Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben von dem Gasstrom angeströmt, so beträgt der Wassergehalt des Hydrogels bei der Strömungsumkehr vorzugsweise mindestens 20 Gew.-%, bevorzugt mindestens 24 Gew.-%, besonders bevorzugt mindestens 26 Gew.-%, ganz besonders bevorzugt mindestens 28 Gew.-%, und vorzugsweise höchstens 40 Gew.-%, bevorzugt höchstens 34 Gew.-%, besonders bevorzugt höchstens 32 Gew.-%, ganz besonders bevorzugt höchstens 30 Gew.-%. Die Trocknung wird vorzugsweise so betrieben, dass die Strömungsumkehr zwischen den Temperaturzonen Tn+b–1 und Tn+b eintritt.
  • Vorzugsweise ist die Gasgeschwindigkeit nach der Strömungsumkehr erhöht, vorzugsweise um mindestens 10%, besonders bevorzugt um mindestens 30%, ganz besonders um mindestens 40%, und vorzugsweise um bis zu 100%, besonders bevorzugt um bis zu 80%, ganz besoders um bis zu 60%.
  • Wird der Bandtrockner zumindest teilweise von unten angeströmt, so beträgt die Gasgeschwindigkeit vorzugsweise mindestens 5%, besonders bevorzugt mindestens 8%, ganz besonders bevorzugt mindestens 10%, und vorzugsweise bis zu 30%, besonders bevorzugt bis zu 25%, ganz besonders bevorzugt bis zu 20%, der Gasgeschwindigkeit, die notwendig ist um das Hydrogel vom Band zu lösen.
  • Der Wassergehalt des zu trocknenden Polymergels beträgt vorzugsweise mindestens 30 Gew.-%, besonders bevorzugt mindestens 40 Gew.-%, ganz besonders bevorzugt mindestens 50 Gew.-%, und vorzugsweise bis zu 70 Gew-%, besonders bevorzugt bis zu 65 Gew.-%, ganz besonders bevorzugt bis zu 60 Gew.-%.
  • Der Wassergehalt des getrockneten Polymergels beträgt vorzugsweise mindestens 2 Gew.-%, besonders bevorzugt mindestens 3 Gew.-%, ganz besonders bevorzugt mindestens 5 Gew.-%, und vorzugsweise bis zu 10 Gew.-%, besonders bevorzugt bis zu 9 Gew.-%, ganz besonders bevorzugt bis zu 8 Gew.-%.
  • Die Trocknung wird vorzugsweise bei einem Druck durchgeführt, der gegenüber dem Atmosphärendruck vermindert ist, vorzugsweise um mindestens 0,5 mbar, besonders bevorzugt um mindestens 2 mbar, ganz besonders bevorzugt um mindestens 10 mbar.
  • Das für die vorliegende Erfindung bevorzugte Verfahren ist ein Förderbandverfahren (Bandtrockner). Der Bandtrockner ist ein konvektives Trocknungssystem für die besonders schonende Behandlung von durchlüftbaren Produkten. Das zu trocknende Produkt wird auf ein endloses, gasdurchlässiges Förderband gegeben und mittels eines erwärmten Gasstromes, vorzugsweise Luft, angeströmt.
  • Das Trocknungsgas wird im Kreis geführt, um beim mehrfachen Durchgang durch die Produktschicht eine möglichst hohe Aufsättigung zu erfahren. Ein gewisser Anteil des Trockengases, vorzugsweise mindestens 10%, besonders bevorzugt mindestens 15%, ganz besonders bevorzugt mindestens 20%, und vorzugsweise bis zu 50%, besonders bevorzugt bis zu 40%, ganz besonders bevorzugt bis zu 30%, der Gasmenge pro Durchgang, verlässt den Trockner als hoch aufgesättigter Brüden und führt die aus dem Produkt verdampfte Wassermenge ab.
  • Die Größe und Ausführung der Trockner richtet sich nach dem zu verarbeitenden Produkt, der Produktionskapazität und der Trocknungsaufgabe.
  • Der Bandtrockner kann als Einband-, Mehrband-, Mehrstufen-, oder Mehretagensystem ausgestattet werden. Bevorzugt ist für die vorliegende Erfindung der Betrieb eines Bandtrockners mit mindestens einem Band. Ganz besonders bevorzugt sind Einbandtrockner. Um die Bandtrocknung verfahrenstechnisch optimal durchzuführen, werden die Trocknungseigenschaften der wasserabsorbierenden Polymere in Abhängigkeit von den gewählten Prozessparametern individuell ermittelt. Die Lochgröße und Maschenweite des Bandes wird dem Produkt angepaßt. Auch bestimmte Oberflächenveredelungen, wie Elektropolieren oder Teflonisieren, sind möglich.
  • Zur optimalen Produktförderung können alle, dem Fachmann bekannten kettengeführten und kettenlosen Bandsysteme eingesetzt werden, wie beispielsweise Plattenbänder, Dünnblech- und Endlosplattenbänder, Kunststoff- und Metallgewebebänder.
  • Zur wirtschaftlichen Trocknung der wasserabsorbierenden Polymere wird die Gasführung im Trockner konsequent auf einen energieeffizienten Betrieb ausgelegt. Es sind verschiedene Gasführungskonzepte möglich, die Vorteile hinsichtlich Trocknungsverhalten und Energieausnutzung aufweisen. Energierückgewinnungssysteme können eingesetzt werden, um Wärme aus dem Abgasstrom zur Vorwärmung des zugeführten Frischgases zu nutzen.
  • Die Gasführung kann nach folgenden Konzepte erfolgen: im Kreuzstrom von oben/von unten, alternierend, Kreuzgegenstrom oder aber im Kreuzgleichstrom. Die Gasführung im Kreuzgegenstrom ist bevorzugt.
  • Die Beheizung des Trockners kann direkt oder indirekt über die verschiedenen Heizmedien wie Dampf, Warmwasser, Rauchgase, Thermalöl oder Gas erfolgen.
  • Der Einbandtrockner zeichnet sich durch eine nur geringe Bauhöhe aus. Er wird eingesetzt zur schonenden Trocknung und wenn Umschüttungen nicht möglich oder erwünscht sind.
  • Bei geringem Platzangebot und sehr langen Trocknungszeiten bietet sich häufig das Konzept eines Mehrbandtrockners an. Das Produkt wird gleichmäßig auf das oberste Band verteilt und nacheinander an mehrere darunterliegende Bänder weitergegeben. Es ergibt sich der Vorteil, dass das Produkt beim Übergang und Fallen auf die nächste Ebene mehrfach gewendet und homogenisiert wird. Die Umschüttung des Produktes bei der Übergabe von einem auf das nächste Band führt zur Auflösung von Agglomeraten und Schaffung neuer freier Oberflächen für den Wärme- und Stoffübergang.
  • Mehretagentrockner weisen ähnliche Merkmale wie Mehrbandtrockner auf, allerdings sind die einzelnen Sektionen unabhängig voneinander steuerbar wie bei Einbandtrocknern. Der Mehrstufentrockner besteht aus mehreren hintereinander geschalteten Einbandtrocknern.
  • Eine wesentliche Voraussetzung zur optimalen Trocknung ist die gleichmäßige Produktaufgabe. Diese kann gestaltet werden durch den Einsatz von schwenkbaren und oszillierenden Verteilbändern, Schwingrinnen oder Schnecken, Vibrationsrinnen oder Schwingförderern.
  • Das zu trocknende Hydrogel wird vorzugsweise mittels eines Schwenkbandes auf das Band des Bandtrockners aufgebracht. Die Aufgabehöhe, d.h., der vertikale Abstand zwischen Schwenkband und Band, beträgt vorzugsweise mindeste 10 cm, besonders bevorzugt mindestes 20 cm, ganz besonders bevorzugt mindestens 30 cm, vorzugsweise bis zu 200 cm, besonders bevorzugt bis zu 120 cm, ganz besonders bevorzugt bis zu 40 cm.
  • Die Schichtdicke des zu trocknende Hydrogels auf dem Bandtrockner beträgt vorzugsweise mindestens 2 cm, besonders bevorzugt mindestens 5 cm, ganz besonders bevorzugt mindestens 8 cm, und vorzugsweise höchstens 20 cm, besonders bevorzugt höchstens 15 cm, ganz besonders bevorzugt höchstens 12 cm.
  • Die Bandgeschwindigkeit des Bandtrockners beträgt vorzugsweise mindestens 0,005 m/s, besonders bevorzugt mindestens 0,01 m/s, ganz besonders bevorzugt mindestens 0,015 m/s, und vorzugsweise bis zu 0,05 m/s, besonders bevorzugt bis zu 0,03 m/s, ganz besonders bevorzugt bis zu 0,025 m/s.
  • Die Trocknung nach dem Förderband-Verfahren (Bandtrocknung), bei der mit Löcher versehene Horden eines Kreisförderers in einem Tunnel in der oben angegebenen Weise mit Trocknungsgut beladen und das Trocknungsgut während der Förderung durch Durchblasen von Gas/Luft/Gemisch in der oben angegebenen Weise durch die Hordenlöcher getrocknet wird, stellt das wirtschaftlichste Trocknungsverfahren für wasserabsorbierende Polymere dar und ist daher bevorzugt. Die Trocknungsgeschwindigkeit des Trocknungsguts wird bestimmt durch die Verdampfungsleistung, die angibt, wieviel kg Wasser aus dem zu trocknenden Produkt pro Quadratmeter Bandfläche pro Stunde herausgetrocknet werden. Diese Verdampfungsleistung sollte aus wirtschaftlichen Gründen möglichst hoch sein.
  • Die nach dem erfindungsgemäßen Verfahren zu trocknende Hydrogelstruktur, die gegebenenfalls mit zusätzlichen Reaktanden und/oder wasserabsorbierende Polymerpartikel, die als Unterkorn bei den Klassierschritten abgetrennt wurden, vermischt ist, weist aufgrund ihrer lockeren Anordnung bereits zerteilter Gelkörper eine relativ große Geloberfläche und somit für die Bandtrocknung eine wirtschaftlich vorteilhafte Trocknungsgeschwindigkeit auf. In einer besonders bevorzugten Verfahrensvariante kann die Trocknungsgeschwindigkeit durch Aufgabe eines Trennmittels auf die Hydrogelteilchen noch weiter gesteigert werden. Das Aufbringen der Trennmittel erfolgt hierbei ohne mechanische Belastung der Hydrogelpartikel durch Aufsprühen in dafür geeigneten Geräten, wie beispielsweise Drehrohr, Drais-Mischer, Pflugscharmischern, wie Lödige-Mischer, Peterson-Keily-Mischer, Kegel-Schnecken-Mischern.
  • Als Trennmittel eignen sich nichtionische, ionische oder amphotere Tenside mit einem HLB-Wert größer gleich 3 (Definition des HLB-Wertes: siehe W.C. Griffin, J.Soc.Cosmetic Chem. 5 (1954) 249). Bevorzugt sind solche Tenside, die in Wasser löslich oder zumindest dispergierbar sind. Der Einsatz von Tensiden zur Verbesserung der Trocknungseigenschaften von Hydrogelpartikeln bei der Trocknung mit Hilfe von Kontakttrocknern ist bekannt und ausführlich in EP-A-0 785 224 beschrieben. Beispiele zu den als Trennmittel fungierenden Tensiden sind der EP-A-0 785 223 auf Seite 3, Zeile 27, bis Seite 4, Zeile 38, zu entnehmen. Weitere geeignete Trennmittel sind Silicone, ungesättigte Alkohole oder Polyglykole und ihre Derivate. Beispiele der angegebenen Verbindungsklassen sind der DE-A-198 46 413 auf Seite 6, Zeilen 21 bis 42. zu entnehmen.
  • Bei der im Laufe der Trocknung bewirkten Zerkleinerung von verhältnismäßig großen Stücken zu anschließend feinen Teilchen ist es bevorzugt, die Temperatur des Polymergels bei fortschreitender Trockung so niedrig wie möglich zu halten, um den Wirkungsgrad zu erhöhen und zu verhindern, dass die Stücke oder feinen Teilchen aneinander kleben. Dies kann beispielsweise erreicht werden durch ausreichende Kühlung des gebildeten Polymergels mit anströmender Kaltluft bzw. Umgebungsluft, wobei es durch die Verdampfungskälte zur automatischen Abkühlung des Polymerguts kommt. Das Polymergel wird auf diese Weise beispielsweise durch Strömungstrocknen auf einem Band getrocknet.
  • Nach dem erfindungsgemäßen Verfahren ist es möglich wässrige Polymergele zu trocken, so dass der Trocknungsqualitätsindex (TQI) üblicherweise höchstens 8, vorzugsweise höchstens 6, bevorzugt höchstens 4, besonders bevorzugt höchstens 2, ganz besonders bevorzugt höchstens 1, und üblicherweise mindestens 0,01 beträgt.
  • Besonders vorteilhaft ist das erfindungsgemäße Verfahren, wenn bei der Herstellung der wässrigen Polymergele zumindest teilweise Vernetzer eingesetzt werden, die mindestens zwei ethylenisch ungesättigte Gruppen enthalten und bei denen mindestens zwei ethylenisch ungesättigte Gruppen über mindestens eine Estergruppen miteinander verbunden sind, beispielsweise Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldiacrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester und Polyallylester.
  • Die wässrigen Polymergele werden durch Polymerisation einer Monomerlösung, enthaltend
    • a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer,
    • b) mindestens einen Vernetzer,
    • c) gegebenenfalls ein oder mehrere mit dem Monomeren a) copolymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und
    • d) gegebenenfalls ein oder mehrere wasserlösliche Polymere, auf die die Monomere a), b) und ggf. c) zumindest teilweise aufgepfropft werden können,
    erhalten.
  • Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, oder deren Derivate, wie Acrylamid, Methacrylamid, Acrylsäureester und Methacrylsäureester. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
  • Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu 0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder Tocopherole.
  • Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
    Figure 00100001
    wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeutet.
  • Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricarbonsäuren sein.
  • Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
  • Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
  • Die Vernetzer b) sind Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A-0 530 438 beschrieben, Di- und Triacrylate, wie in EP-A-0 547 847, EP-A-0 559 476, EP-A-0 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 und DE-A-103 31 450 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE-A-103 31 456 und der älteren deutschen Anmeldung mit dem Aktenzeichen 10355401.7 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE-A-195 43 368, DE-A-196 46 484, WO-A-90/15830 und WO-A-02/32962 beschrieben.
  • Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N,N'-Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldiacrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vinylphosphonsäurederivate, wie sie beispielsweise in EP-A-0 343 427 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi- Pentaerythritoltri- und Pentaerythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerindi- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylier te Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Polyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 300 und 1000 aufweist.
  • Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 15-fach ethoxylierten Glyzerins, des 3- bis 15-fach ethoxylierten Trimethylolpropans, des 3- bis 15-fach ethoxylierten Trimethylolethans, inbesondere Di- und Triacrylate des 2- bis 6-fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
  • Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierfen Glyzerine wie sie beispielsweise in WO-A-03/104301 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3-bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischerweise unter 10 Gew.-ppm) im wasseraborbierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränderte Oberflächenspannung (typischerweise mindestens 0,068 N/m) im Vergleich zu Wasser gleicher Temperatur auf.
  • Mit den Monomeren a) copolymerisierbare ethylenisch ungesättigte Monomere c) sind beispielsweise Acrylamid, Methacrylamid, Crotonsäureamid, Dimethylaminoethylmethacrylat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminobutylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat, Dimethylaminoneopentylacrylat und Dimethylaminoneopentylmethacrylat.
  • Als wasserlösliche Polymere d) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, Polyglykole oder Polyacrylsäuren, vorzugsweise Polyvinylalkohol und Stärke, eingesetzt werden.
  • Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher können die Polymerisationsinhibitoren vor der Polymerisation durch Inertisierung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
  • Die Herstellung eines geeigneten Grundpolymers sowie weitere geeignete hydrophile ethylenisch ungesättigte Monomere d) werden in DE-A-199 41 423, EP-A-0 686 650, WO-A-01/45758 und WO-A-03/104300 beschrieben.
  • Wasserabsorbierende Polymere werden üblicherweise durch Polymerisation einer wässrigen Monomerlösung und gegebenenfalls einer anschließenden Zerkleinerung des Hydrogels erhalten. Geeignete Herstellverfahren sind in der Literatur beschrieben. Wasserabsorbierende Polymere können beispielsweise erhalten werden durch
    • – Gelpolymerisation im Batchverfahren bzw. Rohrreaktor und anschließender Zerkleinerung im Fleischwolf, Extruder oder Kneter (EP-A-0 445 619, DE-A-19 846 413)
    • – Polymerisation im Kneter, wobei durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert wird, (WO-A-01/38402)
    • – Polymerisation auf dem Band und anschließende Zerkleinerung im Fleischwolf, Extruder oder Kneter (DE-A-38 25 366, US-6,241,928)
    • – Emulsionspolymerisation, wobei bereits Perlpolymerisate relativ enger Gelgrößenverteilung anfallen (EP-A-0 457 660)
    • – In-situ Polymerisation einer Gewebeschicht, die zumeist im kontinuierlichen Betrieb zuvor mit wässriger Monomerlösung besprüht und anschließend einer Photopolymerisation unterworfen wurde (WO-A-02/94328, WO-A-02/94329)
  • Die Umsetzung wird vorzugsweise in einem Kneter, wie beispielsweise in WO-A-01/38402 beschrieben, oder auf einem Bandreaktor, wie beispielsweise in EP-A-0 955 086 beschrieben, durchgeführt.
  • Die Säuregruppen der erhaltenen Hydrogele sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 85 mol-%, bevorzugt zu 27 bis 80 mol-%, besonders bevorzugt zu 27 bis 30 mol-% oder 40 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium als Alkalimetalle besonders bevorzugt sind, ganz besonders bevorzugt jedoch Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevorzugt auch als Feststoff erreicht. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23°C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
  • Die Neutralisation kann nach der Polymerisation auf der Stufe des Hydrogels durchgeführt werden. Es ist aber auch möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Hydrogels eingestellt wird. Die Monomerlösung kann durch Einmischen des Neutralisationsmittels neutralisiert werden. Das Hydrogel kann mechanisch zerkleinert werden, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden. Die Neutralisation der Monomerlösung auf den Endneutralisationsgrad ist bevorzugt.
  • Anschließend werden die erhaltenen wässrigen Hydrogele gemäß den oben beschriebenen erfindungsgemäßen Verfahren getrocknet.
  • Auf die weitere Behandlung des getrockneten Hydrogels kommt es bei dem erfindungsgemäßen Verfahren nicht an. Das erfindungsgemäße Verfahren kann beispielsweise noch die Schritte Mahlung, Siebung und/oder Nachvernetzung umfassen.
  • Das getrocknete Hydrogel wird vorzugsweise gemahlen und gesiebt, wobei zur Mahlung üblicherweise Walzenstühle, Stiftmühlen oder Schwingmühlen eingesetzt werden können. Die Partikelgröße des gesiebten, trockenen Hydrogels beträgt vorzugsweise unter 1000 μm, besonders bevorzugt unter 900 µm, ganz besonders bevorzugt unter 800 µm, und vorzugsweise über 100 µm, besonders bevorzugt über 150 µm, ganz besonders bevorzugt über 200 µm.
  • Ganz besonders bevorzugt ist eine Partikelgröße (Siebschnitt) von 106 bis 850 µm. Die Partikelgröße wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Particle size distribution" bestimmt.
  • Die Grundpolymere werden vorzugsweise anschließend oberflächennachvernetzt. Hierzu geeignete Nachvernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polyaziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in EP-A-0 083 022, EP-A-543 303 und EP-A-937 736 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE-C-33 14 019, DE-C-35 23 617 und EP-A-450 922 beschrieben, oder β-Hydroxyalkylamide, wie in DE-A-102 04 938 und US-6,239,230 beschrieben.
  • Des weiteren sind in DE-A-40 20 780 zyklische Karbonate, in DE-A-198 07 502 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE-A-198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A-198 54 573 2-Oxotetrahydro-1,3-oxazin und dessen Derivate, in DE-A-198 54 574 N-Acyl-2-Oxazolidone, in DE-A-102 04 937 zyklische Harnstoffe, in DE-A-103 34 584 bizyklische Amidacetale, in EP-A-1 199 327 Oxetane und zyklische Harnstoffe und in WO-A-03/031482 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben.
  • Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf das Hydrogel oder das trockene Grundpolymerpulver aufgesprüht wird. Im Anschluss an das Aufsprühen wird das Polymerpulver thermisch getrocknet, wobei die Vernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
  • Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schaufelmischer. Geeignete Mischer sind beispielsweise Lödige®-Mischer, Bepex®-Mischer, Nauta®-Mischer, Processall®-Mischer und Schugi®-Mischer.
  • Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex®-Trockner und Nara®-Trockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
  • Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Es kann aber auch beispielsweise eine azeotrope Destillation als Trocknungsverfahren benutzt werden.
  • Bevorzugte Trocknungstemperaturen liegen im Bereich 50 bis 250°C, bevorzugt bei 50 bis 200°C, und besonders bevorzugt bei 50 bis 150°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 30 Minuten, besonders bevorzugt unter 10 Minuten.
  • Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserabsorbierende Polymere, die nach dem oben beschriebenen Verfahren erhältlich sind.
  • Die erfindungsgemäßen wasserabsorbierenden Polymere weisen typischerweise eine Zentrifugenretentionskapazität (CRC) von mindestens 10 g/g, vorzugsweise mindes tens 15 g/g, besonders bevorzugt mindestens 20 g/g, und üblicherweise von weniger als 100 g/g auf. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der E-DANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
  • Die erfindungsgemäßen wasserabsorbierenden Polymere weisen typischerweise eine Absorption unter Druck 0,3 psi (2,07 kPa) von mindestens 10 g/g, vorzugsweise mindestens 15 g/g, besonders bevorzugt mindestens 20 g/g, und üblicherweise von weniger als 60 g/g auf. Die Absorption unter Druck (AUL) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 442.2-02 "Absorption under pressure" bestimmt.
  • Ein weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung von Hygieneartikeln, insbesondere Windeln, umfassend die Verwendung gemäß obengenannten Verfahrens hergestellter wasserabsorbierender Polymerpartikel.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Vorrichtung zum Trocknen wasserabsorbierender Polymere, umfassend
    • i) mindestens ein gasdurchlässiges Förderband,
    • ii) wobei mindestens ein Förderband i) über eine Vorrichtung verfügt, die es ermöglicht dem mindestens einen Förderband i) mindestens zwei Gasströme unterschiedlicher Temperatur zuzuführen,
    • iii) mindestens einen Gasvorwärmer,
    • iv) mindestens eine Gaszufuhr die von oben auf das Förderband i) gerichtet ist,
    • v) gegebenenfalls mindestens eine Gaszufuhr die von unten auf das Förderband i) gerichtet ist, wobei das Förderband i) zuerst von unten angeströmt werden kann, und
    • vi) gegebenenfalls mindestens eine Vorrichtung zur Druckminderung,
  • Die Vorrichtung ii) kann beispielsweise aus mindestens zwei unabhängigen Gasvorwärmern bestehen oder aus eine Gasvorwärmer, wobei der erwärmte Gasstrom geteilt und die Temperaturen der Teilströme durch Zumischen von Abgas oder Frischgas unabhängig voneinander einstellbar sind.
  • Das vorliegende Verfahren ermöglicht es, auf einfache Weise wasserabsorbierende Polymere herzustellen, die sich durch ein hervorragendes Absorptionsprofil auszeichnen. Durch das erfindungsgemäße Verfahren wird das bei der Polymerisation anfallende wässrige Polymergel schonend und wirtschaftlich getrocknet. Die Produkteigenschaften werden durch die erfindungsgemäße Trocknung nur wenig beeinflusst. Die auf diese Weise erhaltenen wasserabsorbierenden Polymere können weitestgehend eingesetzt werden in Gebieten, in denen es darum geht, wässrige Flüssigkeiten zu absorbieren und zurückzuhalten. Bevorzugte Einsatzgebiete sind neben dem Hygienesektor vor allem der Agrarsektor sowie weitere industrielle Anwendungsgebiete.
  • Zur Bestimmung der Güte der Nachvernetzung werden die getrocknete wasserabsorbierenden Polymerpartikel mit den nachfolgend beschrieben Testmethoden geprüft.
  • Methoden:
  • Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymere werden vor der Messung gut durchmischt.
  • Zentrifugenretentionskapazität (CRC Centrifuge Retention Capacity)
  • Die Zentrifugenretentionskapazität der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
  • Extrahierbare
  • Der Anteil an Extrahierbaren in den wasserabsorbierenden Polymerpartikeln wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 470.2-02 "Extractables" bestimmt.
  • Feuchtegehalt:
  • Der Feuchtegehalt wird gemäß der in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seiten 143 und 144, beschriebenen Methode bestimmt. Dazu wird 1g Hydrogelprobe in einer LC-Säule unter Heliumathmosphäre 1 Stunde bei 180°C getrocknet und der Feuchtgehalt über den Gewichtsverlust ermittelt.
  • Trocknungsqualitätsindex (TQI)
  • Zur Bestimmung des Trocknungsqualitätsindex wird von dem zerkleinerten wässrigen Polymergel nach der Polymerisation eine Probe entnommen, auf Blechen mit Siebböden homogen in dünner Schicht verteilt und dann 24 h bei 80°C im Vakuum bei weniger als 100 mbar getrocknet. Diese Trocknung ist sehr produktschonend. Anschließend wird das getrocknete Hydrogel gemahlen und die Siebfraktion von 300 bis 600 µm isoliert (Polymer 1).
  • Eine nach dem zu untersuchenden Trockenverfahren getrocknete Hydrogelprobe wird ebenfalls gemahlen. Anschließend wird die Siebfraktion von 300 bis 600 µm isoliert (Polymer 2).
  • Die getrockneten wasserabsorbierenden Polymere werden durch Bestimmung der Zentrifugenretentionskapazität (CRC) sowie des Gehalts an Extrahierbaren charakterisiert. Zusätzlich wird der Feuchtegehalt bestimmt und rechnerisch bei der Ermittlung dieser Eigenschaften berücksichtigt. Typischerweise liegt der Feuchtegehalt bei ca. 5 Gew.-%.
  • Aus den Messwerten bestimmt man dann den Trocknungsqualitätsindex (TQI), der sich wie folgt berechnet: TQI = 0,5 × (CRC2[g/g] – CRC1[g/g]) + 0,5 × (Extrahierbare2[%] – Extrahierbare1[%])
  • Die tiefgestellten Indizes bezeichnen hier die Polymere 1 bzw. 2. Der Trocknungsqualitätsindex ist also umso größer, je mehr durch die Betriebstrocknung die Zentrifugenretentionskapazität ansteigt und je mehr der Anteil der Extrahierbaren dabei ansteigt. Beide Beiträge werden gleich gewichtet. Die Höhe des Trocknungsqualitätsindex gibt an, wie stark die Eigenschaften des wasserabsorbierenden Polymeren durch die Trocknungsbedingungen des wässrigen Polymergels verändert werden. Ein niediger Trocknungsqualitätsindex bedeutet hierbei eine schonende Trocknung.
  • Die EDANA-Testmethoden sind beispielsweise erhältlich bei der European Disposables and Nonwovens Association, Avenue Eugène Plasky 157, B-1030 Brüssel, Belgien.
  • Herstellung des Polymergels
  • Durch kontinuierliches Mischen von Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wurde eine 38,8 gew.-%ige Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 71,3 mol-% betrug. Der Feststoffgehalt der Monomerlösung betrug 38,8 Gew.-%. Die Monomerlösung wurde nach dem Mischen der Komponenten durch einen Wärmetauscher kontinuierlich auf eine Temperatur von 29°C abgekühlt und mit Stickstoff entgast.
  • Als mehrfach ethylenisch ungesättigter Vernetzer wird Polyethylenglykol-400-diacrylat (Diacrylat eines Polyethylenglykols mit einem mittleren Molgewicht von 400 g/mol) verwendet. Die Einsatzmenge betrug 2 kg pro t Monomerlösung.
  • Zur Initiierung der radikalischen Polymerisation wurden folgende Komponenten eingesetzt: Wasserstoffperoxid (1,03 kg (0,25 gew.-%ig) pro t Monomerlösung), Natriumperoxodisulfat (3,10 kg (15 gew.-%ig) pro t Monomerlösung), sowie Ascorbinsäure (1,05 kg (1 gew.-%ig) pro t Monomerlösung).
  • Der Durchsatz der Monomerlösung betrug 18 t/h.
  • Die einzelnen Komponenten werden kontinuierlich in einen Reaktor List Contikneter mit 6.3m3 Volumen (Fa. List, Arisdorf, Schweiz) in folgenden Mengen eindosiert:
  • 18 t/h Monomerlösung
    36 kg/h Polyethylenglycol-400-diacrylat
    74,34 kg/h Wasserstoffperoxidlösung/Natriumperoxodisulfat-Lösung
    18,9 kg/h Ascorbinsäurelösung
  • Am Ende des Reaktors wurden zusätzlich 750 bis 900 kg/h abgetrenntes Unterkorn mit einer Partikelgröße kleiner 150 µm zudosiert.
  • Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5°C. Der Reaktor wurde mit einer Drehzahl der Wellen von 38rpm betrieben. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten.
  • Im erhaltenen Produktgel wurde analytisch ein Restacrylsäuregehalt von 0,6 Gew.-% (bezogen auf Feststoffgehalt) und ein Feststoffgehalt von 45,0 Gew.-% gefunden. Eventuell vorhandene Gelpartikel mit einem Durchmesser von 50 mm oder mehr wurden abgetrennt.
  • Beispiele 1 bis 4
  • Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Insgesamt wurden 18,3 t/h wässriges Polymergel mit einem Wassergehalt von 55 Gew.-% getrocknet. Das Gel wurde aus einer Höhe von 30 cm mittels eines Schwenkbandes auf das Förderband des Trockners aufgebracht. Die Höhe der Gelschicht betrug ca. 10 cm.
  • Die Bandgeschwindigkeit des Trocknerbandes betrug 0,02 m/s und die Verweilzeit auf dem Trocknerband betrug ca. 37 Minuten.
  • Der Bandtrockner war in insgesamt sechs Temperaturzonen unterteilt, in denen die Gaseingangstemperaturen unabhängig voneinander eingestellt werden konnten. Die Verweilzeit in den Temperaturzonen T1 bis T6 betrug (n = 1; a = 2; b = 3, c = 6):
    Figure 00200001
  • In den Temperaturzonen T1 bis T3 wurde das Band von unten mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1,2 m/s.
  • In den Temperaturzonen T4 bis T6 wurde das Band von oben mit Luft angströmt. Die Luftgeschwindigkeit betrug 1,8 m/s.
  • Die Gaseingangstemperaturen der einzelnen Temperaturzonen sind in der Tabelle 1 und die Messergebnisse sind in der Tabelle 2 zusammengefasst.
  • Tab. 1: Gaseingangstemperaturen
    Figure 00200002
  • Tab. 2: Messergebnisse
    Figure 00200003
  • Beispiele 5 bis 7
  • Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Insgesamt wurden 18,3 t/h wässriges Polymergel mit einem Wassergehalt von 55 Gew.-% getrocknet. Das Gel wurde aus einer Höhe von 30 cm mittels eines Schwenkbandes auf das Förderband des Trockners aufgebracht. Die Höhe der Gelschicht betrug ca. 10 cm.
  • Die Bandgeschwindigkeit des Trocknerbandes betrug 0,02 m/s und die Verweilzeit auf dem Trocknerband betrug ca. 37 Minuten.
  • Der Bandtrockner war in insgesamt sechs Temperaturzonen unterteilt, in denen die Gaseingangstemperaturen unabhängig voneinander eingestellt werden konnten. Die Verweilzeit in den Temperaturzonen T1 bis T6 betrug (n = 1; a = 2; b = 3, c = 6):
    Figure 00210001
  • Das Förderband konnte in jeder Temperaturzone unabhängig voneinander wahlweise von unten oder von oben angeströmt werden. Der Wassergehalt die der Luftumkehr wurde über die Verweilzeit eingestellt. Dazu wurde die Anzahl der von unten bzw. oben angeströmten Temperaturzonen entsprechend variiert.
  • In den vorderen Temperaturzonen wurde das Band von unten mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1,2 m/s.
  • In den hinteren Temperaturzone wurde das Band von oben mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1,8 m/s.
  • Die eingestellten Parameter sind in der Tabelle 3 und die Messergebnisse sind in der Tabelle 4 zusammengefasst.
  • Tab. 3: Luftgeschwindigkeiten, relative Verweilzeiten und Wassergehalte bei der Strömungsumkehr
    Figure 00210002
  • Tab. 4: Messergebnisse
    Figure 00220001
  • Beispiele 8 bis 10
  • Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. insgesamt wurden 18,3 t/h wässriges Polymergel mit einem Wassergehalt von 55 Gew.-% getrocknet. Das Gel wurde aus einer Höhe von 30 cm mittels eines Schwenkbandes auf das Förderband des Trockners aufgebracht. Die Höhe der Gelschicht betrug ca. 10 cm.
  • Die für die Trocknung wirksame Förderbandlänge betrug 44 m.
  • Der Bandtrockner war in insgesamt sechs Temperaturzonen unterteilt, in denen die Gaseingangstemperaturen unabhängig voneinander eingestellt werden konnten. Die Verweilzeit in den Temperaturzonen T1 bis T6 betrug (n = 1; a = 2; b = 3, c = 6):
    Figure 00220002
  • Die Verweilzeit im Bandtrockner wurde über die Bandgeschwindigkeit eingestellt. Die Gasgeschwindigkeit, bei der sich die Hydrogelschicht vom Band ablöst (Wirbelpunkt), betrug 11 m/s.
  • In den Temperaturzonen T1 bis T3 wurde das Band von unten mit Luft angeströmt.
  • In den Temperaturzonen T4 bis T6 wurde das Band von oben mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1,8 m/s.
  • Die eingestellten Parameter sind in der Tabelle 5 und die Messergebnisse sind in der Tabelle 6 zusammengefasst. Tab. 5: Luftgeschwindigkeiten, relative Verweilzeiten und Wassergehalte bei der Strömungsumkehr
    Figure 00230001
    Tab. 6: Messergebnisse
    Figure 00230002
    • *) Rissbildung in Gelschicht

Claims (25)

  1. Verfahren zur Herstellung wasserabsorbierender Polymere mit niedrigem Trocknungsqualitätsindex durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, dadurch gekennzeichnet, dass – die Trocknung in mindestens zwei Temperaturzonen durchgeführt wird, wobei die Gaseingangstemperaturen die Bedingung Tn ungleich Tn+a erfüllen, wobei die Indizes n und a jeweils eine ganze Zahl größer 0 bedeuten, und/oder – der Gasstrom das Hydrogel im vorderen Abschnitt eines Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 15 bis 45 Gew.-% stattfindet, und/oder – die Hydrogelschicht in einem Bandtrockner zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 5 bis 30% der Gasgeschwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Gaseingangstemperaturen die Bedingung Tn größer Tn+a erfüllen.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trocknung in mindestens drei Temperaturzonen durchgeführt wird, wobei die Gaseingangstemperaturen die Bedingung Tn+a kleiner Tn+b erfüllen, wobei der Index b eine ganze Zahl größer a bedeutet.
  4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die Gaseingangstemperaturen die Bedingung Tn größer Tn+b erfüllen.
  5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gaseingangstemperaturen in mindestens zwei der Temperaturzonen Tn bis Tn+a–1 die Bedingung Tn+r größer Tn+s erfüllen, wobei der Index a eine ganze Zahl größer 1, der Index r eine ganze Zahl von 0 bis (a – 2) und der Index s eine ganze Zahl von (r + 1) bis (a – 1) bedeuten.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gaseingangstemperaturen in mindestens zwei der Temperaturzonen Tn+b bis Tn+c–1 die Bedingung Tn+u größer Tn+v erfüllen, wobei der Index c eine ganze Zahl größer (b + 1), der Index u eine ganze Zahl von b bis (c – 2) und der Index v eine ganze Zahl von (u + 1) bis (c – 1) bedeuten.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Gaseingangstemperaturen in mindestens drei der Temperaturzonen Tn+b bis Tn+c–1 die Bedingung Tn+u größer Tn+v größer Tn+w erfüllen, wobei der Index c eine ganze Zahl größer (b + 2), der Index u eine ganze Zahl von b bis (c – 3), der Index v eine ganze Zahl von (u + 1) bis (c – 2) und der Index w eine ganze Zahl von (v + 1) bis (c – 1) bedeuten.
  8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Temperaturdifferenz der Gaseingangstemperaturen mindestens 2°C beträgt.
  9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Gasstrom das Hydrogel im vorderen Abschnitt des Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 20 bis 40 Gew.-% stattfindet.
  10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die Geschwindigkeit des die Hydrogelschicht anströmenden Gasstroms nach der Strömungsumkehr erhöht ist.
  11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Hydrogelschicht zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 10 bis 20% der Gasgeschwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen.
  12. Verfahren gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Hydrogel vor der Trocknung einen Wassergehalt von 30 bis 70 Gew.-% aufweist.
  13. Verfahren gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Hydrogel nach der Trocknung einen Wassergehalt von 1 bis 10 Gew.-% aufweist.
  14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Geschwindigkeit des die Hydrogelschicht anströmenden Gasstroms von 0,5 bis 5 m/s beträgt.
  15. Verfahren gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der die Hydrogelschicht anströmende Gasstrom einen Wasserdampfanteil aufweist, der einem Taupunkt von höchstens 50°C entspricht.
  16. Verfahren gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Temperatur des die Hydrogelschicht anströmenden Gasstroms von 50 bis 250°C beträgt.
  17. Verfahren gemäß einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Verweilzeit des Hydrogels im Trockner von 10 bis 120 Minuten beträgt.
  18. Verfahren gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Druck bei der Trocknung niedriger ist als Atmosphärendruck.
  19. Verfahren gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Aufgabehöhe des Hydrogels auf das Band von 10 bis 200 cm beträgt.
  20. Verfahren gemäß einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Bandgeschwindigkeit von 0,005 bis 0,05 m/s beträgt.
  21. Verfahren gemäß einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Trocknungsqualitätsindex bei der Trocknung des Hydrogels höchstens 8 beträgt.
  22. Vorrichtung zum Trocknen wasserabsorbierender Polymere, bestehend aus einem gasdurchlässigen Förderband, das von einem vorgewärmten Gas angeströmt werden kann, wobei die Gaseingangstemperaturen so eingestellt werden können, dass mindestens zwei Temperaturzonen entstehen.
  23. Vorrichtung gemäß Anspruch 22, dadurch gekennzeichnet, dass das Förderband im vorderen Abschnitt von unten und im hinteren Abschnitt von oben angeströmt werden kann.
  24. Vorrichtung gemäß Anspruch 22 oder 23, dadurch gekennzeichnet, dass der Druck gegenüber Atmosphärendruck gesenkt werden kann.
  25. Verfahren zur Herstellung von Hygieneartikeln, umfassend die Verwendung gemäß einem der Ansprüche 1 bis 21 hergestellter wasserabsorbierender Polymere.
DE102005014291A 2005-03-24 2005-03-24 Verfahren zur Herstellung wasserabsorbierender Polymere Withdrawn DE102005014291A1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DE102005014291A DE102005014291A1 (de) 2005-03-24 2005-03-24 Verfahren zur Herstellung wasserabsorbierender Polymere
PCT/EP2006/061010 WO2006100300A1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
AT06725287T ATE496945T1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
BRPI0608923A BRPI0608923B1 (pt) 2005-03-24 2006-03-23 processo para produzir um polímero absorvedor de água, dispositivo para secagem de um polímero absorvedor de água, e, uso de um dispositivo
DE502006008808T DE502006008808D1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
CN2006800094407A CN101146832B (zh) 2005-03-24 2006-03-23 生产吸水性聚合物的方法
EP10182068.6A EP2298819B1 (de) 2005-03-24 2006-03-23 Verfahren zur Herstellung wasserabsorbierender Polymere
EP10182067.8A EP2305718B1 (de) 2005-03-24 2006-03-23 Verfahren zur Herstellung wasserabsorbierender Polymere
KR1020077024310A KR20070121804A (ko) 2005-03-24 2006-03-23 수분-흡수 중합체의 제조 방법
US11/816,769 US8592516B2 (en) 2005-03-24 2006-03-23 Method for the production of water absorbing polymers
EP06725287A EP1863852B1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
JP2008502424A JP5992134B2 (ja) 2005-03-24 2006-03-23 吸水性ポリマーの製造方法
TW095110464A TW200640951A (en) 2005-03-24 2006-03-24 Production of water-absorbing polymers
ZA200709067A ZA200709067B (en) 2005-03-24 2007-10-22 Method for production of water-absorbing polymers
JP2012257965A JP6184082B2 (ja) 2005-03-24 2012-11-26 吸水性ポリマーの製造法
JP2012257964A JP6184081B2 (ja) 2005-03-24 2012-11-26 吸水性ポリマーの製造法
US14/063,129 US9238215B2 (en) 2005-03-24 2013-10-25 Apparatus for the production of water absorbing polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005014291A DE102005014291A1 (de) 2005-03-24 2005-03-24 Verfahren zur Herstellung wasserabsorbierender Polymere

Publications (1)

Publication Number Publication Date
DE102005014291A1 true DE102005014291A1 (de) 2006-09-28

Family

ID=36581968

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102005014291A Withdrawn DE102005014291A1 (de) 2005-03-24 2005-03-24 Verfahren zur Herstellung wasserabsorbierender Polymere
DE502006008808T Active DE502006008808D1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502006008808T Active DE502006008808D1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere

Country Status (11)

Country Link
US (2) US8592516B2 (de)
EP (3) EP2298819B1 (de)
JP (3) JP5992134B2 (de)
KR (1) KR20070121804A (de)
CN (1) CN101146832B (de)
AT (1) ATE496945T1 (de)
BR (1) BRPI0608923B1 (de)
DE (2) DE102005014291A1 (de)
TW (1) TW200640951A (de)
WO (1) WO2006100300A1 (de)
ZA (1) ZA200709067B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153196A1 (de) * 2008-06-19 2009-12-23 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
WO2010040466A1 (en) * 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A continuous process for the production of a superabsorbent polymer
WO2010040467A1 (en) * 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A process for the production of a superabsorbent polymer
WO2010139680A2 (de) * 2009-06-03 2010-12-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US7960490B2 (en) 2006-09-19 2011-06-14 Basf Se Process for preparing color-stable water-absorbing polymer particles with a low degree of neutralization
US8048942B2 (en) 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
EP3165542A4 (de) * 2014-10-08 2017-11-22 LG Chem, Ltd. Verfahren zur herstellung eines supersaugfähigen harzes

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730633B2 (en) * 2004-10-12 2010-06-08 Pesco Inc. Agricultural-product production with heat and moisture recovery and control
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
CN101516924B (zh) * 2006-09-25 2012-06-13 巴斯夫欧洲公司 连续生产吸水性聚合物颗粒的方法
ATE474858T1 (de) * 2007-01-16 2010-08-15 Basf Se Herstellung von superabsorbierenden polymeren
EP2115014B1 (de) * 2007-02-06 2019-01-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
SA08290542B1 (ar) * 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد طريقة لإنتاج راتنج ماص للماء
WO2010003884A1 (de) * 2008-07-11 2010-01-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2471848B2 (de) * 2009-08-28 2017-11-29 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierende harze
WO2011090130A1 (ja) 2010-01-20 2011-07-28 株式会社日本触媒 吸水性樹脂の製造方法
EP2527390B1 (de) 2010-01-20 2020-08-12 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden harzes
EP2535369B1 (de) 2010-02-10 2021-03-24 Nippon Shokubai Co., Ltd. Herstellungsverfahren für ein wasserabsorbierendes harzpulver
EP2539381A1 (de) * 2010-02-24 2013-01-02 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011104152A1 (de) * 2010-02-24 2011-09-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP5658229B2 (ja) 2010-03-08 2015-01-21 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
CN104212105B (zh) 2010-04-07 2017-08-01 株式会社日本触媒 聚丙烯酸(盐)系吸水性树脂粉末的制造方法、聚丙烯酸(盐)系吸水性树脂粉末
US8765906B2 (en) 2010-04-27 2014-07-01 Nippon Shokubai, Co., Ltd. Method for producing polyacrylic acid (salt) type water absorbent resin powder
WO2011155540A1 (ja) 2010-06-08 2011-12-15 株式会社日本触媒 粒子状吸水性樹脂の製造方法
KR101317815B1 (ko) * 2010-06-16 2013-10-15 주식회사 엘지화학 고흡수성 수지의 제조 방법
US9580519B2 (en) 2011-04-20 2017-02-28 Nippon Shokubai Co., Ltd. Method and apparatus for producing polyacrylic acid (salt)-based water absorbent resin
EP2615120B2 (de) 2012-01-12 2022-12-21 Evonik Superabsorber GmbH Verfahren zur kontinuierlichen Herstellung von wasserabsorbierenden Polymeren
EP2620465B2 (de) 2012-01-27 2018-03-28 Evonik Degussa GmbH Wärmebehandlung von wasserabsorbierenden Polymerpartikeln in einem Wirbelbett bei hoher Aufheizrate
EP2620466B1 (de) * 2012-01-27 2014-09-10 Evonik Degussa GmbH Wärmebehandlung von wasserabsorbierenden Polymerpartikeln in einem Wirbelbett
JP6363090B2 (ja) 2012-11-30 2018-07-25 メルク パテント ゲーエムベーハー 電子素子
JP6374873B2 (ja) * 2013-09-25 2018-08-15 日本たばこ産業株式会社 炭素熱源の乾燥方法
KR102357517B1 (ko) 2013-09-30 2022-02-04 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제의 충전 방법 및 입자상 흡수제 충전물의 샘플링 방법
CN105658323B (zh) 2013-10-09 2019-05-10 株式会社日本触媒 以吸水性树脂作为主要成分的颗粒状吸水剂及其制造方法
JP2017006808A (ja) 2013-11-14 2017-01-12 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
EP3071911B1 (de) 2013-11-22 2021-03-03 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel, transportband dafür und verfahren zu dessen verwendung
JP6267047B2 (ja) * 2014-04-25 2018-01-24 新日鐵住金株式会社 脱水ケーキの含水率低下装置及び脱水ケーキの含水率低下方法
WO2015163518A1 (en) * 2014-04-25 2015-10-29 Songwon Industrial Co., Ltd. Initiator system for preparation of a water-absorbent polymer by radical polymerization
JP2016027070A (ja) 2014-06-23 2016-02-18 ザ プロクター アンド ギャンブルカンパニー 吸収性樹脂およびその製造方法
WO2016051777A1 (ja) 2014-09-30 2016-04-07 株式会社日本触媒 含水状態の吸水性樹脂を液状化する方法および収縮させる方法
CN107107027B (zh) 2015-01-07 2020-12-18 株式会社日本触媒 吸水剂及其制造方法、以及评价方法及测定方法
CN107835925B (zh) * 2015-05-08 2020-07-31 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法和带式干燥机
CN107850389B (zh) 2015-05-08 2021-02-02 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法和带式干燥机
JP7016798B2 (ja) 2016-03-28 2022-02-07 株式会社日本触媒 吸水剤の製造方法
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
EP3437729B1 (de) 2016-03-28 2023-12-13 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel und verfahren zur herstellung davon und mit dem wasserabsorbierenden mittel hergestellter saugfähiger artikel
JP7021116B2 (ja) 2016-05-31 2022-02-16 ビーエーエスエフ ソシエタス・ヨーロピア 水性ポリマーゲルを乾燥し、乾燥されたポリマーゲルを破砕して乾燥されたポリマー粒子を得るためのベルト乾燥機装置、および水性ポリマーゲルを乾燥し、乾燥されたポリマーゲルを破砕して乾燥されたポリマー粒子を得るための方法
CN109661550B (zh) 2016-07-15 2021-06-25 巴斯夫欧洲公司 干燥聚合物水凝胶并粉碎干燥的聚合物凝胶形成干燥的聚合物颗粒的带式干燥机设备及方法
JP6800998B2 (ja) 2016-11-16 2020-12-16 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
KR102159498B1 (ko) * 2016-12-26 2020-09-25 주식회사 엘지화학 건조 시스템
EP3696532A4 (de) 2017-10-12 2021-12-15 Nippon Shokubai Co., Ltd. Messverfahren für die eigenschaften eines teilchenförmigen absorptionsmittels und teilchenförmiges absorptionsmittel
US11607667B2 (en) 2017-11-16 2023-03-21 Nippon Shokubai Co., Ltd. Absorption agent and absorbent article
KR102518937B1 (ko) * 2017-12-22 2023-04-05 주식회사 엘지화학 고흡수성 수지의 제조 방법
JP7217268B2 (ja) 2018-04-13 2023-02-02 株式会社日本触媒 吸水性シート、吸水性シートの製造方法および吸収性物品
KR102589018B1 (ko) 2018-05-16 2023-10-16 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지의 제조 방법
CN109078391A (zh) * 2018-08-03 2018-12-25 闽江学院 一种水凝胶填充多孔滤材制备的复合滤芯
JP7149341B2 (ja) 2018-11-07 2022-10-06 株式会社日本触媒 粒子状吸水剤の製造方法および粒子状吸水剤
US11969707B2 (en) 2018-11-13 2024-04-30 Lg Chem, Ltd. Method for preparing super absorbent polymer
WO2020145383A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水剤、及び吸水剤の製造方法
JP7273067B2 (ja) 2019-01-11 2023-05-12 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
EP3978552A4 (de) 2019-05-31 2023-06-14 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierendes und polyacrylsäure(salz)wasserabsorbierendes harz
EP4059602A4 (de) 2019-11-12 2023-05-03 Nippon Shokubai Co., Ltd. Partikelförmiges wasserabsorptionsmittel und verfahren zur herstellung davon
US20230050209A1 (en) 2020-01-06 2023-02-16 Nippon Shokubai Co., Ltd. Absorbent body, water-absorbing resin, and absorbent article
US20230102961A1 (en) 2020-02-14 2023-03-30 Nippon Shokubai Co., Ltd. Water-absorbing resin and manufacturing method for same
JP7352001B2 (ja) 2020-02-14 2023-09-27 株式会社日本触媒 吸収体、吸水剤および吸水剤の製造方法
CN115348897A (zh) 2020-03-31 2022-11-15 株式会社日本触媒 颗粒状吸水剂
WO2022124767A1 (ko) * 2020-12-07 2022-06-16 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2022163849A1 (ja) 2021-01-29 2022-08-04 株式会社日本触媒 吸水性樹脂の製造方法
JPWO2022181771A1 (de) 2021-02-26 2022-09-01
EP4308056A1 (de) 2021-03-18 2024-01-24 The Procter & Gamble Company Verfahren zur herstellung saugfähiger artikel mit wasserabsorbierendem harz
WO2022196763A1 (ja) 2021-03-18 2022-09-22 株式会社日本触媒 吸水性樹脂の製造方法
EP4338832A1 (de) 2021-05-12 2024-03-20 Nippon Shokubai Co., Ltd. Wasserabsorbierendes harz auf basis von poly(meth)acrylsäure(salz) und saugfähiger artikel
WO2023046583A1 (de) 2021-09-27 2023-03-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6917989A (de) * 1968-12-06 1970-06-09
US3765103A (en) * 1971-12-03 1973-10-16 Foamat Foods Corp Plural gas stream dryer
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
DE3865509D1 (de) 1987-04-30 1991-11-21 Nippon Catalytic Chem Ind Hydrophyles polymer und verfahren zur herstellung.
FI90554C (fi) 1987-07-28 1994-02-25 Dai Ichi Kogyo Seiyaku Co Ltd Menetelmä akryylipolymeerigeelin jatkuvaksi valmistamiseksi
DE3817425A1 (de) 1988-05-21 1989-11-23 Cassella Ag Alkenyl-phosphon- und -phosphin-saeureester, verfahren zu ihrer herstellung sowie unter deren verwendung hergestellte hydrogele und deren verwendung
CA2001590A1 (en) 1988-10-28 1990-04-28 Tsuneo Tsubakimoto Method for metered supply of material, apparatus therefor, and method for production of hydrophilic polymer by use thereof
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
DE4007313A1 (de) 1990-03-08 1991-09-12 Basf Ag Verfahren zur herstellung von feinteiligen, wasserloeslichen polymerisaten
CA2038779A1 (en) 1990-04-02 1991-10-03 Takumi Hatsuda Method for production of fluid stable aggregate
FR2661912B1 (fr) 1990-05-14 1994-05-13 Hoechst Ste Francaise Nouveaux polymeres absorbants, leur procede de fabrication et leur application.
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE69108804T2 (de) * 1990-07-17 1995-08-24 Sanyo Chemical Ind Ltd Verfahren zur Herstellung von Wasser absorbierenden Harzen.
EP0530438B1 (de) 1991-09-03 1997-02-12 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
JP3045422B2 (ja) 1991-12-18 2000-05-29 株式会社日本触媒 吸水性樹脂の製造方法
EP0559476B1 (de) 1992-03-05 1997-07-16 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
EP0632068B1 (de) 1993-06-18 1998-08-19 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
DE4326877C1 (de) * 1993-08-11 1994-10-13 Babcock Bsh Ag Verfahren zum Trocknen von Platten und Trockner
US6058623A (en) * 1993-09-24 2000-05-09 The Chemithon Corporation Apparatus and process for removing volatile components from a composition
JP3297192B2 (ja) 1994-03-31 2002-07-02 三洋化成工業株式会社 含水ゲル状重合体の搬送方法及び乾燥方法並びにコンベア式乾燥装置
US5624967A (en) 1994-06-08 1997-04-29 Nippon Shokubai Co., Ltd. Water-absorbing resin and process for producing same
JP2700531B2 (ja) 1994-09-05 1998-01-21 三洋化成工業株式会社 含水ゲル状重合体の連続的乾燥方法
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19601764A1 (de) 1996-01-19 1997-07-24 Hoechst Ag Verfahren zur Herstellung hydrophiler, hochquellfähiger Hydrogele
DE19601763A1 (de) 1996-01-19 1997-07-24 Hoechst Ag Verwendung von Tensiden bei der Trocknung von hydrophilen, hochquellfähigen Hydrogelen
US5713138A (en) * 1996-08-23 1998-02-03 Research, Incorporated Coating dryer system
TW473485B (en) * 1997-12-10 2002-01-21 Nippon Catalytic Chem Ind The production process of a water-absorbent resin
DE19756633A1 (de) * 1997-12-19 1999-06-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Lyogelen zu Aerogelen
JP4077093B2 (ja) * 1997-12-25 2008-04-16 株式会社日本触媒 親水性架橋重合体の製造方法
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6503979B1 (en) 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
JP4141526B2 (ja) 1998-04-07 2008-08-27 株式会社日本触媒 吸水性樹脂の製造方法
TW460528B (en) 1998-04-28 2001-10-21 Nippon Catalytic Chem Ind Method for production of shaped hydrogel of absorbent resin
KR100476170B1 (ko) 1998-04-28 2005-03-10 니폰 쇼쿠바이 컴파니 리미티드 흡수성수지 함수겔상물의 제조방법
DE19846413A1 (de) 1998-10-08 2000-04-13 Basf Ag Verfahren zur Herstellung von hydrophilen wasserquellbaren Polymeren sowie deren Verwendung
DE19849499A1 (de) * 1998-10-27 2000-05-04 Basf Ag Verfahren zur vollständigen Trocknung von Hydrogelen
JP4323647B2 (ja) * 1998-11-18 2009-09-02 株式会社日本触媒 親水性重合体の製造方法
US6207796B1 (en) 1998-11-18 2001-03-27 Nippon Shokubai Co., Ltd. Production process for hydrophilic polymer
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19941423A1 (de) 1999-08-30 2001-03-01 Stockhausen Chem Fab Gmbh Polymerzusammensetzung und ein Verfahren zu dessen Herstellung
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (de) 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
CN1411381A (zh) 1999-12-23 2003-04-16 陶氏环球技术公司 高渗透性低吸收容量的聚合物
EP1130045B2 (de) 2000-02-29 2015-10-28 Nippon Shokubai Co., Ltd. Verfaren zur Herstellung eines wasserabsorbierenden Harzpulvers
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
WO2002094329A1 (en) 2001-05-23 2002-11-28 Basf Aktiengesellschaft Odor control containing absorbent materials
WO2002094328A2 (en) 2001-05-23 2002-11-28 Basf Aktiengesellschaft Double-sided coated fibrous web absorbent article
ATE287904T1 (de) 2001-10-05 2005-02-15 Basf Ag Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
JP4084648B2 (ja) * 2001-12-19 2008-04-30 株式会社日本触媒 吸水性樹脂の製造方法
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
US6780225B2 (en) * 2002-05-24 2004-08-24 Vitronics Soltec, Inc. Reflow oven gas management system and method
DE10225943A1 (de) 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
BR0311501A (pt) 2002-06-11 2005-02-22 Basf Ag éster f, processos para preparar o mesmo e um hidrogel reticulado, polìmero, hidrogel reticulado, uso de um polìmero, composição de matéria, e, uso de uma mistura da reação
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
JP2005532430A (ja) 2002-06-11 2005-10-27 ビーエーエスエフ アクチェンゲゼルシャフト ポリアルコキシル化されたトリメチロールプロパンの(メタ)アクリルエステル
US7003896B2 (en) * 2002-10-25 2006-02-28 Leonard Immanuel Tafel Radiation curing and drying
ATE376002T1 (de) * 2003-01-27 2007-11-15 Nippon Catalytic Chem Ind Verfahren zur herstellung von einem wasserabsorbierenden formkörper
US20040214499A1 (en) 2003-04-25 2004-10-28 Kimberly-Clark Worldwide, Inc. Absorbent structure with superabsorbent material
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
JP4297756B2 (ja) * 2003-08-29 2009-07-15 三洋電機株式会社 真空断熱材用コア材
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
DE102004019264B4 (de) * 2004-04-21 2008-04-10 Stockhausen Gmbh Verfahren zur Herstellung eines absorbierenden Polymers mittels Spreittrocknung
WO2005123781A2 (de) 2004-06-21 2005-12-29 Stockhausen Gmbh Wasserabsorbierendes polysaccharid sowie ein verfahren zu seiner herstellung
WO2006083583A2 (en) * 2005-02-04 2006-08-10 The Procter & Gamble Company Absorbent structure with improved water-swellable material
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
US20090047613A1 (en) * 2005-03-29 2009-02-19 Kadant Black Clawson Inc. Method and Apparatus for Pneumatic Drying of Lime Mud
DE102005042038A1 (de) * 2005-09-02 2007-03-08 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
DE102005042608A1 (de) * 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
DE102007053030A1 (de) * 2007-11-05 2009-05-07 Fleissner Gmbh Einrichtung zur Beaufschlagung von Stoffen mittels heißen Gasen
US8161661B2 (en) * 2008-02-26 2012-04-24 Active Land International Corporation Continuous drying apparatus and method
EP2313042B1 (de) * 2008-08-06 2013-07-10 Basf Se Saugfähige artikel
EP2313041B1 (de) * 2008-08-06 2013-07-17 Basf Se Flüssigkeit absorbierende artikel
CN102170848A (zh) * 2008-08-06 2011-08-31 巴斯夫欧洲公司 流体吸收制品
DE102008063661A1 (de) * 2008-12-18 2010-06-24 Hamm/Oser/Siewert GbR (vertretungsberechtigte Gesellschafter Dr. Erwin Oser + H. Hamm + N. Siewert, 50670 Köln) Trocknen von Fest-Flüssig-Mischsystemen
US20110214593A1 (en) * 2010-03-05 2011-09-08 Prabir Kumar Roychoudhury Eco-friendly system and process for generating thermal energy from waste biomass
US20130207037A1 (en) * 2010-10-21 2013-08-15 Basf Se Water-Absorbing Polymeric Particles and Method for the Production Thereof
EP2464680B1 (de) * 2010-10-21 2013-10-02 The Procter & Gamble Company Aufnahmestrukturen mit nachher vernetzten wasseraufnahmefähigen teilchen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960490B2 (en) 2006-09-19 2011-06-14 Basf Se Process for preparing color-stable water-absorbing polymer particles with a low degree of neutralization
WO2009153196A1 (de) * 2008-06-19 2009-12-23 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
WO2010040466A1 (en) * 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A continuous process for the production of a superabsorbent polymer
WO2010040467A1 (en) * 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A process for the production of a superabsorbent polymer
US8653210B2 (en) 2008-10-08 2014-02-18 Evonik Degussa Gmbh Continuous process for the production of a superabsorbent polymer
US8048942B2 (en) 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
US9085648B2 (en) 2008-10-08 2015-07-21 Evonik Degussa Gmbh Superabsorbent polymer process
WO2010139680A3 (de) * 2009-06-03 2011-04-14 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2010139680A2 (de) * 2009-06-03 2010-12-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US8789774B2 (en) 2009-06-03 2014-07-29 Basf Se Method for producing water-absorbing polymer particles
EP3165542A4 (de) * 2014-10-08 2017-11-22 LG Chem, Ltd. Verfahren zur herstellung eines supersaugfähigen harzes
US9975979B2 (en) 2014-10-08 2018-05-22 Lg Chem, Ltd. Method of preparing superabsorbent polymer

Also Published As

Publication number Publication date
JP6184082B2 (ja) 2017-08-23
EP1863852A1 (de) 2007-12-12
BRPI0608923B1 (pt) 2017-06-06
US20080214749A1 (en) 2008-09-04
BRPI0608923A2 (pt) 2010-11-03
DE502006008808D1 (de) 2011-03-10
CN101146832B (zh) 2010-12-29
US8592516B2 (en) 2013-11-26
ZA200709067B (en) 2010-01-27
JP5992134B2 (ja) 2016-09-14
WO2006100300A1 (de) 2006-09-28
TW200640951A (en) 2006-12-01
EP2305718A1 (de) 2011-04-06
JP6184081B2 (ja) 2017-08-23
JP2013053315A (ja) 2013-03-21
JP2008534707A (ja) 2008-08-28
US20140047730A1 (en) 2014-02-20
EP2298819B1 (de) 2016-02-17
EP2305718B1 (de) 2018-01-17
US9238215B2 (en) 2016-01-19
EP1863852B1 (de) 2011-01-26
JP2013040353A (ja) 2013-02-28
ATE496945T1 (de) 2011-02-15
KR20070121804A (ko) 2007-12-27
CN101146832A (zh) 2008-03-19
EP2298819A1 (de) 2011-03-23

Similar Documents

Publication Publication Date Title
EP2305718B1 (de) Verfahren zur Herstellung wasserabsorbierender Polymere
EP1949011B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1799721B1 (de) Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
EP2046400B1 (de) Verfahren zur herstellung nachvernetzter wasserabsorbierender polymerpartikel mit hoher absorption durch polymerisation von tropfen einer monomerlösung
EP1926754B1 (de) Polymerisationsverfahren
EP2074153B1 (de) Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
EP2073943B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2137262B1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
WO2012045705A1 (de) Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2076547B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
DE102005042607A1 (de) Polymerisationsverfahren
EP1996493A2 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007028750A1 (de) Polymerisationsverfahren
EP1814923B1 (de) Verfahren zur herstellung wasserabsorbierender polymere
EP1965905B1 (de) Verfahren zum kontinuierlichen mischen von polymerpartikeln
WO2009077100A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2129706B1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee