DE102004025841B4 - Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten - Google Patents

Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten Download PDF

Info

Publication number
DE102004025841B4
DE102004025841B4 DE102004025841.4A DE102004025841A DE102004025841B4 DE 102004025841 B4 DE102004025841 B4 DE 102004025841B4 DE 102004025841 A DE102004025841 A DE 102004025841A DE 102004025841 B4 DE102004025841 B4 DE 102004025841B4
Authority
DE
Germany
Prior art keywords
ionization
analyte
laser
photon
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102004025841.4A
Other languages
English (en)
Other versions
DE102004025841A1 (de
Inventor
Thorsten Benter
Klaus-Josef Brockmann
Marc Constapel
Siegmar Gäb
Ronald Giese
Oliver Johannes Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruker Daltonik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Daltonik GmbH filed Critical Bruker Daltonik GmbH
Priority to DE102004025841.4A priority Critical patent/DE102004025841B4/de
Priority to US11/569,145 priority patent/US20080296485A1/en
Priority to PCT/EP2005/005578 priority patent/WO2005117062A2/de
Publication of DE102004025841A1 publication Critical patent/DE102004025841A1/de
Application granted granted Critical
Publication of DE102004025841B4 publication Critical patent/DE102004025841B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation

Abstract

Verfahren zur massenspektroskopischen Untersuchung wenigstens eines Analyten, bei dem ein zu untersuchender Analyt photoionisiert und die Masse der erzeugten Ionen in einem Massenspektrometer bestimmt wird, dadurch gekennzeichnet, dass der zu untersuchende Analyt in eine an ein Massenspektrometer angekoppelte unter atmosphärischem Umgebungsdruck stehende Ionisationskammer zugeführt wird und bei dem atmosphärischen Umgebungsdruck in einem Ionisationsvolumen von mindestens 1 cm3 mittels Laserlicht über resonante Mehrphotonen-Ionisation ionisiert wird.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur massenspektroskopischen Untersuchung wenigstens eines Analyten, bei dem ein zu untersuchender Analyt photoionisiert und die Masse der erzeugten Ionen in einem Massenspektrometer bestimmt wird.
  • Derartige Verfahren sind allgemein bekannt und werden z. B. eingesetzt zur Spurenanalyse im Umweltbereich, Biologie, Medizin, Pharmazie, im Bereich der Polymerforschung, Synthesechemie sowie auch zur Prozessüberwachung und Qualitätssicherung. Das Verfahren kann letztendlich überall dort eingesetzt werden, wo eine Information über die Art und Zusammensetzung eines oder mehrerer Analyten gewünscht ist.
  • Der Begriff Analyt wird hier im Zusammenhang mit der vorliegenden Beschreibung verstanden als derjenige in einer beliebigen Phase (fest, flüssig, gasförmig) vorliegende Stoff oder ein Stoffgemisch, dessen Zusammensetzung und/oder Struktur untersucht werden soll.
  • Bekanntermaßen werden massenspektroskopische Untersuchungen z. B. derart durchgeführt, dass z. B. ein molekularer Strahl des Analyten in der z. B. gasförmigen Phase ionisiert wird, um anschließend die entstandenen Ionen mit einem Massenspektrometer zu detektieren. Aufgrund apparativer Vorgaben des Massenspektrometers und hier insbesondere des verwendeten Detektors muss im Massenspektrometer ein Vakuum vorherrschen. Aus diesem Grund erfolgt die Untersuchung an sich üblicherweise vollständig unter Vakuumbedingungen, was mitunter einen erheblichen apparativen Aufwand mit sich bringt.
  • Durch die aufgrund der Vakuumbedingungen ebenso vorgegebenen geringen Teilchendichten resultiert die Problematik, dass Analyten, die nur in geringsten Spuren bzw. Konzentrationen vorliegen entweder gar nicht, nur unzuverlässig oder nicht in akzeptablen Zeiträumen gemessen werden können, da die Signalausbeute sehr gering ist.
  • Aus diesem Grund ist man dazu übergegangen, die Ionisation des Analyten unter höheren Druckbedingungen durchzuführen und die erzeugten Ionen über ein Interface zwischen einer ersten Niederdruckstufe und einer Hochvakuumstufe in ein Massenspektrometer zu überführen, wobei in letzterem die nötigen Vakuumbedingungen eingehalten werden.
  • Das Dokument US 2003/0075679 von Syage beschreibt ein Verfahren und eine Apparatur, bei dem die Ionisation einer Gasprobe mit sogenannten „atmospheric Pressure”-Bedingungen durchgeführt wird, wobei die Offenbarung dieses Dokumentes unter „atmospheric Pressure” einen Druck versteht, der etwa 100 mal größer ist als der Druck im Massenspektrometer, jedoch typischerweise 10 Torr nicht überschreitet. Durch diese Druckvergrößerung kann bereits die Signalausbeute verbessert werden.
  • In dem bekannten Dokument wird die Ionisation einer Gasprobe als Analyt mittels der Einphotonenionisation durchgeführt. Damit die Einphotonenionisation gelingt, muss die Photonenenergie (PE) größer sein als das Ionisierungspotential (IP) des Analyten. Für nahezu alle relevanten organisch-chemischen Verbindungen (ausgenommen z. B. Alkalimetalle) liegt das Ionisationspotential zwischen 8 eV und 12 eV.
  • Die Photonenenergie muss dementsprechend unter etwa 150 nm liegen, d. h. im Vakuum-UV (VUV). Derartige Photonenenergien werden typischerweise von Edelgas-Entladungslampen bereitgestellt. Diese sind kommerziell erhältlich, weisen jedoch nur eine relativ geringe Photonenflussdichte auf und werden z. B. eingesetzt, wenn Platzbedarf eine Rolle spielt. Ebenso kann man frequenzvervielfachte Laserstrahlung zur Einphotonenionisation einsetzen, beispielsweise Laserstrahlung mit einer Wellenlänge von 355 nm von einem Nd:Yag/3 = 118 nm = 10.8 eV.
  • Die Selektivität bei der Einphotonenionisation liegt nur in der Unterdrückung von Substanzen mit einem Ionisationspotential, welches höher ist als die Photonenergie der verwendeten Strahlung. Aus diesem Grund werden Massenspektren eines Analyten oftmals überlagert durch Substanzen, insbesondere Hilfssubstanzen, die zusammen mit dem Analyten in einer Probe vorliegen, um die Übertragung in die Gasphase oder die Ionisation zu erleichtern. Dementsprechend kann es sich um die typischen dem Fachmann bekannten Matrixmaterialien oder sogenannte „Dopants” handeln.
  • Bekannt ist es eine Kopplung von chromatographischen/elektrophoretischen Trennsystemen und massenspektrometrischen Systemen zur Untersuchung von Analyten herzustellen, die z. B. als Eluat einer Trennmethode vorliegen.
  • Die zurzeit etablierten und wichtigsten Techniken der Kopplung der o. g. Trennsysteme können wie folgt charakterisiert werden:
  • 1) APCI – Atmospheric Pressure Chemical Ionization
  • Lösungsmittel (Matrix) und Analyt, d. h. das Eluat der Trennmethode, werden zunächst durch Erhitzen bei Atmosphärendruck verdampft. Geeignete zusätzliche Gasströme werden für eine quantitative Überführung in die Gasphase eingesetzt. Anschließend erfolgt die Ionisation der im großen Überschuss vorliegenden Matrixmoleküle mit Hilfe einer Coronaentladung. Die gebildeten Primärionen reagieren mit dem Analyten der hierdurch ionisiert wird. Der wichtigste Prozess in der Bildung positiv geladener Analytionen ist die Protonentransferreaktion, negative Analytionen werden am häufigsten durch Deprotonierung erhalten.
  • 2) ESI – Electrospray Ionization
  • In diesem Verfahren werden Lösungsmittel und Analytmoleküle aus der flüssigen Phase elektrostatisch aufgeladen und unter Ausbildung eines „Sprays” bei Atmosphärendruck in kleinste Tröpfchen überführt. Durch Verdampfungsprozesse schrumpfen diese Tröpfchen bis zu einem Punkt, an dem sie durch die hohe Ladungsträgerkonzentration durch elektrostatische Kräfte auseinandergerissen werden. Während dieses Prozesses findet der Transfer von Ladung auf die Analytmoleküle statt; die häufigsten Reaktionen sind wiederum Protonierung bzw. Deprotonierung des Analyten, aber auch die Anlagerung von Matrixionen wie z. B. Na+ oder NH4 +
  • 3) APPI – Atmospheric Pressure Photo Ionisation
  • Mit den beiden vorgenannten Verfahren können nur polare Analytmoleküle effizient ionisiert werden. In jüngerer Zeit ist ein drittes Verfahren der Ionisation bei Atmosphärendruck angewandt worden. Dieses Verfahren basiert auf der direkten Photoionisation der Analytmoleküle mit geeigneter VUV-Strahlung (i. d. R. 10 eV Photonen, λ = 124 nm). Die Energie der eingestrahlten Photonen wird so gewählt, dass diese unterhalb der Ionisierungsenergie der Matrixmoleküle aber oberhalb der Ionisierungsenergie der Analytmoleküle liegt. Somit werden auch unpolare Substanzen der massenspektrometrischen Analyse zugänglich. Bei der APPI werden die durch Absorption direkt gebildeten Radikalkationen M•+, aber auch Protonierungs- bzw. Deprotonierungsschritte und Elektronenanlagerung beobachtet. Es wird zurzeit intensiv an der Aufklärung dieser zunächst unerwarteten Mechanismen gearbeitet. Dabei spielen Umlagerungsreaktionen elektronisch hoch angeregter Matrixmoleküle sowie Clusterbildung gefolgt von Photoionisation der Reaktionsprodukte und anschließenden Ionenmolekülreaktionen mit dem Analyten eine wesentliche Rolle.
  • Die vorgenannten Verfahren basieren zum Teil auf chemischen Ionisationsprozessen und unterliegen damit kinetischer und thermodynamischer Kontrolle. Unpolare Substanzen sind einer effizienten Ionisation nur schwer zugänglich. Die Selektivität der vorgenannten Ionisationsverfahren stammt aus der kinetischen und thermodynamischen Kontrolle im Reaktionsraum. Damit einher geht eine Konkurrenz um primäre Ladungsträger im Reaktionsraum. Bei Anwesenheit einer Analytkomponente im großen Überschuss können Unterschusskomponenten u. U. vollständig unterdrückt werden, d. h. die Ionenausbeute wird von der Matrixzusammensetzung abhängig und eine Quantifizierung des Analyten wird unter diesen Umständen stark erschwert.
  • Die genannte Methode der Einphotonenionisation umgeht diesen Kontrollmechanismus durch die direkte Bildung von Analytionen mittels Absorption von VUV-Photonen (typ. 10 eV). Eine Selektivität gegenüber den Analytmolekülen wird dadurch erreicht, dass nur Substanzen mit einem Ionisierungspotential unterhalb der eingesetzten Photonenenergie primär ionisiert werden können. Aufgrund der stark ansteigenden Absorptionsquerschnitte der meisten organischen Verbindungen im vakuumvioletten (VUV) Wellenlängenbereich können aber Interferenzen durch unerwartete Photoreaktionen der Matrixmoleküle auftreten.
  • Darüber hinaus kann bei den vorgenannten Verfahren eine unkontrollierte Fragmentation des Analyten auftreten, was die Deutung der erhaltenen Spektren erschwert.
  • Eine Mehrphotonenionisation bei atmosphärischem Umgebungsdruck mittels Laser für ein Flugzeitmassenspektrometer ist offenbart in US 6,107,625 A . Eine Ionisation bei atmosphärischem Umgebungsdruck beschreiben weiterhin auch die Dokumente: WO 01/33605 A2 , US 2002/0179832 A1 , US 2003/0052268 A1 , WO 99/38185 A2 und EP 0 964 427 A2 . Eine resonante Mehrphotonenionisation wird in den Dokumenten US 4,634,864 A , EP 1 274 117 A2 und EP 0 921 393 A2 beschrieben.
  • Aufgabe der Erfindung ist es, massenspektroskopische Untersuchungen auch von Analyten in geringsten Konzentrationen durchzuführen und eine Vorrichtung bereitzustellen, mit der das Verfahren durchführbar ist und die eine Verbindung zwischen einer Ionisationsstufe und einem massenspektrometrischen Analysator herstellt, insbesondere wobei der Analyt einer vorgeschalteten Trennstufe entnommen wird.
  • Weiterhin ist es Aufgabe, den Analyten möglichst effizient und schonend in die Gasphase zu überführen, möglichst verlustfrei von der Ionisationsstufe und/oder der chromatographischen/elektrophoretischen Trennstufe in das Hochvakuumgebiet (z. B. p ≤ 10–8 atm) des Massenspektrometers zu transportieren. Hierbei soll der Analyt möglichst selektiv und mit großer Effizienz ionisiert werden.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der zu untersuchende Analyt in eine an ein Massenspektrometer angekoppelte unter atmosphärischem Umgebungsdruck stehende Ionisationskammer zugeführt wird und bei dem atmosphärischen Umgebungsdruck in einem Ionisationsvolumen von mindestens 1 cm3 mittels Laserlicht über resonante Mehrphotonen-Ionisation ionisiert wird. Hierbei wird unter atmosphärischem Umgebungsdruck ein Druck von ca. 1 atm bzw. ca. 1000 mbar bzw. ca. 760 Torr bzw. der Druck in der unteren Troposphäre verstanden im Gegensatz zu den in der vorgenannten Literatur beschriebenen Angaben zum „atmopheric Pressure”.
  • Der Vorteil in diesem Druckbereich zu arbeiten ist es, dass zum einen im Ionisationsvolumen eine hohe Teilchendichte vorliegt und so auch geringste Spuren von Substanzen in einem Analyten mit hohen Signalausbeuten nachgewiesen werden können. Darüber hinaus liegt der Analyt im Ionisationsvolumen vorteilhafterweise bei Raumtemperatur vor.
  • Bei dem erfindungsgemäßen Verfahren werden mindestens 2 Photonen zur Ionisation eingesetzt (z. B. zwei gleiche oder auch zwei Photonen unterschiedlicher Wellenlänge). Es liegt also eine Mehrphotonen-Ionisation (MPI) vor. Im Ionisationsvolumen herrscht Atmosphärendruck, wobei die erzeugten Ionen in ein Massenspektrometer überführt werden.
  • Erfindungsgemäß ist die Wellenlänge des ersten Photons resonant mit einem elektronisch angeregten, photostabilen Zustand im Analyten. In diesem Fall ist die Lebensdauer des Analyten nach Absorption des ersten Photons so groß, dass ein zweites Photon vor Rückkehr in den Grundzustand (oder Dissoziation) absorbiert werden kann. Um resonante Mehrphotonenionisation durchzuführen werden Laser eingesetzt, um den nötigen Mindestphotonenfluss von etwa 105 W/cm2 zur Verfügung zu stellen. Bevorzugt wird mit gepulsten Lasern gearbeitet. Z. B. können Energien von 20 mJ eingesetzt werden bei 10 ns Pulsdauer = 2 × 106 W. Diese Leistung ist auf ein Ionisationsvolumen von mindestens 1 cm3 „verteilt”.
  • Bei der resonanten Mehrphotonenionisation ist das erfindungsgemäße Verfahren selektiv gegenüber Analyten, die im Energiebereich des ersten Photons absorbieren. Liegt diese Wellenlänge z. B. bei 248 nm, und wird keine andere Wellenlänge zusätzlich eingestrahlt, so wird das Verfahren selektiv gegenüber Aromaten. Diese haben in dem beispielhaft genannten Wellenlängenbereich häufig a) sehr stabile Übergänge und b) reicht die Absorption eines weiteren Photons von dem elektronisch angeregten Zustand aus zur Überschreitung des Ionisationspotentials Ebenso können Wellenlängen gemischt werden: Z. B. 308 nm zur Anregung und 193 nm zur Ionisation usw.
  • Aufgrund der resonanten Anregung ist die Selektivität hoch und kann über die Wahl der Wellenlänge des ersten anregenden Photons gewählt werden. So können gezielt in einem Analyten Spuren von Substanzen gesucht werden, die auf der Anregungswellenlänge resonant absorbieren.
  • Die resonante Mehrphotonenionisation hat bei atmosphärischem Umgebungsdruck Randbedingungen, die bei der klassischen Mehrphotonenionisation in einem Molekularstrahl nicht möglich sind.
  • So ist das Ionisationsvolumen um mehrere Größenordnungen größer, nämlich mindestens 1 cm3 gegenüber max. 1 mm3 im Molekularstrahl, wobei dies bevorzugt noch von einer fakultativ einsetzbaren Ionenoptik abhängt, über die die Ionen in die Eingangsöffnung eines Massenspektrometers fokussiert werden können. Das erfindungsgemäße Verfahren wird gegenüber Molekularstrahlverfahren außerordentlich empfindlich, da zusätzlich zum großen Ionisationsvolumen keine für Molekularstrahlen übliche mit 1/r2 abfallende Dichte auftritt.
  • Diesen Vorteil des erfindungsgemäßen Verfahrens kann man bevorzugt nutzen, wenn der vom Massenspektrometer eingesehene Raum in der Ionenquelle die gleiche Größenordnung wie das Ionisationsvolumen hat. Das wiederum gelingt vorteilhaft mit orthogonalen Flugzeit-Massenspektrometern bzw. Mehrpol-Instrumenten.
  • Bevorzugt wird ein massenselektiver Detektor benutzt, der ein Auflösungsvermögen im Bereich 10000 hat. So liefert die Erzeugung der fragmentarmen Spektren, wie sie bei dem erfindungsgemäßen Verfahren (z. B. mit Ionisations-Laserleistungsdichte etwa 1 GW/cm2) auftreten, analytischen relevante Daten.
  • Gemäß dem erfindungsgemäßen Verfahren ist es vorgesehen, dass ein Analyt in ein Ionisationsvolumen zugeführt wird, welches in einer an ein Massenspektrometer angekoppelten unter Atmosphärendruck stehenden Ionisationkammer angeordnet ist.
  • Hierbei kann der zu untersuchende Analyt direkt gasförmig zugeführt werden, z. B. als Gasprobe aus einer Zufuhröffnung oder Kapillaren. Ebenso kann der Analyt als Eluat einer chromatographischen oder elektrophoretischen Trennstufe in das Ionisationsvolumen zugeführt werden, z. B. einfacherweise aus einer Gas-Chromatographie-Stufe.
  • In einer bevorzugten Weiterbildung wird der Analyt aus dem flüssigen Eluat einer chromatographischen Trennstufe in die Ionisationskammer überführt. Hierzu wird das flüssige Eluat mit einem Laserstrahl, insbesondere einem Infrarot-Laser, der bevorzugt gepulst betrieben wird, verdampft. Die Anordnung wird dabei so gewählt, dass das Eluat in das Ionisationsvolumen expandiert und dort in der Gas-/Dampf- und/oder Aerosolphase ionisiert wird. Bei dieser Anordnung bildet das Eluat eine Komposition aus Analyt und einer Matrix, die für den chromatografischen Schritt typisch ist.
  • Bei sämtlichen Möglichkeiten, einen Analyten in das Ionisationsvolumen zuzuführen kann es vorgesehen sein, dass die Ionisationskammer mit einem Puffergas gespült wird, um ungewünschte Überlagerungen in den Massenspektren durch Verunreinigungen zu vermeiden.
  • Das erfindungsgemäße Verfahren, bzw. die Vorrichtung führt im Vergleich zu klassischen Verfahren zu einer deutlichen Verbesserung der Gesamttransmission des Analyten und damit zu einer deutlich gesteigerten Empfindlichkeit. Entscheidend ist, dass die einzelnen Komponenten des Systems (Verdampfungsstufe, Ionisationsstufe und Massenspektrometer) konsequent aufeinander abgestimmt sind.
  • Die Ionisationskammer stellt hier bevorzugt ein Interface dar zwischen einer chromatographischen/elektrophoretischen und einer massenspektrometischen Stufe, wobei erfindungsgemäß der Analyt, falls erforderlich (z. B. bei LC, CE), in seiner Matrix (Laufmittel) in die Gasphase bei 1 atm Gesamtdruck überführt werden kann. Der Analyt kann selektiv durch resonanzverstärkte Zweiphotonenabsorption mit Hilfe eines oder mehrerer z. B. gepulster UV-Laser ionisiert werden und der ionisierte Analyt kann möglichst verlustfrei in ein Massenspektrometer überführt werden.
  • Die Verwendung eines gepulsten Infrarotlasersystems zur Verdampfung des Matrixmaterials der Trennstufe (z. B. LC, CE) führt im Vergleich zum kontinuierlichen Betrieb zu einer erhöhten Konzentration des Analyten im Ionisierungsvolumen.
  • Die in die Matrix eingekoppelte Verdampfungsenergie ist über die IR-Laserleistungsdichte präzise einstellbar. Ebenso kann die Repetitionsrate von wenigen Pulsen pro Minute bis in den Zehntelsekundenbereich an die Anforderungen der Trennstufe angepasst werden. Der Betrieb des Interfaces bei Atmosphärendruck führt zu einer sehr schnellen Abkühlung des verdampften Materials auf Raumtemperatur, da die mittlere freie Weglänge unter diesen Bedingungen deutlich weniger als 10–6 m beträgt. Somit ist ein schonender, gepulster Transfer des Analyten in die Gasphase gewährleistet.
  • Die Ionisation des Analyten erfolgt selektiv durch stufenweise Anregung mit z. B. gepulstem UV Laserlicht. Es werden sowohl Ein- als auch Zweifarbenanregungen eingesetzt. Daraus ergeben sich folgenden Vorteile:
    • a) der Analyt wird direkt durch Zweiphotonenabsorption ionisiert. Eine Konkurrenzsituation der Ladungsträger wie bei chemischer Ionisation findet nicht statt. Die eingestrahlte Photonendichte ist stets so groß, dass diese Situation mit Sicherheit ausgeschlossen werden kann.
    • b) Die UV Photonenergie liegt z. B. im Bereich zwischen min. 3.5 eV (350 nm) und max. 6.4 eV (193 nm). In diesem Bereich sind die für die chromatographische Trennstufe typischen eingesetzten Matrixmaterialien nahezu transparent, so dass eine Photoanregung dieser Materialien nahezu ausgeschlossen werden kann.
    • c) Eine hohe Selektivität des Ionisierungsprozesses wird durch die stufenweise Ionisation des Analyten erreicht. Sie gelingt nur, wenn
    • – im ersten Schritt eine starke Absorption mit relativ langlebigen elektronischen Zuständen vorliegt. Z. B zeigen nahezu alle aromatischen Systeme dieses Verhalten für ihren S0–S1 Übergang im Wellenlängenbereich 350–250 nm.
    • – der zweite Schritt aus dem angeregten Zustand direkt zur Ionisation führt. Die zur Ionisation eingesetzte Wellenlänge hängt von der Lage des Ionisierungspotentials des Analyten ab und erfordert besondere Beachtung wenn schnelle intramolekulare Relaxationsprozesse nach Absorption des ersten Photons zu erwarten sind, z. B. strahlungslose Singlett-Tripplet Übergänge. In der Regel gelingt aber die Ionisation schon mit einem zweiten Photon der gleichen Wellenlänge.
    • d) Die zur effizienten Zweiphotonenionisation eingesetzten Leistungsdichten liegen im Bereich von 105–107 W cm–2. Diese werden z. B. von sehr kompakten, hochrepetierenden Excimerlasern zur Verfügung gestellt. Das Ionisationsvolumen ist unter diesen Bedingungen ≥ 1 cm3 und damit optimal auf das Expansionsvolumen des IR-Laserverdampfungsschrittes eingestellt.
    • e) Der Fragmentierungsgrad zur Aufklärung von Strukturelementen im Analyten kann durch den Photonenfluss bzw. die eingesetzten Laserleistungsdichten gesteuert werden. Unter den vorgenannten Bedingungen wird in der Regel nur die Bildung von Molekülionen beobachtet. Die Änderung der Fokussierung des Laserstrahls um bis zu einen Faktor 100 erlaubt eine Änderung des Fragmentierungsgrades in weiten Grenzen. Damit ist neben den etablierten „in source” und „post source” CID (collision induced decomposition) Verfahren eine weitere, völlig unabhängige Methode zur Erzeugung von Fragmentionen zur Strukturaufklärung gegeben.
  • Ein Ausführungsbeispiel der Erfindung ist den nachfolgenden Abbildungen dargestellt. Es zeigen:
  • 1: eine schematische Darstellung einer erfindungsgemäßen Ionisationskammer mit vorgeschalteter Trennstufe und nachgeschaltetem Massenspektrometer;
  • 2a)–c): die zeitliche Abfolge für die gepulste Erzeugung von Ionen;
  • 3: die Ionisationskammer mit Übergang zu einem Fluzeitmassenspektrometer mit alternativer Analytzuführung;
  • 46: erhaltene Massenspektren für unterschiedliche Analyten;
  • Tabelle 1: untersuchte Analyten;
  • In 1 ist schematisch der Gesamtaufbau einer erfindungsgemäßen Apparatur gezeigt. Der stark umrandete Teil in der 1 ist der wesentliche Gegenstand der Erfindung, die Ionisationskammer 1 bzw. das Interface zwischen Trennstufe 2 und Massenspektrometer 3. Sie bildet zusammen mit den Lasersystemen eine Einheit. In der Ionisationskammer 1 herrscht ein Druck von ca. 1 atm, also Normaldruck. Hierbei kann die Ionisationskammer 1 mit einem Puffergas 4 gespült sein.
  • In den 2a)–c) ist der zeitliche Ablauf für die gepulste Erzeugung von Ionen nach der gepulsten Laserverdampfung gezeigt. Nicht gezeigt sind die zusätzlichen Gasflüsse/pulse zur Spülung des Ionisationsvolumens.
  • Bezogen auf die 2a) wird zunächst am Ende der chromatographischen Säule 5 ein Tropfen Eluat 6 gebildet, der neben einem Matrixmaterial den zu untersuchenden Analyten umfasst.
  • Wie in 2b) dargestellt wird dieser Eulattropfen 6 mittels eines gepulsten IR-Laserstrahles 7, der das Ende der Säule 5 beleuchtet, desorbiert, d. h. verdampft. Hierbei expandiert das Eluat 6 und damit der Analyt in das Ionisationsvolumen von ca. 1 Kubikzentimeter und kühlt hierbei auf Raumteperatur ab.
  • In 2c) ist die resonante zwei-Photonenionisation des verdampften Analyten dargestellt, z. B. mittels eines UV-Pulses 8.
  • Bei der Kopplung des Interfaces mit einer Gas-Chromatographie-Säule entfällt der Desorptionsschitt. Hier wird das aus der Säule austretende Gas direkt ionisiert.
  • In Verbindung mit dem erfindungsgemäßen Verfahren kann jede Art der Bereitstellung eines Analyten zum Einsatz kommen
  • In 3 ist dementsprechend eine alternative Ionisationskammer 1 dargestellt, bei der der Analyt in einer Lösung in Verbindung mit einem Hilfsgas in die Ionisationskammer 1 eingespritzt wird.
  • In dieser Anwendung ist der Übergang zum Flugzeitspektrometer näher dargestellt. Dieser Übergang kann in der dargestellten Form auch bei jeder anderen Art der Bereitstellung des Analyten eingesetzt werden.
  • Nach der Erzeugung der Analyt-Ionen werden diese durch die herrschenden Druckverhältnisse regelrecht in das Massenspektrometer hereingesaugt. Hierfür kann eine Öffnung z. B. in Form eines Skimmers zwischen der unter Atmosphärendruck stehenden Ionisationskammer und dem unter Vakuum stehenden Massenspektrometer eingesetzt werden.
  • Bevorzugt kann eine Ionenoptik eingesetzt werden. Um die erzeugten Ionen z. B. durch elektrische und/oder magnetische Felder in die Verbindungsöffnung zu leiten, was zu einer Erhöhung des Ausbeute beiträgt. Hierfür können auf positives Potential gelegte Elektroden eingesetzt werden, die speziell ausgeformt sind.
  • Aufgrund der durch den Saugeffekt gegebenen Geschwindigkeitkomponente der Ionen in Saugrichtung durch die Öffnung zwischen Ionenkammer und Massenspektrometer ist es besonders vorteilhaft ein orthogonales Flugzeitmassenspektrometer zu verwenden, welches durch ein bevorzugt gepulstes elektrisches Feld die Ionen senkrecht zur Einsaugrichtung ablenkt. Dies kann in einer differentiellen Pumpstufe erfolgen. Im Flugzeitmassenspektrometer kann ein Ionenreflektor zum Einsatz kommen, um die Geschwindigkeits-Dispersion der Ionen zu kompensieren und die Auflösung zu erhöhen.
  • In einer bevorzugten Weiterbildung sind die Pulse zur Ansteuerung der elektrischen Felder zur Führung und/oder Ablenkung der Ionen zeitlich synchronisiert mit den Laser-Pulsen zur Verdampfung und oder Ionisierung des Analyten.
  • Zur Validierung des Ionisierungsverfahrens, wurde die resonante Zweiphotonenionisation bei Atmosphärendruck durchgeführt. Der Aufbau ist schematisch in der genannten 3 gezeigt. Zum massenselektiven Ionennachweis wurde ein MicroMass QTOF Ultima verwendet. Das Gerät ist werksseitig mit einer Z-Spray Einlassstufe ausgerüstet, bestehend aus einem Gehäuse mit Anschlussflanschen zur Verbindung mit dem MS sowie zur Aufnahme einer APCI oder ESI Quelle, dem „ionblock”, der die Einlassöffnung zum MS bildet sowie der Coronanadel.
  • Das Gehäuse der Z-Spray Einlassstufe wurde neu konstruiert. Gegenüber der Originalausführung wurden zusätzliche Öffnungen für Laserstrahlein- und austritt vorgesehen. Ebenso wurden zusätzliche Elektroden zur Manipulation von Potentialfeldern in der Quelle angebracht.
  • Die Analyten wurden zunächst in einem geeigneten Lösungsmittel gelöst und durch kontrollierte Einspritzung mit Hilfe einer Spritzenpumpe durch die geheizte APCI Quelle in die Gasphase überführt. Die Coronanadel war in diesen Experimenten nicht montiert.
  • Tabelle 1 gibt eine Übersicht über die untersuchten Analyten und verwendeten Lösungsmittel.
  • Nach dem Einschalten des UV Lasers (Lambda Physik Optex, KrF*, λ = 248 nm, 100 Hz) wurden Ionensignale erhalten, die nach Optimierung der Lage des Laserstrahls sowie der Ionenquellenpotentiale zu den in , und exemplarisch gezeigten Massenspektren führten.
  • In den Untersuchungen wurden PAH's, z. B. Fluoranthen (s. Tabelle 1, Nr. 1), sowie drei Polymerbausteine (s. Tabelle 1, Nr. 2–4) eingesetzt. Neben Halogenatomen unterschiedlicher Anzahl (s. Tabelle 1, Nr. 2 und 3) enthielten diese auch kovalent gebundene Metallatome (s. Tabelle 1, Nr. 4). Bei den Polymerbausteinen handelte es sich um Syntheseprodukte, deren Identität und Ausbeute festgestellt werden soll.
  • Die Massenspektren zeigen das hohe Potential der erfindungsgemäßen Methode. Vor allem der in dargestellte Vergleich der erfindungsgemäßen Massenspektren mit Ergebnissen aus der zurzeit als „state-of-the-art” für diese Materialien geltenden Felddesorptions (FD) MS vom MPI für Polymerforschung in Mainz für den Polymerbaustein Nr. 5 ist beeindruckend.
  • Hervorzuheben ist auch die Analysenzeit, die etwa 45 min für FD MS aber nur 5 min für das erfindungsgemäße Verfahren beträgt.
  • Es wurde eine außerordentlich große Empfindlichkeit und niedrige Nachweisgrenze des Prototyp-Systems festgestellt. Insbesondere die Installation einer zusätzlichen Repellerplatte hatte zu einer starken Empfindlichkeitszunahme geführt. Selbst bei kontinuierlicher Injektion (900 μl min–1) von einer 5 nanomolaren Lösung von Fluoranthen (Nr. 1) in einem Methanol/Wassergemisch wurden noch deutliche Ionensignale bei einer Integrationszeit von 1 s erhalten. Die in dieser Zeit injizierte Menge entspricht etwa 100 fmol.
  • Durch weitere Optimierung, wie z. B. der Synchronisation der Laserpulsfrequenz mit dem digitalen Datenaufnahmesystem des Massenspektrometers wird eine weitere Steigerung der Empfindlichkeit erwartet.

Claims (15)

  1. Verfahren zur massenspektroskopischen Untersuchung wenigstens eines Analyten, bei dem ein zu untersuchender Analyt photoionisiert und die Masse der erzeugten Ionen in einem Massenspektrometer bestimmt wird, dadurch gekennzeichnet, dass der zu untersuchende Analyt in eine an ein Massenspektrometer angekoppelte unter atmosphärischem Umgebungsdruck stehende Ionisationskammer zugeführt wird und bei dem atmosphärischen Umgebungsdruck in einem Ionisationsvolumen von mindestens 1 cm3 mittels Laserlicht über resonante Mehrphotonen-Ionisation ionisiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ionisationskammer mit einem Puffergas gespült wird.
  3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Analyt als Eluat einer chromatographischen oder elektrophoretischen Trennstufe in das Ionisationsvolumen zugeführt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein flüssiges Eluat einer Trennstufe mittels eines Lasers verdampft wird, wobei das Eluat in das Ionisationsvolumen expandiert.
  5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Ionisation eines Analyten selektiv durch Anregung mit UV-Laserlicht erfolgt, wobei das Photon des ersten resonanten Absorptionsschritts der Multiphotonen-Ionisation dieselbe Wellenlänge wie das Photon des zweiten Absorptionsschrittes aufweist.
  6. Verfahren nach einem der vorherigen Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ionisation eines Analyten selektiv durch Anregung mit UV-Laserlicht erfolgt, wobei das Photon des ersten resonanten Absorptionsschritts der Muttiphotonen-Ionisation eine andere Wellenlänge als das Photon des zweiten Absorptionsschrittes aufweist.
  7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Laserintensität geändert wird, um den Fragmentierungsgrad der erzeugten Ionen zu ändern.
  8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zur Massenbestimmung des ionisierten Analyten ein Flugzeitmassenspektrometer eingesetzt wird.
  9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die erzeugten Ionen mittels einer Ionenoptik in den Massenspektrometereingang fokussiert werden.
  10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die zu untersuchenden Analyten polyzyklische aromatische Kohlenwasserstoffe (PAH) sind.
  11. Vorrichtung zur massenspektroskopischen Untersuchung wenigstens eines Analyten, dadurch gekennzeichnet, dass sie eine unter atmosphärischen Umgebungsdruck stehende Ionisationskammer und ein Massenspektrometer umfasst, die über eine Öffnung miteinander verbunden sind, wobei die Ionisationskammer ein Ionisationsvolumen für resonante Mehrphotonenionisation mittels Laserlicht von mindestens 1 cm3 umfasst.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Ionisationskammer ein Interface bildet zwischen einer Vorrichtung zur chromatografischen oder elektrophoretischen Trennung von Analyten und dem Massenspektrometer.
  13. Vorrichtung nach einem der vorherigen Ansprüche 1 bis 12, dadurch gekennzeichnet, dass sie einen Laser aufweist, mit dem im Ionisationsvolumen eine Lichtintensität zwischen 105 bis 107 Watt pro Quadratzentimeter erzeugbar ist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der Laser ein gepulster Excimerlaser ist.
  15. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Laser gepulst ist und eine Pulsenergie von 20 Millijoule sowie eine Pulsdauervon 10 Nanosekunden aufweist.
DE102004025841.4A 2004-05-24 2004-05-24 Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten Expired - Fee Related DE102004025841B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102004025841.4A DE102004025841B4 (de) 2004-05-24 2004-05-24 Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten
US11/569,145 US20080296485A1 (en) 2004-05-24 2005-05-24 Method and Device for Mass Spectrometry Examination of Analytes
PCT/EP2005/005578 WO2005117062A2 (de) 2004-05-24 2005-05-24 Verfahren und vorrichtung zur massenspektroskopischen untersuchung von analyten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004025841.4A DE102004025841B4 (de) 2004-05-24 2004-05-24 Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten

Publications (2)

Publication Number Publication Date
DE102004025841A1 DE102004025841A1 (de) 2005-12-15
DE102004025841B4 true DE102004025841B4 (de) 2015-07-09

Family

ID=35240892

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004025841.4A Expired - Fee Related DE102004025841B4 (de) 2004-05-24 2004-05-24 Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten

Country Status (3)

Country Link
US (1) US20080296485A1 (de)
DE (1) DE102004025841B4 (de)
WO (1) WO2005117062A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642510B2 (en) * 2006-08-22 2010-01-05 E.I. Du Pont De Nemours And Company Ion source for a mass spectrometer
DE102007004116A1 (de) * 2007-01-26 2008-07-31 Siemens Ag Wartungsoptimierte Bremse
DE102007052500A1 (de) * 2007-11-02 2009-06-04 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Verfahren und Vorrichtung für den Nachweis von mindestens einer Zielsubstanz
CN101520432B (zh) * 2008-02-28 2013-04-24 岛津分析技术研发(上海)有限公司 用于质谱仪的解吸电离装置
GB0903914D0 (en) * 2009-03-06 2009-04-22 Micromass Ltd A duel source mass spectromerty system
GB0903908D0 (en) 2009-03-06 2009-04-22 Micromass Ltd A dual mass spectrometry system
GB0903911D0 (en) * 2009-03-06 2009-04-22 Micromass Ltd A dual source mass spectrometry system
US8299444B2 (en) * 2009-09-02 2012-10-30 Shimadzu Research Laboratory (Shanghai) Co. Ltd. Ion source
US8455813B2 (en) * 2009-09-13 2013-06-04 Technion Research And Development Foundation Ltd. Multi-photon ionization spectrometer
EP2428796B1 (de) * 2010-09-09 2015-03-18 Airsense Analytics GmbH Verfahren und Vorrichtung zur Ionisierung und Identifizierung von Gasen mittels UV-Strahlung und Elektronen
US8563924B2 (en) 2011-06-28 2013-10-22 Agilent Technologies, Inc. Windowless ionization device
CN103871828B (zh) * 2012-12-17 2016-05-18 中国科学院大连化学物理研究所 一种阵列式光电发射电离源及其应用
DE102016200791A1 (de) * 2016-01-21 2017-07-27 Robert Bosch Gmbh Vorrichtung und Verfahren zum Detektieren zellulärer Bestandteile einer potenziell Zellen enthaltenden Probe
GB2550199B (en) * 2016-05-13 2021-12-22 Micromass Ltd Enclosure for Ambient Ionisation Ion Source
EP3998624A4 (de) * 2019-07-10 2023-03-29 Hitachi High-Tech Corporation Massenspektrometer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634864A (en) * 1983-10-27 1987-01-06 Atom Sciences, Inc. Ultrasensitive method for measuring isotope abundance ratios
DE4232509A1 (de) * 1992-09-29 1994-03-31 Holstein & Kappert Maschf Verfahren zur Bestimmung von Kontaminaten in Behältern
EP0921393A2 (de) * 1997-12-06 1999-06-09 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren zum Nachweis von Substanzen und Substanzklassen mittels REMPI-TOFMS
WO1999038185A2 (en) * 1998-01-23 1999-07-29 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
EP0964427A2 (de) * 1998-06-12 1999-12-15 Hewlett-Packard Company Matrixunterstützte Atmosphärendrucklaserdesorptions- und Ionisationsvorrichtung und Analyseverfahren (MALDI)
US6107625A (en) * 1997-05-30 2000-08-22 Bruker Daltonics, Inc. Coaxial multiple reflection time-of-flight mass spectrometer
EP1096546A2 (de) * 1999-10-26 2001-05-02 Mitsubishi Heavy Industries, Ltd. Verfahren und Vorrichtung zur Laseranalyse von Dioxinen
WO2001033605A2 (en) * 1999-10-29 2001-05-10 Rijksuniversiteit Groningen Atmospheric pressure photoionization (appi): a new ionization method for liquid chromatography-mass spectrometry
US20020179832A1 (en) * 1994-07-11 2002-12-05 Fischer Steven M. Ion sampling for APPI mass spectrometry
EP1274117A2 (de) * 2001-07-05 2003-01-08 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren und Vorrichtung zum Nachweis der chemischen Zusammensetzung von Aerosolpartikeln
US20030052268A1 (en) * 2001-09-17 2003-03-20 Science & Engineering Services, Inc. Method and apparatus for mass spectrometry analysis of common analyte solutions
US20030075679A1 (en) * 2001-10-16 2003-04-24 Syage Jack A. Photoionization mass spectrometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988879A (en) * 1987-02-24 1991-01-29 The Board Of Trustees Of The Leland Stanford Junior College Apparatus and method for laser desorption of molecules for quantitation
KR100251645B1 (ko) * 1997-03-21 2000-04-15 윤종용 반도체 공정용 가스 평가장치에 결합되는 샘플가스 분배 장치 및 구동방법
US7329864B2 (en) * 2005-09-12 2008-02-12 Yang Wang Mass spectrometry with multiple ionization sources and multiple mass analyzers

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634864A (en) * 1983-10-27 1987-01-06 Atom Sciences, Inc. Ultrasensitive method for measuring isotope abundance ratios
DE4232509A1 (de) * 1992-09-29 1994-03-31 Holstein & Kappert Maschf Verfahren zur Bestimmung von Kontaminaten in Behältern
US20020179832A1 (en) * 1994-07-11 2002-12-05 Fischer Steven M. Ion sampling for APPI mass spectrometry
US6107625A (en) * 1997-05-30 2000-08-22 Bruker Daltonics, Inc. Coaxial multiple reflection time-of-flight mass spectrometer
EP0921393A2 (de) * 1997-12-06 1999-06-09 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren zum Nachweis von Substanzen und Substanzklassen mittels REMPI-TOFMS
WO1999038185A2 (en) * 1998-01-23 1999-07-29 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
EP0964427A2 (de) * 1998-06-12 1999-12-15 Hewlett-Packard Company Matrixunterstützte Atmosphärendrucklaserdesorptions- und Ionisationsvorrichtung und Analyseverfahren (MALDI)
EP1096546A2 (de) * 1999-10-26 2001-05-02 Mitsubishi Heavy Industries, Ltd. Verfahren und Vorrichtung zur Laseranalyse von Dioxinen
WO2001033605A2 (en) * 1999-10-29 2001-05-10 Rijksuniversiteit Groningen Atmospheric pressure photoionization (appi): a new ionization method for liquid chromatography-mass spectrometry
EP1274117A2 (de) * 2001-07-05 2003-01-08 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren und Vorrichtung zum Nachweis der chemischen Zusammensetzung von Aerosolpartikeln
US20030052268A1 (en) * 2001-09-17 2003-03-20 Science & Engineering Services, Inc. Method and apparatus for mass spectrometry analysis of common analyte solutions
US20030075679A1 (en) * 2001-10-16 2003-04-24 Syage Jack A. Photoionization mass spectrometer

Also Published As

Publication number Publication date
US20080296485A1 (en) 2008-12-04
WO2005117062A3 (de) 2006-12-28
DE102004025841A1 (de) 2005-12-15
WO2005117062A2 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2005117062A2 (de) Verfahren und vorrichtung zur massenspektroskopischen untersuchung von analyten
EP1200984B1 (de) Verfahren und vorrichtung zur clusterfragmentation
DE102004002729B4 (de) Ionisierung desorbierter Analytmoleküle bei Atmosphärendruck
DE69729176T2 (de) Verfahren zur Reduzierung von ausgewählten Ionenströmen in räumlich begrenzten Ionenstrahlen
EP0503748B1 (de) Verfahren zum Erzeugen von Ionen, insbesondere für ein Massenspektrometer, wie Flugzeitmassenspektrometer, aus thermisch instabilen, nichtflüchtigen grossen Molekülen
DE10392706B4 (de) Schnelle Kombinations-Mehrfachmodus-Ionisierungsquelle für Massenspektrometer
DE19608963C2 (de) Verfahren zur Ionisierung schwerer Moleküle bei Atmosphärendruck
DE19652021B4 (de) Ionen-Quelle und Ionisationsverfahren
DE102005044307B4 (de) Ionisierung desorbierter Moleküle
DE112005000720B4 (de) Verfahren und Vorrichtung zur Ionenfragmentierung durch Elektroneneinfang
DE102007015542A1 (de) Verfahren und Vorrichtung zur Oberflächendesorptionsionisierung durch geladene Partikel
DE69919325T3 (de) Spektrometer mit gepulster Ionenquelle, Kopplungsvorrichtung zur Dämpfung der Ionenbewegung, und Methode zur Verwendung derselben
DE102005041655B4 (de) Erzeugung mehrfach geladener Ionen für die Tandem Massenspektrometrie
DE102016124889B4 (de) Massenspektrometer mit Lasersystem zur Erzeugung von Photonen verschiedener Energie
DE102018009115B4 (de) Massenspektrometer
DE102017000240A1 (de) IRMS-Probenaufgabesystem und -Verfahren
DE19911801C1 (de) Verfahren und Vorrichtung zur matrixunterstützten Laserdesorptions-Ionisierung von Substanzen
EP0112858B1 (de) Verfahren und einrichtung zum erzeugen von molekularstrahlen und verwendung dieses verfahrens
DE102021105327B3 (de) Desorptions-Ionenquelle mit Postdesorptions-Ionisierung in Transmissionsgeometrie
DE102008048085B4 (de) Unterscheidung von Enantiomeren mit Hilfe der breitbandigen Femtosekunden-Circulardichroismus-Massenspektrometrie
DE102020120394B4 (de) Desorptions-Ionenquelle mit Dotiergas-unterstützter Ionisierung
DE2048862A1 (de) Vorrichtung zur spektralphotometri sehen Analyse
GB2434250A (en) Method and device for mass spectrometry examination of analytes
DE102005040401A1 (de) Ionenquelle mit einstellbarem Ionenquellendruck, die ESI-, FI-, FD-, LIFDI- und MALDI-Elemente kombiniert sowie hybride Zwischenübergänge zwischen den Ionisierungstechniken für die Massenspektrometrie und die Elektronen-Spin-Resonanz-Spektrometrie
DE102016113771B4 (de) Analysevorrichtung für gasförmige Proben und Verfahren zum Nachweis von Analyten in einem Gas

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8127 New person/name/address of the applicant

Owner name: SCHMITZ, OLIVER, DR., 40211 DUESSELDORF, DE

Owner name: GOEB, SIEGMAR, PROF.DR., 50733 KOELN, DE

Owner name: CONSTAPEL, MARC, 58256 ENNEPETAL, DE

Owner name: BROCKMANN, KLAUS-JOSEF, 42657 SOLINGEN, DE

Owner name: GIESE, RONALD, 42119 WUPPERTAL, DE

Owner name: BENTER, THORSTEN, 42781 HAAN, DE

8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: BRUKER DALTONIK GMBH, 28359 BREMEN, DE

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee