DE10018253C2 - Laser-Mikro-Dissektionsgerät - Google Patents

Laser-Mikro-Dissektionsgerät

Info

Publication number
DE10018253C2
DE10018253C2 DE10018253A DE10018253A DE10018253C2 DE 10018253 C2 DE10018253 C2 DE 10018253C2 DE 10018253 A DE10018253 A DE 10018253A DE 10018253 A DE10018253 A DE 10018253A DE 10018253 C2 DE10018253 C2 DE 10018253C2
Authority
DE
Germany
Prior art keywords
laser
laser beam
optical axis
wedge plates
glass wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10018253A
Other languages
English (en)
Other versions
DE10018253A1 (de
Inventor
Albrecht Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems Wetzlar GmbH
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE10018253A priority Critical patent/DE10018253C2/de
Application filed by Leica Microsystems Wetzlar GmbH, Leica Microsystems CMS GmbH filed Critical Leica Microsystems Wetzlar GmbH
Priority to PCT/DE2001/001227 priority patent/WO2001078937A1/de
Priority to EP01929282A priority patent/EP1276586B1/de
Priority to US10/257,673 priority patent/US7035004B2/en
Priority to DE50107051T priority patent/DE50107051D1/de
Priority to AU2001256129A priority patent/AU2001256129A1/en
Priority to JP2001576225A priority patent/JP3996773B2/ja
Priority to TW090108758A priority patent/TW486566B/zh
Publication of DE10018253A1 publication Critical patent/DE10018253A1/de
Application granted granted Critical
Publication of DE10018253C2 publication Critical patent/DE10018253C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • G01N2001/2833Collecting samples on a sticky, tacky, adhesive surface
    • G01N2001/284Collecting samples on a sticky, tacky, adhesive surface using local activation of adhesive, i.e. Laser Capture Microdissection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • G01N2001/2886Laser cutting, e.g. tissue catapult

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)
  • Laser Beam Processing (AREA)

Description

Die Erfindung betrifft ein Laser-Mikro-Dissektionsgerät mit den Merkmalen des Oberbegriffs des Anspruchs 1 und dessen Verwendung.
Bekannte Geräte zur Laser-Mikrodissektion umfassen eine Auflicht- Einrichtung, in deren Strahlengang ein UV-Laserstrahl eingekoppelt wird. Das UV-Laserlicht wird durch den Auflichtstrahlengang geführt und durch ein Mikroskop-Objektiv auf ein Präparat fokussiert, das auf einem motorisch verfahrbaren Mikroskoptisch (Scanningtisch) aufliegt. Die mit dem UV- Laserlicht erzeugte hohe Energiedichte in dem Fokus wird dazu benutzt, im Präparat zu schneiden (= zu dissektionieren). Eine Schnittlinie wird dadurch erzielt, dass beim Schneiden der Mikroskoptisch verfahren wird, um das Präparat relativ zu dem feststehenden Laserstrahl zu bewegen. In der Regel arbeitet man mit gepulsten Lasern. Dabei entsteht durch einen Laserpuls ein kleines Loch in dem Präparat. Eine Schnittlinie entsteht durch passendes Aneinanderreihen solcher Löcher. Dazu muss der Mikroskoptisch insbesondere bei stark vergrößernden Objektiven eine hohe Positioniergenauigkeit besitzen, um präzise Schnitte zu ermöglichen. Solche Mikroskoptische sind teuer.
Beim Bewegen des Präparats um den Schneidpunkt des Laserstrahls erscheint dem Beobachter auch das Bild bewegt. Insbesondere störend ist dies, wenn die Beobachtung mit einer langsamen Kamera und einem Monitor erfolgt. Das Monitorbild verschwimmt dann und zeigt ruckartige Veränderungen. Es wäre daher aus Anwendersicht günstiger, beim Schneiden den Mikroskoptisch und damit das Präparat feststehen zu lassen.
Wenn jedoch der Mikroskoptisch feststeht, muss der Laserstrahl über das feststehende Präparat bewegt werden. Um den Laserstrahl über ein bestimmtes Feld auf dem Präparat führen zu können, muss der in das Objektiv einfallende Laserstrahl unter sich ändernden Winkeln in die Objektivpupille eintreten. Diese Winkeländerung muss mittels einer Scan- Einrichtung in x- und y-Richtung realisiert werden.
Solche Scan-Einrichtungen sind beispielsweise Spiegelscanner, Galvanometerscanner oder Schrittmotorscanner, wie sie in Scanning Optical Mikroskopen verwendet werden. Die Scan-Einrichtung muss jeweils in einer zu der Objektivpupille konjugierten Ebene angeordnet werden. Dazu ist ein sogenannte Pupillenabbildung erforderlich, da sonst der abgelenkte Strahl die Objektivpupille nicht trifft.
Der Nachteil dieser bekannten Scan-Einrichtungen besteht genau darin, dass sie diese Pupillenabbildung benötigen. Bei der Mikro-Dissektion mit UV- Laserlicht wäre eine UV-taugliche Pupillenabbildung erforderlich. Bei einer Anordnung mit einer Pupillenabbildung muss eine Reihe von Funktionseinheiten, wie z. B. die Apertur-Begrenzungs-Einrichtung, die Offset- Optik aus zwei verschiebbaren Linsen, spezielle Graufilter etc., zwischen der Scan-Einrichtung und dem Laser angeordnet werden. Dadurch erreichen solche Systeme eine große Baulänge und benötigen viel Platz. Außerdem sind bekannte Scan-Einrichtungen einschließlich der Ansteuerelektronik sehr teuer.
Es ist weiterhin bekannt, dass man einen Laserstrahl ablenken kann, indem man eine Glas-Keilplatte in den Strahlengang bringt. Die Ablenkung ist dann etwa halb so groß wie der Keilwinkel zwischen den Außenflächen der Keilplatte. Bekannt ist auch, dass durch Kombination von 2 Keilplatten, die unabhängig voneinander um die optische Achse gedreht werden können, variable Ablenkungen erzielt werden. Da die Ablenkeinrichtung die Mikroskop- Abbildung nicht stören soll, muss sie in dem Beleuchtungsstrahlengang, also in einem bestimmten Abstand, vor dem Objektiv angeordnet sein. Um den Laserstrahl auf den Rand des Objektfeldes richten zu können, muss der Laserstrahl unter einem kleinen Winkel (ca. 5°) schräg zur optischen Achse und möglichst mittig in das Objektiv eintreten. Wird jedoch mit einer Glaskeilplatte eine Laserstrahl-Ablenkung um diesen Winkel erzeugt, so trifft der Laserstrahl nicht mehr die hintere Objektiv-Öffnung, sondern trifft außerhalb auf.
Die WO 98/14816 beschreibt ein inverses Mikroskop mit einem eingekoppeltem Laserstrahl für laserstrahlgestützte Mikroskopie- Anwendungen. Eine Laserstrahl-Ablenkeinrichtung besteht aus einer Kombination aus Linsen und Spiegeln und erlaubt eine dreidimensionale Positionierung des Laser-Spots. Mit zwei drehbaren Keil-Prismen wird die Winkel-Ablenkung des Laserstrahls erzeugt. Mit justierbaren Spiegeln wird der Einfallswinkel des Laserstrahls gegenüber der optischen Achse des Objektivs eingestellt. Diese Justierung ist sehr aufwendig.
Es ist daher Aufgabe der vorliegenden Erfindung, ein kompaktes, einfach aufgebautes und preiswertes Laser-Mikro-Dissektionsgerät anzugeben, das keine Pupillenabbildung benötigt und die Nachteile des Standes der Technik vermeidet.
Diese Aufgabe wird gelöst durch ein Laser-Mikro-Dissektionsgerät mit einem Mikroskoptisch, der ein zu schneidendes Präparat trägt, und einer Auflicht-Einrichtung, einer Laserlichtquelle und einem Mikroskop-Objektiv zum Fokussieren des Laserlichts der Laserlichtquelle auf das Präparat, wobei
  • a) der Mikroskoptisch bezüglich der x-y-Richtung beim Schneiden feststehend angeordnet ist,
  • b) in der Auflicht-Einrichtung eine Laser-Scan-Einrichtung angeordnet ist, die aus zwei dicken, gegen die optische Achse geneigten und unabhängig von einander um die optische Achse drehbaren Glas-Keilplatten besteht, welche durch ihre Keilwinkel eine Strahlablenkung erzeugen, wobei durch die Drehung der Glas- Keilplatten der resultierende Ablenkwinkel α des Laserstrahls gegenüber der optischen Achse variabel ist,
  • c) und wobei die Glaskeilplatten so konstruiert sind, dass der Laserstrahl am Ausgang der Scan-Einrichtung durch die Dicke und die Schrägstellung der Glas-Keilplatten einen seitlichen Strahlversatz Δ gegenüber der optischen Achse aufweist, so dass für alle Ablenkwinkel α die Mitte der Objektiv-Pupille des Objektivs getroffen wird.
Die technische Besonderheit besteht in der Ausgestaltung und räumlichen Anordnung der beiden Keilplatten.
Es sind zwar bereits optische Einheiten bekannt, mit denen man eine Strahlablenkung erzeugen kann. So wäre es denkbar, eine Strahlablenkung des Laserstrahls im Bereich der Auflicht-Einrichtung zu realisieren, indem der Laserstrahl entweder eine optische Einheit aus zwei gegeneinander verschiebbaren Linsen (sogenannter Abat'scher Keil) oder eine optische Einheit aus zwei gegeneinander verdrehbaren, dünnen Glas-Keilen durchtritt. Diese optischen Einheiten haben jedoch den Nachteil, dass der Laserstrahl ausschließlich eine Strahlablenkung erfährt und dann außerhalb der Pupille des Objektivs auftrifft. Damit erreicht er nicht mehr das zu schneidende Präparat. Anordnungen mit den genannten optischen Einheiten eignen sich daher nicht zum Einsatz als Laser-Scan-Einrichtung.
Ein erfindungsgemäßes Laser-Mikro-Dissektionsgerät weist daher im Laserstrahlengang eine Laser-Scan-Einrichtung auf, die aus zwei dicken Glas-Keilplatten besteht. Die beiden Glas-Keilplatten können beispielsweise den gleichen Keilwinkel und unterschiedliche Dicken sowie unterschiedliche Neigungen gegenüber der optischen Achse aufweisen. Andere Ausführungsformen der beiden Keilplatten sind denkbar.
Jede Keilplatte erzeugt durch ihren Keilwinkel, wie bekannt, einen Anteil zur gesamten Strahlablenkung des Laserstrahls. (Als Keilwinkel bezeichnet man die Winkeldifferenz zwischen der vorderen Begrenzungsfläche und der hinteren Begrenzungsfläche einer Glas-Keilplatte.) Die beiden Anteile zur gesamten Strahlablenkung addieren sich vektoriell. Durch von einander unabhängige Drehung der beiden Keilplatten um die optische Achse ändern sich die Richtungen der beiden Anteile an der Strahlablenkung. Die beiden Anteile an der Strahlablenkung addieren sich vektoriell zu einer gesamten Strahlablenkung mit einem Ablenkwinkel α des Laserstrahl gegenüber der optischen Achse. Dadurch wird die insgesamt erzeugte Strahlablenkung des Laserstrahls so variiert, dass der Laserstrahl über das zu schneidende Präparat geführt wird.
Die Drehung der Glas-Keilplatten verursacht zugleich eine Änderung des Strahlversatzes am Ausgang der Scan-Einrichtung. Durch diese Änderung des Strahlversatzes wird die seitliche Ablage des Laserstrahls kompensiert, die in der Ebene der Objektiv-Pupille durch die Strahlablenkung erzeugt wird. Dadurch durchtritt der Laserstrahl die Pupille des Objektivs stets unverändert in der Mitte - unabhängig vom erzeugten Ablenkwinkel α.
Durch geeignete Ansteuerung der Drehbewegung der Keilplatten können beliebige Ablenkwinkel α und damit beliebig geformte Schnittlinien erzeugt werden. Bei Parallel-Stellung der beiden Keilplatten entsteht ein maximaler Ablenkwinkel α, bei einer antiparallelen Anordnung ein Ablenkwinkel α = 0 (d. h. der Laserstrahl trifft das Präparat auf der optischen Achse). Mit Vorteil werden die Keilwinkel der beiden Keilplatten so groß gewählt, dass bei einem maximalen Ablenkwinkel α der Laserstrahl bis zum Sehfeldrand ausgelenkt wird.
Mit dem erfindungsgemäßen Laser-Mikro-Dissektionsgerät ist es möglich, das zu schneidende Präparat ortsfest zu lassen und den Laser-Schneidpunkt mit geringem technischem Aufwand über das Präparat zu bewegen. Zugleich ist der erfindungsgemäße Aufbau der Laser-Scan-Einrichtung aus zwei dicken, geneigten, drehbaren Keilplatten wesentlich einfacher und preiswerter als bekannte Strahlscanner. In dem erfindungsgemäßen Laser-Mikro- Dissektionsgerät kann auf einen teuren motorischen xy-Tisch (Scanningtisch) verzichtet werden, denn die Schnittqualität ist unabhängig von der Positioniergenauigkeit des Mikroskoptisches. Als Laserlichtquelle kann ein Laser im ultravioletten (UV) oder infraroten (IR) oder im sichtbaren (VIS) Spektralbereich verwendet werden.
Trifft der von der Laser-Scan-Einrichtung abgelenkte Laserstrahl ein Objektiv, so ist bekanntlich für alle Objektivvergrößerungen die Auslenkung im Objekt proportional zur Objektivvergrößerung. Ist der maximale Ablenkwinkel α gerade so groß, dass der Laserstrahl bis zum Sehfeldrand abgelenkt wird, so gilt dies für alle Objektive unabhängig von deren Vergrößerung. Das bedeutet, dass die Ortsauflösung der Laser-Scan-Einrichtung im Sehfeld für alle Objektive gleich ist. Zum Durchfahren einer Schnittlinie über das gesamte Sehfeld werden für alle Objektive die gleichen Winkeleinstellungen der beiden Keile nacheinander angefahren.
Hier liegt der große Vorteil des erfindungsgemäßen Laser-Mikro- Dissektionsgerätes mit der beschriebenen Laser-Scan-Einrichtung gegenüber einem vorbekannten Laser-Mikro-Dissektionsgerät, das mit einem feststehenden Laserstrahl und einem bewegten xy-Tisch arbeitet. Bei einem bewegten xy-Tisch muss dessen Positionierung mit zunehmender Objektivvergrößerung und damit kleinere Schnittbreite im Objekt immer genauer erfolgen.
Im Gegensatz dazu führt bei der erfindungsgemäßen Laser-Scan-Einrichtung eine gegebene Winkelauflösung für die Keildrehung bei schwachen Objektiven mit größerer Schnittbreite automatisch zu einer größeren Schrittweite im Objekt als bei starken Objektiven mit kleiner Schnittbreite.
Die Tatsache, dass der Mikroskoptisch während des Schneidvorgangs feststeht, hat zusätzlich den Vorteil, dass der Benutzer während des Schneidvorgangs das Präparat beobachten und kontrollieren kann. So kann er auch während eines laufenden Schneidvorgangs bereits gleichzeitig die nächste gewünschte Schnittlinie auswählen.
Ein weiterer Vorteil des Geräts besteht darin, dass keine Pupillenabbildung erforderlich ist und sämtliche Funktionseinheiten, wie z. B. die Apertur- Begrenzungs-Einrichtung, die Offset-Optik aus zwei verschiebbaren Linsen, spezielle Graufilter etc., in einen kompakten Mikroskop-Strahlengang integriert werden können. Dadurch besitzt das erfindungsgemäße Gerät einen sehr kompakten Aufbau.
In einer vorteilhaften Ausführungsform des Laser-Mikro- Dissektionsgeräts wird die Drehung der Glas-Keilplatten motorisch durchgeführt. Dazu ist jeder Glas-Keilplatte ein Motor, beispielsweise ein Schrittmotor, zur Drehung der Glas-Keilplatte um die optische Achse zugeordnet. Die Motoren erhalten ihre Steuersignale von einer Motorsteuerung. Die Positioniergenauigkeit der Schrittmotoren, die am günstigsten im Mikro-Schritt-Betrieb angesteuert werden, bestimmt dann auch die Positioniergenauigkeit des Laserstrahls auf dem Präparat.
In einer anderen vorteilhaften Ausführungsform des Laser-Mikro-Dissektionsgeräts wird die Drehung der Glas-Keilplatten ebenfalls motorisch durchgeführt. Zusätzlich ist ein Rechner mit einer Maus und einem Monitor vorgesehen. Der Rechner ist mit der Motorsteuerung und der Laserlichtquelle verbunden. Weiterhin ist eine Kamera vorgesehen, die ein Bild des Präparats aufnimmt, welches auf dem Monitor dargestellt wird. Bei Verwendung dieser Ausführungsform ist es möglich einen Laserschnitt im Präparat zu erzeugen, indem folgende Verfahrensschritte vorgenommen werden:
  • a) Definieren einer Schnittlinie mittels der Maus auf dem Monitor,
  • b) rechnerische Zerlegung der Schnittlinie in eine Reihe von aneinandergrenzenden Schnittlöchern, deren Mittelpunkte den während des Schneidvorgangs auf dem Präparat einzunehmenden Soll-Positionen des Laserstrahls entsprechen,
  • c) Berechnung des Ablenkwinkels α des Laserstrahls zu jeder einzelnen einzunehmenden Position und Berechnung der zugeordneten Drehstellungen der Glas-Keilplatten,
  • d) Erzeugen der Steuersignale für die motorische Drehung der Glas- Keilplatten,
  • e) und Erzeugen der definierten Schnittlinie durch Ablenken des Laserstrahls in die berechneten Soll-Positionen durch Drehen der Glas-Keilplatten.
Da die angegebene Laser-Scan-Einrichtung eine sehr exakte Führung des abgelenkten Laserstrahls erlaubt, sind auch andere Verwendungen des erfindungsgemäßen Laser-Mikro-Dissektionsgerätes möglich. So kann beispielsweise der von der Laser-Scan-Einrichtung abgelenkte Laserstrahl zur Materialbearbeitung angewendet werden.
Ferner kann der abgelenkte Laserstrahl computergesteuert geführt und mit ihm Oberflächen beschriftet werden.
Des weiteren kann das erfindungsgemäße Laser-Mikro-Dissektionsgerät als optische Pinzette verwendet werden, indem mit dem abgelenkten Laserstrahl einzelne Partikel erfasst und transportiert werden.
Das Laser-Mikro-Dissektionsgerät wird anhand eines Ausführungsbeispiels mit Hilfe der schematischen Zeichnung näher erläutert. Es zeigen:
Fig. 1 ein erfindungsgemäßes Laser-Mikro-Dissektionsgerät;
Fig. 2a Strahlenverlauf des Laserstrahls bei Parallelstellung der Glas- Keilplatten;
Fig. 2b Strahlenverlauf des Laserstrahls bei Anti-Parallelstellung der Glas- Keilplatten;
In den verschiedenen Figuren werden gleiche Komponenten mit den gleichen Bezugsziffern bezeichnet.
Fig. 1 zeigt ein erfindungsgemäßes Laser-Mikro-Dissektionsgerät. Das Laser- Mikro-Dissektionsgerät weist einen Mikroskoptisch 1 auf, auf dem eine Präparat-Halterung 2 angeordnet ist, die einen Objektträger 3a trägt, an dessen Unterseite sich ein zu schneidendes Präparat 3 befindet. Unter dem Mikroskoptisch 1 ist ein Kondensor 4 angeordnet, durch den das Präparat 3 beleuchtet wird. Der Mikroskoptisch 1 wird während des nachfolgend beschriebenen Schneidvorgangs horizontal, also in x-Richtung und in y- Richtung, nicht verfahren.
Von einer Laserlichtquelle 5, die hier als UV-Laserlichtquelle ausgelegt ist, geht ein Laserstrahl aus, der über einen ersten Umlenkspiegel 6a in eine Auflicht-Einrichtung 7 mit einer optischen Achse 8 eingekoppelt wird. In der Auflicht-Einrichtung 7 ist eine Laser-Scan-Einrichtung 9 angeordnet. Der Laserstrahl 18 durchläuft die Laser-Scan-Einrichtung 9 und gelangt über einen zweiten Umlenkspiegel 6b zu einem Objektiv 10, das den Laserstrahl auf das Präparat 3 fokussiert. Der Umlenkspiegel 6b ist mit Vorteil als dichromatischer Teiler ausgeführt, durch den ein von dem Präparat 3 durch das Objektiv 10 ausgehende Abbildungsstrahlengang 20 zu einem Tubus 22 und Okularen 24 gelangt.
Die Laser-Scan-Einrichtung 9 besteht aus zwei dicken Glas-Keilplatten 11a, 11b, die gegen die optische Achse 8 geneigt und unabhängig von einander um die optische Achse 8 drehbar sind. Dazu sind die Keilplatten 11a, 11b mit Kugellagern 12 gelagert. Die Keilplatte 11a ist mit einem Zahnrad 13a und die Keilplatte 11b ist mit einem Zahnrad 13b fest verbunden. Die Drehung der Keilplatten 11a, 11b erfolgt mittels zweier zugeordneter Schrittmotoren 14a, 14b, wobei der Schrittmotor 14a an dem Zahnrad 13a und der Schrittmotor 14b an dem Zahnrad 13b angreift.
Die beiden Schrittmotoren 14a, 14b sind mit einer Schrittmotor- Steuerungseinheit 15 verbundenen, welche die Steuersignale zur Ansteuerung der beiden Schrittmotoren 14a, 14b liefert. Die Schrittmotorsteuerung ist mit einem Rechner 26 verbunden, an den ein Monitor 28 angeschlossen ist. Auf dem Monitor 28 wird das von einer Kamera 16 aufgenommene Bild des Präparats 3 dargestellt. Auf dem Monitor 28 kann mittels einer Rechner-Maus (nicht dargestellt) eine Schnittlinie definiert werden. Der Rechner 26 ist außerdem mit der Laserlichtquelle 5 verbunden und liefert diesem Triggersignale zum Auslösen von Laserpulsen, wenn die Glas-Keilplatten 11a, b durch die Schrittmotoren 14a, b in die Sollposition für die Schrittlinie gebracht wurden.
Durch Drehung der beiden Glas-Keilplatten 11a, 11b erscheint der Laserstrahl am Ausgang der Laser-Scan-Einrichtung 9 unter verschiedenen Ablenkwinkeln und durchläuft das Objektiv 10 jeweils durch die Mitte der Objektiv-Pupille. Dabei kann der Laserstrahl durch Variation des Ablenkwinkels auf beliebige Positionen auf dem Präparat 3 geführt werden, die innerhalb des Sehfeldes des Objektivs 10 liegen. Durch geeignete Ansteuerung der Drehung der beiden Glas-Keilplatten 11a, 11b kann auf dem Präparat 3 eine Schnittlinie erzeugt werden. Der ausgeschnittene Teil des Präparats 3 fällt durch die rahmenförmige Aussparung in der Präparat- Halterung 2 in ein Auffanggefäß 17, das unterhalb des Präparats 3 auf dem Mikroskoptisch 1 angeordnet ist.
Der Strahlenverlauf des Laserstrahls in der Laser-Scan-Einrichtung 9 wird in den Fig. 2a und 2b verdeutlicht. Gezeigt wird die schematische Anordnung von zwei Glas-Keilplatten 11a, 11b in einer Laser-Scan-Einrichtung 9. In Fig. 2b ist zur Verdeutlichung der Keilwinkel β einer der beiden Glas-Keilplatten (11a, 11b) dargestellt. Als Keilwinkel β bezeichnet man die Winkeldifferenz zwischen der vorderen Begrenzungsfläche und der hinteren Begrenzungsfläche der Glas-Keilplatte (11a, 11b).
Von einer Laserlichtquelle 5 geht auf einer optischen Achse 8 ein Laserstrahl 18 aus, der auf die Keilplatten 11a, 11b gerichtet ist. An jeder Glas-Keilplatte 11a, 11b erfährt der Laserstrahl 18 durch ihren jeweiligen Keilwinkel eine Strahlablenkung. Damit ergibt sich nach Durchlaufen beider Glas-Keilplatten 11a, 11b insgesamt ein Ablenkwinkel α.
Zusätzlich wird durch die Dicke und die Neigung der Glas-Keilplatten 11a, 11b an jeder der beiden Glas-Keilplatten 11a, 11b ein Strahlversatz des Laserstrahles 18 erzeugt. Dadurch weist der Laserstrahl 18 nach Durchlaufen beider Glas-Keilplatten 11a, 11b insgesamt einen Strahlversatz Δ auf, der so groß ist, daß der Laserstrahl 18 stets durch die Mitte einer Objektiv-Pupille 19 eines nicht weiter dargestellten Objektivs 10 hindurchtritt.
Fig. 2a zeigt die beiden Glas-Keilplatten 11a, 11b in Parallelstellung. Dabei wird der größte Ablenkwinkel α und der größte Strahlversatz Δ erzeugt. Fig. 2b zeigt die beiden Glas-Keilplatten 11a, 11b in Anti-Parallelstellung. Dabei wird keine Strahlablenkung, d. h. ein Ablenkwinkel α = 0, und auch kein Strahlversatz, d. h. Δ = 0, erzeugt.
Der Strahlversatz Δ ist für alle Ablenkwinkel α gerade so groß, dass er die seitliche Ablage des abgelenkten Strahls in der Pupillenebene gerade kompensiert, so dass der Laserstrahl für alle Ablenkwinkel Δ die Mitte der Objektivpupille 19 trifft.
Indem die beiden Keilplatten 11a, 11b um die optische Achse 8 gedreht werden, werden die Strahlablenkung und der Strahlversatz des Laserstrahls 18 so variiert, dass der Laserstrahl 18 bei allen eingestellten Ablenkwinkeln α die Objektiv-Pupille 19 stets in der Mitte durchtritt, so dass der Laserstrahl 18 über das zu schneidende Präparat 3 geführt wird.

Claims (8)

1. Laser-Mikro-Dissektionsgerät mit
einem Mikroskoptisch (1), der ein zu schneidendes Präparat (3) trägt,
und einer Auflicht-Einrichtung (7) mit einer optischen Achse (8),
einer Laserlichtquelle (5) zur Erzeugung eines Laserstrahls (18),
und einem Mikroskop-Objektiv (10) zum Fokussieren des Laserstrahls (18) auf das Präparat (3),
dadurch gekennzeichnet,
  • a) dass der Mikroskoptisch (1) bezüglich der x-Richtung und der y- Richtung beim Schneiden feststehend angeordnet ist,
  • b) und dass in der Auflicht-Einrichtung (7) eine Laser-Scan- Einrichtung (9) angeordnet ist, die aus zwei dicken, gegen die optische Achse (8) geneigten und unabhängig von einander um die optische Achse (8) drehbaren Glas-Keilplatten (11a, 11b) besteht, welche durch ihre Keilwinkel eine Strahlablenkung erzeugen, wobei durch die Drehung der Glas-Keilplatten (11a, 11b) der resultierende Ablenkwinkel α des Laserstrahls (18) gegenüber der optischen Achse (8) variabel ist,
  • c) und dass die Glas-Keilplatten (11a, 11b) so konstruiert sind, dass der Laserstrahl (18) am Ausgang der Laser-Scan-Einrichtung (9) durch die Dicke und die Schrägstellung der Glas-Keilplatten (11a, 11b) einen seitlichen Strahlversatz Δ gegenüber der optischen Achse (8) aufweist, so dass für alle Ablenkwinkel α die Mitte der Objektiv-Pupille (19) des Objektivs (10) getroffen wird.
2. Laser-Mikro-Dissektionsgerät nach Anspruch 1, dadurch gekennzeichnet, dass die Laserlichtquelle (5) ein UV-Laser oder ein IR-Laser oder ein VIS-Laser ist.
3. Laser-Mikro-Dissektionsgerät nach Anspruch 1, dadurch gekennzeichnet,
  • a) dass jeder Glas-Keilplatte (11a, 11b) ein Motor (14a, 14b) zur Drehung der Glas-Keilplatte (11a, 11b) um die optische Achse (8) zugeordnet ist und
  • b) dass den Motoren (14a, 14b) eine Motorsteuerung (15) zugeordnet ist.
4. Laser-Mikro-Dissektionsgerät nach Anspruch 1, dadurch gekennzeichnet,
  • a) dass jeder Glas-Keilplatte (11a, 11b) ein Motor (14a, 14b) zur Drehung der Glas-Keilplatten (11a, 11b) um die optische Achse (8) zugeordnet ist,
  • b) dass den Motoren (14a, 14b) eine Motorsteuerung (15) zugeordnet ist,
  • c) dass ein Rechner (26) mit einer Maus und einem Monitor (28) vorgesehen ist, wobei der Rechner (26) mit der Motorsteuerung (15) und der Laserlichtquelle (5) verbunden ist,
  • d) dass eine Kamera (16) vorgesehen ist, die ein Bild des Präparats (3) aufnimmt, welches auf dem Monitor (28) dargestellt wird.
5. Verwendung eines Laser-Mikro-Dissektionsgeräts nach Anspruch 4, wobei folgende Verfahrensschritte ausgeführt werden:
  • a) Definieren einer Schnittlinie mittels der Maus auf dem Monitor (28),
  • b) rechnerische Zerlegung der Schnittlinie in eine Reihe von aneinandergrenzenden Schnittlöchern, deren Mittelpunkte den während des Schneidvorgangs auf dem Präparat (3) einzunehmenden Soll-Positionen des Laserstrahls entsprechen,
  • c) Berechnung des Ablenkwinkels α des Laserstrahls (18) zu jeder einzelnen einzunehmenden Position und Berechnung der zugeordneten Drehstellungen der Glas-Keilplatten (11a, 11b),
  • d) Erzeugen der Steuersignale für die motorische Drehung der Glas- Keilplatten (11a, 11b),
  • e) und Erzeugen der definierten Schnittlinie durch Ablenken des Laserstrahls (18) in die berechneten Soll-Positionen durch Drehen der Glas-Keilplatten (11a, 11b).
6. Verwendung eines Laser-Mikro-Dissektionsgeräts nach Anspruch 1 zur Materialbearbeitung.
7. Verwendung eines Laser-Mikro-Dissektionsgeräts nach Anspruch 4 zur Beschriftung von Oberflächen.
8. Verwendung eines Laser-Mikro-Dissektionsgeräts nach Anspruch 1 als optische Pinzette, wobei mit dem Laserstrahl einzelne Partikel erfasst und transportiert werden.
DE10018253A 2000-04-13 2000-04-13 Laser-Mikro-Dissektionsgerät Expired - Fee Related DE10018253C2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10018253A DE10018253C2 (de) 2000-04-13 2000-04-13 Laser-Mikro-Dissektionsgerät
EP01929282A EP1276586B1 (de) 2000-04-13 2001-03-29 Laser-mikro-dissektionsgerät
US10/257,673 US7035004B2 (en) 2000-04-13 2001-03-29 Laser microdissection device
DE50107051T DE50107051D1 (de) 2000-04-13 2001-03-29 Laser-mikro-dissektionsgerät
PCT/DE2001/001227 WO2001078937A1 (de) 2000-04-13 2001-03-29 Laser-mikro-dissektionsgerät
AU2001256129A AU2001256129A1 (en) 2000-04-13 2001-03-29 Laser microdissection device
JP2001576225A JP3996773B2 (ja) 2000-04-13 2001-03-29 レーザ顕微切断・処理装置
TW090108758A TW486566B (en) 2000-04-13 2001-04-12 Laser microdissection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10018253A DE10018253C2 (de) 2000-04-13 2000-04-13 Laser-Mikro-Dissektionsgerät

Publications (2)

Publication Number Publication Date
DE10018253A1 DE10018253A1 (de) 2001-10-25
DE10018253C2 true DE10018253C2 (de) 2003-08-21

Family

ID=7638553

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10018253A Expired - Fee Related DE10018253C2 (de) 2000-04-13 2000-04-13 Laser-Mikro-Dissektionsgerät
DE50107051T Expired - Lifetime DE50107051D1 (de) 2000-04-13 2001-03-29 Laser-mikro-dissektionsgerät

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50107051T Expired - Lifetime DE50107051D1 (de) 2000-04-13 2001-03-29 Laser-mikro-dissektionsgerät

Country Status (7)

Country Link
US (1) US7035004B2 (de)
EP (1) EP1276586B1 (de)
JP (1) JP3996773B2 (de)
AU (1) AU2001256129A1 (de)
DE (2) DE10018253C2 (de)
TW (1) TW486566B (de)
WO (1) WO2001078937A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207240A1 (de) 2012-05-02 2013-11-07 Leica Microsystems Cms Gmbh Laser-Mikrodissektionsgerät und -verfahren
DE102013209455A1 (de) 2012-05-24 2013-11-28 Leica Microsystems Cms Gmbh Probenfänger zum Auffangen eines Laser-Mikrodissektats
DE102017121326A1 (de) 2017-09-14 2019-03-14 Leica Microsystems Cms Gmbh Sammeleinrichtung und Verfahren zum Sammeln dissektierter oder ablatierter Proben und Mikroskop mit einer solchen Einrichtung
DE102019102852B3 (de) 2019-02-05 2020-07-02 Leica Microsystems Cms Gmbh Verfahren zur Lasermikrodissektion, Lasermikrodissektionssystem und Computerprogramm
DE102020100587A1 (de) 2020-01-13 2021-07-15 Leica Microsystems Cms Gmbh Verfahren zum Überprüfen eines Dissektiervorgangs in einem Laser-Mikrodissektionssystem und Mittel zu dessen Durchführung
DE102021114585A1 (de) 2021-06-07 2022-12-08 Leica Microsystems Cms Gmbh Mikrotiterplatte, Komponenten hierfür, Probentisch, Mikroskop und entsprechendes Verfahren
EP4112742A1 (de) 2021-06-29 2023-01-04 Leica Microsystems CMS GmbH Verfahren zur erzeugung von bereichsspezifischen amplifikationsvorlagen

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157893B4 (de) * 2001-11-26 2006-06-29 Alpha Laser Gmbh Laserbearbeitungsvorrichtung
DE10157895B4 (de) * 2001-11-26 2006-06-14 Alpha Laser Gmbh Verfahren zur relativen Positionierung und Orientierung eines Laserbearbeitungskopfes und eines Werkstücks
TWI226280B (en) * 2002-09-25 2005-01-11 Au Optronics Corp Precision notching device and method for cutting test piece
DE10261663A1 (de) * 2002-12-20 2004-07-01 Carl Zeiss Jena Gmbh Mikroskop
DE10300091A1 (de) * 2003-01-04 2004-07-29 Lubatschowski, Holger, Dr. Mikrotom
US7471450B2 (en) * 2004-10-06 2008-12-30 Northeastern University Confocal reflectance microscope system with dual rotating wedge scanner assembly
DE102004057738A1 (de) * 2004-11-26 2006-06-01 Jenoptik Laser, Optik, Systeme Gmbh Abtasteinrichtung und Verfahren zur optischen Abtastung der Oberfläche eines Objektes
US20070016177A1 (en) * 2005-07-14 2007-01-18 Boris Vaynberg Laser ablation apparatus useful for hard tissue removal
EP2166342A4 (de) 2007-07-17 2012-05-09 Nikon Corp Lichtstimulusvorrichtung und überwachungsvorrichtung
IT1400348B1 (it) * 2010-05-06 2013-05-24 Orotig S R L Apparecchiatura e metodo di saldatura laser
JP5518612B2 (ja) 2010-07-20 2014-06-11 株式会社ディスコ 光学装置およびこれを備えるレーザー加工装置
US8497138B2 (en) 2010-09-30 2013-07-30 Genetix Limited Method for cell selection
EP2594357A1 (de) * 2011-11-16 2013-05-22 Optec S.p.A. Vorrichtung und Verfahren zum Laserschweißen mit einer Refraktierelemente aufweisenden Kalibrationseinheit
DE102012218382B4 (de) * 2012-10-09 2015-04-23 Leica Microsystems Cms Gmbh Verfahren zum Festlegen eines Lasermikrodissektionsbereichs und zugehöriges Lasermikrodissektionssystem
DE102013209964B4 (de) 2013-05-28 2015-12-17 Leica Microsystems Cms Gmbh Lasermikrodissektionssystem mit Benutzerinformationseinheit und Verfahren zur Lasermikrodissektion
DE102013209880A1 (de) 2013-05-28 2014-12-04 Leica Microsystems Cms Gmbh Verfahren zur Lasermikrodissektion und Lasermikrodissektionssystem
DE102013209881A1 (de) 2013-05-28 2014-12-04 Leica Microsystems Cms Gmbh Lasermikrodissektionssystem mit Visualisierungseinrichtung, Visualisierungseinrichtung für Lasermikrodissektionssystem und Verfahren zur Lasermikrodissektion
DE102013212811A1 (de) 2013-07-01 2015-01-08 Leica Microsystems Cms Gmbh Lasermikrodissektionssystem und Untersuchungsverfahren für nukleinsäurehaltige Proben
DE102013216938B3 (de) 2013-08-26 2015-01-08 Leica Microsystems Cms Gmbh Verfahren zur Kalibrierung einer Laserablenkeinrichtung einesLasermikrodissektionssystems und Lasermikrodissektionssystem
DE102013109481A1 (de) 2013-08-30 2015-03-05 Firma Leica Microsystems CMS GmbH Lasermikrodissektionssystem und Lasermikrodissektionsverfahren
DE102013224172A1 (de) 2013-11-26 2015-05-28 Leica Microsystems Cms Gmbh Vorrichtung zur Positionierung für ein Objekt oder Objektträger
DE102013226782B4 (de) 2013-12-19 2016-06-02 Leica Microsystems Cms Gmbh Lasermikrodissektionsvorrichtung
DE102013227155A1 (de) 2013-12-24 2015-06-25 Leica Microsystems Cms Gmbh Lasermikrodissektionsverfahren und Lasermikrodissektionssystem
DE102014202860B4 (de) 2014-02-17 2016-12-29 Leica Microsystems Cms Gmbh Bereitstellen von Probeninformationen mit einem Lasermikrodissektionssystem
DE102014203747A1 (de) 2014-02-28 2015-09-03 Leica Microsystems Cms Gmbh Lasermikrodissektionssystem und Lasermikrodissektionsverfahren
DE102014203656B4 (de) 2014-02-28 2015-12-24 Leica Microsystems Cms Gmbh Lasermikrodissektionsverfahren und Verwendung eines Lasermikrodissektionssystems
GB201423398D0 (en) * 2014-12-31 2015-02-11 Isis Innovation Optical interrogation and control of dynamic biological functions
US10621411B2 (en) * 2015-01-19 2020-04-14 Leica Microsystems Cms Gmbh Method for laser microdissection
DE102015108017A1 (de) 2015-05-20 2016-11-24 Leica Microsystems Cms Gmbh Verfahren und Untersuchungssystem zur Untersuchung und Bearbeitung einer mikroskopischen Probe
DE102015108276B4 (de) 2015-05-26 2017-03-09 Leica Microsystems Cms Gmbh System zur Lasermikrodissektion und Lasermikrodissektionsverfahren
GB2543273A (en) 2015-10-12 2017-04-19 Leica Microsystems Cambridge Ltd Obtaining biological information and storing and searching biological information in a database
DE102016105946A1 (de) 2016-03-31 2017-10-05 Leica Microsystems Cms Gmbh Probenbearbeitungsanordnung mit Lasermikrodissektionssystem, Kommunikationseinrichtung und Fertigungssystem
DE102016110750A1 (de) 2016-06-10 2017-12-14 Leica Microsystems Cms Gmbh Trägermembran für die Lasermikrodissektion einer auf die Trägermembran aufgebrachten Probe, Lasermikrodissektionseinrichtung und Lasermikrodissektionsverfahren unter Verwendung einer solchen Trägermembran
DE102016111781B3 (de) 2016-06-28 2017-06-29 Leica Microsystems Cms Gmbh Kontaminationsschutzeinrichtung für ein Lasermikrodissektionssystem und Lasermikrodissektionssystem
DE102016111949B4 (de) 2016-06-30 2018-03-01 Leica Microsystems Cms Gmbh Laser-Mikroskopsystem
CN107462438B (zh) * 2017-08-01 2019-06-11 沈阳理工大学 一种转盘式作物育种激光切片自动取样机
CN108165489A (zh) * 2017-12-30 2018-06-15 宁波华仪宁创智能科技有限公司 激光显微切割装置及其工作方法
CN113102887A (zh) * 2021-04-21 2021-07-13 济南金威刻科技发展有限公司 一种全方位激光焊接生产线及其焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940881A (en) * 1989-09-28 1990-07-10 Tamarack Scientific Co., Inc. Method and apparatus for effecting selective ablation of a coating from a substrate, and controlling the wall angle of coating edge portions
WO1997006462A1 (en) * 1995-08-09 1997-02-20 Minnesota Mining And Manufacturing Company Rotating optical system for laser machining apparatus
WO1997011156A2 (en) * 1995-09-19 1997-03-27 Bova G Steven Laser cell purification system
WO1997029355A1 (de) * 1996-02-05 1997-08-14 P.A.L.M. Gmbh Verfahren und vorrichtung zur berührungslosen mikroinjektion sowie zum sortieren und zur gewinnung von planar ausgebrachten biologischen objekten mit laserstrahlen
WO1998014816A1 (en) * 1996-10-02 1998-04-09 Cell Robotics Inc. Microscope with laser port
WO1998035216A1 (en) * 1997-02-07 1998-08-13 Arcturus Engineering, Inc. Laser capture microdissection method and apparatus
DE19817851C1 (de) * 1998-04-22 1999-10-28 Lpkf Laser & Electronics Gmbh Verfahren zum Ablenken eines Laserstrahls

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083611A (en) * 1961-01-30 1963-04-02 Adrian J Ziolkowski Multi-lobar scan horizon sensor
US3626141A (en) * 1970-04-30 1971-12-07 Quantronix Corp Laser scribing apparatus
US3704949A (en) * 1970-06-22 1972-12-05 Rms Ind Inc Method and apparatus for personal identification
JPS5919798B2 (ja) * 1974-11-01 1984-05-08 株式会社日立製作所 レ−ザ加工装置
GB1521931A (en) * 1976-01-31 1978-08-16 Ferranti Ltd Optical apparatus
US4061415A (en) * 1976-07-02 1977-12-06 Sanford Research Institute Nutating radiation deflecting method and apparatus
US4407464A (en) * 1981-07-27 1983-10-04 James Linick Steering mechanism for a thermal imaging system and rangefinder therefor
DE3214268A1 (de) * 1982-04-17 1983-10-20 Fa. Carl Zeiss, 7920 Heidenheim Optisches justierelement
US4822974A (en) * 1988-02-18 1989-04-18 United Technologies Corporation Laser hold drilling system with lens and two wedge prisms including axial displacement of at least one prism
JPH02155589A (ja) * 1988-12-09 1990-06-14 Hitachi Ltd 光路調整システム
JP2765022B2 (ja) * 1989-03-24 1998-06-11 キヤノン販売株式会社 立体画像形成装置
JPH03130940A (ja) * 1989-05-24 1991-06-04 Kyocera Corp 光スポット制御方法および制御装置
NL9002827A (nl) * 1990-12-20 1992-07-16 Opticon Sensors Europ Aftastinrichting voor symboolcodes.
US5638396A (en) * 1994-09-19 1997-06-10 Textron Systems Corporation Laser ultrasonics-based material analysis system and method
US6052223A (en) * 1996-01-09 2000-04-18 Olympus Optical Co., Ltd. Microscope with chromatic aberration correcting function
DE19980326T1 (de) * 1998-01-21 2000-06-15 Renishaw Plc Strahllenkeinrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940881A (en) * 1989-09-28 1990-07-10 Tamarack Scientific Co., Inc. Method and apparatus for effecting selective ablation of a coating from a substrate, and controlling the wall angle of coating edge portions
WO1997006462A1 (en) * 1995-08-09 1997-02-20 Minnesota Mining And Manufacturing Company Rotating optical system for laser machining apparatus
WO1997011156A2 (en) * 1995-09-19 1997-03-27 Bova G Steven Laser cell purification system
WO1997029355A1 (de) * 1996-02-05 1997-08-14 P.A.L.M. Gmbh Verfahren und vorrichtung zur berührungslosen mikroinjektion sowie zum sortieren und zur gewinnung von planar ausgebrachten biologischen objekten mit laserstrahlen
WO1997029354A1 (de) * 1996-02-05 1997-08-14 Bayer Aktiengesellschaft Verfahren und vorrichtung zum sortieren und zur gewinnung von planar ausgebrachten biologischen objekten wie biologische zellen bzw. zellorganellen, histologischen schnitten, chromosomenteilchen etc. mit laserstrahlen
WO1998014816A1 (en) * 1996-10-02 1998-04-09 Cell Robotics Inc. Microscope with laser port
WO1998035216A1 (en) * 1997-02-07 1998-08-13 Arcturus Engineering, Inc. Laser capture microdissection method and apparatus
DE19817851C1 (de) * 1998-04-22 1999-10-28 Lpkf Laser & Electronics Gmbh Verfahren zum Ablenken eines Laserstrahls

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207240A1 (de) 2012-05-02 2013-11-07 Leica Microsystems Cms Gmbh Laser-Mikrodissektionsgerät und -verfahren
DE102013209455A1 (de) 2012-05-24 2013-11-28 Leica Microsystems Cms Gmbh Probenfänger zum Auffangen eines Laser-Mikrodissektats
WO2013174862A1 (de) 2012-05-24 2013-11-28 Leica Microsystems Cms Gmbh Probenfänger zum auffangen eines laser-mikrodissektats
US9719894B2 (en) 2012-05-24 2017-08-01 Leica Microsystems Cms Gmbh Specimen collector for collecting a laser micro-dissectate
DE102013209455B4 (de) * 2012-05-24 2018-11-08 Leica Microsystems Cms Gmbh Probenfänger zum Auffangen eines Laser-Mikrodissektats
DE102017121326B4 (de) * 2017-09-14 2021-01-14 Leica Microsystems Cms Gmbh Sammeleinrichtung und Verfahren zum Sammeln dissektierter oder ablatierter Proben und Mikroskop mit einer solchen Einrichtung
DE102017121326A1 (de) 2017-09-14 2019-03-14 Leica Microsystems Cms Gmbh Sammeleinrichtung und Verfahren zum Sammeln dissektierter oder ablatierter Proben und Mikroskop mit einer solchen Einrichtung
WO2019053195A1 (de) 2017-09-14 2019-03-21 Leica Microsystems Cms Gmbh Sammeleinrichtung und verfahren zum sammeln dissektierter oder ablatierter proben und mikroskop mit einer solchen einrichtung
US11415487B2 (en) 2017-09-14 2022-08-16 Leica Microsystems Cms Gmbh Collection device and method for collecting dissected or ablated specimens and microscope having such a device
WO2020160913A1 (de) 2019-02-05 2020-08-13 Leica Microsystems Cms Gmbh Verfahren zur lasermikrodissektion, lasermikrodissektionssystem und computerprogramm
DE102019102852B3 (de) 2019-02-05 2020-07-02 Leica Microsystems Cms Gmbh Verfahren zur Lasermikrodissektion, Lasermikrodissektionssystem und Computerprogramm
US11874207B2 (en) 2019-02-05 2024-01-16 Leica Microsystems Cms Gmbh Method for laser microdissection, laser microdissection system and computer program
DE102020100587A1 (de) 2020-01-13 2021-07-15 Leica Microsystems Cms Gmbh Verfahren zum Überprüfen eines Dissektiervorgangs in einem Laser-Mikrodissektionssystem und Mittel zu dessen Durchführung
US11756196B2 (en) 2020-01-13 2023-09-12 Leica Microsystems Cms Gmbh Method for checking a dissection process in a laser microdissection system and system for carrying out the method
DE102021114585A1 (de) 2021-06-07 2022-12-08 Leica Microsystems Cms Gmbh Mikrotiterplatte, Komponenten hierfür, Probentisch, Mikroskop und entsprechendes Verfahren
EP4112742A1 (de) 2021-06-29 2023-01-04 Leica Microsystems CMS GmbH Verfahren zur erzeugung von bereichsspezifischen amplifikationsvorlagen

Also Published As

Publication number Publication date
JP3996773B2 (ja) 2007-10-24
WO2001078937A1 (de) 2001-10-25
US20030133190A1 (en) 2003-07-17
DE50107051D1 (de) 2005-09-15
AU2001256129A1 (en) 2001-10-30
EP1276586A1 (de) 2003-01-22
EP1276586B1 (de) 2005-08-10
TW486566B (en) 2002-05-11
JP2003531393A (ja) 2003-10-21
US7035004B2 (en) 2006-04-25
DE10018253A1 (de) 2001-10-25

Similar Documents

Publication Publication Date Title
DE10018253C2 (de) Laser-Mikro-Dissektionsgerät
EP0679325B1 (de) Vorrichtung und verfahren zur handhabung, bearbeitung und beobachtung kleiner teilchen, insbesondere biologischer teilchen
EP2107408B1 (de) Mikroskop mit der Beobachtungsrichtung senkrecht zur Beleuchtungsrichtung
DE102011119764B4 (de) Vorrichtung und Verfahren zur Interferenzstrukturierung von flächigen Proben und deren Verwendung
EP3932609B1 (de) Vorrichtung zur lasermaterialbearbeitung mit zwei parallel-versatz-einheiten des laserstrahles
EP1101142B1 (de) Verfahren und anordnung zur lageerfassung einer mit einem laser-scanner abzutastenden ebene
DE60006586T2 (de) Laserstrahlvorrichtung zum zielen und verfahren zum schneiden oder markieren eines werkstücks
DE10340965A1 (de) Rastermikroskop
DE3810882C2 (de)
DE102012017920A1 (de) Optikanordnung und Lichtmikroskop
WO2019038404A1 (de) Optische anordnung zum scannen von anregungsstrahlung und/oder manipulationsstrahlung in einem laser-scanning-mikroskop und laser-scanning-mikroskop
DE4113279C2 (de) Konfokales optisches Rastermikroskop
EP1617263B1 (de) Lichtrastermikroskop und Verwendung
EP3992687B1 (de) Mikroskop und verfahren zur lichtfeldmikroskopie mit lichtblattanregung sowie zur konfokalen mikroskopie
DE2633965C3 (de) Einrichtung zur Parallelen und zentrischen Justierung eines mittels Strahlablenker manipulierbaren Laserstrahls
WO2015128447A1 (de) Lasermikrodissektionssystem und lasermikrodissektionsverfahren
DE102016111781B3 (de) Kontaminationsschutzeinrichtung für ein Lasermikrodissektionssystem und Lasermikrodissektionssystem
DE102014203656B4 (de) Lasermikrodissektionsverfahren und Verwendung eines Lasermikrodissektionssystems
DE102011006152A1 (de) Trepanieroptik zur Einstellung und Variation eines Propagationswinkels und einer lateralen Versetzung elektromagnetischer Strahlung
WO2018002304A1 (de) Laser-mikroskopsystem
DE10209322A1 (de) Vorrichtung zum Ablenken eines Lichtstrahles und Scanmikroskop
EP1206997B1 (de) Laserbearbeitungsgerät mit Beobachtungseinrichtung
DE19529788A1 (de) Zwischentubus für ein Mikroskop mit einer konfokalen Blendenscheibe
DE102007035582A1 (de) Verfahren und Vorrichtung zum Bearbeiten eines biologischen Objekts mit Laserstrahlung
DE10339134B4 (de) Strahlablenkeinrichtung und Scanmikroskop

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: LEICA MICROSYSTEMS SEMICONDUCTOR GMBH, 35578 WETZL

8127 New person/name/address of the applicant

Owner name: LEICA MICROSYSTEMS WETZLAR GMBH, 35578 WETZLAR, DE

8304 Grant after examination procedure
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: LEICA MICROSYSTEMS CMS GMBH, 35578 WETZLAR, DE

8339 Ceased/non-payment of the annual fee