CZ378198A3 - Způsob provozu elektrického vozidla - Google Patents

Způsob provozu elektrického vozidla Download PDF

Info

Publication number
CZ378198A3
CZ378198A3 CZ983781A CZ378198A CZ378198A3 CZ 378198 A3 CZ378198 A3 CZ 378198A3 CZ 983781 A CZ983781 A CZ 983781A CZ 378198 A CZ378198 A CZ 378198A CZ 378198 A3 CZ378198 A3 CZ 378198A3
Authority
CZ
Czechia
Prior art keywords
charge
batteries
battery
traction
energy
Prior art date
Application number
CZ983781A
Other languages
English (en)
Inventor
Arthur Paull Lyons
Timothy Michael Grewe
Original Assignee
Lockheed Martin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Martin Corporation filed Critical Lockheed Martin Corporation
Publication of CZ378198A3 publication Critical patent/CZ378198A3/cs

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/26Guiding or controlling apparatus, e.g. for attitude control using jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/50Feeding propellants using pressurised fluid to pressurise the propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/56Control
    • F02K9/58Propellant feed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/68Decomposition chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/425Power storage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/428Power distribution and management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

71/39-8/- 98 (^>us'pl proVotU; ^~* V^eíektričké^ózidld • ··♦· ·· ♦ • · • · · • ♦ ·♦· · »» »··· • · • • · • • · • • · • Φ ·· «« ·· I · « 4 »·· ··« • 4
Oblast techniky Vynález se týká způsobu
iJkn%0 \)D9xdtcv,
Dosavadní stav techniky
Hybridní elektrická vozidla jsou široce považována za nejpraktičtější z vozidel s nízkým znečišťováním. Hybridní elektrické vozidlo zahrnuje elektrickou „trakční“ baterii, která zabezpečuje elektrickou energii pro elektrický trakční motor, který pohání kola vozidla. „Hybridní" aspekt hybridního elektrického vozidla spočívá v použití sekundárního neboli přídavného zdroje elektrické energie pro znovunabíjení trakční baterie během provozu vozidla. Tímto sekundárním zdrojem elektrické energie mohou být solární (sluneční) panely, palivový článek, generátor poháněný spalovacím motorem nebo všeobecně jakýkoli jiný zdroj elektrické energie. Je-li jako sekundární zdroj elektrické energie použit spalovací motor, jedná se obyčejně o relativně malý motor používající málo paliva a vykazující malé znečišťování. Průvodní výhodou je, že takovýto malý spalovací motor může být provozován uvnitř omezené oblasti otáček za minutu (RPM), takže může být optimalizováno ovládání znečišťování motorem. Pokud jsou k popisu zdrojů elektrické energie použity termíny „primární" a „sekundární", vztahují se pouze ke způsobu distribuce energie během provozu a nemají zásadní význam ve vztahu • ·«·· ·* *··♦ Μ ·· 2·· ♦ · · 4 « ♦ · · • · «·· ·«·« • · * · * » * 444 ·»·
* ♦ 4 4 4 4 · I 444 ♦ 44 44 #4 44 k vynálezu. Jednoduché elektricky poháněné vozidlo napájené pouze elektrickými bateriemi má nevýhodu, že se baterie mohou vybít když je vozidlo vzdáleno od nabíjecí stanice baterií a dokonce i když se takové vozidlo po denním použití úspěšně vrátí do svého depa, musí být baterie znovu nabity. Hybridní elektrické vozidlo má proti vozidlu napájenému pouze elektricky významnou výhodu, neboť toto hybridní elektrické vozidlo znovu nabíjí vlastní baterie během provozu a tak obvykle nevyžaduje žádné vnější nabíjení baterií. Takto může být hybridní elektrické vozidlo použito v podstatě jako obvyklé vozidlo poháněné spalovacím motorem vyžadujícím pouze doplňování paliva. Další velkou výhodou hybridního elektrického vozidla je jeho dobrá kilometrová spotřeba paliva. Tato výhoda vzniká užitím regenerativního dynamického brzdění, které přeměňuje kinetickou pohybovou energii na elektrický výkon během alespoň části brzdění a navrací energii do baterie. Bylo zjištěno, že ztráty vzniklé brzděním tvoří zhruba polovinu všech ztrát vzniklých třením při provozu vozidla ve městě. Obnovení těchto 50% energie a její navrácení do baterie pro další použití dovoluje použít mnohem menší „sekundárná elektrický generátor pracující s palivem než v případě, kdy není použito regenerativního brzdění. Naopak, menší sekundární elektrický zdroj má za následek, že je na časovou jednotku nebo na kilometr použito méně paliva. Další výhodou hybridního elektrického vozidla je, že energie použitelná pro akceleraci vozidla, je v mnoha případech součtem maximální energie, která může být dodána baterií a maximální energie, která může být vyrobeny sekundárním elektrickým generátorem. Je-li elektrickým generátorem naftový spalovací motor, může kombinace energie baterie a energie motoru vyústit v celkovou pohybovou sílu, která je poměrné značná, nehledě na dobrou kilometrovou spotřebu paliva. I když jsou hybridní elektrická vozidla ekonomicky a pokud jde o životní prostředí výhodná, musí být do jisté míry „zajištěna proti nesprávné obsluze" tím, že musí být podobná běžným vozidlům se spalovacími motory pokud jde o jejich provoz a odezvy na obsluhu tak, aby byla široce přijatelná.
Způsob provozu vozidla, které získává alespoň část tažné síly nebo hnací energie z jedné nebo více elektrických baterií, zahrnuje krok navracení v podstatě veškeré energie z trakčního motoru do baterií v průběhu dynamického brzdění během těch dob, kdy jsou baterie v prvním nabíjecím stavu, který je nižší než plné nabití. Další kroky tohoto způsobu zahrnují vracení méně než veškeré energie z trakčního motoru do baterií během dynamického brzdění, jsou-li baterie na úrovni nabití mezi prvním nabíjecím stavem a stavem plného nabití a vracení v podstatě nulové energie z trakčního motoru do baterii během brzdění, když baterie dosáhne stavu plného nabití. V tomto provedení, krok navrácení méně energie než je veškerá energie z trakčního motoru do baterií, zahrnuje krok navracení takového množství dostupné dynamické brzdné energie do baterií, které má monotóní vztah k podílu současného nabití baterie vzhledem ke stavu úplného nabití. Ve výhodném provedení vynálezu výše popsané kroky hladce přecházejí jeden do druhého v závislosti na stavu nabití baterií. Jelikož se velikost dynamického brzdění postupně mění jako funkce nabití baterie, třecí brzdy kompenzují jakoukoli nedostatečnost brzdění automaticky, jako výsledek síly, kterou řidič působí na brzdový pedál. Přehled obrázků na výkresech
Na obr.1 je zjednodušené blokové schéma elektrického vozidla podle vynálezu zahrnující povelovou řídící jednotku, která provádí řízení v souladu s vynálezem a rovněž zahrnující výkonovou řídící jednotku.
Obr.2 představuje zjednodušené blokové schéma znázorňující některé z funkcí prováděných ve výkonové řídící jednotce z obr.1.
Obr.3a a 3b jsou zjednodušené diagramy regenerace energie do trakční baterie v závislosti na stavu nabití trakční baterie a trakční síly způsobené regenerací v závislosti na stavu nabití trakční baterie.
Obr.4 je zjednodušený vývojový diagram ilustrující logický tok v povelové řídící jednotce z obr.1 a 2 za účelem zajištění činností podle obr.3a a 3b.
Na obr.5 je znázorněn zjednodušený diagram rozdělení dodávání trakční energie do trakčního motoru vozidla dle obr.1, jako funkce nabití trakční baterie.
Na obr.6 je zjednodušený vývojový diagram znázorňující logický tok v povelové řídící jednotce z obr.1 a 2 k zajištění činností dle obr.5.
Obr.7a je diagram výkonu motoru nebo generátoru v závislosti na rychlosti, kde parametrem je točivý moment a na obr.7b je ukázáno, jak je výkon motoru/ generátoru řízen. • ···· ·· ···· ·♦ ♦· ·· ··· ····· • · ··· ···· • t · « · · ♦ ··· ··· «· ···· · · ··· · ·· ·· ♦· ··
Na obr.8 je zjednodušené blokové schéma znázorňující některé řídící obvody nebo uspořádání pro řízení množství elektrické energie generované přídavným zdrojem energie v odezvě na stav nabití trakční baterie. Příklady provedení vynálezu
Elektrické vozidlo 10 na obr.1 zahrnuje alespoň jedno hnací kolo 12 spojené se střídavým elektrickým trakčním motorem 40, kterým je v jednom provedení vynálezu třífázový střídavý motor. Trakční motor 40 je s výhodou motor-generátor, takže kinetická pohybová energie je během dynamického brzdění převáděna na elektrickou energii. Výkonová řídící jednotka 14. je připojena silovými spoji k trakčnímu motoru 40, k trakční baterii 20 a k pomocnému zdroji 16 elektrické energie. Pomocný zdroj 16 elektrické energie může být tvořen spalovacím motorem, jako je například dieselový motor 18, pohánějící elektrický generátor 22, nebo palivovým článkem 24. Povelová řídící jednotka 50 je spojena prostřednictvím informačních cest s výkonovou řídící jednotkou 14., pomocným zdrojem 1_6 a trakčním motorem 40 za účelem řízení funkce výkonové řídící jednotky 14, pomocného zdroje 16 a trakčního motoru 40 v souladu s vhodnými pravidly řízení.
Jedním z nejběžnějších a nejlevnějších typů baterií, který je schopen uložení relativně velké energie, je běžná baterie 0I0V0/H2SO4. Tento typ baterie je vhodný pro použití v elektrickém vozidle jestliže se dbá na to, aby se nepřiváděl nabíjecí proud je-li baterie plně nabita, čímž se zabrání plynování elektrolytu a nežádoucí generaci tepla a jestliže je možné vyhnout se sulfataci.
Displeje a uživatelské ovladače vozidla 10 jsou na obr,1 znázorněny jako blok 30. Blok 30 je spojen dvousměrnou datovou cestou 31 s povelovou řídící jednotkou 50 za účelem přivádění řídících povelů k této povelové řídící jednotce 50, která je pak převádí na příslušné povely pro různé výkonové prvky jako je výkonová řídící jednotka 14, pomocný zdroj 16. a trakční motor 40. Blok 30 je zároveň spojen cestou 32 s třecími brzdami 36a a 36b za účelem jejich přímého řízení obvyklým hydraulickým brzdícím systémem spojeným s pedálem brzdy.
Obr.2 znázorňuje vzájemné propojení některých prvků výkonové řídící jednotky 14 z obr.1 s dalšími prvky z téhož obrázku. Výkonová řídící jednotka 14. obsahuje zejména usměrňovač 26 spojený s pomocným zdrojem 16 za účelem převedení střídavého výstupu pomocného zdroje 16. na stejnosměrné napětí, pokud je to zapotřebí. Výkonová řídící jednotka 14. rovněž obsahuje dvousměrný pohonný řídící systém, který dále obsahuje převodník 28 stejnosměrného proudu na střídavý, který je spojen silovými spoji s baterií 20. s usměrňovačem 26 a s trakčním motorem 40. Funkce převodníku 28, pomocného zdroje 16. a trakčního motoru 40 jsou řízeny, jak bylo výše uvedeno, povelovou řídící jednotkou 50. Je třeba poznamenat, že kromě převodníku 28. stejnosměrného proudu na střídavý proud, obsahuje pohonný řídící systém napěťové a proudové sensory za účelem snímání různých pracovních parametrů motor/generátoru, baterie a pomocného elektrického zdroje. Při základní funkci zařízení podle obr.1 a 2 řídí povelová řídící jednotka 50 jednotlivé spínače (nejsou znázorněny) převodníku 28 povely s modulovanou šířkou impulsu, což má za následek generaci aproximace střídavého napětí se zvoleným kmitočtem a velikostí na tom portu 28m převodníku 28, který je spojen s trakčním motorem 40. Ve výhodném provedení vynálezu je převodník 28 typ pro řízení buzení a trakční motor je obdobně indukční motor s řízením buzení. Kmitočet a velikost řízeného střídavého proudu přiváděného na trakční motor 40 jsou voleny tak, aby byl motor poháněn zvoleným trakčním proudem při zvolené rychlosti motoru. Trakční motor 40 obecně produkuje zpětnou elektromotorickou sílu, která se zvětšuje se zvyšováním rychlosti motoru a převodník 28 musí vyrábět (na základě povelů z povelové řídící jednotky 50) střídavé napětí, které se zvětšuje co do velikosti se zvyšováním kmitočtu střídavého napětí tak, aby se udržoval stejný poháněči proud trakčního motoru. Motor se otáčí kmitočtem konsistentním s povelovým kmitočtem výstupu převodníku 28. Při základní funkci elektrického vozidla podle obr.1 a 2 se tedy může provádět jak dynamické brzdění, tak brzdění třením. Více je upřednostňováno dynamické brzdění, neboť tím, že trakční motor pracuje jako elektrický generátor při zpomalení vozidla se opět získává kinetická energie svázaná s pohybem vozidla. Během intervalů, v nichž se objevuje dynamické brzdění, pracuje převodník 28 stejnosměrného proudu na střídavý proud z obr.2 ve druhém neboli regeneračním směru a přeměňuje střídavé napětí produkované trakčním motorem 40 na stejnosměrné napětí, které nabíjí trakční baterii 20. Dále, pokud je elektrické vozidlo hybridní elektrické vozidlo, obsahující pomocný elektrický zdroj 16, může být tento pomocný zdroj 16. v provozu během provozu vozidla za účelem dobití baterie a/nebo zajištění části trakční energie v závislosti na povelech povelové řídící jednotky 50. 8 • · 8 • ·
Je nutno poznamenat, že když elektrické vozidlo pracuje v normálním módu užívajícím dynamické brzdění a baterie jsou plně nabity, má dynamické brzdění za následek přivádění nabíjecího proudu do již nabité baterie. Charakteristiky olověného akumulátoru jsou takové, že v takovéto situaci, kde se přivádí nabíjecí proud na plně nabitou baterii, se napětí baterie výrazně zvýší k hodnotě kolem 16 voltů z hodnoty 13 voltú u plně nabité, nominálně 12-ti voltové, baterie bez odběru proudu. Tím je zajištěna indikace povelové řídící jednotce, že se dosáhlo stavu přebíjení. Jestliže povelová řídící jednotka odpojí energii generovanou dynamickým brzděním od baterie, což je nezbytné pro ochranu baterie, napětí baterie ihned klesne na svou hodnotu plného nabití bez odběru proudu. Toto naopak dovoluje řídící jednotce dynamického brzdění znovu začít dodávat energii do baterie až do doby, kdy začne působit řízení přepětím. To vede k periodickému dynamickému brzdění při pulzní rychlosti dané charakteristikami smyčky povelové řídící jednotky a vytváří se pozorovatelné brzdné vibrace a rovněž tak tendence k přebíjení baterie během částí pulzního intervalu. Jak přebíjení, tak i vibrace jsou nežádoucí.
Obrázky 3a a 3b společně ilustrují pravidla řízení v souladu s vynálezem, která dovolují plnou regeneraci neboli návrat energie odvozené od dynamického brzdění do trakčních baterií během těch intervalů, v nichž jsou trakční baterie ve stavu nabití nižším než je částečné nabití, kde toto částečné nabití je menší než plné nabití a která v úrovních nabití trakční baterie ležících mezi částečným a úplným nabitím zmenšují část regenerované energie odvozené od dynamického brzdění způsobem, který odpovídá nebo je funkcí existujícího stavu nabití vzhledem k / 9 • · · · • · · ·
·· ·· • · · • · · ·«· ··· ·· ·· rozdílu nabití mezi předem určenou hodnotou nabití a plným nabitím. V jednom provedení vynálezu je tento vztah monotónní a může být lineární. Na obr.3a znázorňuje diagram 310 stupeň regenerace jako funkci stavu nabití trakční baterie podle pravidel řízení v souladu s vynálezem. Podrobněji tedy diagram 310 definuje část 312. která má konstantní hodnotu regenerace dynamického brzdění, rovnající se 100% regeneraci nebo se k této hodnotě pokud možno blíží. Při plném nabití je velikost regenerace energie odvozené od dynamického brzdění pokud možno snížena téměř na nulu nebo tak blízko nule, jak je možné. Pravidla řízení reprezentovaná diagramem 310 dále zahrnují druhou část 314. která monotónně klesá ze 100% regenerace při předem určené nabíjecí úrovni trakční baterie pojmenované „první nabití" k nulové regeneraci při plném nabití této trakční baterie. Efekt regenerační trakce neboli brzdění vozidla jako funkci stavu nabití trakční baterie je znázorněn diagramem 320 na obr.3b. Na obr.3b obsahuje diagram 320 první část 322. která má konstantní hodnotu representující maximální regenerační trakci od nízkých úrovní nabití k „první" úrovni nabití trakční baterie. Druhá část 324 diagramu 320 představuje regenerační trakci, která monotónně klesá od 100% při „první" nabíjecí úrovni k 0% při plném nabití. Ačkoli jsou části 314 a 324 diagramů 310 a 320 znázorněny jako lineárně klesající, je pro účely řízení dostatečné jsou-li části 314 a 324 monotónní. Tato monotónní redukce při dynamickém brzdění není pro řidiče vozidla pozorovatelná, neboť stav nabití trakční baterie se mění pomalu a proto se mění pomalu velikost regeneračního brzdění. Protože se regenerační brzdění mění pomalu, třecí brzdy postupně kompenzují deficit mezi dynamickým brzděním a požadovanou brzdící silou. Toto má za následek snížení vibací, které jsou zřetelné, když pravidla řízení chrání trakční baterii před přebíjením prostým zastavením regenerace, když jsou baterie plně nabity.
Obr.4 je zjednodušený vývojový diagram znázorňující část 400 pravidel řízení řídících povelovou řídící jednotku 50 řízení z obr.1, která má za následek činnost reprezentovanou obr.3a a 3b. Na obr.4 začíná činnost v bloku 410 START a pokračuje do bloku 412. který představuje monitorování parametrů trakční baterie (20 z obr.1) jako je teplota, napětí a proud a rovněž tak zaznamenávání času. Vzorky těchto parametrů mohou být snímány v častých vzorkovacích intervalech jako například při každém průchodu smyčkou z obr.4. Z logického bloku 412 se přechází do bloku 414. který představuje odhad stavu nabití trakční baterie určením množství náboje, který byl do baterie dodán a odečtením množství náboje, který byl z baterie odebrán. Měření tohoto náboje je v ampérhodinách. Jakmile je udělán odhad stavu nabití trakční baterie, pokračuje se do rozhodovacího bloku 416. kde se porovnává současný neboli právě odhadnutý stav nabití trakční baterie s předem určenou hodnotou nabití, představovanou úrovní „první nabití" z obr.3a a 3b. Jak bylo uvedeno výše, je tato úroveň nabití menší než plné nabití. Pokud rozhodovací blok 416 zjistí, že odhadnutá úroveň nabití trakční baterie je nižší než úroveň prvního nabití, pokračuje se z rozhodovacího bloku 416 výstupem YES k dalšímu bloku 418. který představuje povolení k použití plné regenerační brzdící energie neboli výkonu. Akce provedená v bloku 418 může být například nastavení budícího proudu trakčního motoru (pracujícího v módu generátor) během brzdění tak, aby se maximalizoval elektrický výstup trakčního motoru. Je třeba poznamenat, že některé typy motor/generátorů nemají žádné oddělené budící vinutí, ale mají spíš množiny vinutí, kde se • · · · ···· žádoucí proud v jednom vinutí indukuje řízeným proudem v jiném vinutí. Pro cíle vynálezu je jedno jakým způsobem je budící proud generován a je postačující, když je generován v požadované velikosti. Z bloku 418 se pokračuje zpět do bloku 412 za účelem započetí dalšího opakování smyčky. Protože je hybridní elektrické vozidlo provozováno v tomto stavu, bude trakční baterie často plněji nabita díky průběžnému injektování energie (způsobeno činností pomocného spalovacího motor/generátoru) do systému pro akumulaci energie, který zahrnuje trakční baterii a pohyb vozidla.
Stav nabití trakční baterie nakonec přesáhne úroveň „první nabití" znázorněnou na obr.3a a 3b. V tomto čase se změní opakované průchody povelové řídící jednotky 50 z obr.1 tou částí její předem naprogramované logiky, která je reprezentovaná logickou smyčkou 400. neboť logický tok nebude dále směrován k výstupu YES rozhodovacího bloku 416, ale místo toho bude směrován k výstupu NO. Od tohoto výstupu NO rozhodovacího bloku 416 se přechází k dalšímu bloku 420. který představuje snížení velikosti regenerativního výkonu nebo energie dostupné ve formě kinetické energie vozidla, v opačném poměru nebo proporci vzhledem k současné velikosti náboje vztažené k rozdílu mezi plným nabitím a první úrovní nabití z obr.3a a 3b. Je-li tedy současný stav nabití 70% na cestě mezi prvním nabitím a plným nabitím, jak je znázorněno pomocí Cc na obr.3a a 3b, množství pohybové energie, které lze obnovit a připojit na baterii, je 30%. Když úroveň proudového nabití dosáhne 100%, je dovolená regenerace 0%. Jak bylo uvedeno výše, řízení připojování energie nebo výkonu z trakčního motoru pracujícího jako generátor může být jednoduše provedeno regulací točivého momentu u střídavého motoru řízeného buzením. Ve skutečném provedení vynálezu je točivý moment snižován proporcionálně k rychlosti, čímž se řídí množství energie vyrobené motorem pracujícím jako generátor, které je vraceno trakční baterii.
Jak bylo dosud popsáno, logika z obr.4 řídí regeneraci podle stavu nabití trakční baterie. To znamená, že zpomalovací síla působící na vozidlo pomocí trakčního motoru, pracujícího jako generátor, je během brzdění snižována. Jednou z výhod elektrického vozidla, které používá regenerativní brzdění je, že na třecích brzdách se nepožaduje, aby přebíraly veškeré brzdění, a tak jejich návrh a konstrukce může být taková, aby se využilo výhody menšího využívání, například mohou být lehčí konstrukce. Jak bylo dosud popsáno ve spojení s logikou z obr.4, je dynamické brzdění redukováno při určitých podmínkách nabití trakční baterie. Pro zajištění dodatečného brzdění během těch dob, kdy je regenerativní brzdění redukováno, přechází se podle dalšího aspektu předkládaného vynálezu z bloku 420 z obr.4 k dalšímu bloku 422. který představuje snížení účinnosti trakčního motoru pracujícího jako generátor. Toto snížení účinnosti trakčního motoru pracujícího jako generátor může být provedeno nastavením buď prokluzu nebo proudu v budícím vinutí, nejlépe obojím. Z bloku 422 na obr.4 se logika vrací do bloku 412 za účelem zahájení dalšího opakování průchodem logickou smyčkou 400.
Jak bylo dosud popsáno, vibrace nebo kolísavý výkon jsou výsledkem ochrany plně nabité baterie před dodatečným nabíjením. Podobný efekt vzniká při zrychlení s téměř vybitou baterií. Během zrychlení vozidla 10. z obr.1, jsou jak trakční baterie 20, tak pomocný neboli sekundární 13 ♦ ♦··· ·♦ ♦ • ♦ ♦ ♦ • · • · • · » · ♦ • ♦ • · ♦ ·· * ·♦ ··* ·· ·· • · · · f ♦ « I · » • · ··· ··· • · · ·· ·· ·· elektrický zdroj 16. (spalovací motor/generátor) použitelné jako zdroje elektrické energie pro trakční motor 40. V důsledku toho může trakční motor 40 zabezpečovat výkon o intenzitě, která je součtem maximálního výkonu, který může být odebírán z trakční baterie 20 a maximálního výkonu, který může poskytnout pomocný zdroj 16. To je vhodné pro provoz ve městě, kde náhlá zrychlení mohou vyžadovat značný výkon. Za určitých podmínek může ale řízení ochrany trakční baterie způsobit určitý druh vibrací, jestliže jednoduše zastaví odebírání energie z trakční baterie, když tato baterie dosáhne stavu nabití, který je považován za vybitý stav. Tyto vibrace se objeví jestliže vozidlo jede po dlouhou dobu do kopce, tak jako při přejezdu kontinentálního předělu. Jestliže velikost využívání energie při stoupání vozidla přesahuje velikost energie dodávané pomocným zdrojem 16., bude se baterie postupně vybíjet a dosáhne časem úrovně nabití, považované za úroveň „vybito". Jestliže by v této době řídící jednotka trakční baterie jednoduše odpojila trakční baterii od obvodu trakčního motoru, velikost proudu dostupného pro trakční motor by se prudce snížila na úroveň zajišťovanou pomocným zdrojem 16. s následkem prudké změny v trakčním výkonu a vozidlo by prudce snížilo rychlost. Zamezení vybíjení trakční baterie do trakčního motoru umožní, že napětí baterie rychle stoupne na napětí naprázdno. Jestliže řídící jednotka toto zvýšení napětí interpretuje jako indikaci toho, že trakční baterie má použitelný náboj, může trakční baterii znovu připojit k trakčnímu motoru, čímž se opět zajistí přídavný trakční výkon z trakční baterie, ale to má za následek, že napětí trakční baterie poklesne. Odborníci v oboru toto znají jako oscilační podmínku, která může způsobit, že vozidlo „bafá" nebo sebou při stoupání opakovaně trhá. 14 • Φ ···· • · · · ··· ··· V tomto bodě je třeba poznamenat, že „plně" vybitá baterie, v souvislosti s požadovanou dlouho životností této trakční baterie, stále ještě obsahuje značný náboj, protože životnost takových baterií se prudce snižuje, je-li velikost vybití příliš velká. Vybitá baterie pro účely elektricky poháněných vozidel je tedy taková, jejíž stav nabití je takový, že je považován za stav plného vybití, ale která stejně ještě obsahuje značný náboj. U hybridního elektrického vozidla zajišťuje pomocný zdroj energie tuto energii plynule, což lze použít pro nabíjení trakčních baterií je-li potřeba trakce menší než výstup pomocného zdroje energie. Pravidla řízení dovolují, aby energii pro trakční motor zajišťoval jak pomocný zdroj energie, tak trakční baterie. Pokud potřeba trakčního motoru překročí výstup pomocného zdroje, je z trakční baterie odebírán proud, což způsobí pokles jejího napětí. Je-li trakční baterie blízko stavu úplného vybití, pokles napětí díky tomuto odběru proudu může být takový, že spustí ochranu baterie tím, že zastaví odběr proudu z baterie. Odstranění odběru proudu podle pravidel řízení opět způsobí, že vozidlo bude napájeno pouze pomocným zdrojem a umožní se vzrůst napětí trakční baterie. Když napětí trakční baterie stoupne, pravidla řízení dále již nebudou považovat baterii za vybitou a je opět umožněn proudový odběr z baterie. Proces opakovaného připojování a odpojování trakční baterie k trakčnímu motoru tvoří oscilace řídícího systému. Tyto oscilace vyúsťují v trakční sílu, která se mění s rychlostí oscilací řídícího systému a která může být pro obsluhu vozidla patrná. V souladu s dalším aspektem vynálezu řídí povelová řídící jednotka 50 velikost výkonu, který může být odebírán z trakční baterie v odezvě na stav nabití této trakční baterie. 15 • ···· ·· · • · « · • · ·· · · ·· ···· ·· • t » · · · Μ· ··· • · »* Το vylučuje výše popsané „bafání" a dovoluje hladké snížení rychlosti, kterou může vozidlo stoupat, při snižovaní náboje baterie. Obr.5 zobrazuje diagram 500. který představuje výsledek řízení v souladu s vynálezem. Na obr.5 je vynesen trakční výkon dostupný pro vozidlo v závislosti na stavu nebo úrovni nabití trakční baterie. Diagram 500 zahrnuje část 510. která znázorňuje trvalý výkon pomocného zdroje 16 elektrické energie neboli výkon, který má poměrně nízkou úroveň. Část 510 diagramu se nalézá mezi úrovní menší než je stav jmenovitého vybití k úrovni nabití označené jako bod nízkého nabití", což je stav jmenovitého vybití trakční baterie. V provozní oblasti prezentované částí 512 diagramu je dostupný trakční výkon vozidla na relativné vysoké úrovni, představující součet výkonu baterie a pomocného výkonu. Tato maximální výkonová úroveň představovaná částí 512 diagramu se nalézá mezi stavem nabití nazvaným „první nabití" a stavem plného nabití. Mezi stavem „nízké nabití" trakční baterie a stavem „první nabití" je velikost trakčního výkonu závislá na stavu nabití trakční baterie, jak je naznačeno v části 514 diagramu Výsledkem tohoto typu řízení je umožnění provozu při plném trakčním výkonu po dobu, dokud není trakční baterie částečně vybita na „první" úroveň. Když trakční baterie klesne pod první úroveň, velikost výkonu baterie dostupná pro trakční motor se pomalu sníží tak, že to není téměř zaznamenatelné. Toto pomalé snížení výkonu v bodě těsně pod první úrovní nabití (obr.5) poněkud sníží rychlost vybíjení trakční baterie. Je-li kopec dlouhý, může se trakční baterie dále vybíjet. Jak se trakční baterie dále vybíjí v oblasti mezi stavy „nízký" a „první" z obr.5, je pro trakční motor k dispozici úměrně méně výkonu baterie, což má za následek další zpomalení vozidla. Pro nejdelší kopce nakonec trakční baterie dosáhne stavu nabití „nízký", který je považováno za jmenovité vybití. Když je tato úroveň dosažena, není z trakční baterie odváděna žádná další energie a stav nabití trakční baterie obecné nemůže poklesnout pod úroveň nabití „nízký" v části 510 diagramu, pokud neexistuje žádný jiný odběr z trakční baterie jako při nouzovém zrušení ochrany baterie, například při velkém nebezpečí hrozícím vozidlu nebo cestujícím. Při řízení tak jak je zakresleno na obr.5 není v žádném bodě podél řídící křivky velká změna v trakčním výkonu. Je-li náboj baterie právě nad bodem „nízké" nabití a přechází se na plný provoz z pomocného elektrického zdroje, je už velikost tažného výkonu dodávaného trakční baterií velmi malá a změna bude pro řidiče vozidla nepostřehnutelná.
Obr.6 je zjednodušený vývojový diagram, který znázorňuje tu část 600 logiky povelové řídící jednotky 50, která zajišťuje řízení v souladu s diagramem 500 z obr.5. Činnost na obr.6 začíná povelem START v bloku 610 a pokračuje do bloku 612. který představuje čtení charakteristik baterie, stejně jako blok 412 v obr.4. Z bloku 612 se pokračuje do bloku 614. který reprezentuje odhad stavu nabití, jak bylo rovněž obecně popsáno v obr.4. Rozhodovací blok 616 z obr.6 určí, zda současný stav nabití je nad bodem nabití „první" (obr.5) a směruje logický tok na výstup YES rozhodovacího bloku 616 v případě, že stav nabití je větší než bod nabití „první". Z výstupu YES rozhodovacího bloku 616 se pokračuje do bloku 618. který představuje zdostupnění plné trakční síly pro trakční motor. Toho se dosáhne odstraněním výkonových limitů, jak je popsáno ve vztahu k obr.7a a 7b, v software řídícím převodník při vzetí na vědomí toho, že pomocný zdroj je pouze zdrojem, zatímco baterie a motor/generátor mohou být zdroje nebo příjemci v závislosti na funkci převodníku. Z bloku 618 pokračuje logický tok zpět do bloku 612. kde • • · « · ·· • · ♦ · 99 99 • 0 • • · • • 9 9 9 • • ♦ • 9 9 9 9 • • • · » * 9 ·99 99 9 • • • · • · 9 • 9 • 9 • · 99 9 9 začíná další opakování smyčky. Obecné tedy, když se začíná s trakční baterií, která je téměř plně nabita, bude se opakovat smyčka tvořená bloky 612. 614. 616 a 618 z obr.6 tak dlouho, dokud náboj trakční baterie bude přesahovat náboj představovaný úrovní nabití „první" z obr.5. Při dlouhém stoupání může náboj trakční baterie nakonec klesnout na úroveň rovnou nebo nižší než je bod nabití „první" z obr.5 a při dalším opakování smyčky z obr.6 bude rozhodovací blok 616 opuštěn výstupem NO a pokračuje se do bloku 620. Blok 620 představuje snížení velikosti výkonu dostupného pro trakční motor z trakční baterie o velikost, odpovídající velikosti současného náboje trakční baterie ve vztahu k rozdílu v náboji mezi „prvním" a „nízkým" stavem nabití z obr.5. Například, klesne-li současná úroveň nabití trakční baterie pod stav nabití „první" z obr.5 k úrovni znázorněné v obr.5 jako „současné nabití", která je na 9/10 cesty mezi úrovněmi nabití představovanými úrovněmi „první" a „nízký", řídící jednotka 50 nastaví velikost výkonu dostupnou pro trakční motor z trakční baterie tak, že je 90% složky dodávané baterií plného výkonu představovaného částí 512 diagramu. Jinak řečeno, protože současný stav nabití indikovaný v obr.5 jako „současné nabití" je 90% složky plného trakčního výkonu, která je zajišťována baterií, je výkon baterie dostupný trakčnímu motoru redukován na 90% výkonu baterie. Přirozené neexistuje žádný požadavek, aby část 514 diagramu z obr.5 byla lineární, jak je znázorněno, ale pokud je alespoň monotónní, je řídící systém zjednodušen. Z bloku 620 na obr.6 se pokračuje do rozhodovacího bloku 622. který porovnává požadavek na výkon trakčního motoru s výkonem z pomocného zdroje elektrické energie. Pokud požadavek na trakční výkon přesáhne výkon z pomocného zdroje, baterie se vybijí a rozhodovací blok 622 se spustí výstupem YES. Z výstupu YES rozhodovacího bloku 622 se přechází do bloku 624. který představuje zvýšení dostupného výkonu z pomocného zdroje na jeho maximální hodnotu. Z bloku 624 se pokračuje do rozhodovacího bloku 626. kde se porovnává současný stav nabití trakční baterie s bodem nabití „nízké" z obr.5. Je-li stav nabití pod bodem nízké „nízké", což indikuje, že trakční baterie nemůže být dále vybíjena, aby nedošlo k jejímu poškození, přechází se z bloku 626 výstupem YES do logického bloku 628. Tento blok 628 představuje omezení výkonu trakčního motoru pomocí řízení buzení na známou hodnotu výkonu dostupného z pomocného zdroje elektrické energie, určeného snadno jako součin napětí a proudu. Z bloku 628 se pokračuje cestou 630 zpět do bloku 612 a začíná další opakování logické cesty z obr.6. Jestliže je současný stav nabití větší než bod nabití „nízké" z obr.5, když rozhodovací blok 626 zkoumá stav nabití trakční baterie, opouští se rozhodovací blok 626 výstupem NO a pokračuje se přes logickou cestu 630 zpět do bloku 612. aniž by se prošlo blokem 628. Takto, když je v trakční baterii značný použitelný náboj, dovolí ho logika z obr.6 použít. Jestliže se během průchodu rozhodovacím blokem 622 shledá, že trakční výkon není větší než výkon produkovaný pomocným zdrojem 16., opustí logika rozhodovací blok 622 výstupem NO a pokračuje cestou 630 do bloku 612. kde začne další opakování. Tato cesta obchází zvýšení výkonu pomocného zdroje 16 na maximum.
Obr.7a znázorňuje zjednodušený parametrické diagramy 710a. 710b. 710c.....710N výkonu motoru (nebo generátoru) vzhledem k rychlosti. Na obr.7 mají diagramy 710a. 710b. 710c.....710N společnou skloněnou část 712. Výkon motoru nebo generátoru je výsledkem součinu točivého momentu a rychlosti. V důsledku toho při nulové rychlosti je výkon nulový bez ohledu na točivý moment. Když se rychlost zvyšuje při konstantním točivém momentu, zvyšuje se výkon, jak naznačuje část 712 diagramu na obr.7, až do hodnoty rychlosti Obase· Návrh motor/generátoru je takový, že nad kmitočtem Obase z teplotních a jiných důvodů se nemůže pracovat s větším výkonem. V důsledku toho je výkon motor/generátoru při maximálním točivém momentu limitován pravidly řízení převodníku tak, aby odpovídal diagramu 710a. Je-li točivý moment poněkud nižší než maximální točivý moment, dosáhne se maximálního výkonu při o něco nižší rychlosti motoru než je <obase, což prezentuje diagram 710b. Diagram 710c představuje ještě nižší velikost točivého momentu a nejnižší diagram 710N představuje nejmenší točivý moment, který může kvantovaný řídící systém udržet. Řídící systém bude omezovat točivý moment vytvořený motorem na limitní hodnotu, závisející na rychlosti, aby ochránil motor před provozováním nad žádoucími limity maximálního výkonu. Mezní točivý moment se snadno určí vydělením maximálního výkonu současnou rychlostí motoru mezní točivý moment = Pmax/rychlost a výsledné omezení točivého momentu způsobí omezení výkonového diagramu na hodnotu, která není vyšší, než uvádí obr.7a v diagramu 710a a v části 712. Má-li být výkon omezen na hodnotu nižší než je Pmax, bude výkonový diagram motoru odpovídat jednomu z diagramů 710b. 710c...... 710N na obr.7a.
Obr.7b je zjednodušené blokové schéma znázorňující vzájemný vztah povelu pro točivý moment a omezovače výkonu. Povel pro točivý moment je na obr.7b veden do bloku omezovače 714. který upraví velikost povelu pro točivý 20 • • · • 4 • * • • • «·· • at #««· ·· »· « * • » • «· * · » «· * » • · ψ·· ·* §· « IM ·· moment (Limited Torque_Cmd), který přichází do převodníku 28 pro řízení buzení tak, že omezuje výkon, aby ležel pod křivkou 716. Křivka 716 je diagram točivého momentu v závislosti na rychlosti, určený vydělením vybraného nebo daného výkonu P rychlostí motoru. Takto může převodník 28 pro řízení buzení řídit výkon motoru řízením točivého momentu vzhledem k rychlosti motoru. Točivý moment může být trakční neboli poháněči moment nebo to může být zpožďovací neboli brzdící moment. Je-li žádáno řízení výkonu vedeného do baterie z motoru, pracujícího jako generátor, příslušné povely pro řízení buzení vykonávají omezující funkci.
Na obr.8 je požadovaný točivý moment nebo příkaz pro točivý moment odvozen z elektrického akcelerátoru, který není znázorněn, a je veden cestou 810 na první vstup násobiče 812. na jehož druhý vstupu 814 se přivádí snímaná rychlost vozidla (nebo rychlost trakčního motoru je-li vozidlo vybaveno měnitelnými převody) ze snímačů, které též nejsou znázorněny. Násobič 812 vytvoří ze součinu rychlosti motoru a povelem nastaveného točivého momentu signál reprezentujícího povelem nastavený výkon, který má být přiveden na trakční motor. Blok 816 váží, pokud je to nutné, povelem nastavený výkon konstantou k za účelem přeměny signálu na reprezentaci Pc povelem nastaveného výkonu trakčního motoru ve wattech. Signál Pc přestavující povelem nastavený výkon ve wattech je veden z bloku 816 na další blok 818. který představuje dělení povelem nastaveného výkonu ve wattech napětím trakční baterie za účelem získání signálu představujícího povelem nastavený proud trakčního motoru U = P/E. Napětí trakční baterie je přijatelné jako indikátor napětí trakčního motoru, protože všechna napětí v systému se blíží k napětí baterie. Signál reprezentující 21 • «Μ ·· ···· ··
povelem nastavený proud lc je přenesen signálovou cestou 819 do části povelové řídící jednotky 50 z obr.1 za účelem řízení převodníku 28 pro řízení buzení a trakčního motoru 40 způsobem, který vytvoří požadovaný proud motoru. Signál představující povelem nastavený proud lc je rovněž přiváděn z výstupu bloku 818 přes vážící obvod znázorněný jako blok 820 na generátor 822 chybového signálu. Účel vážícího obvodu 820 je vysvětlen níže, ale výsledkem jeho činnosti je přeměna povelem nastaveného proudu motoru lc na povelem nastavený proud generátoru lG. Generátor 822 chybového signálu generuje chybový signál odečtením zpětnovazebního signálu ze signálové cesty 824. představujícího sejmutý výstupní proud spalovacího motoru/generátoru (generátor), od povelem nastaveného proudu lG generátoru. Chybový signál vytvořený generátorem 822 chybového signálu je veden do smyčkového filtru 826. kterým může být jednoduchý integrátor, za účelem vytvoření signálu představujícího povelem nastavenou rychlost pomocného zdroje 16, elektrické energie, zejména naftového motoru 18. Naftový motor 18 pohání elektrický generátor 22 za účelem vzniku střídavého výstupního napětí, které se přivádí výkonovými vodiči 832 na převodník 28 z obr.1. Proudový snímač znázorněný jako kroužek 834 ie připojen na výstupní vodiče 832 za účelem snímání proudu generátoru. Bloky 822. 826. 18. 22 a 824 z obr.8 společně vytvářejí uzavřenou zpětnovazební smyčku, která nastavuje výstupní proud generátoru 22 na velikost povelově nastavenou pomocí řídícího signálu lc, přivedeného na generátor chybového signálu. Smyčkový filtr 826 je zvolen tak, aby zabraňoval velmi rychlým změnám rychlosti naftového motoru, které by mohly vést k nežádoucímu zvýšení emisí škodlivin. ·· ··♦· • · · · · · · • · ··· ···· - _ · · · · · · · ··· ··· 22 · · · · · · · · • ·» · ·· ·· ·· ·♦
Jak bylo doposud popsáno, uspořádání podle obr.8 vytváří signál lc pro povelové nastavování proudu trakčního motoru za účelem řízení pohybu vozidla a rovněž tak vytváří signál lG, který řídí proud pomocného generátoru 22. Na obr.8 je signál, představující žádaný stav nabití (SOC) trakční baterie, přiváděn na neinvertující vstup sčítacího obvodu 850. Signál představující současný stav nabití je přiváděn na invertující vstup tohoto sčítacího obvodu 850 z bloku 852 určujícího stav nabití baterie (SOC). Na blok 852 SOC jsou vedeny signály představující napětí baterie, teplotu baterie a proudy baterie. Všeobecně je stav nabití baterie časový integrál vstupních a výstupních proudů. Blok 852 SOC integruje ampéry proudu za účelem získání ampérhodin nabití. Sčítací obvod 850 vytváří na signálové cestě 854 chybový signál, který představuje rozdíl mezi žádoucím neboli povelem nastaveným stavem nabití trakční baterie a jejím skutečným stavem nabití, čímž se identifikuje okamžitý přebytek nebo nedostatek náboje. Chybový signál je přiváděn na smyčkový filtr 856. který integruje chybový signál za účelem vytvoření integrovaného chybového signálu. Tento integrovaný chybový signál se mění pomalu jako funkce času. Integrovaný chybový signál působí na blok 820 prostřednictvím omezovače 828. Podrobněji lze říci, že když je integrovaný chybový signál přiveden na vážící blok 820. vybere vážící faktor, kterým je vážen povelem nastaveným proud motoru lc za účelem jeho převedení na povelem nastavený proud generátoru. Omezovač 858 pouze omezuje integrovaný chybový signál z bloku 856 tak, že oblast vážících faktorů vážícího bloku 820 je omezena na oblast mezi nulou a jednotkou. Takto nemůže být nikdy povelem nastavený proud generátoru lG větší než povelem nastavený proud trakčního motoru lG, ale může být menší v souladu s vážícím faktorem nastaveným omezeným 23
23 Μ I9M
• MM • · ·9 • ··· ····· • · ··· · · · · • · ·« · ·· ······ • · ···· · · ··· · · Μ ·· · · integrovaným signálem z omezovače 858 a povelem nastavený proud generátoru lG může být až nulový. Žádoucí stav nabití trakční baterie je úroveň nabití, která je nižší než plné nabití, takže regenerativní brzdění může být použito bez nebezpečí poškození trakční baterie přebitím. Nastavená hodnota žádoucího stavu nabití je tedy nabití menší než plné. Funkci uspořádání podle obr.8 lze pochopit za předpokladu, že normální stav výstupu integrátoru ve smyčkovém filtru 856 je 0,5 voltů, tedy polovina mezi maximem 1 volt a minimem 0 volt, povolenými omezovačem 858. Hodnota integrovaného chybového signálu (jak je limitována omezovačem 8581 může být považována za násobící faktor, kterým vážící obvod 820 váží povelem nastavený proud trakčního motoru, takže integrovaný chybový signál o hodnotě 1,0 způsobí, že je povelem nastavený proud trakčního motoru lc přenášen s plnou amplitudou generátorem 822 chybového signálu, zatímco hodnota 0,5 bude mít za následek, že velikost povelem nastaveného proudu generátoru lG bude přesně polovina velikosti povelem nastaveného proudu trakčního motoru lc. Když při provozu vozidla řízeného pomocí uspořádání z obr.8 trakční baterie překročí žádoucí stav nabití, odečte generátor 850 chybového signálu velkou signálovou hodnotu představující stav vysokého nabití od nastavené hodnoty, čímž vytvoří rozdíl neboli chybový signál mající zápornou polaritu. Integrátor ve smyčkovém filtru 856 integruje tento signál záporné polarity, který „snižuje11 nebo stahuje do záporných hodnot čistý integrovaný signál na výstupu smyčkového filtru 856 od jeho „normální11 hodnoty 0,5 voltů, například k 0,3 voltům. Protože hodnota 0,3 voltů integrovaného chybového signálu leží v povolené oblasti omezovače 858. protéká integrovaný chybový proud omezovačem 858 do vážícího obvodu 820 tak, že se povelem nastavený proud trakčního motoru lc násobí 0,3krát namísto „normálních" 0,5krát při vytváření povelem nastaveného proudu generátoru lc. Stav nabití baterie větší než je žádoucí nastavená hodnota má takto za následek zmenšení průměrného výstupu generátoru. Stejně tak, jestliže je stav nabití trakční baterie nižší než žádoucí nastavená hodnota, sníží se hodnota signálu přiváděného z bloku 852 z obr.8 na invertující vstup generátoru 850 chybového signálu pod hodnotu signálu představujícího žádoucí SOC, což má za následek kladnou hodnotu chybového signálu na výstupu generátoru 850 chybového signálu. Integrátor svázaný se smyčkovým filtrem 856 integruje kladný vstupní signál tak, že vytvoří integrovaný výstupní signál, který se zvyšuje nad jeho „normální" hodnotu 0,5 V například na hodnotu 0,8V. Protože tato hodnota spadá mezi hodnoty přijatelné pro omezovač 858. 0,8V integrovaného chybového signálu se vede na vážící obvod 820 beze změny. 0,8V integrovaného chybového signálu způsobí, že vážící obvod 820 násobí signál představující povelem nastavený proud trakčního motoru lc 0,8krát, takže je povelem nastavený generátorový proud lG větší než dříve. Výsledný efekt snížení nabití trakční baterie na hodnotu nižší než hodnota nastavená, je zvýšení průměrného výstupního výkonu z generátoru 22., což vede ke zvýšení úrovně nabití trakční baterie. Odborníkům je zřejmé, že „normální" hodnota integrovaného chybového signálu uvedená výše ve skutečnosti neexistuje a je použita pouze proto, aby pomohla porozumět funkci řídícího systému.
Způsob (obr.3a, 3b a 4) provozu vozidla 10, které získává alespoň část své tažné síly nebo hnací energie od jedné nebo více elektrických baterií 20 zahrnuje krok 312, • · · · · • · · · • « I ·· I · · · · • · · t « · · · · Λί # · * · · · · ··· ··· £3 ti ···· · · ··· * ·· ·» ·· ·· 418 návratu v podstatě veškeré energie z trakčního motoru 40 bateriím 20 během dynamického brzdění v době, kdy jsou baterie 20 v prvním stavu nabití (pod první úrovní nabití), který je menší než stav plného nabití. Další kroky 420. 422 způsobu zahrnují vracení 314 méně než veškeré energie z trakčního motoru 40 do baterií 20 v průběhu dynamického brzdění, když jsou baterie na úrovni nabití mezi prvním stavem nabití (obr.3a, 3b) a stavem plného nabití a vracení v podstatě nulové energie (diagram 314 v bodě plné nabití z obr.3a) z trakčního motoru 40 do baterií 20. v průběhu brzdění, když baterie 20 dosáhnou stavu plného nabití.
Kroky 420. 422 vracení méně než veškeré energie z trakčního motoru 40 do baterií 20 zahrnují v tomto provedení krok vracení množství dostupné energie dynamického brzdění do baterií 20, které je monotónně (klesající křivka 314) vztaženo k poměru současného nabití baterie (Cc) ke stavu plného nabití. Ve výhodném provedení vynálezu výše popsané kroky přecházejí pozvolna jeden do druhého v závislosti na stavu nabití baterií. Mění-li se postupně míra dynamického brzdění jako funkce nabití baterie, přebírají třecí brzdy 36a. 36b automaticky veškerou nedostatečnost brzdění jako výsledek síly na brzdící pedál 30a obsluhy.

Claims (3)

  1. 49913 • · · t · · • · · ♦ · · ♦ Λ/ ······ 26 ·♦· · ·· ·♦ PATENTOVÉ NÁROKY LePe&brtC· A-fe^o j 1. Způsob provozuVVozidia, které odvozuje alespoň část své tažné síly z elektrických baterií, vyznačující se tím, že se v podstatě veškerá energie z trakčního motoru vrací do baterií během dynamického brzdění, když jsou tyto baterie v prvním stavu nabití, který je nižší než plné nabití, méně než všechna energie se vrací z trakčního motoru do baterií během dynamického brzdění tehdy, když úroveň nabití baterií je mezi tímto prvním stavem nabití a stavem plného nabití a v podstatě žádná energie se nevrací z trakčního motoru do baterií během brzdění tehdy, když tyto baterie dosáhnou stavu plného nabití.
  2. 2. Způsob podle nároku 1 vyznačující se tím, že když se vrací z trakčního motoru do baterií méně energie než je veškerá energie, obsahuje tento krok vracení takového množství dostupné energie dynamického brzdění do těchto baterií, které je monotónně vztaženo k poměru uvedeného nabití k plnému nabití.
  3. 3. Způsob podle nároku 1 vyznačující se tím, že dále obsahuje krok hladkého přechodu mezi kroky vracení v podstatě veškeré energie a vracení méně než veškeré energie a mezi kroky vracení méně než veškeré energie a vracení v podstatě žádné energie.
CZ983781A 1997-11-21 1998-11-20 Způsob provozu elektrického vozidla CZ378198A3 (cs)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6673697P 1997-11-21 1997-11-21
US09/044,670 US6116368A (en) 1997-11-21 1998-03-20 Electric vehicle with battery regeneration dependent on battery charge state

Publications (1)

Publication Number Publication Date
CZ378198A3 true CZ378198A3 (cs) 1999-10-13

Family

ID=26721844

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ983781A CZ378198A3 (cs) 1997-11-21 1998-11-20 Způsob provozu elektrického vozidla

Country Status (17)

Country Link
US (1) US6116368A (cs)
EP (1) EP0921024B1 (cs)
JP (1) JPH11234806A (cs)
KR (1) KR100568726B1 (cs)
CN (1) CN1146510C (cs)
AR (1) AR017649A1 (cs)
BR (1) BR9804712A (cs)
CA (1) CA2254025C (cs)
CZ (1) CZ378198A3 (cs)
DE (1) DE69821588T2 (cs)
ES (1) ES2213253T3 (cs)
ID (1) ID22535A (cs)
MY (1) MY117149A (cs)
NO (1) NO985420L (cs)
PL (1) PL329781A1 (cs)
TR (1) TR199802395A2 (cs)
TW (1) TW577835B (cs)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
US6766874B2 (en) * 1998-09-29 2004-07-27 Hitachi, Ltd. System for driving hybrid vehicle, method thereof and electric power supply system therefor
US6672415B1 (en) * 1999-05-26 2004-01-06 Toyota Jidosha Kabushiki Kaisha Moving object with fuel cells incorporated therein and method of controlling the same
CA2320003C (en) * 1999-09-22 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicles
BR9904360A (pt) * 1999-10-05 2001-07-03 Auto Viacao Abc Ltda Sistema de operação de um veìculo hìbrido; veìculo hìbrido operado pelo sistema e dispositivo de suprimento e acumulação de energia para o veìculo hìbrido
JP2001238303A (ja) * 2000-02-24 2001-08-31 Mitsubishi Motors Corp ハイブリッド電気自動車の回生制御装置
JP3736268B2 (ja) * 2000-03-21 2006-01-18 日産自動車株式会社 ハイブリッド車両の制御装置
JP3734140B2 (ja) * 2000-04-06 2006-01-11 スズキ株式会社 ハイブリッド車両の制御装置
US6484830B1 (en) * 2000-04-26 2002-11-26 Bowling Green State University Hybrid electric vehicle
US7004273B1 (en) * 2000-04-26 2006-02-28 Robert Gruenwald Hybrid electric vehicle
US7252165B1 (en) * 2000-04-26 2007-08-07 Bowling Green State University Hybrid electric vehicle
JP3676190B2 (ja) * 2000-05-12 2005-07-27 本田技研工業株式会社 ハイブリッド車両の制御装置
US6574535B1 (en) 2000-05-31 2003-06-03 General Motors Corporation Apparatus and method for active driveline damping with clunk control
US6484831B1 (en) * 2000-07-14 2002-11-26 Ford Global Technologies, Inc. Hybrid electric vehicle
US6580178B1 (en) * 2000-09-21 2003-06-17 Ford Global Technologies, Inc. Pulsed charge starter/alternator control system
JP2002141073A (ja) * 2000-10-31 2002-05-17 Nissan Motor Co Ltd 移動体用燃料電池システム
US6545444B2 (en) * 2001-03-13 2003-04-08 Bedini Technology, Inc. Device and method for utilizing a monopole motor to create back EMF to charge batteries
JP2003203180A (ja) * 2002-01-09 2003-07-18 Pfu Ltd ポイントシステム、ポイント方法およびポイントプログラム
US6705686B2 (en) * 2002-03-26 2004-03-16 Ford Motor Company Method and apparatus for braking a hybrid electric vehicle
US6871919B2 (en) * 2002-08-20 2005-03-29 Visteon Global Technologies, Inc. Method and apparatus for power management of a braking system
US7029077B2 (en) * 2002-08-20 2006-04-18 Visteon Global Technologies, Inc. Method and apparatus for power management of a regenerative braking system
US7353897B2 (en) * 2003-07-23 2008-04-08 Fernandez Dennis S Telematic method and apparatus with integrated power source
DE10346213A1 (de) * 2003-10-06 2005-04-21 Bosch Gmbh Robert Verfahren zur Regelung des Ladezustands eines Energiespeichers bei einem Fahrzeug mit Hybridantrieb
US6986727B2 (en) * 2003-12-23 2006-01-17 Caterpillar Inc. Retarding control for an electric drive machine
DE102004052023A1 (de) * 2004-10-26 2006-04-27 Deere & Company, Moline Vorrichtung zum Erzeugen elektrischer Energie für ein landwirtschaftliches oder industrielles Nutzfahrzeug
US20060145482A1 (en) * 2005-01-06 2006-07-06 Bob Roethler Vehicle powertrain that compensates for a prime mover having slow transient response
US7860808B2 (en) * 2006-01-05 2010-12-28 International Business Machines Corporation System and method for hybrid conservation of fossil fuel
DE102006019031A1 (de) * 2006-04-25 2007-10-31 Volkswagen Ag Verfahren zur Momentensteuerung einer Hybridantriebseinheit sowie Hybridantriebseinheit
US20070284165A1 (en) * 2006-06-12 2007-12-13 Patterson Rickie W Vehicle Hydraulic Regenerative System
US20070284170A1 (en) * 2006-06-13 2007-12-13 Kuras Brian D Retarding control for hydromechanical drive machine
DE102006044427A1 (de) * 2006-09-21 2008-04-03 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs eines Kraftfahrzeugs
DE102006054669A1 (de) * 2006-11-17 2008-06-05 J. Eberspächer GmbH & Co. KG Hybrid-Antrieb für ein Kraftfahrzeug
JP4379484B2 (ja) * 2007-04-06 2009-12-09 株式会社デンソー 車両システム
JP4490458B2 (ja) * 2007-06-15 2010-06-23 日立オートモティブシステムズ株式会社 回転電機の制御装置及び車両の駆動装置
JP4527138B2 (ja) * 2007-07-12 2010-08-18 本田技研工業株式会社 ハイブリッド車両の制御装置
JP4341712B2 (ja) * 2007-09-10 2009-10-07 トヨタ自動車株式会社 蓄電機構の充電制御装置および充電制御方法
JP4363478B2 (ja) 2007-10-29 2009-11-11 トヨタ自動車株式会社 燃料電池の出力制御装置
FR2923187B1 (fr) * 2007-11-05 2009-11-13 Renault Sas Procede de gestion de l'energie dans un vehicule automobile
DE102008023305A1 (de) * 2008-05-07 2009-11-12 Volkswagen Ag Verfahren zur Steuerung eines Rekuperationsmomentes einer Hybridantriebseinheit
DE102008037045A1 (de) * 2008-08-08 2010-03-04 Motorenfabrik Hatz Gmbh & Co. Kg Elektrofahrzeug
US20100301815A1 (en) * 2009-06-02 2010-12-02 Dai Side Electric vehicle having a generator
US8783396B2 (en) * 2010-01-21 2014-07-22 Epower Engine Systems, Llc Hydrocarbon fueled-electric series hybrid propulsion systems
US20110193518A1 (en) * 2010-02-10 2011-08-11 James Wright Battery override
US8612074B2 (en) 2010-05-07 2013-12-17 GM Global Technology Operations LLC Regenerative braking control in vehicles
WO2012047118A1 (en) * 2010-10-05 2012-04-12 Taing Foung Phan Battery augmentation system and method
DE102010042183A1 (de) * 2010-10-08 2012-04-12 Robert Bosch Gmbh Hybridantriebseinrichtung
DE102010042995A1 (de) * 2010-10-27 2012-05-03 Robert Bosch Gmbh Steuervorrichtung und Verfahren zum Betreiben eines mit einer elektrischen Antriebs- und/oder Generatorvorrichtung ausgestatteten Bremssystems
JP5661166B1 (ja) * 2013-10-30 2015-01-28 三菱電機株式会社 車両用充電システム
US9737067B2 (en) * 2015-04-29 2017-08-22 Memes Associates, Ltd. Autonomous spraying platform
JP6344345B2 (ja) * 2015-09-11 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両
US10197412B2 (en) * 2017-03-28 2019-02-05 Ford Global Technologies, Llc Electric vehicle charging
CN108032862B (zh) * 2017-12-08 2020-01-17 中车株洲电力机车有限公司 一种内燃动车组混合供电动力系统及供电方法
WO2019183553A1 (en) 2018-03-22 2019-09-26 Tae Technologies, Inc. Systems and methods for power management and control
US11535254B2 (en) 2019-06-11 2022-12-27 Ford Global Technologies, Llc Hybrid/electric vehicle control system
CN116114166A (zh) * 2020-06-22 2023-05-12 Fca菲亚特克莱斯勒汽车巴西有限公司 汽车交流发电机的管理方法和系统
US11890947B2 (en) * 2020-10-19 2024-02-06 Deere & Company Vehicle energy control system and method of controlling energy for a vehicle
FR3122366A1 (fr) * 2021-04-28 2022-11-04 Psa Automobiles Sa Procede de pilotage d’une deceleration d’un vehicule automobile electrique ou hybride
CN115805816B (zh) * 2023-01-31 2023-04-18 北京航空航天大学 再生制动下电机工作点选择及换挡规律制定方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR611675A (fr) * 1926-02-10 1926-10-08 Union Francaise De Credit Perfectionnements apportés aux revêtements de routes, chaussées, etc.
FR782941A (fr) * 1934-10-18 1935-07-05 Machine à écrire électrique portative
US3675099A (en) * 1971-07-02 1972-07-04 Gen Motors Corp Induction motor regenerative braking system
GB8821444D0 (en) * 1988-09-13 1988-10-12 De La Rue Co Plc Operating ac motors
US4908553A (en) * 1988-12-20 1990-03-13 Eaton Corporation Magnetic regenerative braking system
US5036934A (en) * 1989-03-30 1991-08-06 Nishina Edward T Electro motor car
US5318355A (en) * 1991-12-05 1994-06-07 Honda Giken Kogyo Kabushiki Kaisha Brake system in electric vehicle
JP3189981B2 (ja) * 1991-12-05 2001-07-16 本田技研工業株式会社 電動車両の制動装置
US5291960A (en) * 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
FR2701435B1 (fr) * 1993-02-15 1995-03-31 Smh Management Services Ag Véhicule automobile à traction électrique comprenant un dispositif de récupération d'énergie.
JP2796039B2 (ja) * 1993-05-14 1998-09-10 株式会社日立製作所 電気自動車の制動装置
JP3094745B2 (ja) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 ハイブリッド車の発電制御装置
US5678647A (en) * 1994-09-07 1997-10-21 Westinghouse Electric Corporation Fuel cell powered propulsion system
JP3262253B2 (ja) * 1995-02-22 2002-03-04 株式会社日立製作所 電気車用駆動制御装置及び制御方法

Also Published As

Publication number Publication date
US6116368A (en) 2000-09-12
CA2254025C (en) 2006-03-21
PL329781A1 (en) 1999-05-24
BR9804712A (pt) 1999-11-23
KR19990045483A (ko) 1999-06-25
AR017649A1 (es) 2001-09-12
NO985420D0 (no) 1998-11-20
KR100568726B1 (ko) 2006-07-12
EP0921024A2 (en) 1999-06-09
ID22535A (id) 1999-11-04
JPH11234806A (ja) 1999-08-27
CN1146510C (zh) 2004-04-21
CN1226484A (zh) 1999-08-25
ES2213253T3 (es) 2004-08-16
NO985420L (no) 1999-05-25
EP0921024B1 (en) 2004-02-11
DE69821588T2 (de) 2004-12-30
MY117149A (en) 2004-05-31
TR199802395A3 (tr) 1999-06-21
TR199802395A2 (xx) 1999-06-21
DE69821588D1 (de) 2004-03-18
TW577835B (en) 2004-03-01
EP0921024A3 (en) 1999-12-22
CA2254025A1 (en) 1999-05-21

Similar Documents

Publication Publication Date Title
CZ378198A3 (cs) Způsob provozu elektrického vozidla
KR100568727B1 (ko) 배터리 충전 상태에 의존하여 배터리와 보조공급원간의 견인 전동기 구동이 배분되는 혼성 전기 차량의 작동 방법
CZ378298A3 (cs) Způsob provozu hybridního elektrického vozidla
CZ378398A3 (cs) Způsob provozu elektrické vozidlo
CN109131309B (zh) 混合动力车辆
US20040060751A1 (en) Method for controlling the operating characteristics of a hybrid electric vehicle
CN102036849A (zh) 用于双储能管理的系统和方法
JPH10295045A (ja) ハイブリッド電気自動車の発電制御装置
JPH11136808A (ja) ハイブリッド車両の発電制御装置
JP3094701B2 (ja) 電気自動車用エンジン駆動発電機の制御装置
MXPA98009726A (en) Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state
MXPA98009714A (en) Electric vehicle with battery regeneration dependant on battery charge state
MXPA98009728A (en) Hybrid electric vehicle with reduced auxiliary power to batteries during regenerative braking

Legal Events

Date Code Title Description
PD00 Pending as of 2000-06-30 in czech republic