CZ304507B6 - Způsob výroby dusičnanu draselného metodou elektrodialýzy a zařízení k provádění tohoto způsobu - Google Patents
Způsob výroby dusičnanu draselného metodou elektrodialýzy a zařízení k provádění tohoto způsobu Download PDFInfo
- Publication number
- CZ304507B6 CZ304507B6 CZ2013-234A CZ2013234A CZ304507B6 CZ 304507 B6 CZ304507 B6 CZ 304507B6 CZ 2013234 A CZ2013234 A CZ 2013234A CZ 304507 B6 CZ304507 B6 CZ 304507B6
- Authority
- CZ
- Czechia
- Prior art keywords
- membranes
- solution
- nitrate
- solutions
- ion exchange
- Prior art date
Links
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 26
- 235000010333 potassium nitrate Nutrition 0.000 title claims abstract description 17
- 239000004323 potassium nitrate Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000909 electrodialysis Methods 0.000 title claims abstract description 7
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims abstract description 36
- 239000012528 membrane Substances 0.000 claims abstract description 35
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 28
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000005341 cation exchange Methods 0.000 claims abstract description 19
- 239000001103 potassium chloride Substances 0.000 claims abstract description 17
- 235000011164 potassium chloride Nutrition 0.000 claims abstract description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 13
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 13
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 13
- 238000005342 ion exchange Methods 0.000 claims abstract description 12
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- 230000005684 electric field Effects 0.000 claims abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 14
- 239000000047 product Substances 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 235000019270 ammonium chloride Nutrition 0.000 claims description 6
- 239000006227 byproduct Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 235000011167 hydrochloric acid Nutrition 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- 150000001768 cations Chemical class 0.000 claims 1
- 239000012527 feed solution Substances 0.000 claims 1
- 238000002955 isolation Methods 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- -1 NaOH hydroxides Chemical class 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D9/00—Nitrates of sodium, potassium or alkali metals in general
- C01D9/08—Preparation by double decomposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/50—Stacks of the plate-and-frame type
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D9/00—Nitrates of sodium, potassium or alkali metals in general
- C01D9/08—Preparation by double decomposition
- C01D9/10—Preparation by double decomposition with ammonium nitrate
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D9/00—Nitrates of sodium, potassium or alkali metals in general
- C01D9/08—Preparation by double decomposition
- C01D9/14—Preparation by double decomposition of salts of potassium with sodium nitrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/28—Specific concentration chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/30—Specific dilution or de-ionizing chambers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Agronomy & Crop Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Vynález se týká způsobu výroby dusičnanu draselného metodou elektrodialýzy, která spočívá ve výměně iontů mezi roztokem chloridu draselného a roztokem dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného. Tato výměna iontů probíhá v elektrickém poli na soustavě iontovýměnných membrán obsahující alespoň jednu sekvenci anionvýměnných membrán (AM1, AM2) a kationvýměnných membrán (CM1, CM2), vzájemně se střídajících a vytvářejících alespoň čtyři mezimembránové prostory (C1, C2, D1, D2). V těchto mezimembránových prostorech po obou stranách membrán proudí roztoky uvedených chemických sloučenin. Dále se vynález týká zařízení k provádění tohoto způsobu.
Description
Oblast techniky
Vynález se týká způsobu výroby dusičnanu draselného metodou elektrodialýzy, která spočívá ve výměně iontů mezi roztokem chloridu draselného a roztokem dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného. Dále se vynález týká zařízení k provádění tohoto způsobu. Vyráběný dusičnan draselný má široké použití v zemědělství jako hnojivo, v průmyslu - sklářském, výbušnin a pyrotechniky, v potravinářství jako konzervační přípravek nebo ve farmacii jako přísada do zubních past.
Dosavadní stav techniky
Dusičnan draselný (KNO3) se vyrábí reakcí chloridu draselného (KC1) s některou z následujících látek: dusičnan sodný (NaNO3), kyselina dusičná (HNO3) nebo dusičnan amonný (NH4NO3). Reakce probíhají podle následujících rovnic:
KC1 + NH4NO3 -> KNO3 + NH4C1
KC1 + HNO3 -+ KNO3 + HCI
KC1 + NaNO3 -> KNO3 + NaCl
V současné době jsou známy především 2 možnosti, jak realizovat syntézu:
1. Konverzí v reaktoru: roztoky sloučenin podle výše uvedených rovnic se smíchají v reaktoru, kde spolu reagují a řízeným ohříváním/ochlazením se vysráží produkt - KNO3. Taková řešení jsou předmětem např. čínských patentů CN 1122793, CN 1827526, CN 101628723 nebo CN 101973564. Nevýhodami uvedeného postupuje malý stupeň konverze, vznik úsad na povrchu reaktoru při krystalizací a materiálová náročnost reaktorů z hlediska korozivní a chemické odolnosti.
2. Pomocí ionexů: záměna kationtů se provádí v koloně s kyselým katexem - viz např. čínský patent CN 1184077, kanadský patent CA 2027064, Evropský patent EP 1235743. Po záměně iontů se získá roztok a pro získání pevného produktu vždy následuje odpařování a krystalizace. Nevýhodou uvedeného postupu je získání roztoku KNO3 s nízkou koncentrací, což zvyšuje náklady na odpařování.
U řešení podle patentů US 4465568 a US 4995950 probíhá výměna iontů při elektrolýze. Hnací silou je stejnosměrné napětí, v zařízení pro elektrolýzu je umístěna kationvýměnná membrána. Díky elektrolýze vzniknou nejprve hydroxidy KOH/NaOH, které reagují s HNO3 za vzniku směsi dusičnanů KNO3/NaNO3. Vedlejšími produkty jsou plyny chlór a vodík. Proces elektrolytické výroby dusičnanu draselného je progresivní technologií s nespornými výhodami proti výše uvedeným klasickým výrobním procesům. Hlavní nevýhodou tohoto způsobu ovšem je, že produkt (KNO3) nevzniká přímo, ale až následnou neutralizací. Zároveň je také třeba uvést, že produktivita procesu není optimální.
Pokud jde o výrobu dusičnanů procesem dialýzy, resp. o zařízení k jeho provádění, výroba dusičnanů draselného, resp. zařízení k jejímu provádění známo není. Z japonského spisu JPH 06293986 je znám způsob výroby hydroxidu sodného, u něhož je meziproduktem dusičnan sodný. Dusičnan sodný se připravuje metodou elektrodialýzy, která spočívá ve výměně iontů probíhající v elektrickém poli na soustavě anionvýměnných a kationvýměnných membrán, vzájemně se střídajících a vytvářejících alespoň čtyři mezimembránové prostory pro roztoky vstupních a výstupních chemických sloučenin dialytické výměny iontů. Problémem tohoto procesu a zařízení k jeho
CZ 304507 Β6 provádění je ovšem skutečnost, že nejsou optimalizovány přímo pro výrobu dusičnanů - tzn. nejsou použity z tohoto hlediska optimální iontovýměnné membrány v kombinaci s vhodnými rozdělovači a mechanickými oporami mezimembránového prostoru. Uváděná potřebná proudová hustota I až 100 A/dm2, preferenčně 10 až 30 A/dm2 i preferovaná teplota 50 až 90 °C jsou příliš vysoké, což se projevuje v energetické a následně i ekonomické náročnosti procesu. Také požadované koncentrace roztoků vstupních chemických sloučenin - konkrétně 1 až 4,5 mol/l u chloridu sodného a 3 až 7 mol/l u kyseliny dusičné jsou značně vysoké, což má opět negativní dopad na ekonomiku procesu.
Podstata vynálezu
K odstranění výše uvedeného nedostatku při zachování progresivních znaků elektrolytického procesu přispívá do značné míry způsob výroby dusičnanu draselného metodou elektrodialýzy. Výměna iontů mezi roztokem chloridu draselného a roztokem dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného probíhá v elektrickém poli na soustavě iontovýměnných membrán obsahující alespoň jednu sekvenci anionvýměnných membrán a kationvýměnných membrán, vzájemně se střídajících a vytvářejících alespoň čtyři mezi membránové prostory. Podstata vynálezu spočívá v tom, že v těchto mezimembránových prostorech po obou stranách membrán proudí roztoky chemických sloučenin tak, že v prvním mezimembránovém prostoru před první anionvýměnnou membránou proudí roztok vstupního chloridu draselného a ve třetím mezimembránovém prostoru mezi první kationvýměnnou membránou a druhou anionvýměnnou membránou pak roztok vstupního dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného. Ve čtvrtém mezimembránovém prostoru mezi druhou anionvýměnnou membránou a druhou kationvýměnnou membránou proudí roztok hlavního produktu - dusičnanu draselného a ve druhém mezimembránovém prostoru mezi první anionvýměnnou membránou a první kationvýměnnou membránou potom roztok vedlejšího produktu - chloridu amonného, kyseliny chlorovodíkové nebo chloridu sodného. Koncentrace vstupních roztoků chloridu draselného a dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného je v rozmezí 0,01 až 0,3 mol/l a koncentrace získaných roztoků produktů - dusičnanu draselného a chloridu amonného, kyseliny chlorovodíkové nebo chloridu sodného je vyšší než 1 moi/1. Proudová hustota v prostoru iontovýměnných membrán je 40 až 400 A/m2 a teplota roztoků při provozuje v rozmezí 20 až 50 °C.
Zařízení k provádění způsobu podle vynálezu je tvořeno elektrodami, mezi nimiž je uložena soustava iontovýměnných membrán obsahující alespoň jednu sekvenci anionvýměnných membrán a kationvýměnných membrán, vzájemně se střídajících a vytvářejících alespoň čtyři mezimembránové prostory (Cl, C2, Dl, D2) pro roztoky vstupních a výstupních chemických sloučenin dialytické výměny iontů. Podstata vynálezu spočívá v tom, že iontovýměnnými membránami jsou s výhodou membrány homogenního nebo heterogenního typu v tloušťce 0,1 až 1 mm a s permselektivitou více než 90 %, mezi kterými jsou dále umístěny rozdělovače o tloušťce 0,1 až 2 mm vyrobené z polymemího materiálu zajišťující distribuci roztoků, jejich vzájemnou nemísitelnost a mechanickou oporu mezimembránového prostoru.
Napětí mezi elektrodami je s výhodou 0,5 až 2 V na sekvenci čtyř membrán - membránový kvadruplet při proudové hustotě 40 až 400 A/m2.
Výhodami způsobu výroby dusičnanu draselného podle vynálezu je získání velice čistého roztoku KNO3 při vysokém stupni konverze. Samotná konverze probíhá v zařízení elektrodialyzéru vyrobeného z komponent na bázi polymemích materiálů, které nepodléhají korozi. Z hlediska optimalizace parametrů výroby je důležitá nízká potřebná proudová hustota - pouze 40 až 400 A/m2, tedy 0,4 až 4 A/dm2 i nízká teplota procesu - preferenčně pouze 20 až 50 °C. Minimalizovány jsou také koncentrace roztoků vstupních sloučenin (chloridu draselného a dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného) na 0,01 až 0,3 mol/l.
Objasnění výkresů
K bližšímu objasnění podstaty technického řešení slouží přiložený výkres, kde obr. 1 představuje funkční schéma způsobu výroby dusičnanu draselného metodou elektrodialýzy na jedné (základní) sekvenci iontovýměnných membrán, obr. 2 představuje příkladné uspořádání pěti sekvencí čtyř membrán - membránových kvadrupletů.
Příklady uskutečnění vynálezu
Příklad 1
Pro testování byla použita laboratorní jednotka P EDR-Z/4x (firmy MemBrain) pro elektrodialýzu-metathesi (dále jen EDM). Jednotka obsahovala 5 nádrží o objemu 0,25 až 2 litry a 5 odstředivých čerpadel s magnetickou vložkou pro cirkulaci roztoků v mezimembránových prostorech Cl, C2, Dl, D2 vytvořených sekvencemi anionvýměnných membrán AM1, AM2 a kationvýměnných membrán CM1, CM2 (schéma jedné základní sekvence - viz obr. 1). Konkrétně se jednalo o následující roztoky:
• diluát 1 - roztok vstupního chloridu draselného (KC1) proudící prvním mezimembránovým prostorem Dl před první anionvýměnnou membránou AM1, • diluát 2 - roztok vstupního dusičnanu amonného (NH4NO3), kyseliny dusičné (HNO3) nebo dusičnanu sodného (NaNCE) proudící třetím mezimembránovým prostorem D2 mezi první kationvýměnnou membránou CM1 a druhou anionvýměnnou membránou AM2, • koncentrát 1 - roztok hlavního produktu - dusičnanu draselného (KNO3) proudící čtvrtým mezimembránovým prostorem C2 mezi druhou anionvýměnnou membránou AM2 a druhou kationvýměnnou membránou CM2, • koncentrát 2 - roztok vedlejšího produktu - chloridu amonného (NH4CI), kyseliny chlorovodíkové (HC1) nebo chloridu sodného (NaCl) proudící druhým mezimembránovým prostorem Cl mezi první anionvýměnnou membránou AM1 a první kationvýměnnou membránou
CM1.
• elektrodový roztok.
Jednotka byla vybavena měřením průtoků, teploty, vodivostí a pH pro každý okruh individuálně a elektrickým zdrojem stejnosměrného napětí o výkonu 90 W. EDM modul byl osazen 11 ks kationvýměnných membrán CM (RALEX CM-PES) a 10 ks anionvýměnných membrán AM (RALEX AM-PES), vzájemně se střídajících a tvořících 5 sekvencí membrán (vadrupletů) - viz schéma na obr. 2. Při tom každá ze sekvencí membrán měla uspořádání podle obr. 1. Efektivní plocha jedné membrány byla 64 cm2.
Test byl proveden vsádkovým způsobem. Byly zpracovávány vstupní roztoky KC1 - první mezimembránový prostor Dl, množství 1 litr, koncentrace 0,2 mol/l a NH4NO3 - třetí mezimembránový prostor D2, množství 1 litr, koncentrace 0,2 mol/l.
Roztoky EDM modulem cirkulovaly rychlostí 0,5 l/min a jejich teplota byla 25 °C. Pracovní napětí bylo 7,5 V a proud klesl z počáteční hodnoty 2,5 A na 1,7 A na konci experimentu. Tímto způsobem bylo získáno 50 ml hlavního produktu KNO3 - čtvrtý mezimembránový prostor C2 o koncentraci 4 mol/l a 50 ml vedlejšího produktu NH4CI - druhý mezimembránový prostor Cl o koncentraci 2,8 mol/l. Obsah chloridů v hlavním produktu byl 2 mol.%. V elektrodových komorách po celou dobu experimentu protékal roztok NH4NO3 o koncentraci 0,3 mol/l.
Příklad 2
Test byl proveden analogicky a na zařízení obdobném příkladu 1, ale kontinuálním způsobem s recyklem (feed and bleed). Testovací jednotka byla doplněna o 2 externí nádrže pro koncentros váné roztoky KC1 a NH4NO3 a 2 peristaltická čerpadla. Sání peristaltických čerpadel bylo z externích nádrží a výtlak byl zaveden do pracovních okruhů KC1, respektive NH4NO3. Ke zpracovávanému roztoku KC1 (první mezimembránový prostor Dl) o koncentraci 0,03 mol/1 byl přidáván roztok KC1 o koncentraci 0,2 mol/1. Ke zpracovávanému roztoku NH4NO3 (třetí mezimembránový prostor D2) o koncentraci 0,03 mol/1 byl přidáván roztok NH4NO3 o koncentraci
0,2 mol/1. Rychlost přidávání roztoků byla řízena tak, aby byla udržována konstantní koncentrace roztoků 0,03 mol/1. Cirkulační rychlost roztoků EDM modulem byla 0,5 1/min. Při teplotě 25 °C a napětí 7,5 V byl konstantní proud 1,3 A. Zpracováním 1,5 1 roztoku KC1 o 0,2 mol/1 a 1,5 1 roztoku NH4NO3 o 0,2 mol/1 bylo získáno 100 ml hlavního produktu KNO3 (čtvrtý mezimembránový prostor C2) o koncentraci 3 mol/1 a 100 ml vedlejšího produktu NH4C1 (druhý mezimembránový prostor Cl) o koncentraci 2,7 mol/L. Obsah chloridů v hlavním produktu byl 2 mol.%. V elektrodových komorách po celou dobu experimentu protékal roztok NH4NO3 o koncentraci 0,2 mol/1.
Claims (3)
- PATENTOVÉ NÁROKY25 1. Způsob výroby dusičnanu draselného metodou elektrodialýzy, která spočívá ve výměně iontů mezi roztokem chloridu draselného a roztokem dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného s případnou následnou izolací dusičnanu draselného z roztoku, při čemž uvedená výměna iontů probíhá v elektrickém poli na soustavě iontovýměnných membrán obsahující alespoň jednu sekvenci an ion výměnných membrán (AM1, AM2) a kationvýměnných30 membrán (CM1, CM2), vzájemně se střídajících a vytvářejících alespoň čtyři mezimembránové prostory (Cl, C2, Dl, D2), při čemž v těchto mezimembránových prostorech (Cl, C2, Dl, D2) po obou stranách membrán (AM1, AM2, CM1, CM2) proudí roztoky uvedených chemických sloučenin, vyznačující se tím, že v prvním mezimembránovém prostoru (Dl) před první anionvýměnnou membránou (AM1) proudí roztok vstupního chloridu draselného, ve třetím35 mezimembránovém prostoru (D2) mezi první kationvýměnnou membránou (CM1) a druhou anionvýměnnou membránou (AM2) roztok vstupního dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného, zatím co ve čtvrtém mezimembránovém prostoru (C2) mezi druhou anionvýměnnou membránou (AM2) a druhou kationvýměnnou membránou (CM2) proudí roztok hlavního produktu — dusičnanu draselného a ve druhém mezimembránovém prostoru (Cl) mezi první40 anionvýměnnou membránou (AM1) a první kationvýměnnou membránou (CM1) proudí roztok vedlejšího produktu — chloridu amonného, kyseliny chlorovodíkové nebo chloridu sodného, s tím, že koncentrace vstupních roztoků chloridu draselného a dusičnanu amonného, kyseliny dusičné nebo dusičnanu sodného je v rozmezí 0,01 až 0,3 mol/l a koncentrace získaných roztoků produktů - dusičnanu draselného a chloridu amonného, kyseliny chlorovodíkové nebo chloridu45 sodného je vyšší než 1 mol/l, proudová hustota v prostoru iontovýměnných membrán je 40 až 400 A/m2 a teplota roztoků při provozuje v rozmezí 20 až 50 °C.
- 2. Zařízení k provádění způsobu podle nároku 1, tvořené elektrodami, mezi nimiž je uložena soustava iontovýměnných membrán obsahující alespoň jednu sekvenci anionvýměnných mem50 brán (AM1, AM2) a kationvýměnných membrán (CM1, CM2), vzájemně se střídajících a vytvářejících alespoň čtyři mezimembránové prostory (Cl, C2, Dl, D2) pro roztoky vstupních a výstupních chemických sloučenin dialytické výměny iontů, vyznačující se tím, že iontovýměnnými membránami jsou membrány homogenního nebo heterogenního typu v tloušťce 0,1 až 1 mm a s permselektivitou více než 90 %, mezi kterými jsou dále umístěny rozdělovače o tloušťce 0,1 až 2 mm vyrobené z polymerního materiálu k zajištění distribuce a vzájemné nemísitelnosti roztoků a dále mechanické opory mezimembránového prostoru,
- 3. Zařízení podle nároku 2, v y z n a č uj í c í se t í m , že mezi elektrodami je napětí 0,5 až 5 2 V na sekvenci čtyř membrán - membránový kvadruplet při proudové hustotě 40 až 400 A/m2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-234A CZ304507B6 (cs) | 2013-03-28 | 2013-03-28 | Způsob výroby dusičnanu draselného metodou elektrodialýzy a zařízení k provádění tohoto způsobu |
PCT/CZ2014/000030 WO2014154189A1 (en) | 2013-03-28 | 2014-03-21 | A method of production of potassium nitrate by electrodialysis and apparatus for making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-234A CZ304507B6 (cs) | 2013-03-28 | 2013-03-28 | Způsob výroby dusičnanu draselného metodou elektrodialýzy a zařízení k provádění tohoto způsobu |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ2013234A3 CZ2013234A3 (cs) | 2014-06-04 |
CZ304507B6 true CZ304507B6 (cs) | 2014-06-04 |
Family
ID=50687223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2013-234A CZ304507B6 (cs) | 2013-03-28 | 2013-03-28 | Způsob výroby dusičnanu draselného metodou elektrodialýzy a zařízení k provádění tohoto způsobu |
Country Status (2)
Country | Link |
---|---|
CZ (1) | CZ304507B6 (cs) |
WO (1) | WO2014154189A1 (cs) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104261435B (zh) * | 2014-10-10 | 2015-12-02 | 诺贝丰(中国)化学有限公司 | 一种复分解法硝酸钾结晶系统及结晶工艺 |
CN112723390A (zh) * | 2021-02-03 | 2021-04-30 | 浙江艺谛环境设备有限公司 | 一种氯化钠与碳酸氢铵制备碳酸氢钠与氯化铵的处理系统及工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0035052A1 (en) * | 1980-03-05 | 1981-09-09 | Philip Morris Incorporated | Method of treating tobacco extracts employing electrodialysis |
EP0394858A1 (de) * | 1989-04-28 | 1990-10-31 | OTTO OEKO-TECH GMBH & CO. KG | Verfahren und Vorrichtung zur Entfernung von Nitraten aus einem Wasserstrom im Rahmen der Gebrauchswasser-Aufbereitung |
JPH06293986A (ja) * | 1992-11-27 | 1994-10-21 | Agency Of Ind Science & Technol | 苛性ソーダの製造方法 |
WO2009022572A1 (ja) * | 2007-08-10 | 2009-02-19 | Astom Corporation | 酸廃液からの酸の回収方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465568A (en) | 1981-11-16 | 1984-08-14 | Olin Corporation | Electrochemical production of KNO3 /NaNO3 salt mixture |
JP2726657B2 (ja) * | 1985-05-03 | 1998-03-11 | ザ・グレーバー・カンパニー | 混合塩からの混合酸の回収 |
DE3729669A1 (de) | 1987-09-04 | 1989-03-16 | Basf Ag | Verfahren zur herstellung von alkalimetallnitraten |
US5110578A (en) * | 1989-10-05 | 1992-05-05 | Monomeros Colombo Venezolanos, S.A. (E.M.A.) | Continuous production of potassium nitrate via ion exchange |
CA2027064A1 (en) | 1989-10-05 | 1991-04-06 | Alvaro Abidaud | Continuous production of potassium nitrate via ion exchange |
US5207879A (en) * | 1991-03-11 | 1993-05-04 | The Graver Company | Bipolar membrane stack and method for production of low chloride sodium hydroxide |
CN1122793A (zh) | 1994-11-05 | 1996-05-22 | 张辉 | 副产氮钾二元复合肥的生产方法 |
CN1056819C (zh) | 1996-12-06 | 2000-09-27 | 陈淑奇 | 离子交换法生产硝酸钾工艺 |
FI107330B (fi) | 1999-12-03 | 2001-07-13 | Kemira Agro Oy | Kahden alkalimetallisuolan valmistaminen yhdistetyllä ioninvaihto- ja kiteytysmenetelmällä |
CN100374372C (zh) | 2005-08-31 | 2008-03-12 | 东华工程科技股份有限公司 | 一种复分解法制备硝酸钾的方法 |
US8801909B2 (en) * | 2006-01-06 | 2014-08-12 | Nextchem, Llc | Polymetal hydroxychloride processes and compositions: enhanced efficacy antiperspirant salt compositions |
CN101628723B (zh) | 2009-08-18 | 2011-09-28 | 湖南丹化农资有限公司 | 复分解反应生产硝酸钾和氯化铵的方法 |
CN101973564A (zh) | 2010-11-01 | 2011-02-16 | 赵家春 | 烟花爆竹用硝酸钾及其制备方法 |
-
2013
- 2013-03-28 CZ CZ2013-234A patent/CZ304507B6/cs not_active IP Right Cessation
-
2014
- 2014-03-21 WO PCT/CZ2014/000030 patent/WO2014154189A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0035052A1 (en) * | 1980-03-05 | 1981-09-09 | Philip Morris Incorporated | Method of treating tobacco extracts employing electrodialysis |
EP0394858A1 (de) * | 1989-04-28 | 1990-10-31 | OTTO OEKO-TECH GMBH & CO. KG | Verfahren und Vorrichtung zur Entfernung von Nitraten aus einem Wasserstrom im Rahmen der Gebrauchswasser-Aufbereitung |
JPH06293986A (ja) * | 1992-11-27 | 1994-10-21 | Agency Of Ind Science & Technol | 苛性ソーダの製造方法 |
WO2009022572A1 (ja) * | 2007-08-10 | 2009-02-19 | Astom Corporation | 酸廃液からの酸の回収方法 |
Also Published As
Publication number | Publication date |
---|---|
CZ2013234A3 (cs) | 2014-06-04 |
WO2014154189A1 (en) | 2014-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017258936B2 (en) | Processes for preparing lithium hydroxide | |
CN102531927B (zh) | 一种利用双极膜电渗析制备四丙基氢氧化铵的方法 | |
Zhang et al. | Continuous synthesis of high purity KNO3 through electrodialysis metathesis | |
Han et al. | Preparation of chloride-free potash fertilizers by electrodialysis metathesis | |
CZ2018250A3 (cs) | Způsob výroby chemických sloučenin lithia metodou elektrodialýzy a zařízení k provádění tohoto způsobu | |
EP1981807B1 (en) | Polyaluminum chloride and aluminum chlorohydrate, processes and compositions: high-basicity and ultra high-basicity products | |
CN110683693B (zh) | 一种电渗析与反渗透集成转化法硫酸钠型废水处理的方法 | |
ATE522478T1 (de) | Elektrodeionisationsapparatur | |
CN104557621B (zh) | 一种利用双极膜电渗析技术制备甲基磺酸的方法 | |
CN103882468A (zh) | 一种由碳酸锂生产氢氧化锂的电解-双极膜电渗析系统及其生产方法 | |
CN111393330B (zh) | 制备胍基乙酸的方法 | |
Kabay et al. | Separation of monovalent and divalent ions from ternary mixtures by electrodialysis | |
CN102838497B (zh) | 一种甘氨酸的清洁生产工艺 | |
CN112537827A (zh) | 一种浓海水制备次氯酸钠和盐酸的双极膜电渗析方法 | |
CN104710319A (zh) | 一种应用膜集成技术联产氨基酸及其类似物的绿色环保方法 | |
Zhang et al. | Conversion of potassium chloride into potassium sulfate by four-compartment electrodialysis: batch operation process | |
CZ304507B6 (cs) | Způsob výroby dusičnanu draselného metodou elektrodialýzy a zařízení k provádění tohoto způsobu | |
Greiter et al. | Electrodialysis versus ion exchange: comparison of the cumulative energy demand by means of two applications | |
CN1240670C (zh) | 离子膜电渗析法分离DL-α-丙氨酸工艺 | |
CN113877432A (zh) | 一种双极膜电渗析装置及利用该装置处理硫酸钠废水的方法 | |
RU2384568C1 (ru) | Способ получения 2-аминоэтансульфоновой кислоты | |
CN211056871U (zh) | 一种电渗析与反渗透集成转化法硫酸钠型废水处理的装置 | |
CN209752632U (zh) | 一种制备高纯度有机碱的两隔室双极膜电渗析装置 | |
CN113233662A (zh) | 一种海水淡化浓海水的集成膜过程处理系统及其方法 | |
Jaroszek et al. | Synthesis of potassium nitrate by metathesis-electrodialysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20170328 |