CN204289464U - 一种高压pmos器件 - Google Patents

一种高压pmos器件 Download PDF

Info

Publication number
CN204289464U
CN204289464U CN201420802695.0U CN201420802695U CN204289464U CN 204289464 U CN204289464 U CN 204289464U CN 201420802695 U CN201420802695 U CN 201420802695U CN 204289464 U CN204289464 U CN 204289464U
Authority
CN
China
Prior art keywords
trap
pmos device
high voltage
oxygen
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420802695.0U
Other languages
English (en)
Inventor
吉扬永
连延杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Application granted granted Critical
Publication of CN204289464U publication Critical patent/CN204289464U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本申请公开了一种高压PMOS器件,所述高压PMOS器件包括P型衬底、N型埋层、外延层、场氧、低压P阱、N阱、厚栅氧、薄栅氧、多晶硅栅、N型重掺杂区、第一P型重掺杂区、以及第二P型重掺杂区,其中,所述N阱和所述低压P阱的间矩为0.5μm~1μm。所述高压PMOS器件减少了工艺制作的掩膜,降低了成本。

Description

一种高压PMOS器件
技术领域
本实用新型涉及半导体器件,更具体地说,本实用新型涉及电子电路中的PMOS(P型金属氧化物半导体)器件。
背景技术
BCD(Bipolar CMOS DMOS)工艺通常采用重掺杂漏区和轻掺杂漏区相结合的方式来形成双扩散漏区以制作高压PMOS器件。相比于普通器件中只需采用一张掩膜即可形成漏区,高压PMOS器件需采用两张掩膜来形成双扩散漏区。为了节省掩膜,低压器件制作过程中用以形成P阱的掩膜可用于形成高压PMOS器件中的轻掺杂漏区。但是,相比于高压PMOS器件中的轻掺杂漏区,低压器件中的P阱的浓度显得太高,将严重影响高压PMOS器件的击穿电压,导致其值较低,影响高压PMOS器件的性能。
实用新型内容
考虑到现有技术的一个或多个技术问题,提出了一种高压PMOS器件,利用低压器件中采用的掩膜制作轻掺杂漏区和N阱,节省了掩膜,降低了成本,并且同时具有较高的击穿电压和较低的导通电阻。
根据本技术的实施例,提出了一种高压PMOS器件,包括:P型衬底;位于P型衬底上的N型埋层;位于N型埋层上的外延层;位于外延层上的场氧;位于外延层内的低压P阱;位于外延层内的N阱;位于低压P阱和场氧上的厚栅氧;位于N阱、低压P阱和外延层上的薄栅氧;位于薄栅氧和厚栅氧上的多晶硅栅;位于N阱内的N型重掺杂区,用作体接触区;位于低压P阱内的第一P型重掺杂区,所述第一P型重掺杂区与场氧毗邻;以及位于N阱内的第二P型重掺杂区,所述第二P型重掺杂区与多晶硅栅毗邻,并且与N型重掺杂区电连接;其中,所述N阱和所述低压P阱的间矩为0.5μm~1μm。
在一个实施例中,所述厚栅氧的厚度区间为
在一个实施例中,在所述多晶硅栅下方,厚栅氧的边缘与场氧的边缘间矩为0.3μm~0.5μm。
在一个实施例中,所述低压P阱的侧壁与厚栅氧的边缘间矩为0.1μm~0.2μm。
在一个实施例中,所述N阱采用应用于低压器件中的低压N阱制作而成。
在一个实施例中,所述场氧采用浅槽隔离工艺制作而成。
在一个实施例中,所述场氧采用硅局部氧化工艺制作而成。
在一个实施例中,所述多晶硅栅延伸至场氧上部。
附图说明
为了更好的理解本实用新型,将根据以下附图对本实用新型进行详细描述:
图1示出了根据本实用新型一实施例的高压PMOS器件100的纵向剖面示意图;
图2示出了根据本实用新型一实施例的高压PMOS器件200的纵向剖面示意图;
图3A~3I以剖面图的形式示意性地示出了根据本实用新型一实施例形成高压PMOS器件100的工艺流程;
图4A~4I以剖面图的形式示意性地示出了根据本实用新型一实施例形成高压PMOS器件200的工艺流程。
具体实施方式
下面将详细描述本实用新型的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本实用新型。在以下描述中,为了提供对本实用新型的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本实用新型。在其他实例中,为了避免混淆本实用新型,未具体描述公知的电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本实用新型至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。应当理解,当称元件“连接到”或“耦接到”另一元件时,它可以是直接连接或耦接到另一元件或者可以存在中间元件。相反,当称元件“直接连接到”或“直接耦接到”另一元件时,不存在中间元件。相同的附图标记指示相同的元件。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
图1示出了根据本实用新型一实施例的高压PMOS器件100的纵向剖面示意图。在图1中,所述高压PMOS器件100包括:P型衬底101;位于P型衬底101上的N型埋层102;位于N型埋层102上的外延层103;位于外延层103上的场氧111;位于外延层103内的低压P阱104;位于外延层103内的N阱107;位于低压P阱104和场氧111上的厚栅氧112;位于N阱107、低压P阱104和外延层103上的薄栅氧105;位于薄栅氧105和厚栅氧112上的多晶硅栅106;位于N阱107内的N型重掺杂区110,用作体接触区;位于低压P阱104内的第一P型重掺杂区108(P+),所述第一P型重掺杂区108与场氧111毗邻;以及位于N阱107内的第二P型重掺杂区109(P+),所述第二P型重掺杂区109与多晶硅栅106毗邻,并且与N型重掺杂区110电连接;其中,N阱107和低压P阱104的间矩d1为0.5μm~1μm。
在一个实施例中,所述厚栅氧112的厚度区间为所述厚栅氧112形成于所述薄栅氧105之前,并且覆盖低压P阱104和场氧111的部分区域。如图1所示,在多晶硅栅106下方,厚栅氧112的边缘与场氧111的边缘间矩d2为0.3μm~0.5μm。同时,低压P阱104的侧壁与厚栅氧112的边缘间矩d3为0.1μm~0.2μm。
在一个实施例中,N阱107由应用于低压器件(与高压PMOS集成在同一衬底上的低压MOSFET,电容或其他器件)中的低压N阱材料制作而成。
在先进BCD工艺中,双极器件、CMOS和DMOS,以及高压器件和低压器件通常都集成于同一芯片。在本实用新型实施例中,高压PMOS器件100中的低压P阱104作为双扩散漏区的轻掺杂区,是采用低压器件(如低压NMOS)中的阱区制作而成的。而在现有技术中,为了形成高压PMOS器件100中轻掺杂区,则需要增加额外的掩膜版。因此,本实用新型实施例省略了用于制作漏区轻掺杂区的额外的掩膜版。通常情况下,低压器件中的P阱材料的浓度要比传统高压PMOS器件中的轻掺杂漏区的浓度要高。如果单单以低压器件中的P阱材料来制作高压PMOS器件的轻掺杂漏区的话,将导致高压PMOS器件的击穿电压降低。在本实用新型实施例中,厚栅氧的加入有助于提高器件的击穿电压。同时,N阱107和低压P阱104的间矩d1被限制在0.5μm~1μm,也有利于提高器件的击穿电压。在一个实施例中,高压PMOS器件100的击穿电压高达40V。由于在先进BCD工艺中,制作DMOS需用到厚栅氧,因此在高压PMOS器件100中加入厚栅氧不会增加额外的掩膜或制作步骤。同时,本实用新型实施例中的高压PMOS器件100由于采用浓度相对较高的低压P阱制作轻掺杂漏区,高压PMOS器件100的导通电阻Ron将比传统的高压PMOS器件要低。
在图1中,场氧111采用浅槽隔离工艺制作而成。本领域普通技术人员应该知道,高压PMOS器件中的场氧也可能采用其他工艺制作。
图2示出了根据本实用新型一实施例的高压PMOS器件200的纵向剖面示意图。除了场氧结构外,所述高压PMOS器件200具有与高压PMOS器件100相类似的结构。所述高压PMOS器件200中的场氧211采用硅局部氧化(LOCOS)技术制作而成。同时,在高压PMOS器件200中,多晶硅栅106也覆盖场氧211。
与高压PMOS器件100类似,高压PMOS器件200中厚栅氧212的厚度区间为所述厚栅氧212形成于所述薄栅氧105之前,并且覆盖低压P阱104的部分区域。如图2所示,在多晶硅栅106下方,厚栅氧212的边缘与场氧211的边缘间矩d2为0.3μm~0.5μm。同时,低压P阱104的侧壁与厚栅氧212的边缘间矩d3为0.1μm~0.2μm。
图3A~3I以剖面图的形式示意性地示出了根据本实用新型一实施例形成高压PMOS器件100的工艺流程。
如图3A所示,所述工艺流程包括在衬底101上形成N型埋层102。
如图3B所示,所述工艺流程包括在N型埋层102上形成外延层103。本说明书附图只示出了高压PMOS器件的剖面示意图,而未示出同衬底上其它器件的结构。本领域普通技术人员应该知道,N型埋层102仅覆盖衬底101的部分区域。而外延层103则同时覆盖N型埋层102和衬底101中未被N型埋层102覆盖的区域。在一个实施例中,所述外延层103采用化学气相沉积法(CVD)、等离子体增强型化学气相沉积(PECVD)、原子层沉积(ALD)、液相外延和/或其他合适的沉积技术制作而成。在一个实施例中,所述外延层可能注入P型杂质。
如图3C所示,所述工艺流程包括在外延层103中形成场氧111。在图3C中,场氧111采用浅槽隔离工艺(STI)制作而成。在一个实施例中,所述场氧111可能采用湿法氧化技术制作而成。
如图3D所示,所述工艺流程包括在外延层103中先后形成低压P阱104和N阱107。所述低压P阱104与低压器件中的P阱结构一致,并且采用同一张掩膜同时制作。因此不需要增加额外的掩膜。为了提高高压PMOS器件的击穿电压,所述N阱107与所述低压P阱104的间矩需控制在0.5um~1um之间。
如图3E所示,所述工艺流程包括在低压P阱104和场氧111上形成厚栅氧112。由于与高压PMOS器件集成的DMOS中包含厚栅氧,因此在高压PMOS器件中增加厚栅氧并不需要增加额外的掩膜。在一个实施例中,厚栅氧112的厚度在之间。厚栅氧可通过热氧化技术或沉积技术制作而成。
如图3F所示,所述工艺流程包括形成薄栅氧105。在一个实施例中,所述薄栅氧105可通过干法氧化技术制作而成。
如图3G所示,所述工艺流程包括在薄栅氧105和厚栅氧112上形成多晶硅栅106。
如图3H所示,所述工艺流程包括在N阱107中形成N型重掺杂区110。在一个实施例中,所述N型重掺杂区110可通过扩散技术或者离子注入技术制作而成。
如图3I所示,所述工艺流程包括在低压P阱104中形成第一P型重掺杂区108和在N阱107中形成第二P型重掺杂区109。在一个实施例中,所述第一P型重掺杂区108和所述第二P型重掺杂区109可通过扩散技术或者离子注入技术制作而成。
在一个实施例中,所述N阱107可被低压N阱替代。由于在与高压PMOS器件集成的低压器件中需用到低压N阱,因此这种替代可额外节省一张掩膜。
图4A~4I以剖面图的形式示意性地示出了根据本实用新型一实施例形成高压PMOS器件200的工艺流程。
如图4A所示,所述工艺流程包括在衬底101上形成N型埋层102。
如图4B所示,所述工艺流程包括在在N型埋层102上形成外延层103。本说明书附图只示出了高压PMOS器件的剖面示意图,而未示出同衬底上其它器件的结构。本领域普通技术人员应该知道,N型埋层102仅覆盖衬底101的部分区域。而外延层103则同时覆盖N型埋层102和衬底101中未被N型埋层102覆盖的区域。在一个实施例中,所述外延层103采用化学气相沉积法(CVD)、等离子体增强型化学气相沉积(PECVD)、原子层沉积(ALD)、液相外延和/或其他合适的沉积技术制作而成。在一个实施例中,所述外延层可能注入P型杂质。
如图4C所示,所述工艺流程包括在外延层103中先后形成低压P阱104和N阱107。所述低压P阱104与低压器件中的P阱结构一致,并且同时制作。因此不需要增加额外的掩膜。为了提高高压PMOS器件的击穿电压,所述N阱107与所述低压P阱104的间矩需控制在0.5um~1um之间。
如图4D所示,所述工艺流程包括在外延层103中形成场氧211。在一个实施例中,所述场氧211可能采用湿法氧化技术制作而成。
如图4E所示,所述工艺流程包括在低压P阱104上形成厚栅氧212。所述厚栅氧212与场氧211毗邻。由于与高压PMOS器件集成的DMOS中包含厚栅氧,因此在高压PMOS器件中增加厚栅氧并不需要增加额外的掩膜。在一个实施例中,厚栅氧112的厚度在之间。厚栅氧可通过热氧化技术或沉积技术制作而成。当厚栅氧211通过沉积技术制作时,将同时覆盖场氧211。
如图4F所示,所述工艺流程包括形成薄栅氧105。在一个实施例中,所述薄栅氧105可通过干法氧化技术制作而成。
如图4G所示,所述工艺流程包括在薄栅氧105、厚栅氧212以及场氧211上形成多晶硅栅106。
如图4H所示,所述工艺流程包括在N阱107中形成N型重掺杂区110。在一个实施例中,所述N型重掺杂区110可通过扩散技术或者离子注入技术制作而成。
如图4I所示,所述工艺流程包括在低压P阱104中形成第一P型重掺杂区108和在N阱107中形成第二P型重掺杂区109。在一个实施例中,所述第一P型重掺杂区108和所述第二P型重掺杂区109可通过扩散技术或者离子注入技术制作而成。
在一个实施例中,所述N阱107可被低压N阱替代。由于在与高压PMOS器件集成的低压器件中需用到低压N阱,因此这种替代可额外节省一张掩膜。
本实用新型提供了高压PMOS器件的结构和制作工艺流程的几个实施例。与传统的高压PMOS器件相比,本实用新型实施例提供的高压PMOS器件采用低压器件中的P阱制作双扩散漏区中的轻掺杂漏区,节省了制作轻掺杂漏区所需的掩膜,并且降低了器件的导通电阻。同时,本实用新型实施例提供的高压PMOS器件增加了DMOS器件中的厚栅氧,来提高器件的击穿电压。本实用新型实施例中的高压PMOS器件的N阱可采用低压器件中的低压N阱来制作,以进一步节省掩膜。
虽然已参照几个典型实施例描述了本实用新型,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本实用新型能够以多种形式具体实施而不脱离实用新型的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (8)

1.一种高压PMOS器件,包括:
P型衬底;
位于P型衬底上的N型埋层;
位于N型埋层上的外延层;
位于外延层上的场氧;
位于外延层内的低压P阱;
位于外延层内的N阱;
位于低压P阱和场氧上的厚栅氧;
位于N阱、低压P阱和外延层上的薄栅氧;
位于薄栅氧和厚栅氧上的多晶硅栅;
位于N阱内的N型重掺杂区,用作体接触区;
位于低压P阱内的第一P型重掺杂区,所述第一P型重掺杂区与场氧毗邻;以及
位于N阱内的第二P型重掺杂区,所述第二P型重掺杂区与多晶硅栅毗邻,并且与N型重掺杂区电连接;
其中,所述N阱和所述低压P阱的间矩为0.5μm~1μm。
2.如权利要求1所述的高压PMOS器件,其中所述厚栅氧的厚度区间为
3.如权利要求1所述的高压PMOS器件,在所述多晶硅栅下方,厚栅氧的边缘与场氧的边缘间矩为0.3μm~0.5μm。
4.如权利要求1所述的PMOS器件,所述低压P阱的侧壁与厚栅氧的边缘间矩为0.1μm~0.2μm。
5.如权利要求1所述的高压PMOS器件,所述N阱采用应用于低压器件中的低压N阱制作而成。
6.如权利要求1所述的高压PMOS器件,所述场氧采用浅槽隔离工艺制作而成。
7.如权利要求1所述的高压PMOS器件,所述场氧采用硅局部氧化工艺制作而成。
8.如权利要求7所述的高压PMOS器件,所述多晶硅栅延伸至场氧上部。
CN201420802695.0U 2013-12-27 2014-12-17 一种高压pmos器件 Expired - Fee Related CN204289464U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/142,582 US9219146B2 (en) 2013-12-27 2013-12-27 High voltage PMOS and the method for forming thereof
US14/142,582 2013-12-27

Publications (1)

Publication Number Publication Date
CN204289464U true CN204289464U (zh) 2015-04-22

Family

ID=52853945

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201420802695.0U Expired - Fee Related CN204289464U (zh) 2013-12-27 2014-12-17 一种高压pmos器件
CN201410785548.1A Pending CN104538445A (zh) 2013-12-27 2014-12-17 一种高压pmos器件及其制作工艺流程

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410785548.1A Pending CN104538445A (zh) 2013-12-27 2014-12-17 一种高压pmos器件及其制作工艺流程

Country Status (2)

Country Link
US (1) US9219146B2 (zh)
CN (2) CN204289464U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538445A (zh) * 2013-12-27 2015-04-22 成都芯源系统有限公司 一种高压pmos器件及其制作工艺流程

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570437B2 (en) * 2014-01-09 2017-02-14 Nxp B.V. Semiconductor die, integrated circuits and driver circuits, and methods of maufacturing the same
US10050115B2 (en) * 2014-12-30 2018-08-14 Globalfoundries Inc. Tapered gate oxide in LDMOS devices
KR102286012B1 (ko) * 2015-02-17 2021-08-05 에스케이하이닉스 시스템아이씨 주식회사 전력용 집적소자와, 이를 포함하는 전자장치 및 전자시스템
CN105633078B (zh) 2015-12-23 2018-06-22 成都芯源系统有限公司 双极结型半导体器件及其制造方法
CN105489481B (zh) 2016-01-13 2018-08-03 成都芯源系统有限公司 一种阶梯型厚栅氧化层的制作方法
KR102513081B1 (ko) 2016-07-08 2023-03-24 삼성전자주식회사 반도체 장치
CN111244178B (zh) * 2020-01-15 2020-10-16 合肥晶合集成电路有限公司 扩散型场效应晶体管的形成方法
US11282953B2 (en) * 2020-04-14 2022-03-22 Globalfoundries Singapore Pte. Ltd. Transistor devices and methods of forming a transistor device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517046A (en) * 1993-11-19 1996-05-14 Micrel, Incorporated High voltage lateral DMOS device with enhanced drift region
JPH0897411A (ja) * 1994-09-21 1996-04-12 Fuji Electric Co Ltd 横型高耐圧トレンチmosfetおよびその製造方法
US6680515B1 (en) 2000-11-10 2004-01-20 Monolithic Power Systems, Inc. Lateral high voltage transistor having spiral field plate and graded concentration doping
JP4981661B2 (ja) * 2004-05-06 2012-07-25 サイデンス コーポレーション 分割チャネルアンチヒューズアレイ構造
US7485523B2 (en) * 2004-12-13 2009-02-03 United Microelectronics Corp. Method for forming high voltage device and semiconductor device
JP4700043B2 (ja) * 2007-11-07 2011-06-15 Okiセミコンダクタ株式会社 半導体素子の製造方法
EP2058862B1 (en) * 2007-11-09 2018-09-19 ams AG Field-effect transistor and method for producing a field-effect transistor.
US9330979B2 (en) * 2008-10-29 2016-05-03 Tower Semiconductor Ltd. LDMOS transistor having elevated field oxide bumps and method of making same
US8198679B2 (en) 2009-05-28 2012-06-12 Monolithic Power Systems, Inc. High voltage NMOS with low on resistance and associated methods of making
US8207577B2 (en) * 2009-09-29 2012-06-26 Power Integrations, Inc. High-voltage transistor structure with reduced gate capacitance
US8592860B2 (en) * 2011-02-11 2013-11-26 Analog Devices, Inc. Apparatus and method for protection of electronic circuits operating under high stress conditions
TWI478336B (zh) * 2011-05-06 2015-03-21 Episil Technologies Inc 減少表面電場的結構及橫向雙擴散金氧半導體元件
US8581338B2 (en) * 2011-05-12 2013-11-12 United Microelectronics Corp. Lateral-diffused metal oxide semiconductor device (LDMOS) and fabrication method thereof
US8670219B2 (en) 2011-06-16 2014-03-11 Monolithic Power Systems, Inc. High-voltage devices with integrated over-voltage protection and associated methods
US8759912B2 (en) 2011-08-01 2014-06-24 Monolithic Power Systems, Inc. High-voltage transistor device
US8866252B2 (en) * 2011-09-15 2014-10-21 Cambridge Semiconductor Limited Power semiconductor devices and fabrication methods
US20130161740A1 (en) 2011-12-21 2013-06-27 Donald R. Disney Lateral High-Voltage Transistor with Buried Resurf Layer and Associated Method for Manufacturing the Same
CN103199109A (zh) * 2012-01-09 2013-07-10 上海华虹Nec电子有限公司 一种nldmos器件及其制造方法
US8659080B2 (en) * 2012-03-05 2014-02-25 Macronix International Co., Ltd. Semiconductor structure and manufacturing process thereof
US8916913B2 (en) * 2012-07-13 2014-12-23 Monolithic Power Systems, Inc. High voltage semiconductor device and the associated method of manufacturing
US9219146B2 (en) * 2013-12-27 2015-12-22 Monolithic Power Systems, Inc. High voltage PMOS and the method for forming thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538445A (zh) * 2013-12-27 2015-04-22 成都芯源系统有限公司 一种高压pmos器件及其制作工艺流程

Also Published As

Publication number Publication date
US9219146B2 (en) 2015-12-22
CN104538445A (zh) 2015-04-22
US20150187931A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
CN204289464U (zh) 一种高压pmos器件
CN105226101B (zh) 结型场效应晶体管及其制造方法
TWI570917B (zh) 溝槽式功率金氧半場效電晶體與其製造方法
US9159795B2 (en) High side DMOS and the method for forming thereof
US8212292B2 (en) High gain tunable bipolar transistor
CN101752365A (zh) 集成电路结构
US20130161740A1 (en) Lateral High-Voltage Transistor with Buried Resurf Layer and Associated Method for Manufacturing the Same
US9716169B2 (en) Lateral double diffused metal oxide semiconductor field-effect transistor
US20140203324A1 (en) A strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof
KR20160012459A (ko) 반도체 소자 및 그 제조 방법
TWI488309B (zh) 溝渠式閘極金氧半場效電晶體及其製造方法
KR101781220B1 (ko) 디프레션형 mos 트랜지스터를 갖는 반도체 장치
CN203617299U (zh) 一种双扩散金属氧化物半导体
CN203351605U (zh) 一种高压半导体器件
CN105140289A (zh) N型ldmos器件及工艺方法
US9627524B2 (en) High voltage metal oxide semiconductor device and method for making same
US9178038B2 (en) Raised source/drain MOS transistor and method of forming the transistor with an implant spacer and an epitaxial spacer
JPWO2008123491A1 (ja) 電離衝突によるキャリア増倍を用いた半導体素子及びその作製方法
US10141398B1 (en) High voltage MOS structure and its manufacturing method
CN106486546B (zh) 横向双扩散金属氧化物半导体元件及其制造方法
US11195947B2 (en) Semiconductor device with doped region adjacent isolation structure in extension region
CN109524457B (zh) 半导体装置
TW201624614A (zh) 半導體元件及其製造方法
CN101345258A (zh) 高压金属氧化物半导体晶体管及其制造方法
CN104518024A (zh) 金属氧化物半导体元件及其制造方法

Legal Events

Date Code Title Description
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20181217

CF01 Termination of patent right due to non-payment of annual fee