CN1996444B - 电路装置 - Google Patents

电路装置 Download PDF

Info

Publication number
CN1996444B
CN1996444B CN2006101693826A CN200610169382A CN1996444B CN 1996444 B CN1996444 B CN 1996444B CN 2006101693826 A CN2006101693826 A CN 2006101693826A CN 200610169382 A CN200610169382 A CN 200610169382A CN 1996444 B CN1996444 B CN 1996444B
Authority
CN
China
Prior art keywords
voltage
tft
source
node
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006101693826A
Other languages
English (en)
Other versions
CN1996444A (zh
Inventor
桥本和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPO Hong Kong Holding Ltd
Original Assignee
TPO Hong Kong Holding Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TPO Hong Kong Holding Ltd filed Critical TPO Hong Kong Holding Ltd
Publication of CN1996444A publication Critical patent/CN1996444A/zh
Application granted granted Critical
Publication of CN1996444B publication Critical patent/CN1996444B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Logic Circuits (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本发明提供有助于削减制造程序数目的电路装置。电路部12透过第一路径52将电源电压V10供给节点N0,透过第二路径62将电源电压V-5供给节点N0,前述电路部12包括:配置于第一路径52上的TFT 50;配置于第一路径上且耦接TFT 50的TFT 51;配置于第二路径62上的TFT 60;配置于第二路径上且耦接TFT 60的TFT 61;用以将电源电压V10及V-5间的电源电压Y5提供给TFT 50及51两者间的第三路径;以及,用以将电源电压V10及V-5间的电源电压V0提供给TFT 60及61两者间的第四路径。

Description

电路装置
技术领域
本发明涉及一电路装置,其透过第一路径供给第一电压给一节点,透过第二路径供给第二电压给该节点。
背景技术
近年来,藉由低温多晶硅的使用,得以持续发展在玻璃基板上形成薄膜晶体管(TFT)的技术。在制作显示面板时也会使用此一技术,应用上能够在玻璃基板上的显示区域内形成TFT阵列,而在玻璃基板显示区域的周围(非显示区域)上形成栅极驱动器以及源极驱动器。
栅极驱动器通常在接到信号后,即将所接的信号的电压电平进行电位转换。基于上述理由,栅极驱动器申会使用耐压特性不同的晶体管。
为形成耐压特性不同的晶体管,例如晶体管的栅极绝缘膜的厚度则有改变的必要。但是,在晶体管的栅极绝缘膜的厚度不同的场合下,无法利用同一制造程序形成该等晶体管,必须使用各别的制造程序。因此,会有制造程序的数目增加的缺点。
发明内容
有鉴于此,本发明的目的为提出一电路装置,以改善上述缺点。
为达成上述目的,本发明提出的电路装置,透过一第一路径提供一第一电压给一节点,透过一第二路径提供一第二电压给该节点,该电路装置包括:设置于该第一路径上的一第一开关元件;设置于该第一路径上,且耦接该第一开关元件的一第二开关元件;设置于该第二路径上的一第三开关元件;设置于该第二路径上,且耦接该第三开关元件的一第四开关元件;一第三路径,用以在该第一开关元件与该第二开关元件之间,提供介于该第一电压与该第二电压的一第三电压;以及,一第四路径,用以在该第三开关元件与该第四开关元件之间,提供介于该第一电压与该第二电压的一第四电压。
本发明的电路装置,能够透过该第三路径提供该第三电压于该第一与第二开关元件之间;以及透过该第四路径提供该第四电压于该第三与第四开关元件之间。藉此,使分别施加至该第一、第二、第三、及第四开关元件的电压,得以小于该第一电压与该第二电压两者间的电压差。因此,该第一电压与该第二电压两者间的电压差即便是大于该第一至第四开关元件各别的耐压,也能够将第一电压与第二电压从节点上取得。结果,依据本发明的电路装置,即能够使用习知的电路装置中由于耐压太小而无法使用的开关元件,所以相较于习知技术而言,设计的自由度会更宽广。因此,例如在同一基板上,有依据本发明的电路装置与其它的电路装置形成的场合中,即使本发明电路装置所取得的电压电平与其它电路装置所取得的电压电平不同,也能够以相同尺寸大小的开关元件来构成本发明电路装置及其它电路装置。藉此,在基板上形成的所有开关元件能够以同一制造程序来制造,实现减少制造程序数目的目的。
附图说明
第1图显示形成于玻璃基板上的电路的概略方决图。
第2图显示耐压特性。
第3图显示第1图所示的栅极驱动器13的概略方块图。
第4图显示依习知技术而构成的第二电路部12′的一范例。
第5图显示本实施例第二电路部12的一范例。
第6图显示第二电路部12由输入部12a接收电压5V时,TFT 50、51及53的电压Vgs、Vgd与Vds。
第7图显示当第二电路部12由输入部12a接收电压5V时,TFT 60、61及63的电压Vgs、Vgd与Vds。
第8图显示第二电路部12由输入部12a接收电压0V时,TFT 60、61及63的电压Vgs、Vgd与Vds。
第9图显示当第二电路部12由输入部12a接收电压0V时,TFT 50、51及53的电压Vgs、Vgd与Vds。
第10图显示本发明第二电路部12的另一实施例。
第11图显示第二电路部120由输入部120a接收电压5V时,TFT 70、71及73的电压Vgs、Vgd与Vds。
第12图显示当第二电路部120由输入部120a接收电压5V时,TFT 80、81及83的电压Vgs、Vgd与Vds。
第13图显示第二电路部120由输入部120a接收电压0V时,TFT 80、81及83的电压Vgs、Vgd与Vds。
第14图显示当第二电路部120由输入部120a接收电压0V时,TFT 70、71及73的电压Vgs、Vgd与Vds。
第15图概略显示在第一路径72上设置q个TFT 71及73组合(亦即CB1、…CBq-1、CBq)的示意图。
具体实施方式
第1图显示形成于玻璃基板上的电路的概略方块图。
在玻璃基板1上,设置有显示区域2及非显示区域7。非显示区域中形成有栅极驱动器13,在本实施例中,该栅极驱动器13所具有的第二电路部12(参照第3图及第5图)为特征之一,下文中先概略地说明玻璃基板1上所形成的电路全体,之后再针对第二电路部12(参照第3图及第5图)进行说明。
玻璃基板1的显示区域2中,形成有m条栅极线3和n条源极线4,在栅极线3与源极线4的交差部则形成有TFT(薄膜晶体管)5。TFT 5的栅极G耦接栅极线3,TFT 5的源极S耦接源极线4,TFT 5的漏极D耦接画素电极6。栅极线3从栅极驱动器13接收栅极信号A0、A1…Am-1,源极线4从源极驱动器9接收源极信号B0、B1…Bn-1。栅极信号A0、A1…Am-1的电压,往复出现的正栅极电压Vgp及负栅极电压Vgn;源极信号B0、B1…Bn-1,正源极电压Vsp及负源极电压Vsn两者间的电压,在本实施例中,以Vgp=+10V,Vgn=-5V,Vsp=+5V,Vsn=-5V为例进行说明,Vgp、Vgn、Vsp及Vsn的电压值亦可以是其它的电压值,由于正栅极电压Vgp=+10V,负栅极电压Vgn=-5V,所以TFT 5的栅极G及源极S之间,与门极G及漏极D之间,最大能够施加的15V的电压。因此,TFT 5在栅极G与源极S之间、栅极G与漏极D之间,至少需要15V的耐压,另一方面,TFT的耐压愈大的话,TFT的性能愈低下,所以TFT的耐压尽可能是愈小愈好。因此,本实施例的TFT 5,在栅极G与源极S之间、栅极G与漏极D之间,设计为具有15V的耐压。
又由于正源极电压Vsp=+5V、负源极电压Vsn=-5V,所以TFT 5的源极S与漏极D之间,所施加电压最大可能是10V。因此,TFT 5源极S与漏极D之间,设计成具有10V的耐压。
因此,TFT 5具有如第2图所示的耐压特性。
玻璃基板1的非显示区域7中,形成有源极驱动器9与栅极驱动器13。源极驱动器9具有复数个TFT 8(在源极驱动器9内仅概略地显示一个TFT 8)。本实施例中,TFT 8与显示区域2内的TFT 5有相同的耐压特性,亦即具有如第2图所示的耐压特性。藉此,TFT 8不会被施加超出其耐压的电压,源极驱动器9则能够于源极线4上供给介于正源极电压Vp(=5V)及负源极电压Vn(=-5V)之间的电压。
接着针对栅极驱动器13进行说明。
第3图显示第1图所示的栅极驱动器13的概略方块图。
栅极驱动器13具有第一电路部10。
第一电路部10输出m个输出信号C0、C1、…Cm-1。m个输出信号C0、C1、…Cm-1,各个具有高电平的电压Vhigh及低电平的电压Vlow交替的电压。本实施例中,以电压Vhigh是5V、及电压Vlow是0V为例以进行说明,但是Vhigh及Vlow可以是5V及0V以外的值。第一电路部10具有复数/TFT 11(于第一电路部10内仅概略地显示1个TFT 11)。本实施例中,TFT11与显示区域2内的TFT 5有相同的耐压特性,亦即具有如第2图所示的耐压特性。因此,第1电路部10,无需在TFT 11上施加超出耐压的电压,即能够输出具有电压Vhigh(=5V)及电压Vlow(=0V)的输出信号C0、C1、…Cm-1。
栅极驱动器13具有对应于m个输出信号C0、C1、…Cm-1的m个第二电路部12。m个第2电路部12接收输出信号C0、C1、…Cm-1,对所接收的输出信号的进行电压电平转换,将电压电平转换后的输出信号C0、C1、…Cm-1作为栅极信号A0、A1、…Am-1输出。本实施例中,第二电路部12当接收输出信号的电压Vhigh(=5v)即输出正栅极电压Vgp(=10V),当接收输出信号的电压Vlow(=0V)即输出负栅极电压Vgn(=-5V)。
本实施例中,第二电路部12依据如后第5图所示的电路结构而形成;而依据习知技术构成的第二电路部12则与第5图有相异的电路结构。在此为了说明第二电路部12具有后述第5图所示电路结构而能获至的优点,首先将于下文中简单说明习知技术的第二电路部12具有的电路结构。
第4图显示依习知技术而构成的第二电路部12′的一范例。
第二电路部12′所输出的正电压Vgp(=10V)及负电压Vgn(=-5V)的电压差为15V,所以当第二电路部12′具有如第4图所示的电路结构时,例如TFT50′及TFT 60′的各个源极S与漏极D之间被施加有15V的电压。由上述可知,各个TFT 50′及60′的源极S与漏极D之间必须设计具有至少15V的耐压。因此,无法使用第2图所示源极S与漏极D之间耐压仅有10V的TFT。在此情况下,显示区域2内仍然使用源极S与漏极D间耐压特性为10V的TFT 5(参照第2图),而在第二电路部12中使用源极S与漏极D间耐压特性为15V的TFT 50′及60′。要制造耐压相异的TFT,则需例如变更TFT的栅极绝缘膜的厚度。因此,TFT 5、TFT 50′与60′无法使用同一制造程序来制造,故造成制造程序数目增加的缺点。
为解决这样的缺点,在本实施例中,令输出具有15V电压差的正电压Vgp(=10V)与负电压Vgn(=-5V)的第二电路部12,使用与TFT 5同一耐压特性(参照第2图)的TFT。下文将说明关于第二电路部12的构成。
第5图显示本实施例第二电路部12的一范例。
以下说明栅极驱动器13具有的m个第二电路部12中,接收输出信号C0(参照第3图)且输出栅极信号A0的第二电路部12,其它第二电路部12也是相同的说明。
第二电路部12具有输入部12a,用以接收第一电路部10(参照第3图)输出的输出信号C0。输出信号C0会有5V或是0V的情况,所以输入部12a接收5V或0V的电压。第二电路部12若接收电压5V,则从输出部12b输出电压10V;若接收电压0V,则从输出部12b输出电压-5V。第二电路部12的输出部12b为能输出10V的电压,透过节点N0及第一路径52(P型TFT 50及51)接收电源电压V10(=10V)。又,第二电路部12的输出部12b为能输出-5V的电压,透过节点N0及第二路径62(N型TFT 60及61)接收电源电压V-5(=-5v)。
第一路径52上配置有P型/FT 50,第二路径62上配置有N型TFT 60。TFT 50及60具有如第2图所示的耐压特性。TFT 50及60的漏极D耦接节点N0。在此应注意,第一路径52上不仅只配置P型TFT 50也配置有P型TFT 51。电源电压V10透过TFT 51及50而被供至节点N0。又在此应注意,第二路径62上不仅只配置N型TFT 60也配置有N型TFT 61。电源电压V-5透过TFT 61及60而被供至节点N0。第5图与第4图所示电路是互异的,第4图中电源电压V10仅透过TFT 50′而被供至节点N0,电源电压V-5仅透过TFT 60′而被供至节点N0。
又应注意的是,TFT 50及51间的节点N1,透过第三路径54而接收电源电压V5(=5V),TFT 60及61间的节点N2,透过第四路径64而接收电源电压V0(=0V)。第三路径54上配置有P型TFT 53,第四路径64上配置有N型TFT 63,TFT 53及63的栅极G耦接节点N0(输出部12b)。关于节点N1透过TFT 53接收电源电压V5及节点N2透过TFT 63接收电源电压V0的理由容后陈述。
第二电路部12输出10V的电压时,TFT 50及51成为导通(0N)状态,TFT60及61成为关断(OFF)状态。藉此,电源电压V10会被供给至节点N0,而电源电压V-5则未被供给至节点N0,结果第二电路部12输出10V的电压。又,第二电路部12输出-5V的电压时,TFT 50及51成为关断状态,TFT 60及61成为导通状态。藉此,电源电压V-5会被供给至节点N0,而电源电压V10则未被供给至节点N0,结果第二电路部12输出-5V的电压。为了使TFT50、51、60及61实现如上述的导通状态及关断状态,第二电路部12具有控制TFT 50及51栅极G上电压电平的控制部55,以及控制TFT 60及61栅极G上电压电平的控制部65。
控制部55具有电平转换器(level shifter)56及反向器57。电平转换器56从第二电路部12的输入部12a透过输入端子56a而接收电压Vhigh(=5V)/Vlow(=0V)。又,电平转换器56透过第一端子56b接收电源电压V10,透过第二端子56c接收电源电压V0。电平转换器56,若透过端子56a接收5V的电压则输出10V的电压,若透过端子56a接收0V的电压则输出0V的电压。反向器57透过输入端子57a接收电平转换器56的输出电压(10V/0V),透过第一端子57b接收电源电压V10,透过第二端子57c接收电源电压V0。反向器57当接收来自电平转换器56的10V电压则输出0V电压,当接收来自电平转换器56的0V电压则输出10V电压。
控制部65具有电平转换器66及反向器67。电平转换器66从第二电路部12的输入部12a透过输入端子66a而接收电压Vhigh(=5V)/Vlow(=0V)。又,电平转换器66透过第一端子66b接收电源电压V5,透过第二端子66c接收电源电压V-5电平转换器66,若透过端子66a接收5V的电压则输出5V的电压,若透过端子66a接收0V的电压则输出-5V的电压。反向器67透过输入端子67a接收电平转换器66的输出电压(5V/-5V),透过第一端子67b接收电源电压V5,透过第二端子67c接收电源电压V-5。反向器67当接收来自电平转换器66的5V电压则输出-5V电压,当接收来自电平转换器66的-5V电压则输出5V电压。
第二电路部12所使用的TFT均具有如第2图所示的耐压特性。第二电路部12所使用的TFT中,N型TFT的临限电压(threshold voltage)Vth约2V,P型TFT的临限电压Vth约-2V。
具有如上述构成的第二电路部12,从输入部12a接收5V及0V电压后,即以下述的方式动作。参照电路动作的说明,先说明第二电路部12从输入部12a接收5V电压时的动作,之后再说明第二电路部12从输入部12a接收0V电压时的动作。
(1)第二电路部12从输入部12a接收5V电压的情形:
输入部12a接收电压Vhigh(=5V)时,此5V电压被供给至控制部55及65。
控制部55接收5V电压时,此5V电压被输入至电平转换器56。电平转换器56接收5V电压后,输出10V电压Va1。此时,电平转换器56透过输入端子56a接收5V电压,透过第一及第二端子56b及56c分别接收电压V10(=10V)及V0(=0V)。此情形下,输入端子56a上的电压Vhigh(=5V)及电源电压V10(=10V)的电压差为5V,电压Vhigh(=5V)及电源电压V0(=0V)的电压差为5V,以及V10(=10V)与V0(=0V)的电压差为10V。因此,电平转换器56所使用的TFT(未图示)的栅极一源极间、栅极一漏极间、漏极一源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器56输出的10V电压Va1,会被反向器57反转输出成为0V。此时,反向器57透过输入端子57a接收10V电压,透过第一及第二端子57b及57c分别接收电源电压V10及V0。此情形下,输入端子57a上的电压Va1(=10V)及电源电压V10(=10V)的电压差为0V,电压Va1(=10V)及电源电压V0(=0V)的电压差为10V,以及电压V10(=10V)及电源电压V0(=0V)的电压差为10V。因此,反向器57所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器57输出的电压0V被提供给TFT 50及51。TFT 51透过源极S接收电源电压V10(=10V),所以TFT 51的栅极-源极电压Vgs为-10V。TFT 51的临限电压Vth约为-2V,所以TFT 51导通。由于TPT51导通,电源电压V10被供给至节点N1,结果节点N1的电压Vn1成为10V。因此,TFT 50的栅极-源极电压Vgs也成为-10V,TFT 50也导通。由于TFT 51及50两者均导通,所以电源电压V10被供给至、节点N0。在此应注意的是,由于TFT51及50两者均导通,电源电压V10透过TFT 51、TFT 50及节点N0,而被供给至TFT 53的栅极G。因此,TFT 53栅极-漏极电压Vgd变成0V,栅极-源极电压Vgs变成5V。TFT 53的临限电压Vth约-2V,故TFT 53成为关断。由于TFT 53关断,而阻断了电源电压V5向节点N1的供给。结果电源电压V10被供给至节点N1,但是电源电压V5则未被供给至节点N1。此时TFT 50、51及53的栅极-源极电压Vgs、栅极-漏极电压Vgd与漏极-源极电压Vds如第6图所示。
第6图显示第二电路部12由输入部12a接收电压5V时,TFT 50、51及53的电压Vgs、Vgd与Vds。
由第6图可知,TFT 50、51与53的电压Vgs、Vgd与Vds的绝对值为10V以下。因此,可明白TFT 50、51及53所被施加的电压没有超过其耐压条件(参照第2图)。
另一方面,控制部65接收5V电压时,此5V电压被输入至电平转换器66。电平转换器66接收5V电压后,输出5V电压Va2。此时,电平转换器66透过输入端子66a接收5V电压,透过第一及第二端子66b及66c分别接收电压V5(=5V)及V-5(=-5V)。此情形下,输入端子66a上的电压Vhigh(=5V)及电源电压V5(=5V)的电压差为0V,电压Vhigh(=5V)及电源电压V-5(=-5V)的电压差为10V,以及V5(=5V)与V-5(=-5V)的电压差为10V。因此,电平转换器66所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器66输出的5V电压Va2,会被反向器67反转输出成为-5V。此时,反向器67透过输入端子67a接收5V电压,透过第一及第二端子67b及67c分别接收电源电压V5及V-5。此情形下,输入端子67a上的电压Va2(=5V)及电源电压V5(=5V)的电压差为0V,电压Va2(=5V)及电源电压V-5(=-5v)的电压差为10V,以及电压V5(=5V)及电源电压V-5(=-5V)的电压差为10V。因此,反向器67所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器67输出的电压-5V被提供给TFT 60及61。TFT 61透过源极S接收电源电压V-5(=-5V),所以TFT 61的栅极-源极电压Vgs为0V。在此应注意的是如同上述,TFT 51及50两者均导通。由于TFT 51及50两者均导通,所以电源电压V10(=10V)透过TFT 51、TFT 50及节点N0而被供给至TFT 63的栅极G。因此,TFT 63栅极-源极电压Vgs变成10V。TFT 63的临限电压Vth约2V,故TFT 63成为导通。由于TFT 63导通,所以电源电压V0(=0V)被供给至节点N2,节点N2上的电压Vn2成为0V。因此,TFT 61的栅极-漏极电压Vgd成为-5V。结果TFT 61的栅极-源极电压Vgs成为0V,栅极-漏极电压Vgd成为-5V。TFT 61的临限电压Vth约2V,所以TFT 61成为关断。
又TFT 60亦从控制部65接收-5V电压。由于节点N2上电压Vn2为0V,所以TFT 60的栅极-源极间电压Vgs为-5V。又如同上述,由于TFT 51、TFT50均导通,所以电源电压V10(=10V)透过TFT 51、TFT 50及节点N0,被供给至TFT 60的漏极D。因此,TFT 60的栅极-源极电压Vgs成为-5V,栅极-漏极电压Vgd成为-15V。TFT 60的临限电压约2V,所以TFT 60关断。由于TFT 60关断,故阻断电源电压V-5(=-5V)及V0(=0V)被供给至节点N0。此时TFT 60、61及63的栅极-源极电压Vgs、栅极-漏极电压Vgd与漏极-源极电压Vds如第7图所示。
第7图显示当第二电路部12由输入部12a接收电压5V时,TFT60、61及63的电压Vgs、Vgd与Vds。
由第7图可知,TFT 60、61与63的电压Vgs与Vds的绝对值为10V以下;TFT 60、61与63的电压Vgd的绝对值为15V以下。因此,可明白TFT 60、61及63所被施加的电压没有超过其耐压条件(参照第2图)。
因此可知,节点N0被供给电源电压V10(=10V),但是未被供给电源电压V5、V0及V-5。结果第二电路部12由输出部12b输出10V电压。
第二电路部12从输出部12b输出10V电压,所以TFT 61源极S上的电压(-5V)及节点N0上的电压(10V)两者间的电压差为15V,各TFT 60及61的漏极-源极间耐压只有10V(参照第2图)。然而应注意在本实施中,当第二电路部12从输出部12b输出10V电压时,TFT 63导通,所以电源电压V0被供给至节点N2。结果节点N2上的电压Vn2被保持在V0(=0V),所以TFT 60的电压Vds被保持在10V,TFT 61的电压Vds被保持在5V。因此,可防止TFT 60的漏极D-源极S之间、及TFT 61的漏极D-源极S之间所施加的电压超过耐压条件(参照第2图)。
由上述说明可知,第二电路部12接收5V电压后,会在满足耐压条件(参照第2图)的状态下,输出10V电压。
(2)第二电路部12从输入部12a接收0V电压的情形:
输入部12a接收电压Vlow(=0V)后,将此0V电压供给至控制部55及65。
控制部65接到0V电压,将此0V电压输入电平转换器66。电平转换器66接收0V电压后,输出-5V电压Va2。此时,电平转换器66透过输入端子66a接收0V电压,透过第一及第二端子66b及66c分别接收电压V5及V-5。此情形下,输入端子66a上的电压Vlow(=0V)及电源电压V5(=5V)的电压差为5V,电压Vlow(=0V)及电源电压V-5(=-5V)的电压差为5V,以及V5(=5V)与V-5(=-5V)的电压差为10V。因此,电平转换器66所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器66输出的-5V电压Va2,会被反向器67反转输出成为5V。此时,反向器67透过输入端子67a接收-5V电压,透过第一及第二端子67b及67c分别接收电源电压V5及V-5。此情形下,输入端子67a上的电压Va2(=-5V)及电源电压V5(=5V)的电压差为10V,电压Va2(=-5V)及电源电压V-5(=-5V)的电压差为0V,以及电压V5(=5V)及电源电压V-5(=-5V)的电压差为10V。因此,反向器67所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器67输出的电压5V被提供给TFT 60及61。TFT 61透过源极S接收电源电压V-5(=-5V),所以TFT 61的栅极-源极电压Vgs为10V。TFT 61的临限电压Vth约为2V,所以TFT 61导通。由于TFT 61导通,电源电压V-5被供给至节点N2,结果节点N2的电压Vn2成为-5V。因此,TFT 60的栅极-源极电压Vgs也成为10V,TFT 60也导通。由于TFT 61及60两者均导通,所以电源电压V-5被供给至节点N0。在此应注意的是,由于TFT 61及60两者均导通,电源电压V-5透过TFT 61、TFT 60及节点N0,而被供给至TFT 63的栅极G。因此,TFT 63栅极-漏极电压Vgd变成0V,栅极-源极电压Vgs变成-5V。TFT 63的临限电压Vth约2V,故TFT 63成为关断。由于TFT 63关断,而阻断了电源电压V0向节点N2的供给。结果电源电压V-5被供给至节点N2,但是电源电压V0则未被供给至节点N2。此时TFT 60、61及63的栅极-源极电压Vgs、栅极-漏极电压Vgd与漏极-源极电压Vds如第8图所示,
第8图显示第二电路部12由输入部12a接收电压0V时,TFT 60、61及63的电压Vgs、Vgd与Vds。
由第8图可知,TFT 60、61与63的电压Vgs、Vgd与Vds的绝对值为10V以下。因此,可明白TFT 60、61及63所被施加的电压没有超过其耐压条件(参照第2图)。
另一方面,控制部55接收0V电压时,此0V电压被输入至电平转换器56。电平转换器56接收0V电压后,输出0V电压Va1。此时,电平转换器56透过输入端子56a接收0V电压,透过第一及第二端子56b及56c分别接收电压V10及V0。此情形下,输入端子56a上的电压Vlow(=0V)及电源电压V10(=10V)的电压差为10V,电压Vlow(=0V)及电源电压V0(=0V)的电压差为0V,以及V10(=10V)与V0(=0V)的电压差为10V。因此,电平转换器56所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器56输出的0V电压Va1,会被反向器57反转输出成为10V。此时,反向器57透过输入端子57a接收0V电压,透过第一及第二端子57b及57c分别接收电源电压V10及V0。此情形下,输入端子57a上的电压Va1(=0V)及电源电压V10(=10V)的电压差为10V,电压Va1(=0V)及电源电压V0(=0V)的电压差为0V,以及电压V10(=10V)及电源电压V0(=0V)的电压差为10V。因此,反向器57所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器57输出的电压10V被提供给TFT 50及51。TFT 51透过源极S接收电源电压V10(=10V),所以TFT 51的栅极-源极电压Vgs为0V。在此应注意的是如同上述,TFT 61及60两者均导通。由于TFT 61及60两者均导通,所以电源电压V-5(=-5V)透过TFT 61、TFT 60及节点N0而被供给至TFT 53的栅极G。因此,TFT 53栅极-源极电压Vgs变成-10V。TFT 53的临限电压Vth约-2V,故TFT 53成为导通。由于TFT 53导通,所以电源电压V5透过TFT 53被供给至节点N1,节点N1上的电压Vn1成为5V。因此,TFT 51的栅极-漏极电压Vgd成为5V。结果TFT 51的栅极-源极电压Vgs成为0V,栅极-漏极电压Vgd成为5V。TFT 61的临限电压Vth约-2V,所以TFT 51成为关断。
又TFT 50亦从控制部55接收10V电压。由于节点N1上电压Vn1为5V,所以TFT 50的栅极-源极间电压Vgs为5V。又如同上述,由于TFT 61、TFT60均导通,所以电源电压V-5透过TFT 61、TFT 60及节点N0,被供给至TFT50的漏极D。因此,TFT 50的栅极-漏极电压VBd成为15V。结果栅极-源极电压Vgs成为5V,栅极-漏极电压Vgd成为15V。TFT 50的临限电压约-2V,所以TFT 50关断。由于TFT 50关断,故阻断电源电压V10及V5被供给至节点N0。此时TFT 50、51及53的栅极-源极电压Vgs、栅极-漏极电压Vgd与漏极-源极电压Vds如第9图所示。
第9图显示当第二电路部12由输入部12a接收电压0V时,TFT 50、51及53的电压Vgs、Vgd与Vds。
由第9图可知,TFT 50、51与53的电压Vgs与vds的绝对值为10V以下;TFT 50、51与53的电压Vgd的绝对值为15V以下。因此,可明白TFT 50、51及53所被施加的电压没有超过其耐压条件(参照第2图)。
因此可知,节点N0被供给电源电压V-5(=-5V),但是未被供给电源电压V10、V5及V0。结果第二电路部12由输出部12b输出-5电压。
第二电路部12从输出部12b输出-5V电压,所以TFT 51源极S上的电压(10V)及节点N0上的电压(-5V)两者间的电压差为15V,各TFT 50及51的漏极-源极间耐压只有10V(参照第2圈)。然而应注意在本实施中,当第二电路部12从输出部12b输出-5V电压时,TFT 53导通,所以电源电压V5(=5V)被供给至节点N1。结果节点N1上的电压Vn1被保持在V5(=5V),所以TFT50的电压Vds被保持在-10V,TFT 51的电压Vds被保持在-5V。因此,可防止TFT 50的漏极D-源极S之间、及TFT 51的漏极D-源极S之间所施加的电压超过耐压条件(参照第2图)。
由上述说明可知,第二电路部12接收0V电压后,会在满足耐压条件(参照第2图)的状态下,输出-5V电压。
本实施例的第二电路部12所使用的TFT,与显示区域2内的TFT 5(参照第1图)、源极驱动器9的TFT 8(参照第1图)、及第一电路部10的TFT 11(参照第3图)具有相同的耐压特性(参照第2图)。因此,在玻璃基板1(参照第1图)上全部TFT能够被制作成相同尺寸大小,所以能够同时似同一制造程序来形成该等TFT,而达到降低制造成本及削减制造程序数目的目的。
此外第5图中,控制部55及65两者,均接收来自第一电路部10的输出信号C0,控制部55控制TFT 50及51栅极G上的电压,控制部65控制TFT60及61栅极G上的电压。但是,控制部55及65亦可接收各别的信号以控制TFT栅极G上的电压。
此外第5图中,虽使用控制部55及65以控制TFT 50、51、60及61栅极G上的电压,但是也可以使用其它电路控制TFT。
以下说明第二电路部12的其它实施例.
第10图显示本发明第二电路部的另一实施例。
第10图所示的第二电路部120,如同第5图所示的第二电路部12,当接收电压5V即输出电压10V,当接收电压0V即输出电压-5V。
第二电路部120的输出部120b,为能够输出10V电压,透过节点N0及第一路径72(P型TFT 70及71)接收电源电压V10(=10V)。又,第二电路部120的输出部120b,为能够输出-5V电压,透过节点N0及第二路径82(N型TFT80及81)接收电源电压V-5(=-5V)。
第一路径72上配置有P型TFT 70,第二路径82上配置有N型TFT 80。TFT 70及80具有如第2图所示的耐压特性。TFT 70及80的漏极D耦接节点N0。在此应注意,第一路径72上不仅只配置P型TFT 70也配置有P型TFT 71。电源电压V10透过TFT 71及70而被供至节点N0。又在此应注意,第二路径82上不仅只配置N型TFT 80也配置有N型TFT 81。电源电压V-5透过TFT 81及80而被供至节点N0。
又应注意的是,TFT 70及71间的节点N1,透过第三路径74而接收电源电压V5(=5V),TFT 80及81间的节点N2,透过第四路径84而接收电源电压V0(=0V)。第三路径74上配置有N型TFT 73,第四路径84上配置有P型TFT 83。关于节点N1透过TFT 73接收电源电压V5及节点N2透过TFT 83接收电源电压V0的理由容后陈述。
第二电路部120输出10V的电压时,TFT 70及71成为导通(ON)状态,TFT 80及81成为关断(OFF)状态。藉此,电源电压V10会被供给至节点N0,而电源电压V-5则未被供给至节点N0,结果第二电路部120输出10V的电压。又,第二电路部120输出-5V的电压时,TFT 70及71成为关断状态,TFT 80及81成为导通状态。藉此,电源电压V-5会被供给至节点N0,而电源电压V10则未被供给至节点N0,结果第二电路部120输出-5V的电压。为了使TFT70、71、80及81实现如上述的导通状态及关断状态,第二电路部120具有控制TFT 70及80栅极G上电压电平的控制部(反向器)90,控制TFT 71栅极G上电压电平的控制部75,以及控制TFT 81栅极G上电压电平的控制部85。
反向器90耦接TFT 70及80的栅极。反向器90透过输入端子90a接收电压Vhigh(=5V)/Vlow(=0V),透过第一端子90b接收电源电压V5,透过第二端子90c接收电源电压V0。反向器90接到5V电压则输出0V电压,接到0V电压则输出5V电压。
控制部75具有电平转换器(level shifter)76及反向器77。电平转换器76透过输入端子76a接收电压Vhigh(=5V)/Vlow(=0V),透过第一端子76b接收电源电压V10,透过第二端子76c接收电源电压V5。电平转换器76,若透过输入端子76a接收5V的电压则输出10V的电压,若透过输入端子76a接收0V的电压则输出5V的电压。反向器77透过输入端子77a接收电平转换器76的输出电压(10V/5V),透过第一端子77b接收电源电压V10,透过第二端子77c接收电源电压V5,反向器77当接收来自电平转换器76的10V电压则输出5V电压,当接收来自电平转换器76的5V电压则输出10V电压,控制部75不只耦接TFT 71的栅极G,也耦接TFT 73的栅极G,以控制TFT71及73两者栅极G的电压电平。
另一方面,控制部85具有电平转换器86及反向器87。电平转换器86透过输入端子86a而接收电压Vhigh(=5V)/Vlow(=0V),透过第一端子86b接收电源电压V0,透过第二端子86c接收电源电压V-5。电平转换器86,若透过输入端子86a接收5V的电压则输出0V的电压,若透过输入端子86a接收0V的电压则输出-5V的电压。反向器87透过输入端子87a接收电平转换器86的输出电压(0V/-5V),透过第一端子87b接收电源电压V0,透过第二端子87c接收电源电压V-5。反向器87当接收来自电平转换器86的0V电压则输出-5V电压,当接收来自电平转换器86的-5V电压则输出0V电压。控制部85不只耦接TFT 81的栅极G,也耦接TFT 83的栅极G,以控制TFT 81及83两者栅极G的电压电平。
第二电路部120所使用的TFT均具有如第2图所示的耐压特性。第二电路部120所使用的TFT中,N型TFT的临限电压(threshold voltage)Vth约2V,P型TFT的临限电压Vth约-2V。
具有如上述构成的第二电路部120,从输入部120a接收5V及0V电压后,即以下述的方式动作。参照电路动作的说明,先说明第二电路部120从输入部120a接收5V电压时的动作,之后再说明第二电路部120从输入部120a接收0V电压时的动作。
(1)第二电路部120从输入部120a接收5V电压的情形:
输入部120a接收电压Vhigh(=5V)时,此5V电压被供给至控制部75、90及85。
控制部75接收5V电压时,此5V电压被输入至电平转换器76。电平转换器76接收5V电压后,输出10V电压Va1。此时,电平转换器76透过输入端子76a接收5V电压,透过第一及第二端子76b及76c分别接收电压V10(=10V)及V5(=5V)。此情形下,输入端子76a上的电压Vhigh(=5V)及电源电压V10(=10V)的电压差为5V,电压Vhigh(=5V)及电源电压V5(=5V)的电压差为0V,以及V10(=10V)与V5(=5V)的电压差为5V。因此,电平转换器76所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器76输出的10V电压Va1,会被反向器77反转输出成为5V。此时,反向器77透过输入端子77a接收10V电压,透过第一及第二端子77b及77c分别接收电源电压V10及V5。此情形下,输入端子77a上的电压Va1(=10V)及电源电压V10(=10V)的电压差为0V,电压Va1(=10V)及电源电压V5(=5V)的电压差为5V,以及电压V10(=10V)及电源电压V5(=5V)的电压差为5V。因此,反向器77所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器77输出的电压5V被提供给TFT 71。TFT 71透过源极S接收电源电压V10(=10V),所以TFT 71的栅极-源极电压Vgs为-5V。TFT 71的临限电压Vth约为-2V,所以TFT 71导通。由于TFT 71导通,电源电压V10被供给至节点N1,结果节点N1的电压Vn1成为10V。
反向器77输出的电压5V不只被提供给TFT 71的栅极G,也被提供给TFT 73的栅极G。TFT 73透过源极S接收电源电压V5(=5V),所以TFT 73的栅极-源极电压Vgs为0V。又,节点N1上电压Vn1为10V,所以TFT 73栅极-漏极电压Vgd为-5V。TFT 73的临限电压Vth约为2V,所以TFT 73关断。因此,电源电压V10被供给至节点N1,但是电源电压V5并未被供给至节点N1。
此时,反向器90接收5V电压而输出0V电压。又,反向器90透过输入端子90a接收电压5V,透过第一及第二端子90b及90c分别接收电源电压V5及V0。此情形下,输入端子90a上的电压(=5V)及电源电压V5(=5V)的电压差为0V,输入端子90a上的电压(=5V)及电源电压V0(=0V)的电压差为5V,以及电源电压V5(=5V)及电源电压V0(=0V)的电压差为5V。因此,反向器90所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器90输出0V电压时,TFT 70的栅极G上被供给0V电压。TFT 70源极S上电压为10V,所以TFT 70的栅极-源极电压Vgs为-10V。TFT 70的临限电压约-2V,所以TFT 70成为导通。因此,TFT 71及70均导通,所以电源电压V10得以供给至节点N0。此时TFT 70、71及73的栅极-源极电压Vgs、栅极-漏极电压Vgd与漏极-源极电压Vds如第11图所示。
第11图显示第二电路部120由输入部120a接收电压5V时,TFT70、71及73的电压Vgs、Vgd与Vds。
由第11图可知,TFT 70、71与73的电压Vgs、Vgd与Vds的绝对值为10V以下。因此,可明白TFT 70、71及73所被施加的电压没有超过其耐压条件(参照第2图)。
另一方面,控制部85接收5V电压时,此5V电压被输入至电平转换器86。电平转换器86接收5V电压后,输出0V电压Va2。此时,电平转换器86透过输入端子86a接收5V电压,透过第一及第二端子86b及86c分别接收电压V0(=0V)及V-5(=-5V)。此情形下,输入端子86a上的电压Vhigh(=5V)及电源电压V0(=0V)的电压差为5V,电压Vhigh(=5V)及电源电压Y-5(=-5V)的电压差为10V,以及V0(=0V)与V-5(=-5V)的电压差为5V。因此,电平转换器86所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器86输出的0V电压Va2,会被反向器87反转输出成为-5V。此时,反向器87透过输入端子87a接收0V电压,透过第一及第二端子87b及87c分别接收电源电压V0及V-5。此情形下,输入端子87a上的电压Va2(=0V)及电源电压V0(=0V)的电压差为0V,电压Va2(=0V)及电源电压V-5(=-5V)的电压差为5V,以及电压V0(=0V)及电源电压V-5(=-5V)的电压差为5V。因此,反向器87所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器87输出的电压-5V被提供给TFT 81。TFT 81透过源极S接收电源电压V-5(=-5V),所以TFT 81的栅极-源极电压Vgs为0V。又反向器87输出的-5V电压,不只供给至TFT 81的栅极G,也供给至TFT 83的栅极G。TFT 83透过源极S接收电源电压V0(=0V),所以TFT 83的栅极-源极电压Vgs为-5V。TFT 83的临限电压Vth约-2V,故TFT 83导通,且电源电压V0=(0V)被供给至节点N2。因此,TFT 81的栅极-漏极电压Vgd为-5V。结果TFT 81的电压Vgs为0V,电压Vgd为-5V。TFT 81的临限电压Vth约2V,所以TFT81关断。
此时,反向器90输出0V电压,故TFT 80的栅极G上被供给0V电压。TFT 80的源极S上的电压为0V,所以TFT 80的栅极-漏极间电压Vgd为0V。在此应注意,TFT 71及70均导通。因此,TFT 80漏极D上被供给10V电压。由于TFT 80栅极G电压为0V,所以TFT 80的栅极-漏极电压Vgd为-10V。TFT 80的临限电压约2V,所以TFT 80成为关断。由于TFT 80关断,故电源电压V-5及V0不会被供给至节点N0。此时TFT 80、81及83的栅极-源极电压Vgs、栅极-漏极电压Vgd以及漏极-源极电压Vds如第12图所示。
第12图显示当第二电路部120由输入部120a接收电压5V时,TFT80、81及83的电压Vgs、Vgd与Vds。
由第12图可知,TFT 80、81与83的电压Vgs与Vds的绝对值为10V以下。因此,TFT 80、81与83所被施加的电压没有超过其耐压条件(参照第2图)。
因此,节点N0被供给电源电压V10,但是未被供给电源电压V5、V0及V-5。结果第二电路部120由输出部120b输出10V电压。
第二电路部120从输出部120b输出10V电压,所以TFT 81源极S上的电压(-5V)及节点N0上的电压(10V)两者间的电压差为15V,各TFT 80及81的漏极-源极间耐压只有10V(参照第2图)。然而应注意在本实施中,当第二电路部120从输出部120b输出10V电压时,TFT 83导通,所以电源电压V0(=0V)被供给至节点N2。结果节点N2上的电压Vn2被保持在V0(=0V),所以TFT 80的电压Vds被保持在10V,TFT 81的电压Vds被保持在5V。因此,可防止TFT 80的漏极D-源极S之间、及TFT 81的漏极D-源极S之间所施加的电压超过耐压条件(参照第2图)。
由上述说明可知,第二电路部120接收5V电压后,会在满足耐压条件(参照第2图)的状态下,输出10V电压。
(2)第二电路部120从输入部120a接收0v电压的情形:
输入部120a接收电压Vlow(=0V)后,将此0V电压供给至控制部75、90及85。
控制部85接到0V电压,将此0V电压输入电平转换器86。电平转换器86接收0V电压后,输出-5V电压Va2。此时,电平转换器86透过输入端子86a接收0V电压,透过第一及第二端子86b及86c分别接收电压V0及V-5。此情形下,输入端子86a上的电压Vlow(=0V)及电源电压V0(=0V)的电压差为0V,电压Vlow(=0V)及电源电压V-5(=-5V)的电压差为5V,以及V0(=0V)与V-5(=-5V)的电压差为5V。因此,电平转换器86所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器86输出的-5V电压Va2,会被反向器87反转输出成为0V。此时,反向器87透过输入端子87a接收-5v电压,透过第一及第二端子87b及87c分别接收电源电压V0及V-5此情形下,输入端子87a上的电压Va2(=-5V)及电源电压V0(=0V)的电压差为5V,电压Va2(=-5V)及电源电压V-5(=-5V)的电压差为0V,以及电压V0(=0V)及电源电压V-5(=-5V)的电压差为5V。因此,反向器87所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并朱施加超过TFT耐压条件(参照第2图)的电压。
反向器87输出的电压0V被提供给TFT 81。TFT 81透过源极S接收电源电压V-5(=-5V),所以TFT 81的栅极-源极电压Vgs为5V。TFT 81的临限电压Vth约为2V,所以TFT 81导通。由于TFT 81导通,电源电压V-5被供给至节点N2,结果节点N2的电压Vn2成为-5V。
反向器87输出的电压0V不只被提供给TFT 81的栅极G,也被提供给TFT 83的栅极G。TFT 83透过源极S接收电源电压V0,所以TFT83的栅极-源极电压Vgs为0V。又,节点N2上电压Vn2为-5V,所以TFT 83栅极-漏极电压Vgd为5V。TFT 83的临限电压Vth约为-2V,所以TFT 83关断。因此,电源电压V-5被供给至节点N1,但是电源电压V0并未被供给至节点N1。
此时,反向器90接收0V电压而输出5V电压。又,反向器90透过输入端子90a接收电压0V,透过第一及第二端子90b及90c分别接收电源电压V5及V0。此情形下,输入端子90a上的电压(=0V)及电源电压V5(=5V)的电压差为5V,输入端子90a上的电压(=0V)及电源电压V0(=0V)的电压差为0V,以及电源电压V5(=5V)及电源电压V0(=0V)的电压差为5V。因此,反向器90所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器90输出5V电压时,TFT 80的栅极G上被供给5V电压。TFT 80源极S上电压为-5V,所以TFT 80的栅极-源极电压Vgs为10V。TFT 80的临限电压约2V,所以TFT 80成为导通。因此,TFT 81及80均导通,所以电源电压V-5得以供给至节点N0。此时TFT 80、81及83的栅极-源极电压Vgs、栅极-漏极电压Vgd与漏极-源极电压Vds如第13图所示。
第13图显示第二电路部120由输入部120a接收电压0V时,TFT80、81及83的电压Vgs、Vgd与Vds。
由第13图可知,TFT 80、81与83的电压Vgs、Vgd与Vds的绝对值为10V以下。因此,可明白TFT 80、81及83所被施加的电压没有超过其耐压条件(参照第2图)。
另一方面,控制部75接收0V电压时,此0V电压被输入至电平转换器76。电平转换器76接收0V电压后,输出5V电压Va1。此时,电平转换器76透过输入端子76a接收0V电压,透过第一及第二端子76b及76c分别接收电压V10及V5。此情形下,输入端子76a上的电压Vlow(=0V)及电源电压V10(=10V)的电压差为10V,电压Vlow(=0V)及电源电压V5(=5V)的电压差为5V,以及V10(=10V)与V5(=5V)的电压差为5V。因此,电平转换器76所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压在10V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
电平转换器76输出的5V电压Va1,会被反向器77反转输出成为10V。此时,反向器77透过输入端子77a接收5V电压,透过第一及第二端子77b及77c分别接收电源电压V10及V5。此情形下,输入端子77a上的电压Va1(=5V)及电源电压V10(=10V)的电压差为5V,电压Va1(=5V)及电源电压V5(=5V)的电压差为0V,以及电压V10(=10V)及电源电压V5(=5V)的电压差为5V。因此,反向器77所使用的TFT(未图示)的栅极-源极间、栅极-漏极间、漏极-源极间被施加的电压、在5V以下,所以并未施加超过TFT耐压条件(参照第2图)的电压。
反向器77输出的电压10V被提供给TFT 71。TFT 71透过源极S接收电源电压V10(=10V),所以TFT 71的栅极-源极电压Vgs为0V。又反向器77输出的10V电压,不只供给至TFT 71的栅极G,也供给至TFT 73的栅极G。TFT 73透过源极S接收电源电压V5(=5V),所以TFT 73的栅极-源极电压Vgs为5V。TFT 73的临限电压Vth约2V,故TFT 73导通,使电源电压V5=(5V)被供给至节点N1。因此,TFT 71的栅极-漏极电压Vgd成为5V。结果,TFT71的电压Vgs成为0V,电压Vgd为5V。TFT 71的临限电压Vth约-2V,所以TFT 71关断。
此时,控制部(反向器)90输出5V电压,故TFT 70的栅极G上被供给5V电压。TFT 70的源极S上的电压为5V,所以TFT 70的栅极-源极间电压Vgd为0V。在此应注意,TFT 81及80均导通。因此,TFT70漏极D上被供给电源电压V-5(=-5V)的电压。由于TFT 70栅极G电压为5V,所以TFT 70的栅极-漏极电压Vgd为10V。结果,TFT 70的电压Vgs成为0V,电压Vgd成为10V。TFT 70的临限电压约-2V,所以TFT 70成为关断。由于TFT 70关断,故电源电压V10及V5不会被供给至节点N0。此时TFT 70、71及73的栅极-源极电压Vgs、栅极-漏极电压Vgd以及漏极-源极电压Vds如第14图所示。
第14图显示当第二电路部120由输入部120a接收电压0V时,TFT70、71及73的电压Vgs、Vgd与Vds。
由第14图可知,TFT 70、71与73的电压Vgs与Vds的绝对值为10V以下。因此,TFT 70、71与73所被施加的电压没有超过其耐压条件(参照第2图)。
因此,节点N0被供给电源电压V-5,但是未被供给电源电压V10、V5及V0。结果第二电路部120由输出部120b输出-5V电压。
第二电路部120从输出部120b输出-5V电压,所以TFT 71源极S上的电压(10V)及节点N0上的电压(-5V)两者间的电压差为15V,各TFT 70及71的漏极-源极间耐压却只有10V(参照第2图)。然而应注意在本实施中,当第二电路部120从输出部120b输出-5电压时,TFT 73导通,所以电源电压V5(=5V)被供给至节点N1。结果节点N1上的电压Vn1被保持在V5(=5V),所以TFT 70的电压Vds被保持在-10V,TFT 71的电压Vds被保持在-5V。因此,可防止TFT 70的漏极D-源极S之间、及TFT 71的漏极D-源极S之间所施加的电压超过耐压条件(参照第2图)。
由上述说明可知,第二电路部120接收0V电压后,会在满足耐压条件(参照第2图)的状态下,输出-5V电压。
本实施例的第二电路部120所使用的TFT,与显示区域2内的TFT 5(参照第1图)、源极驱动器9的TFT 8(参照第1图)、及第一电路部10的TFT 11(参照第3图)具有相同的耐压特性(参照第2图)。因此,在玻璃基板1(参照第1图)土全部TFT能够被制作成相同尺寸大小,所以能够同时以同一制造程序来形成该等TFT,而达到降低制造成本及削减制造程序数目的目的。
此外,第二电路部120中,在电源电压V10及节点N0间的第一路径72上,仅设置一个由TFT 71及73构成的组合,但是亦可以设置复数个该等组合。
第15图概略显示在第一路径72上设置q个TFT 71及73组合(亦即CB1、…CBq-1、CBq)的示意图。
第15图中各个组合CB1、…CBq-1、CBq,可用以调节点N1、…、Nq-1、Nq上的电压。因此,能够使TFT 71的源极S-漏极D间所被施加电压成为小于第10图所示者。同样地,在电源电压V-5及节点N0间的第二路径82上,可设置复数个TFT 81及83的组合。藉此,使用耐压只小于第2图所示耐压特性的TFT,而能够构成所输出栅极信号具有更大的正栅极电压Vgp及负栅极电压Vgn电压差的电路。
另外,第10图中控制部75、85、及90均接收来自第一电路部10的输出信号C0,控制部75控制TFT 71及73栅极G上的电压,控制部85控制TFT 81及83栅极G上的电压,及控制部(反向器)90控制TFT 70及80栅极G上的电压。但是控制部75、85及90亦可各别接收信号以控制TFT栅极上的电压。
又,第10图中使用控制部75、85及90控制TFT 70、71、73、80、81及83栅极G上的电压,但亦可以使用其它电路来控制该等TFT。
又,上述实施例中,虽针对输出栅极信号的电路进行说明,但是本发明可适用于各种电路。
本发明已揭示较佳实施例如上所述,仅用于帮助了解本发明的实施,非用以限定本发明的精神,其专利保护范围当视后附的权利要求书及其等同领域而定,而熟悉此领域技艺者于领悟本发明的精神后,所作的更动润饰及等同的变化替换,仍不脱离本发明的技术范围。
【主要元件符号说明】
1~玻璃基板
2~显示区域
3~栅极线
4~源极线
5、8、11、50、51、53、60、61、63~TFT
6~画素电极
7~非显示区域
9~源极驱动器
10~第一电路部
12、120~第二电路部
12a、120a~输入部
12b、120b~输出部
13~栅极驱动器
52、54、62、64~路径
55、65~控制部
56、66~电平转换器
56a、57a、66a、67a~输入端子
56b、56c、57b、57c、66b、66c、67b、67c~端子
57、67~反向器
72、74、82、84~路径
75、85~控制部
76、86~电平转换器
76a、77a、86a、87a~输入端子
76b、76c、77b、77c、86b、86c、87b、87c~端子
77、87~反向器
90~控制部(反向器)
N0、N1、N2~节点

Claims (3)

1.一种电路装置,透过一第一路径提供一第一电压给一节点,透过一第二路径提供一第二电压给该节点,该电路装置包括:
一第一开关元件,设置于该第一路径上;
一第二开关元件,设置于该第一路径上,且耦接该第一开关元件;
一第三开关元件,设置于该第二路径上;
一第四开关元件,设置于该第二路径上,且耦接该第三开关元件;
一第三路径,用以在该第一开关元件与该第二开关元件之间,提供介于该第一电压与该第二电压的一第三电压;以及
一第四路径,用以在该第三开关元件与该第四开关元件之间,提供介于该第一电压与该第二电压的一第四电压,
其中该第三路径上具有一第五开关元件,该第四路径上具有一第六开关元件,该第一至第六开关元件是晶体管,且该第五及第六开关元件的栅极耦接该节点。
2.如权利要求1所述的电路装置,更包括:
一第一控制部,用以控制该第一及第二开关元件栅极上的电压电平;以及
一第二控制部,用以控制该第三及第四开关元件栅极上的电压电平。
3.如权利要求1或2所述的电路装置,其中该节点存在于该第一开关元件及该第三开关元件之间。
CN2006101693826A 2005-12-20 2006-12-19 电路装置 Expired - Fee Related CN1996444B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005365686 2005-12-20
JP2005365686A JP4987292B2 (ja) 2005-12-20 2005-12-20 回路装置
JP2005-365686 2005-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010101252995A Division CN101826293B (zh) 2005-12-20 2006-12-19 电路装置

Publications (2)

Publication Number Publication Date
CN1996444A CN1996444A (zh) 2007-07-11
CN1996444B true CN1996444B (zh) 2010-09-08

Family

ID=38172854

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2006101693826A Expired - Fee Related CN1996444B (zh) 2005-12-20 2006-12-19 电路装置
CN2010101252995A Active CN101826293B (zh) 2005-12-20 2006-12-19 电路装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2010101252995A Active CN101826293B (zh) 2005-12-20 2006-12-19 电路装置

Country Status (4)

Country Link
US (1) US7768494B2 (zh)
JP (1) JP4987292B2 (zh)
CN (2) CN1996444B (zh)
TW (1) TWI349901B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471226B2 (ja) * 2007-07-23 2010-06-02 統寶光電股▲ふん▼有限公司 半導体集積回路
US8009155B2 (en) * 2008-04-02 2011-08-30 Himax Technologies Limited Output buffer of a source driver applied in a display
KR101111530B1 (ko) * 2009-12-22 2012-02-14 주식회사 실리콘웍스 전자 종이 표시 장치의 출력 드라이버
TWI462083B (zh) * 2010-05-07 2014-11-21 Himax Tech Ltd 準位移位器與方法及液晶顯示器的資料驅動器
US8878762B2 (en) * 2010-05-10 2014-11-04 Himax Technologies Limited Level shifter and source driver for liquid crystal display
JP6167909B2 (ja) * 2014-01-09 2017-07-26 株式会社ソシオネクスト 出力回路
TWI552142B (zh) 2015-03-20 2016-10-01 矽創電子股份有限公司 閘極驅動電路
JP6612520B2 (ja) * 2015-04-28 2019-11-27 京セラ株式会社 ドットマトリクス型表示装置
JPWO2017130878A1 (ja) * 2016-01-26 2018-11-15 日本電気株式会社 スイッチング増幅器
JP7181825B2 (ja) 2019-03-26 2022-12-01 株式会社ジャパンディスプレイ 表示装置
JP2022143791A (ja) * 2021-03-18 2022-10-03 株式会社ジャパンディスプレイ レベルシフト回路、表示パネル、及び電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977940A (en) * 1996-03-07 1999-11-02 Kabushiki Kaisha Toshiba Liquid crystal display device
US6545519B1 (en) * 2002-03-28 2003-04-08 International Business Machines Corporation Level shifting, scannable latch, and method therefor
CN1414534A (zh) * 2002-11-12 2003-04-30 统宝光电股份有限公司 纯p型晶体管的电压电平移位器
CN1638281A (zh) * 2003-12-26 2005-07-13 卡西欧计算机株式会社 半导体电路
CN1674442A (zh) * 2004-03-22 2005-09-28 三菱电机株式会社 电平变换电路、及具有电平变换功能的串行/并行变换电路
CN1677672A (zh) * 2004-03-31 2005-10-05 夏普株式会社 半导体器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842659B2 (ja) * 1975-04-21 1983-09-21 富士通株式会社 トランジスタカイロ
JP3694599B2 (ja) * 1997-11-10 2005-09-14 株式会社 日立ディスプレイズ 液晶表示装置
JP2001022315A (ja) * 1999-07-12 2001-01-26 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2002280518A (ja) * 2001-03-19 2002-09-27 Hitachi Ltd 半導体集積回路
KR100797522B1 (ko) * 2002-09-05 2008-01-24 삼성전자주식회사 쉬프트 레지스터와 이를 구비하는 액정 표시 장치
JP2004228768A (ja) * 2003-01-21 2004-08-12 Toshiba Corp ゲート駆動回路
JP4115358B2 (ja) * 2003-07-15 2008-07-09 シャープ株式会社 出力回路およびレベルシフト回路
CN2687922Y (zh) * 2004-01-13 2005-03-23 上海埃德电磁技术有限公司 开关电源输出端过流时限制输入功率的电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977940A (en) * 1996-03-07 1999-11-02 Kabushiki Kaisha Toshiba Liquid crystal display device
US6545519B1 (en) * 2002-03-28 2003-04-08 International Business Machines Corporation Level shifting, scannable latch, and method therefor
CN1414534A (zh) * 2002-11-12 2003-04-30 统宝光电股份有限公司 纯p型晶体管的电压电平移位器
CN1638281A (zh) * 2003-12-26 2005-07-13 卡西欧计算机株式会社 半导体电路
CN1674442A (zh) * 2004-03-22 2005-09-28 三菱电机株式会社 电平变换电路、及具有电平变换功能的串行/并行变换电路
CN1677672A (zh) * 2004-03-31 2005-10-05 夏普株式会社 半导体器件

Also Published As

Publication number Publication date
CN101826293A (zh) 2010-09-08
US7768494B2 (en) 2010-08-03
TW200725517A (en) 2007-07-01
TWI349901B (en) 2011-10-01
JP2007174001A (ja) 2007-07-05
CN1996444A (zh) 2007-07-11
JP4987292B2 (ja) 2012-07-25
CN101826293B (zh) 2011-10-12
US20070139351A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
CN1996444B (zh) 电路装置
CN101847388B (zh) 液晶显示装置及其驱动方法以及包含其的电子装置
CN102024412B (zh) 半导体装置和显示装置
CN103971640B (zh) 一种像素驱动电路及其驱动方法和显示装置
US8068577B2 (en) Pull-down control circuit and shift register of using same
US20230125979A1 (en) Gate driving structure having overlapped signal wiring and capacitor, array substrate and display device
CN103107801B (zh) 半导体器件及其驱动方法
US7224200B2 (en) Level shift circuit, display apparatus, and portable terminal
US11302257B2 (en) Shift register, driving method thereof, gate driving circuit, and display device
KR20020086298A (ko) 펄스 출력 회로, 시프트 레지스터 및 디스플레이 장치
CN109859674A (zh) 阵列基板、其驱动方法、显示面板及显示装置
CN108777129A (zh) 移位寄存器电路及显示装置
CN102884477A (zh) 液晶显示设备及其驱动方法
CN101303838B (zh) 用纵向移位寄存器产生非重叠输出信号以显示影像的系统
CN109935191A (zh) Goa电路及显示面板
CN105513518B (zh) 一种栅极驱动电路及其测试方法、显示装置
KR101227342B1 (ko) 반도체집적회로 및 액정표시 구동용 반도체집적회로
US20050264551A1 (en) Multi-driving circuit and active-matrix display device using the same
CN100505017C (zh) 转换电压位准电路以及方法
CN107038987A (zh) 一种共栅晶体管、像素电路、驱动方法及显示器
CN105913826B (zh) 移位寄存器单元及驱动方法、移位寄存器电路及显示装置
CN101339809B (zh) 移位寄存器以及使用该移位寄存器的液晶显示器
US20070109282A1 (en) Data transfer circuit and flat display device
CN101169926B (zh) 降低了噪音的液晶显示装置及其驱动装置
KR100704017B1 (ko) 레벨쉬프터

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100908

Termination date: 20191219