CN1980856A - 由固体氢化物产生氢气的系统和方法 - Google Patents

由固体氢化物产生氢气的系统和方法 Download PDF

Info

Publication number
CN1980856A
CN1980856A CNA2005800194839A CN200580019483A CN1980856A CN 1980856 A CN1980856 A CN 1980856A CN A2005800194839 A CNA2005800194839 A CN A2005800194839A CN 200580019483 A CN200580019483 A CN 200580019483A CN 1980856 A CN1980856 A CN 1980856A
Authority
CN
China
Prior art keywords
hydrogen
acid
borohydride
solid
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800194839A
Other languages
English (en)
Inventor
Q·张
R·M·莫林
Y·吴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Cell Inc
Original Assignee
Millennium Cell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Cell Inc filed Critical Millennium Cell Inc
Publication of CN1980856A publication Critical patent/CN1980856A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

公开了一种基于固体化学氢化物水解的氢气产生系统,其具有控制的启动和停止特性的能力,其中调节酸浓度、酸进料速度或两者的组合控制氢气产生的速度。系统包括用于储存固体化学氢化物的第一室和用于储存酸性试剂的第二室。固体化学氢化物为具有通式MBH4的固体金属硼氢化物,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子。酸性试剂可包括无机酸如无机酸盐酸、硫酸和磷酸,和有机酸如乙酸、甲酸、马来酸、柠檬酸和酒石酸,或它们的混合物。

Description

由固体氢化物产生氢气的系统和方法
本申请要求2005年1月28日提交的美国临时申请序列No.60/647394和2004年4月14日提交的美国临时申请序列No.60/562132的权益,本文引入它们的全部公开内容作为参考。
发明领域
本发明涉及由以固体形式储存的燃料产生氢气和使用酸性试剂由它产生氢气。
发明背景
氢是燃料电池的选择燃料。但是,它的普遍应用由于存储气体中的困难而被复杂化。许多氢载体包括烃、金属氢化物和化学氢化物都被视为氢储存和供应系统。在每种情况下,为了从其载体中释放氢,都需要开发专门的系统,或者在烃的情况下通过重整、或者从金属氢化物中解吸或由化学氢化物和水催化水解。
复合化学氢化物如硼氢化钠和硼氢化锂已被研究作为氢储存介质,因为硼氢化钠的重量氢储存密度为10.8%,硼氢化锂为18%。硼氢化钠已得到特别的关注,因为它能溶解在碱水溶液中而实际上没有反应;直到溶液接触催化剂来促进水解前不会产生氢。在典型的多相催化体系中,硼氢化物与水产生氢气和硼酸盐的化学计量反应用下面的化学反应表示:
NaBH4+2H2O→NaBO2+4H2+300kJ    (1)
利用硼氢化钠燃料溶液和多相催化剂体系的发生器一般需要至少三个室,各有一个储存燃料和硼酸盐产品,第三个室包含催化剂。氢产生系统还可结合辅助的工厂组件,如氢压舱罐、换热器、冷凝器、气-液分离器、过滤器和泵。这种系统设计可配置在轻便和固定系统中;但是,辅助车间不适用于体积非常重要的微燃料电池应用,如在消费电子产品中。
燃料水溶液使用中的另一限制涉及液体燃料的保存期限。液体燃料在低于40℃的温度下是稳定的,这对以正在进行的方式消耗燃料的那些应用来说是足够的。但是,当温度升高时,氢会析出。燃料元件中的过量氢聚积在消费电子产品这类应用中是不受欢迎的。
另外,为了在溶液中保持硼氢化物和硼酸盐固体,要求超过化学计量反应所需要的水量。水因此通过形成水合硼酸盐化合物从体系中被除去,如下面方程式(2)所示:
MBH4+4H2O→MBO2·2H2O+4H2+热    (2)。
另外,液体水在汽化反应中失去。必须加入过量的水来补偿这种损耗。所有这些因素造成水/硼氢化物比例明显大于基于硼氢化物燃料溶液多相催化的实际氢产生系统的4∶1。这种过量水限制了有效的氢储存密度。
基于固体化学氢化物的氢产生系统一般包括引入水到用于水解的活性氢化物床。这种非催化的系统限制于较有活性的化学氢化物,如氢化钠、氢化锂和氢化钙。对于硼氢化物化合物,与水的简单反应缓慢,并且多相催化剂被引入到混合物中,或简单地使用固体用于储存和转化成氢产生的液体燃料。
发明简述
本发明提供能在水的存在下通过固体化学氢化物与试剂体系的反应产生氢的氢产生方法和系统。
本发明的一种实施方案提供一种氢产生系统,其包括用于储存固体化学氢化物的第一室,和在第一室附近的用于储存酸性试剂溶液的第二室。固体化学氢化物为具有通式MBH4的固体金属硼氢化物,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,并优选为钠、钾、锂或钙。可以以例如粉末、颗粒或丸粒的形式提供化学氢化物。酸性溶液可包括任何合适的酸,包括例如无机酸如无机酸盐酸(HCl)、硫酸(H2SO4)和磷酸(H3PO4),和有机酸如乙酸(CH3COOH)、甲酸(HCOOH)、马来酸、柠檬酸和酒石酸。
本发明的另一实施方案提供在水的存在下通过使固体化学氢化物与酸性试剂反应产生氢的方法。该方法包括:(i)提供式M(BH4)n的固体硼氢化物,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,n对应于所选M阳离子的电荷;和(ii)使pH低于约7的酸性试剂溶液与固体硼氢化物在水的存在下接触产生氢。
本发明还提供控制氢气产生的系统。在一种实施方案中,这种系统包括:用于包含固体硼氢化物的第一区域;用于包含pH小于约7的试剂溶液的第二区域;和接触第一区域的至少一个透气膜。该膜能允许氢穿过膜,同时防止固体和液体物质穿过膜。系统还包括用于将试剂溶液从第二区域输送到第一区域的管道、与第一区域连通的氢气出口和调节从第二区域到第一区域的试剂溶液流量或浓度的控制装置。我们发现,通过调节试剂溶液添加物对固体硼氢化物的比例、酸的浓度或两者,可在根据本发明的系统和方法中获得能提供开/关控制和调节氢产生比例的快速启动和停止动力学。
附图连同本文的详细描述说明了这些和其它实施方案,并用于解释本发明的原理。从参考附图的本发明的以下描述中,也将更清楚本发明的其它特征和优点。
附图简述
图1为具有水、固体燃料和液体试剂储存区域的本发明氢发生器系统的示意图;
图2为具有固体燃料和液体试剂储存区域的本发明氢发生器系统的示意图;
图3A、3B和3C为说明氢产生速度和温度作为硼氢化钠与3%HCl溶液反应时间的函数的图;
图4为说明氢产生速度和温度作为硼氢化钠与10%HCl溶液反应时间的函数的图;
图5为说明氢产生速度和温度作为硼氢化钠与12%HCl溶液反应时间的函数的图;
图6为说明多次酸进料启动/停止循环时氢产生速度和温度作为硼氢化钠与10%HCl溶液反应时间的函数的图。
图7为说明根据本发明系统和方法的一种实施方案的氢流速作为时间的函数的图。
发明详述
本发明提供一种将固体化学氢化物燃料转化成氢的酸催化水解系统。酸水溶液直接接触固体化学氢化物产生固体或浆液产物的多相反应提供了相对于涉及化学氢化物水溶液和固体催化剂的常规多相反应的优点。例如,通过消除基于液体燃料的系统中固有的浓度限制,有效能量密度得到提高,而且由于不连续催化剂床不是必需的,因此系统复杂性和辅助车间(BOP)都被减少。
为了使储存密度最大化,非常希望达到接近室温化学计量极限的H2O对BH4 -摩尔比。当使用酸溶液代替固体多相催化剂体系时,反应化学计量关系受到影响,酸的共轭碱被引入到硼酸盐副产物中,这通常导致较少的水合硼酸盐,因而螯合较少的水。另外,当硼氢化物和硼酸盐都为固态时,去掉了溶解性施加的限制。
在根据本发明的基于酸催化水解的典型氢产生系统中有用的化学氢化物燃料组分为具有通式MBH4的固体金属硼氢化物,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,并优选为钠、钾、锂或钙。这种化合物的例子没有限制地包括NaBH4、KBH4、LiBH4和Ca(BH4)2。这些化学氢化物可作为混合物使用或单独使用。对于本发明的这种系统,优选的为NaBH4
根据本发明的氢产生系统通过使燃料与酸性试剂接触产生氢。燃料可为以固体形式储存的复合金属氢化物,例如硼氢化钠(NaBH4)。可使用复合金属氢化物的混合物以使硼酸盐产物的溶解性最大。例如,KBH4和NaBH4的混合物形成共晶类相,并可用于产生可溶性硼酸盐。酸性试剂即pH小于约7的试剂可为水溶液或可为固体形式,后者要求存在水以将固体复合金属氢化物燃料转变成氢和金属偏硼酸盐(“排出燃料”)。术语“固体形式”包括任何基本干燥的形式,包括粉末、颗粒或丸粒。其中,合适的酸性试剂包括但不限于无机酸如无机酸盐酸(HCl)、硫酸(H2SO4)和磷酸(H3PO4),和有机酸如乙酸(CH3COOH)、甲酸(HCOOH)、马来酸、柠檬酸和酒石酸。酸性试剂还可包括有机酸和/或无机酸的组合。优选地,酸性试剂为主要包含酸性试剂的酸性溶液。
可向酸溶液中任选地加入二次水溶性助催化剂,如过渡金属催化剂,例如钴的氯化物盐(COCl2)、镍的氯化物盐(NiCl2)或铜的氯化物盐(CuCl2),以进一步催化反应。在这种情况下,当试剂溶液接触硼氢化物时,金属离子将被硼氢化物还原并作为金属颗粒或金属硼化物化合物沉积在燃料室中。当硼氢化物被消耗时,这些材料将积聚在燃料室中。由于这些材料还可催化硼氢化物的水解,因此随着操作时间的增加,增加的金属催化剂浓度将确保硼氢化物燃料被完全转变成氢。
固体氢化物可为无水的或含水的,并优选包含小于约50wt%的水。某些硼氢化物盐尤其是硼氢化钠的水合形式在低至中温下存在。例如,在低于36.4℃的温度下形成硼氢化钠二水合物(NaBH4·2H2O,51.2wt%NaBH4和48.8wt%水),硼氢化钾三水合物在低于7.5℃的温度下存在,硼氢化钾一水合物在低于37.5℃的温度下存在。
固体金属硼氢化物燃料成分可与固体稳定剂结合,固体稳定剂选自金属氢氧化物、无水金属偏硼酸盐和水合金属偏硼酸盐以及它们的混合物。包括硼氢化物和氢氧化物盐的稳定燃料组合物公开在2005年3月2日提交的题目为“Borohydride Fuel Composition and Methods”的共同待审美国专利申请序列No.11/068838中,本文全文引入其公开内容作为参考。
在本发明的一种实施方案中,提供一种酸催化水解系统,其中固体形式的硼氢化钠被储存在酸性试剂的水溶液附近。在这种实施方案中,通过使储存的组分彼此接触启动氢的产生,这些组分的反应为固体硼氢化物的均相催化反应。或者,酸性试剂可以以固体形式储存来促进硼氢化钠和水之间的反应,这些组分的反应为非均相催化反应。在某些应用中,与非均相反应相比,优选均相反应以提供部分或全部以下优点:
·因消除由非均相催化剂操作施加的浓度限制而产生的增加的有效燃料能;
·固体硼氢化物盐相对于硼氢化物盐溶液提高的稳定性;和
·降低了系统复杂性y和整体POP,没有离散催化剂床,防止了潜在的污染问题。
即时氢产生系统在包括寒冷冬天到炎热夏天的环境条件范围内优选具有快的启动和停止动力学(以提供氢产生的开/关控制),并产生最少的热以限制对热传递和管理设备的需要。此外,系统应依靠具有在各种储存条件下稳定的高能量储存密度的燃料。
对于金属硼氢化物化合物和盐酸,硼氢化物的酸催化水解的氢产生如下面方程式中所示进行:
MBH4+6H2O→MBO2·4H2O+4H2    (3)
4MBH4+2HCl+17H2O→M2B7O4·10H2O+16H2+2MCl    (4)
MBH4+4H2O→MBO3·H2O+3H2    (5)
如方程式(3)、(4)和(5)所示,可根据反应室内的条件形成具有不同相伴水分子数目的硼酸盐化合物。为了使水到氢的转化率最大,优选产生较少的水合硼酸盐副产物以防止水被硼酸盐产物螯合和确保最大量的储存水用于氢产生。
在基于硼氢化物水溶液和固体催化剂的典型氢产生系统中,水合硼酸盐产物每个硼原子捕获4个以上水分子(例如,由硼氢化钠的催化水解产生Na2B2O4·8H2O)。对于这种基于溶液的系统,为了有效的氢产生需要额外的水,并且优选稀燃料浓度,通常硼氢化物/水比例大于1∶10。相反,固体硼氢化钠的酸催化水解形成较少水合的硼酸盐化合物。例如,通过稀盐酸与固体硼氢化钠的反应形成硼酸盐如B/H2O比例分别为2∶5、1∶2和1∶1的Na2B4O7·10H2O、Na2CIBO2·2H2O和NaBO3·H2O。这些化合物比通过燃料溶液的金属催化产生的硼酸盐化合物螯合较少的水,因此减少了对额外水的需求。因此,固体化学氢化物的酸催化水解能提供比基于溶液的系统高的能量储存密度。
储存干形式的硼氢化物明显提高了燃料稳定性。另外,可改变燃料和酸的具体选择来优化氢产生系统的能量密度。例如,可改变储存的NaBH4的装填密度,从而较高密度的装填将增加系统能量密度。不同的酸如硫酸、盐酸和磷酸例如具有改变溶液密度和粘度或通过固体燃料的扩散性的能力,因此可被选择用于特定应用。
最初,当水分子接触NaBH4颗粒且在表面上发生反应时,发生由于硼氢化物如NaBH4的酸催化水解引起的氢产生。当反应进行时,可在NaBH4芯上堆积一层硼酸盐。以后的水量反应取决于有效渗透硼酸盐壳到达硼氢化物芯。观察到的反应速度因此为多个变量包括但不限于本征反应速度、扩散速度、边界条件、反应物浓度、局部加热效应的多维函数。
在根据本发明实施方案的优选系统中,通过改变酸加入到固体硼氢化物的速度、酸的浓度或两者的组合来调整氢产生速度和/或系统的温度。根据本发明的一种实施方案,可通过直接加入水到反应室中或到酸试剂溶液进料中来改变酸的浓度。为了保持反应室在低于约100℃的温度下,这能构建不需要大量热管理元件的氢燃料系统,酸的浓度一般在约0.1-约17M之间,优选在约1-约10.5M的范围内。酸加入速度确定了由酸性试剂和固体硼氢化物燃料反应引起的氢产生速度。反过来,氢产生速度由燃料电池的需求和所需的工作功率限定。例如,以约50%效率工作的15W燃料电池一般需要约190mL氢/分钟(NTP)。这可通过以不超过约50mL/h的流速来输送酸性试剂得到。考虑本文的教导,本领域的技术人员可容易地确定用于其它功率范围的合适流速和氢产生速度。
基于硼氢化钠酸催化水解的氢产生系统可结合分散酸溶液的液体分布器,以便使溶液到达未反应化学氢化物的扩散路径最小。可使用能借助毛细管或毛细作用通过小孔或空间分布液体的元件来增强酸溶液到化学氢化物燃料的输送。酸液滴尺寸的减小也对响应氢需求而保持稳定和稳态氢流有益。一些合适的液体分布器的例子包括喷嘴、雾化器和喷淋管。
参考图1,用于由固体硼氢化物的酸催化水解产生氢的系统的燃料筒100包括固体燃料储存区域102和液体试剂储存区域104。将固体燃料供应到区域102使得在大块体内存在液体传递优选在约0.1和2.5g/cc之间、最优选在约0.5和1.5g/cc之间的通道或路径,固体燃料优选为粉末、颗粒或丸粒化形式的金属硼氢化物化合物。固体燃料优选在由至少一部分为氢可透过膜106的外壳包围的区域内。合适的气体可透过膜包括那些已知的与水相比更易透过氢的材料,如硅橡胶、含氟聚合物或任何氢可透过的金属膜如钯-金合金。优选地,氢分离膜为疏水的。这种膜能允许氢气通过,同时充分保留固体和液体在区域102内。于是氢气可积聚在例如燃料筒的孔隙中直到需要。
可使用控制元件110如压力控制阀或泵来调节从储存区域104经管道108到固体储存区域102的酸流量。对于压力控制阀或其它无源电源控制元件,当筒中的氢气压力大于设定点时,阀关闭,阻止酸催化剂和固体燃料的接触。当氢被消耗或从筒中移出时,导致压降,阀打开并允许酸催化剂与固体燃料接触以产生另外的氢气。对于有源电源控制的元件如泵,电源是必需的。在燃料电池启动期,泵开始可由电源如电池(未示出)驱动,然后由燃料电池驱动。可通过燃料筒中的氢压力、燃料电池的功率需求或这些因素的组合来控制泵速。
为了使能量密度最大,优选固体燃料储存区域102和酸储存区域104的至少一部分应是弹性的,以允许体积交换构造,以便当酸溶液被消耗时,区域104收缩而区域102扩大。
示意地显示了筒内包含PEM燃料电池114的筒100。或者,燃料电池可在筒的外部,使用的筒仅仅用于储存燃料组分。燃料电池可为消耗氢气的任何类型的燃料电池,如PEM燃料电池、固体氧化物燃料电池(SOFC)或碱性燃料电池。燃料电池备有氢入口112和氧入口(未示出)以引入按下面方程式(6)的电力产生所需要的气体组分,方程式(6)对于PEM燃料电池来说是典型的。
2H2+O2→2H2O+e-    (6)
电力产生的副产物是水。在封闭的筒系统中,可从燃料电池中回收水并经由管道116输送到水储存区域118。在这种构造中,优选酸区域104和水区域118被体积交换构造中的弹性或可移动隔板分开。当酸被消耗产生氢时,区域104收缩,当通过燃料电池产生水时,区域118膨胀。从燃料电池中回收的水可用于稀释酸流,如果需要的话。
参考图2,其中类似于图1中所示那些的部件具有相同的编号,由硼氢化钠的酸催化水解产生氢的有源泵送系统使用泵110。在这种实施方案中,来自燃料电池的水被输送到酸储存区域104,去掉了单独的水储存区域。
操作时,从储存区域104供应酸溶液到燃料储存区域102。酸和硼氢化物燃料的反应在区域102内产生氢。产生的氢可通过作为燃料区域102至少一部分的边界的氢分离膜,并积聚在筒体内。氢通过入口112到燃料电池并转化成电力。
下面的实施例进一步描述和说明了根据本发明的用于氢产生和控制的方法和系统的特征。给出实施例仅仅用于说明性目的,不应被视为本发明的限制。考虑本文的教导,本领域的技术人员能容易地确定各种其它方法。
实施例1
用装载在250mL Pyrex反应器中的固体颗粒状硼氢化钠在半间歇反应器系统中测量系统动力学和H2流速。在指定流速和持续时间(表1)下用注射泵供给盐酸(HCl)。用内部热电偶监测反应温度。通过水/冰浴将氢冷却到室温,并通过硅胶床除去气流中的任何水分。用在线质量流量计测量干燥H2流速。在完成每次运行后,使用反应后混合物的NMR分析硼氢化钠转化率。
通过停止酸溶液进料可在各种转化率水平下停止氢产生反应。这提供了控制氢产生的有效机理。可利用酸的流速调节系统的最大温度和最大氢流速,如图3A、3B和3C所示(它们图示了在不同酸流速下氢产生的比较)。对于其它酸浓度,观察到类似的曲线,例如如图4和5所示。输送的酸量控制着硼氢化钠的总转化率,因此控制着产生的氢的总量,如图3B和3C以及图3、4和5的比较所示。通过停止酸进料可停止氢产生,此时观察到氢流量的明显降低。这个点图示在图3、4和5所示的图中。代表性运行汇总在下面的表1中。
这些运行说明,可通过选择酸溶液的浓度和进料速度获得基于固体硼氢化钠酸催化水解的氢产生的所需动力学特点。利用4∶1和5.3∶1之间的H2O∶NaBH4的反应计量比得到了完全(例如大于约98%)的硼氢化钠转化率。
表1
                           表1.酸催化的氢产生
  HCl浓度wt-%(M)   泵速,mL/h     酸体积,mL  转化的%NaBH4,NMR分析   产生的总H2,NTP下的mL
  3(0.8)   14.12     12.35  35   4028
  3(0.8)   32.18     20.27  57   6754
  7(1.92)   9.27     9.77  43   5502
  7(1.92)   9.39     14.7  61   7114
  10(2.7)   9.39     12.86  98   9602
  10(2.7)   8.76     9.80  63   6999
  12(3.3)   9.05     12.27  80   9798
  12(3.3)   9.24     17.14  99   11976
  15(4.1)   9.07     9.65  76   9190
  15(4.1)   9.42     17.44  100   12855
  20(5.5)   9.23     9.98  85   10680
  20(5.5)   10.31     17.35  100   12891
  37(10.1)   10.04     12.74  98   11620
  37(10.1)   10.79     15.49  100   12526
实施例2
使用实施例1中描述的过程,在10wt-%HCl10mL/h的酸溶液进料速度下的周期性启动-停止循环后,测量动力学氢产生速度。反复启动和停止酸流,反应器在停止/启动循环之间被冷却到环境温度,测量氢产生速度,如图6所示。当反应进行时,固体硼氢化钠被转化成硼酸盐化合物的混合物。酸溶液的液滴扩散通过这些产物到达未反应的硼氢化钠,导致第三次循环反应速度一定程度地降低,但启动和停止动力学保持很快。
实施例3
根据一项试验,向在密封容器中的5g固体NaBH4中滴加1wt%的盐酸水溶液。用质量流量计监测从该反应析出的氢。图7图示了当加入酸化水时的氢流速。在试验条件下,析出的氢量与加入的酸量成正比,整体氢产率对应于硼氢化物约100%转化成氢。氢加入后的系统响应也很快,小于约5s。加入到NaBH4的水量为NaBH4摩尔量的约5倍。
实施例4
Pyrex反应器(250mL)装有5.75g包含87-wt%硼氢化钠和13-wt%NaOH的固体燃料配方。在启动氢产生反应前,用N2对反应系统进行泄漏检查,然后用H2充分吹扫。用嵌入式热电偶监测反应温度。在密封反应器并用纯氢气吹扫后,通过注射泵在约10mL/h的恒定泵速下将20wt%HCl引入到反应室中。
通过水/冰浴将产生的氢气冷却到室温,然后通过硅胶干燥器除去气流中的任何水分。然后使用在线质量流量计和计算机数据获取系统测量干H2流速。使用在线计算机全部记录H2产生速度、反应温度、反应器壁和H2温度以及系统压力。为了测量氢产生反应的停止特性,在各种化学氢化物转化率水平下停止酸进料泵,并记录停止酸进料后的氢流速。通过动力学氢流量曲线的数值积分确定每次运行中产生的氢的总量。
使产生的氢气通过热交换器冷却到约21℃。冷却的氢气随后通过硅胶捕集器以除去水分。然后使用质量流量计测量干氢气的流速。为了测量氢产生反应的停止特性,在各种化学氢化物转化率水平下停止酸进料泵,并记录停止酸进料后的氢流速。通过动力学氢流量曲线的数值积分确定每次运行中产生的氢的总量。每次运行后,收集反应室中的反应产物用于NMR分析,使用NMR结果确定硼氢化钠转化率。
对于大于94%的硼氢化钠转化率,利用输送13.9mL HCl实现控制的氢产生。
上述描述和图只被认为是说明示例性实施方案,这些示例性实施方案实现了本发明的特征和优点。只要不脱离本发明的精神和范围,就可对具体工艺条件和结构作出改变和替换。因此,本发明不能被视为由前述描述和图限制,而是只由附加权利要求的范围限制。

Claims (61)

1.一种产生氢气的方法,包括:
提供固体形式的燃料,当燃料接触试剂和水时能产生氢气;
提供酸性试剂;和
在水的存在下使酸性试剂接触固体燃料产生氢气和硼酸盐副产物。
2.权利要求1的方法,其中燃料包括式M(BH4)n的至少一种硼氢化物盐,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,n对应于所选M阳离子的电荷。
3.权利要求2的方法,其中燃料与固体稳定剂结合,稳定剂选自金属氢氧化物、无水金属偏硼酸盐和水合金属偏硼酸盐以及它们的混合物。
4.权利要求2的方法,其中水与硼氢化物的摩尔比在约4∶1至约5.3∶1之间。
5.权利要求4的方法,其中水与硼氢化物的摩尔比为约4∶1。
6.权利要求1的方法,其中燃料包括选自硼氢化钠、硼氢化锂、硼氢化钾和硼氢化钙以及它们的混合物中的材料。
7.权利要求1的方法,其中燃料包括选自硼氢化钠二水合物、硼氢化钾三水合物和硼氢化钾一水合物以及它们的混合物中的材料。
8.权利要求1的方法,其中试剂为固体形式。
9.权利要求1的方法,其中试剂为液体溶液形式。
10.权利要求1的方法,还包括使燃料与助催化剂接触。
11.权利要求10的方法,其中助催化剂包括过渡金属盐。
12.权利要求11的方法,其中过渡金属盐为钴盐、镍盐或铜盐。
13.权利要求1的方法,其中试剂包括选自盐酸、硫酸、磷酸、乙酸、甲酸、马来酸、柠檬酸和酒石酸中的材料。
14.权利要求1的方法,其中酸性试剂的浓度在0.1和17M之间。
15.权利要求14的方法,其中酸性试剂的浓度在1和10M之间。
16.一种产生氢气的方法,包括:
提供式M(BH4)n的至少一种固体硼氢化物,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,n对应于所选M阳离子的电荷;和
使固体硼氢化物与pH低于约7的液体试剂接触产生氢气。
17.权利要求16的方法,其中固体硼氢化物选自硼氢化钠、硼氢化锂、硼氢化钾和硼氢化钙以及它们的混合物。
18.权利要求16的方法,其中固体硼氢化物选自硼氢化钠二水合物、硼氢化钾三水合物和硼氢化钾一水合物以及它们的混合物。
19.权利要求16的方法,其中试剂选自盐酸、硫酸、磷酸、乙酸、甲酸、马来酸、柠檬酸和酒石酸。
20.权利要求16的方法,其中接触固体硼氢化物还包括接触过渡金属盐催化剂。
21.权利要求20的方法,其中过渡金属盐催化剂为钴盐、镍盐或铜盐。
22.权利要求16的方法,其中以颗粒、丸粒或粉末或其组合的形式提供固体硼氢化物。
23.权利要求16的方法,还包括在接触固体硼氢化物前分散酸性试剂溶液。
24.权利要求23的方法,其中分散使用选自雾化器、喷嘴和喷淋管的机构减小酸性试剂溶液的液滴尺寸。
25.权利要求16的方法,其中H2O与硼氢化物的摩尔比在约4∶1至约5.3∶1之间。
26.权利要求25的方法,还包括产生H2O与硼的摩尔比为约1∶1的水合硼酸盐。
27.一种产生氢气和控制氢气产生的方法,包括:
提供式M(BH4)n的固体硼氢化物,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,n对应于所选M阳离子的电荷;
使固体硼氢化物与酸性试剂水溶液在反应室中接触产生氢气;和
调节接触固体硼氢化物的酸性试剂溶液的速度或浓度,以控制氢气产生的速度。
28.权利要求27的方法,包括调节酸性试剂溶液的速度。
29.权利要求27的方法,其中反应器温度保持在低于约100℃下。
30.权利要求27的方法,还包括通过在酸性溶液存在下水解硼氢化物将固体硼氢化物转化成氢气和硼酸盐化合物。
31.权利要求30的方法,其中固体硼氢化物包括硼氢化钠。
32.权利要求30的方法,其中酸性溶液包括盐酸。
33.权利要求30的方法,还包括冷却氢气。
34.权利要求30的方法,其中硼酸盐化合物中B/H2O的比例为约1∶2。
35.权利要求30的方法,其中硼酸盐化合物中B/H2O的比例为约2∶5。
36.权利要求30的方法,其中硼酸盐化合物中B/H2O的比例为约1∶1。
37.权利要求30的方法,其中酸性溶液包括助催化剂。
38.权利要求37的方法,其中助催化剂为过渡金属盐。
39.一种氢气产生系统,包括:
包含固体硼氢化物的第一区域;
包含pH小于约7的试剂溶液的第二区域;和
接触第一区域的至少一个透气膜,其中膜能允许氢气通过膜而阻止固体和液体材料通过膜。
40.权利要求39的氢气产生系统,还包括:
将试剂溶液从第二区域输送到第一区域的管道;和
连通第一区域的氢气出口。
41.权利要求40的氢气产生系统,还包括用于调节从第二区域到第一区域的试剂溶液流量的控制机构。
42.权利要求41的氢气产生系统,其中控制机构包括压力控制阀。
43.权利要求41的氢气产生系统,其中控制机构包括泵。
44.权利要求39的氢气产生系统,其中第一和第二区域中的至少一个用可移动材料作为边界以提供体积交换构造。
45.权利要求39的氢气产生系统,其中第一和第二区域中的至少一个用弹性材料作为边界以提供体积交换构造。
46.权利要求39的氢气产生系统,其中固体硼氢化物具有式M(BH4)n,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,n对应于所选M阳离子的电荷。
47.权利要求39的氢气产生系统,其中固体硼氢化物选自硼氢化钠、硼氢化锂、硼氢化钾和硼氢化钙以及它们的混合物。
48.权利要求39的氢气产生系统,其中固体硼氢化物选自硼氢化钠二水合物、硼氢化钾三水合物和硼氢化钾一水合物以及它们的混合物。
49.权利要求39的氢气产生系统,其中试剂溶液包括选自盐酸、硫酸、磷酸、乙酸、甲酸、马来酸、柠檬酸和酒石酸中的酸。
50.一种氢气产生系统,包括:
用于储存具有式M(BH4)n的固体硼氢化物的燃料室,其中M选自碱金属阳离子、碱土金属阳离子、铝阳离子、锌阳离子和铵阳离子,n对应于所选M阳离子的电荷;
用于储存酸性试剂溶液的试剂室;
与燃料室接触的至少一个透气膜,其能允许氢气通过透气膜而阻止固体和液体材料通过透气膜;
用于将酸性试剂溶液从试剂室输送到燃料室的燃料管道;和
用于调节从试剂室到燃料室的酸性试剂溶液的流量的控制机构。
51.权利要求50的氢气产生系统,其中燃料室和试剂室中的至少一个包括弹性材料。
52.权利要求50的氢气产生系统,其中酸性试剂溶液包括选自盐酸、硫酸、磷酸、乙酸、甲酸、马来酸、柠檬酸和酒石酸中的酸。
53.权利要求50的氢气产生系统,其中控制机构为压力控制阀或泵。
54.权利要求50的氢气产生系统,其中以选自丸粒、颗粒和粉末的形式提供固体硼氢化物。
55.权利要求50的氢气产生系统,其中固体硼氢化物包含小于约50wt%的水。
56.权利要求50的氢气产生系统,其中固体硼氢化物为硼氢化钠二水合物和酸性试剂溶液包括盐酸。
57.权利要求50的氢气产生系统,其中系统被连接到燃料电池上。
58.一种氢气产生系统,包括:
用于储存固体硼氢化钠的第一室;
用于储存盐酸溶液的第二室;
用于调节固体硼氢化钠和盐酸溶液之间接触速度的控制装置,以转化硼氢化钠产生氢气。
59.权利要求58的氢气产生系统,还包括接触第一室的至少一个透气膜,以允许氢气通过透气膜。
60.权利要求58的氢气产生系统,其中第二室还包括过渡金属盐催化剂。
61.权利要求60的氢气产生系统,其中过渡金属盐催化剂为钴盐、镍盐或铜盐。
CNA2005800194839A 2004-04-14 2005-04-14 由固体氢化物产生氢气的系统和方法 Pending CN1980856A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US56213204P 2004-04-14 2004-04-14
US60/562,132 2004-04-14
US64739405P 2005-01-28 2005-01-28
US60/647,394 2005-01-28

Publications (1)

Publication Number Publication Date
CN1980856A true CN1980856A (zh) 2007-06-13

Family

ID=35197530

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800194839A Pending CN1980856A (zh) 2004-04-14 2005-04-14 由固体氢化物产生氢气的系统和方法

Country Status (4)

Country Link
US (1) US20050238573A1 (zh)
EP (1) EP1747170A2 (zh)
CN (1) CN1980856A (zh)
WO (1) WO2005102914A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841048A (zh) * 2010-02-26 2010-09-22 中国科学院上海微系统与信息技术研究所 一种硼氢化锂-多孔碳水解发生氢气的方法与反应系统
CN102211757A (zh) * 2010-04-09 2011-10-12 中国科学院金属研究所 硼氢化钠/铝粉混合固体燃料可控水解制氢体系及制氢方法
CN102583241A (zh) * 2012-03-16 2012-07-18 四川大学 一种用于水解制氢的硼氢化钠基复合材料
CN102703147A (zh) * 2012-05-18 2012-10-03 赵金良 一种水羟基氢燃料的制备方法
CN101633492B (zh) * 2008-07-22 2013-02-27 汉能科技有限公司 一种固体硼氢化物制氢方法及其装置
CN103204468A (zh) * 2010-08-25 2013-07-17 张华俊 便携式氢气发生器
CN111908422A (zh) * 2020-08-13 2020-11-10 艾氢技术(苏州)有限公司 一种固体氢生氢装置
CN112591708A (zh) * 2020-12-08 2021-04-02 北京大学 一种由硼氢化物制取氢气的方法
US11046580B2 (en) 2015-11-06 2021-06-29 H2Fuel-Systems B.V. Method and apparatus for obtaining a mixture for producing H2, corresponding mixture

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556660B2 (en) 2003-06-11 2009-07-07 James Kevin Shurtleff Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant
US8002853B2 (en) * 2003-07-29 2011-08-23 Societe Bic Hydrogen-generating fuel cell cartridges
US7666386B2 (en) * 2005-02-08 2010-02-23 Lynntech Power Systems, Ltd. Solid chemical hydride dispenser for generating hydrogen gas
US20060257313A1 (en) * 2005-02-17 2006-11-16 Alan Cisar Hydrolysis of chemical hydrides utilizing hydrated compounds
WO2006101214A1 (ja) * 2005-03-25 2006-09-28 Seiko Instruments Inc. 水素発生方法及び水素発生装置及び燃料電池設備
US8636961B2 (en) * 2005-06-13 2014-01-28 Societe Bic Fuels for hydrogen generating cartridges
US7455829B2 (en) 2005-07-12 2008-11-25 Honeywell International Inc. Low temperature hydrogen generator
US8795926B2 (en) 2005-08-11 2014-08-05 Intelligent Energy Limited Pump assembly for a fuel cell system
US20070036711A1 (en) * 2005-08-11 2007-02-15 Ardica Technologies Inc. Hydrogen generator
US20080172932A1 (en) * 2005-09-21 2008-07-24 Kelly Michael T Compositions and methods for hydrogen generation
US7901816B2 (en) * 2005-11-09 2011-03-08 Honeywell International Inc. Water reclamation in a micropower generator
FR2893606B1 (fr) * 2005-11-24 2008-04-25 Commissariat Energie Atomique Generateur d'hydrogene et pile a combustible mettant en oeuvre un tel generateur
DE102006001240B4 (de) * 2006-01-06 2009-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Brennstoffzellensystem mit einer steuerbaren Gaserzeugungseinrichtung, Brennstoffzelle und Verfahren zum Betrieb des Brennstoffzellensystems
CN101024486B (zh) * 2006-02-16 2011-04-20 罗门哈斯公司 氢硼化物燃料制剂
CA2576588C (en) * 2006-02-16 2011-08-16 Rohm And Haas Company Method for generation of hydrogen gas from borohydride
WO2007120757A2 (en) * 2006-04-12 2007-10-25 Millennium Cell, Inc. Hydrogen fuel cartridge and methods for hydrogen generation
WO2007120872A2 (en) * 2006-04-13 2007-10-25 Millennium Cell, Inc. Fuel cell purge cycle apparatus and method
US20070253875A1 (en) * 2006-04-28 2007-11-01 Koripella Chowdary R Hydrogen supply for micro fuel cells
US7951349B2 (en) * 2006-05-08 2011-05-31 The California Institute Of Technology Method and system for storing and generating hydrogen
US20070264190A1 (en) * 2006-05-09 2007-11-15 Qinglin Zhang Fixed-bed reactors and catalytic processes
TW200806392A (en) 2006-06-20 2008-02-01 Lynntech Inc Microcartridge hydrogen generator
US7651542B2 (en) 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
US7648786B2 (en) 2006-07-27 2010-01-19 Trulite, Inc System for generating electricity from a chemical hydride
US7713653B2 (en) 2006-10-06 2010-05-11 Honeywell International Inc. Power generation capacity indicator
US8822097B2 (en) 2006-11-30 2014-09-02 Honeywell International Inc. Slide valve for fuel cell power generator
US20080236032A1 (en) * 2007-03-26 2008-10-02 Kelly Michael T Compositions, devices and methods for hydrogen generation
WO2008118436A1 (en) * 2007-03-26 2008-10-02 Millennium Cell, Inc. Techniques for packaging and utilizing solid hydrogen-producing fuel
US8268028B2 (en) * 2007-03-26 2012-09-18 Protonex Technology Corporation Compositions, devices and methods for hydrogen generation
US8357214B2 (en) 2007-04-26 2013-01-22 Trulite, Inc. Apparatus, system, and method for generating a gas from solid reactant pouches
US20080286195A1 (en) * 2007-05-14 2008-11-20 Qinglin Zhang Hydrogen generation systems and methods
WO2008144038A1 (en) * 2007-05-18 2008-11-27 Enerfuel, Inc. Hydrogen production from borohydrides and glycerol
CA2732060A1 (en) 2007-07-25 2009-01-29 Trulite, Inc. Apparatus, system, and method to manage the generation and use of hybrid electric power
US20090104481A1 (en) * 2007-10-18 2009-04-23 Mohring Richard M Methods and devices for hydrogen generation
US20090101520A1 (en) * 2007-10-18 2009-04-23 Qinglin Zhang Methods and devices for hydrogen generation
KR101342599B1 (ko) * 2007-10-31 2013-12-17 삼성에스디아이 주식회사 수소 발생장치 및 이를 채용한 연료전지
WO2009097149A1 (en) * 2008-01-29 2009-08-06 Ardica Technologies, Inc. A fuel cell air exchange apparatus
US9034531B2 (en) * 2008-01-29 2015-05-19 Ardica Technologies, Inc. Controller for fuel cell operation
KR100977201B1 (ko) * 2008-04-29 2010-08-23 한국생산기술연구원 암모니아보레인과 유기용매를 이용한 수소 발생방법
US20090302269A1 (en) * 2008-06-06 2009-12-10 Battelle Memorial Institute Process and Composition for Controlling Foaming in Bulk Hydrogen Storage and Releasing Materials
WO2010035077A1 (en) * 2008-09-29 2010-04-01 SOCIéTé BIC Hydrogen generating fuel cell cartridges
JP5150604B2 (ja) * 2008-12-10 2013-02-20 ローム アンド ハース カンパニー 水素ガスの生成方法
US8962211B2 (en) 2008-12-15 2015-02-24 Honeywell International Inc. Rechargeable fuel cell
US9276285B2 (en) 2008-12-15 2016-03-01 Honeywell International Inc. Shaped fuel source and fuel cell
US8932780B2 (en) 2008-12-15 2015-01-13 Honeywell International Inc. Fuel cell
EP2206680A3 (en) * 2009-01-09 2011-04-06 Rohm and Haas Company Synthesis of Alkali Metal Dodecaborates
US20110000864A1 (en) 2009-07-06 2011-01-06 Moore Lela K Cookware Holder and Method
US8808410B2 (en) 2009-07-23 2014-08-19 Intelligent Energy Limited Hydrogen generator and product conditioning method
US8741004B2 (en) 2009-07-23 2014-06-03 Intelligent Energy Limited Cartridge for controlled production of hydrogen
US20110020215A1 (en) * 2009-07-23 2011-01-27 Ryu Wonhyoung Chemical hydride formulation and system design for controlled generation of hydrogen
ITRM20090199U1 (it) * 2009-12-18 2011-06-19 Agenzia Naz Per Le Nuove Tecn Ologie L Ener Dispositivo per la produzione controllata di idrogeno
KR101881172B1 (ko) * 2010-02-08 2018-07-23 인텔리전트 에너지, 인크. 연료 전지 카트리지
US8246796B2 (en) * 2010-02-12 2012-08-21 Honeywell International Inc. Fuel cell recharger
US8940458B2 (en) 2010-10-20 2015-01-27 Intelligent Energy Limited Fuel supply for a fuel cell
BR112013027067A2 (pt) 2011-04-21 2019-09-24 Eveready Battery Inc gerador de hidrogênio com eficiência de volume aperfeiçoada
RU2014102610A (ru) * 2011-06-28 2015-08-10 Интеллиджент Энерджи Лимитед Генератор газообразного водорода
US9169976B2 (en) 2011-11-21 2015-10-27 Ardica Technologies, Inc. Method of manufacture of a metal hydride fuel supply
US20130344407A1 (en) * 2012-06-25 2013-12-26 Eveready Battery Company, Inc. Hydrogen Generator and Method of Controlling Reaction
WO2014014649A1 (en) * 2012-07-17 2014-01-23 Rohm And Haas Company Method for generation of hydrogen gas
GB2505202A (en) * 2012-08-21 2014-02-26 Inova Power Ltd A hydrogen generation unit
US9051183B2 (en) * 2012-08-24 2015-06-09 Intelligent Energy Inc. Hydrogen generator having reactant pellet with concentration gradient
GB201217525D0 (en) 2012-10-01 2012-11-14 Isis Innovation Composition for hydrogen generation
SG2013022967A (en) 2013-03-25 2014-10-30 Horizon Energy Systems Pte Ltd Method and generator for hydrogen production
CN104733749A (zh) * 2013-12-19 2015-06-24 扬光绿能股份有限公司 燃料匣
SE540539C2 (en) * 2016-01-05 2018-09-25 Myfc Ab Fuel cartridge
WO2019070490A1 (en) * 2017-10-04 2019-04-11 Ih Ip Holdings Limited SYSTEMS AND METHODS FOR MEASURING HYDROGEN GAS CHARGING USING NMR SPECTROSCOPY
EP3746397A1 (en) * 2018-02-03 2020-12-09 H3 Dynamics Holdings Pte. Ltd. Hydrogen generator and a method for generating hydrogen
CN108502845B (zh) * 2018-06-04 2020-03-17 西安交通大学 一种氢气发生器以及基于该氢气发生器的氢发电系统
IL262900B2 (en) * 2018-11-08 2024-06-01 Ariel Scient Innovations Ltd System, device and method for controlled production of hydrogen
CN110526210A (zh) * 2019-08-23 2019-12-03 浙江高成绿能科技有限公司 一种可控的化学制氢反应装置
CN112403429A (zh) * 2020-09-21 2021-02-26 艾氢技术(苏州)有限公司 一种基于固体氢的果酸水溶液生氢装置
CN112599798B (zh) * 2020-12-16 2021-12-07 北京大学 一种NaBH4海绵及其制备方法
KR20220114181A (ko) 2021-02-08 2022-08-17 현대자동차주식회사 수소 생성 방법
KR20220114182A (ko) 2021-02-08 2022-08-17 현대자동차주식회사 하이브리드 탈수소화 반응 시스템

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534533A (en) * 1945-11-05 1950-12-19 Hermann I Schlesinger Methods of preparing alkali metal borohydrides
BE619871A (zh) * 1961-07-06
IT1080654B (it) * 1976-06-28 1985-05-16 Raffinage Cie Francaise Processo combinato di immagazzinamento e produzione di idrogeno e applicazione di questo processo
US4196177A (en) * 1978-07-24 1980-04-01 Sallay Stephen I Process for producing boron compounds from borate ores
US4542118A (en) * 1984-02-02 1985-09-17 W. R. Grace & Co. Catalyst manufacture
US6534033B1 (en) * 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
US20010022960A1 (en) * 2000-01-12 2001-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen generating method and hydrogen generating apparatus
CA2301252A1 (en) * 2000-03-17 2001-09-17 Hydro-Quebec Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations
CA2308514A1 (en) * 2000-05-12 2001-11-12 Mcgill University Method of hydrogen generation for fuel cell applications and a hydrogen-generating system
DE10065269C1 (de) * 2000-12-29 2002-10-02 Novars Ges Fuer Neue Technolog Brennstoffzellenanordnung und Verfahren zu ihrem Betrieb
US6645651B2 (en) * 2001-06-01 2003-11-11 Robert G. Hockaday Fuel generator with diffusion ampoules for fuel cells
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator
US6746496B1 (en) * 2002-01-15 2004-06-08 Sandia Corporation Compact solid source of hydrogen gas
US7282073B2 (en) * 2002-04-02 2007-10-16 Millennium Cell, Inc. Method and system for generating hydrogen by dispensing solid and liquid fuel components
US20030194368A1 (en) * 2002-04-16 2003-10-16 Devos John A. Hydrogen production system
US6818334B2 (en) * 2002-06-06 2004-11-16 Hewlett-Packard Development Company, L.P. Accelerated hydrogen generation through reactive mixing of two or more fluids
US7083657B2 (en) * 2002-08-20 2006-08-01 Millennium Cell, Inc. System for hydrogen generation
US6939529B2 (en) * 2002-10-03 2005-09-06 Millennium Cell, Inc. Self-regulating hydrogen generator
US6821499B2 (en) * 2002-10-11 2004-11-23 General Motors Corporation Method of generating hydrogen by reaction of borohydrides and hydrates

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633492B (zh) * 2008-07-22 2013-02-27 汉能科技有限公司 一种固体硼氢化物制氢方法及其装置
CN101841048A (zh) * 2010-02-26 2010-09-22 中国科学院上海微系统与信息技术研究所 一种硼氢化锂-多孔碳水解发生氢气的方法与反应系统
CN101841048B (zh) * 2010-02-26 2012-09-26 中国科学院上海微系统与信息技术研究所 一种硼氢化锂-多孔碳水解发生氢气的方法与反应系统
CN102211757A (zh) * 2010-04-09 2011-10-12 中国科学院金属研究所 硼氢化钠/铝粉混合固体燃料可控水解制氢体系及制氢方法
CN103204468A (zh) * 2010-08-25 2013-07-17 张华俊 便携式氢气发生器
CN102583241A (zh) * 2012-03-16 2012-07-18 四川大学 一种用于水解制氢的硼氢化钠基复合材料
CN102703147A (zh) * 2012-05-18 2012-10-03 赵金良 一种水羟基氢燃料的制备方法
US11046580B2 (en) 2015-11-06 2021-06-29 H2Fuel-Systems B.V. Method and apparatus for obtaining a mixture for producing H2, corresponding mixture
CN111908422A (zh) * 2020-08-13 2020-11-10 艾氢技术(苏州)有限公司 一种固体氢生氢装置
CN112591708A (zh) * 2020-12-08 2021-04-02 北京大学 一种由硼氢化物制取氢气的方法

Also Published As

Publication number Publication date
EP1747170A2 (en) 2007-01-31
WO2005102914A2 (en) 2005-11-03
WO2005102914A3 (en) 2006-12-14
US20050238573A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
CN1980856A (zh) 由固体氢化物产生氢气的系统和方法
US20060269470A1 (en) Methods and devices for hydrogen generation from solid hydrides
CN100393608C (zh) 氢气发生系统
US8372168B2 (en) Hydrogen generating fuel cartridge with volume exchange configuration
US7214439B2 (en) Triborohydride salts as hydrogen storage materials and preparation thereof
US8381766B2 (en) Systems and methods for generating hydrogen gas
CA2550473A1 (en) Fuel blends for hydrogen generators
KR20040065547A (ko) 화학적 하이드라이드 수소발생장치 및 이 장치를 구비한에너지 시스템
CN101597023A (zh) 适用于移动氢源的化学氢化物催化水解制氢装置和方法
US20090104481A1 (en) Methods and devices for hydrogen generation
US20070011251A1 (en) Fuel cartridge for fuel cell power systems and methods for power generation
US6758981B2 (en) Method and apparatus for by-product removal in a hydrogen generation system
CN107171005A (zh) 一种氢燃料电池系统及其控制方法
CN104129755B (zh) 采用固体硼氢化钠和结晶水合物反应缓释氢气的方法
CN111668523A (zh) 一种新型高温醇类重整燃料电池系统
US11780729B2 (en) Method for generating hydrogen
CN219636905U (zh) 一种酸催化硼氢化钠溶液水解制氢装置
CN201154898Y (zh) 一种硼氢化物制氢装置
CN210366975U (zh) 一种利用硼氢化钠催化制氢的氢气发生器
US20230183061A1 (en) Dehydrogenation reaction device and system having the same
US20220250904A1 (en) Dehydrogenation reaction device and system having the same
WO2009009853A1 (en) Hydrogen system
US20230182100A1 (en) Dehydrogenation reaction apparatus and control method thereof
US11826750B2 (en) Dehydrogenation reaction apparatus
CN102479967A (zh) 一种为千瓦级燃料电池现场提供氢气的制氢集成系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070613