CN1974726A - 用于催化裂化汽油的脱硫催化剂及催化裂化汽油的脱硫方法 - Google Patents

用于催化裂化汽油的脱硫催化剂及催化裂化汽油的脱硫方法 Download PDF

Info

Publication number
CN1974726A
CN1974726A CNA2006101627580A CN200610162758A CN1974726A CN 1974726 A CN1974726 A CN 1974726A CN A2006101627580 A CNA2006101627580 A CN A2006101627580A CN 200610162758 A CN200610162758 A CN 200610162758A CN 1974726 A CN1974726 A CN 1974726A
Authority
CN
China
Prior art keywords
catalytically cracked
cracked gasoline
desulfurization catalyst
catalyst
catalytic cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101627580A
Other languages
English (en)
Other versions
CN1974726B (zh
Inventor
野中诚二郎
松本广
加藤好明
四郎园一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Publication of CN1974726A publication Critical patent/CN1974726A/zh
Application granted granted Critical
Publication of CN1974726B publication Critical patent/CN1974726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/24Chlorinating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明的目的为提供在除去汽油馏分的硫成分方面显示高脱硫活性、并且裂化活性高的用于催化裂化汽油的脱硫催化剂,所述催化剂在多孔无机氧化物微小球状粒子中含有以V2O5计在0.3~3wt%范围内的平均粒径在0.1~10μm范围内的粒子状氧化钒。另外,多孔无机氧化物微小球状粒子由结晶性硅铝酸盐沸石与多孔无机氧化物基质构成,还含有锑。

Description

用于催化裂化汽油的脱硫催化剂及催化裂化汽油的脱硫方法
技术领域
本发明涉及用于催化裂化汽油的脱硫催化剂及使用该脱硫催化剂的催化裂化汽油的脱硫方法。具体而言,由于在流化催化裂化装置(下面简写为FCC装置)中催化裂化重质烃油或减压轻油时生成的催化裂化汽油中含有硫成分,故本发明涉及用于在FCC装置中除去该催化裂化汽油中含有的硫成分的用于催化裂化汽油的脱硫催化剂。
背景技术
重质烃油或减压轻油经流化催化裂化得到的催化裂化汽油中含有硫化合物,但是,最近考虑到大气污染等环境问题,除去汽车尾气中含有的NOX的催化剂因硫中毒而活性急剧下降,故要求降低催化裂化汽油中的硫成分。日本从2004年末开始规定汽油中的硫含量小于等于50ppm,迄今为止提出了各种在FCC装置中使用催化剂除去催化裂化汽油中含有的硫成分的脱硫方法。
例如,专利第3545652号公报(专利文献1)公开了一种降低硫含量的方法,该方法使液体的催化裂化得到的石油馏分的硫含量降低,包括利用流化催化裂化条件,在降低成品油硫含量的催化剂的存在下,将含有有机硫化合物的石油进料馏分(feed fraction)在高温下进行催化裂化的工序,该降低成品油硫含量的催化剂为多孔性分子筛,分子筛的内部小孔结构内含有氧化态高于零的钒金属,钒金属作为在筛的小孔内被交换的阳离子种导入,从而制造硫含量降低的液体裂化产品。
但是,存在下述问题,由于该降低成品油硫含量的催化剂在分子筛的内部小孔结构内含有氧化态高于零的钒金属,钒金属作为在筛的小孔内被交换的阳离子种导入,因此钒金属破坏了分子筛的结晶结构,故石油进料馏分的催化裂化能力下降。
另外,特开2003-27065号公报(专利文献2)公开了催化裂化汽油的脱硫方法,其特征在于,流化催化裂化装置或重油流化催化裂化装置中的原料油催化裂化步骤,使用含有在无机多孔体中均匀地载带选自钒、锌、镍、铁及钴中的至少一种金属形成的催化剂的催化裂化脱硫催化剂,从生成的汽油馏分的脱硫方面考虑优选使用钒或锌。
但是,在无机多孔体中均匀地含有钒的催化剂由于与硫化合物的亲和力弱,故脱硫活性低,期待进一步地改善。并且,存在下述问题:对于无机多孔体含有Y型沸石的流化催化裂化催化剂(以下简写为FCC催化剂),在重质烃油的流化催化裂化中,虽然有除去汽油馏分的硫成分的效果,但是由于Y型沸石被钒破坏,因此导致裂化活性降低,氢、焦炭的生成增加。
[专利文献1]专利第3545652号公报
[专利文献2]特开2003-27065号公报
发明内容
本发明的目的为解决上述问题,提供一种用于催化裂化汽油的脱硫催化剂,所述催化剂在重质烃油或减压轻油的流化催化裂化中,在除去汽油馏分的硫成分中显示了高脱硫性能,且裂化活性高,抑制氢、焦炭生成。
另外,本发明提供使用该脱硫催化剂的催化裂化汽油的脱硫方法。
本发明人等为了实现上述目的,进行了深入的研究,发现含有粒子状态的氧化钒的用于催化裂化汽油的脱硫催化剂在重质烃油或减压轻油的流化催化裂化中,不仅汽油馏分的脱硫性能高,而且裂化活性高,还抑制氢、焦炭生成,从而完成了本发明。
即,本发明的用于催化裂化汽油的脱硫催化剂特征在于,在多孔无机氧化物微小球状粒子中含有粒子状氧化钒。
上述粒子状氧化钒的平均粒径优选在0.1~10μm的范围内。
上述粒子状氧化钒的含量以V2O5计优选在0.3~3wt%的范围内。
上述多孔无机氧化物微小球状粒子优选还含有锑。
上述多孔无机氧化物微小球状粒子优选由结晶性硅铝酸盐沸石和多孔无机氧化物基质构成。
本发明的催化裂化汽油的脱硫方法特征在于,在催化裂化条件下使重质烃油及/或减压轻油与以5/95~50/50的重量比混合上述用于催化裂化汽油的脱硫催化剂与烃流化催化裂化催化剂得到的混合催化剂相接触,同时进行催化裂化反应和脱硫反应。
本发明的催化裂化汽油的脱硫催化剂,由于氧化钒以粒子状存在于多孔无机氧化物微小球状粒子中,故氧化钒对有机硫化合物的亲和力高,显示高脱硫活性。
并且,含有结晶性硅铝酸盐沸石的FCC催化剂以多孔无机氧化物微小球状粒子加以使用时,由于氧化钒以粒子状存在,因此在FCC装置内的使用中的氧化钒向催化剂粒子内的扩散少,不会发生氧化钒引起的对结晶性硅铝酸盐沸石结晶的破坏,故裂化活性高,抑制氢、焦炭的生成。
另外,除氧化钒之外还含有锑的本发明催化裂化汽油的脱硫催化剂,锑对硫化合物具有高氢化裂化能力,且具有通过抑制脱氢反应而抑制氢生成的效果。
具体实施方式
用于催化裂化汽油的脱硫催化剂
本发明的用于催化裂化汽油的脱硫催化剂的特征在于,在多孔无机氧化物微小球状粒子中含有粒子状氧化钒。
作为氧化钒,可以举出V2O5、V2O3、VO2、VO等,V2O5(五氧化钒)由于脱硫活性高而特别优选。
上述粒子状氧化钒的平均粒径优选在0.1~10μm的范围内。该粒子状氧化钒的平均粒径小于0.1μm时,由于与均匀地载带氧化钒的情况相接近,因而无法得到较高的脱硫活性。并且,该用于催化裂化汽油的脱硫催化剂由于与FCC催化剂一起在FCC装置内于400~800℃的高温下使用,因此该用于催化裂化汽油的脱硫催化剂中含有的氧化钒熔融并移动,进入沸石的细孔内导致沸石的结晶被破坏。
另外,上述粒子状氧化钒的平均粒径大于10μm时,汽油用脱硫催化剂的耐磨耗性变差。
上述粒子状氧化钒的平均粒径较优选在0.5~7μm、更优选在1~5μm的范围内。
本发明中,汽油用脱硫催化剂中的粒子状氧化钒的平均粒径为从由扫描型电子显微镜(SEM:Scanning Electron Microscope)得到的反射电子图像中的至少5处图像中测定100个以上氧化钒粒子的最大粒径而求得的平均值。需要说明的是,由于作为上述粒子状氧化钒使用的粒子状氧化钒或在汽油用脱硫催化剂的使用温度下转化为氧化钒的偏钒酸铵等粒子状钒化合物的平均粒径与汽油用脱硫催化剂中的粒子状氧化钒的平均粒径一致,故汽油用脱硫催化剂中的粒子状氧化钒的平均粒径可以用所使用的粒子状钒化合物的平均粒径表示。
另外,多孔无机氧化物微小球状粒子可以采用与在重质烃油或减压轻油的流化催化裂化装置中使用的通常的流化催化裂化催化剂大小相同的微小球状粒子,具体地列举平均粒径为40~90μm范围的微小球状粒子。
现有的用于催化裂化汽油的脱硫催化剂由于在多孔无机氧化物微小球状粒子中均匀地含有氧化钒,故与硫化合物的亲和力弱,脱硫活性差。
然而,本发明的用于催化裂化汽油的脱硫催化剂由于氧化钒呈粒子状含在多孔无机氧化物微小球状粒子中,因此氧化钒对有机硫化合物的亲和力大,故可以选择性地脱硫。
另外,在为上述多孔无机氧化物微小球状粒子含有下面所述的结晶性硅铝酸盐沸石的FCC催化剂的情况下,由于结晶性硅铝酸盐沸石的结晶未被氧化钒破坏,故裂化活性高,并抑制氢、焦炭的生成。
本发明的用于催化裂化汽油的脱硫催化剂中上述粒子状氧化钒的含量以V2O5计优选在0.3~3wt%的范围内。该含量小于0.3wt%时,在重质烃油或减压轻油的流化催化裂化中,除去汽油馏分中的硫成分的脱硫性能低下,另外,该含量高于3wt%时,虽然提高除去汽油馏分中的硫成分的脱硫性能,但是,会增加氢、焦炭的生成,并有降低汽油馏分收率的倾向。上述钒的含量以V2O5计更优选在0.5~2wt%的范围内。
另外,本发明的用于催化裂化汽油的脱硫催化剂优选在多孔无机氧化物微小球状粒子中除上述氧化钒以外还含有锑。通过除氧化钒之外还含有锑,可以在重质烃油或减压轻油的流化催化裂化中,增加抑制氢、焦炭生成的效果,提高汽油馏分的收率。推断氢生成变少的原因在于锑与部分钒生成SbVO4、Sb2VO5、Sb0.9V0.1O4等化合物,抑制钒引起的脱氢反应。
锑的含量根据催化剂基准以Sb2O3计优选在0.3~5wt%、更优选在0.5~4wt%的范围内。
本发明的用于催化裂化汽油的脱硫催化剂除上述氧化钒之外还可以含有通常作为用于催化裂化汽油的脱硫催化剂使用的锌、镍、铁、钴等金属。
本发明的用于催化裂化汽油的脱硫催化剂通常可以使用在流化催化裂化催化剂中使用的无机氧化物微小球状粒子。
作为多孔无机氧化物,例如可以举出Y型沸石、超稳Y型沸石(USY)、X型沸石、丝光沸石、β-沸石、ZSM型沸石等结晶性硅铝酸盐沸石;二氧化硅、氧化铝、二氧化硅-氧化铝、二氧化硅-氧化镁、氧化铝-氧化硼、二氧化钛、氧化锆、二氧化硅-氧化锆、硅酸钙、铝酸钙等耐火氧化物;高岭土、膨润土、埃洛石(halloysite)等粘土矿物等。
本发明的用于催化裂化汽油的脱硫催化剂特别优选由Y型沸石、超稳Y型沸石、ZSM-5等结晶性硅铝酸盐沸石与无机氧化物基质形成。作为该无机氧化物基质优选含有二氧化硅、氧化铝、二氧化硅-氧化铝等作为粘合材料发挥作用的耐火氧化物、高岭土等粘土矿物,以及根据需要含有的适量的含水微粉硅酸、氧化铝粉末或金属捕捉剂。
上述结晶性硅铝酸盐沸石的含量以催化剂为基准计优选在5~50wt%的范围内。该结晶性硅铝酸盐沸石与通常的催化裂化催化剂的情况相同,以用选自氢、铵及多价金属中的至少1种阳离子进行离子交换得到的形态使用。
特别是在重质烃油或减压轻油的流化催化裂化装置中使用的通常的含有结晶性硅铝酸盐沸石的流化催化裂化催化剂中,优选使用由含有上述粒子状氧化钒的多孔无机氧化物微小球状粒子形成的用于催化裂化汽油的脱硫催化剂。
本发明的用于催化裂化汽油的脱硫催化剂可以与通常的流化催化裂化用催化剂的制造方法相同地进行制备。例如,喷雾干燥下述混合物,所述混合物为上述平均粒径在0.1~10μm范围内的粒子状氧化钒或经烧成成为氧化钒的粒子状偏钒酸铵等、上述超稳Y型沸石、含有硅溶胶、高岭土、含水微粉硅酸及氧化铝水合物的无机氧化物基质前体的混合物,清洗得到的微小球状粒子,干燥,在约500~700℃的温度下烧成。需要说明的是,烧成可以在流化催化裂化装置的再生塔中、在催化剂的再生条件下进行。另外,微小球状粒子的平均粒径优选在40~90μm的范围内。
上述用于催化裂化汽油的脱硫催化剂除粒子状氧化钒以外还含有锑时,例如,将上述用于催化裂化汽油的脱硫催化剂混合于在盐酸水溶液中溶解氯化锑得到的水溶液,用氢氧化钠中和,经脱水、干燥,根据需要进行烧成加以制备。
催化裂化汽油的脱硫方法
本发明的催化裂化汽油的脱硫方法为在催化裂化条件下使重质烃油及/或减压轻油接触混合了上述催化裂化汽油的脱硫催化剂与FCC催化剂的混合催化剂,同时进行催化裂化反应和脱硫反应。
作为FCC催化剂,可以使用通常市售的烃类流化催化裂化催化剂,含有八面沸石型沸石的FCC催化剂由于裂化活性高而特别优选使用。含有八面沸石型沸石的FCC催化剂例如可以举出下述催化剂等:所述催化剂含有10~50wt%硅铝比为5~6的八面沸石型沸石(USY)、15~20wt%作为粘合材料的二氧化硅、0~20wt%活性氧化铝、0~10wt%金属捕捉剂、25~65wt%高岭土。
作为上述FCC催化剂,可以列举ACZ、DCT、STW、BLC、HMR(均是触媒化成工业株式会社制的FCC催化剂的商标或注册商标)等。另外,作为本发明中的FCC催化剂,可以使用FCC装置中用于烃油催化裂化反应的上述FCC催化剂的平衡催化剂。
上述混合催化剂中,催化裂化汽油的脱硫催化剂与FCC催化剂的混合比以重量比计在5/95~50/50的范围内。催化裂化汽油的脱硫催化剂的混合比小于5/95重量比时,由于脱硫催化剂的量少而无法充分除去汽油馏分中的硫成分,另外,催化裂化汽油的脱硫催化剂的混合比大于50/50重量比时,裂化活性下降,汽油收率下降。
上述催化裂化汽油的脱硫催化剂与FCC催化剂的混合比优选在10/90~30/70重量比的范围内。
本发明的催化裂化汽油的脱硫方法是在FCC装置中、在催化裂化条件下使重质烃油及/或减压轻油接触上述混合催化剂,同时进行催化裂化反应与脱硫反应。作为催化裂化条件,可以采用目前本领域常用的催化裂化条件,作为催化裂化温度,例如为约400~600℃,作为再生温度,例如为约500~800℃的范围。
通过下面给出的实施例更加具体地说明本发明,但本发明并不限定于此。
[制造例1]
粒子状偏钒酸铵悬浊液α
向643g偏钒酸铵(鹿岛北共制)中加入857g纯水,得到以V2O5计浓度为30wt%的悬浊液。将得到的悬浊液充分搅拌后,用超微磨碎机粉碎1小时,调制粒子状偏钒酸铵悬浊液α。
使用粒度分析计(堀场制作所制,CAPP-700)测定该悬浊液α的偏钒酸铵的平均粒径,结果平均粒径为2.1μm。
[制造例2]
粒子状偏钒酸铵悬浊液β
向643g偏钒酸铵(鹿岛北共制)中加入857g纯水,得到以V2O5计浓度为30wt%的悬浊液。将得到的悬浊液充分搅拌后,用超微磨碎机粉碎10小时,调制粒子状偏钒酸铵悬浊液β。使用粒度分析计(堀场制作所制,CAPP-700)测定该悬浊液β的偏钒酸铵的平均粒径,结果平均粒径为1.2μm。
[制造例3]
粒子状偏钒酸铵悬浊液γ
向643g偏钒酸铵(鹿岛北共制)中加入857g纯水,得到以V2O5计浓度为30wt%的悬浊液。将得到的悬浊液充分搅拌后,用超微磨碎机粉碎0.5小时,调制粒子状偏钒酸铵悬浊液γ。使用粒度分析计(堀场制作所制,CAPP-700)测定该悬浊液γ的偏钒酸铵的平均粒径,结果平均粒径为4.1μm。
[制造例4]
粒子状偏钒酸铵悬浊液δ
向643g偏钒酸铵(鹿岛北共制)中加入857g纯水,得到以V2O5计浓度为30wt%的悬浊液。将得到的悬浊液充分搅拌后,调制粒子状偏钒酸铵悬浊液δ。使用粒度分析计(堀场制作所制,CAPP-700)测定该悬浊液δ的偏钒酸铵的平均粒径,结果平均粒径为6.5μm。
[制造例5]
FCC催化剂a
向1609g Al2O3浓度为23.3wt%的碱性氯化铝(铝氢氯化物,下面称为AHC)溶液中加入1125g高岭土、125g活性氧化铝、875g超稳Y型沸石浆液,调制混合浆液。喷雾干燥该混合浆液,调制微小球状粒子后,清洗至Na2O含量为0.5wt%以下,在135℃的干燥机内干燥,调制FCC催化剂a。FCC催化剂a的催化剂组成为15wt%来自AHC溶液的Al2O3、45wt%高岭土、5wt%活性氧化铝、35wt%超稳Y型沸石。
FCC催化剂a的性状如表1所示。
[实施例1]
用于催化裂化汽油的脱硫催化剂A
为了使Al2O3浓度按催化剂组合物基准达到15wt%,向1609gAl2O3浓度为23.3wt%的AHC溶液中加入25g制造例1的悬浊液α、1100g高岭土、125g活性氧化铝、875g超稳Y型沸石浆液使其按催化剂组合物基准分别达到1wt%、44wt%、5wt%、35wt%,得到混合浆液。喷雾干燥该混合浆液,调制微小球状粒子后,清洗至Na2O含量达到0.5wt%以下,在135℃的干燥机内干燥,调制用于催化裂化汽油的脱硫催化剂A。
另外,对将部分用于催化裂化汽油的脱硫催化剂A在600℃下烧成2小时得到的试料,从用扫描型电子显微镜(SEM)得到的反射电子图像中的10个图像中测定100个氧化钒粒子的最大粒径,求得的平均粒径为2.1μm。
用于催化裂化汽油的脱硫催化剂A的性状如表1所示。
[实施例2]
用于催化裂化汽油的脱硫催化剂B
为了使Al2O3浓度按催化剂组合物基准达到15wt%,向1609gAl2O3浓度为23.3wt%的AHC溶液中加入25g制造例2的悬浊液β、1100g高岭土、125g活性氧化铝、875g超稳Y型沸石浆液使其按催化剂组合物基准分别达到1wt%、44wt%、5wt%、35wt%,得到混合浆液。喷雾干燥该混合浆液,调制微小球状粒子后,清洗至Na2O含量达到0.5wt%以下,在135℃的干燥机内干燥,调制用于催化裂化汽油的脱硫催化剂B。
用于催化裂化汽油的脱硫催化剂B的性状如表1所示。
[实施例3]
用于催化裂化汽油的脱硫催化剂C
为了使Al2O3浓度按催化剂组合物基准达到15wt%,向1609gAl2O3浓度为23.3wt%的AHC溶液中加入25g制造例3的悬浊液γ、1100g高岭土、125g活性氧化铝、875g超稳Y型沸石浆液使其按催化剂组合物基准分别达到1wt%、44wt%、5wt%、35wt%,得到混合浆液。喷雾干燥该混合浆液,调制微小球状粒子后,清洗至Na2O含量达到0.5wt%以下,在135℃的干燥机内干燥,调制用于催化裂化汽油的脱硫催化剂C。
用于催化裂化汽油的脱硫催化剂C的性状如表1所示。
[实施例4]
用于催化裂化汽油的脱硫催化剂D
为了使Al2O3浓度按催化剂组合物基准达到15wt%,向1609gAl2O3浓度为23.3wt%的AHC溶液中加入25g制造例4的悬浊液δ、1100g高岭土、125g活性氧化铝、875g超稳Y型沸石浆液使其按催化剂组合物基准分别达到1wt%、44wt%、5wt%、35wt%,得到混合浆液。喷雾干燥该混合浆液,调制微小球状粒子后,清洗至Na2O含量达到0.5wt%以下,在135℃的干燥机内干燥,调制用于催化裂化汽油的脱硫催化剂D。
用于催化裂化汽油的脱硫催化剂D的性状如表1所示。
[实施例5]
用于催化裂化汽油的脱硫催化剂E
为了使Al2O3浓度以催化剂组合物基准达到15wt%,向1609gAl2O3浓度为23.3wt%的AHC溶液中加入25g制造例1的悬浊液α、25g Sb2O5溶胶(伯东社制)、1075g高岭土、125g活性氧化铝、875g超稳Y型沸石浆液使其按催化剂组合物基准准分别达到1wt%、1wt%、43wt%、5wt%、35wt%,得到混合浆液。喷雾干燥该混合浆液,调制微小球状粒子后,清洗至Na2O含量达到0.5wt%以下,在135℃的干燥机内干燥,调制用于催化裂化汽油的脱硫催化剂E。
用于催化裂化汽油的脱硫催化剂E的性状如表1所示。
[比较例1]
用于催化裂化汽油的脱硫催化剂b
用165.0g胺的水溶液溶解6.4g偏钒酸铵。使495.0g(以干燥品计)制造例5的FCC催化剂a含浸该溶液,在135℃下干燥12小时,然后在600℃下烧成2小时,调制载带五氧化钒的用于催化裂化汽油的脱硫催化剂b。
从电子探针(probe)微小部分分析装置(WDS)的线分析结果确认了五氧化钒被均匀地载带在用于催化裂化汽油的脱硫催化剂b的内部。
用于催化裂化汽油的脱硫催化剂b的性状如表1所示。
[表1]
                           催化剂A~E、a、b的性状
  实施例1   实施例2   实施例3   实施例4   实施例5   制造例5   比较例1
  催化剂No.烧成减量        wt%(1000℃-1h)耐磨耗性残留Na2O      wt%残留SO4       wt%Al2O3        wt%V2O5         wt%V2O5平均粒径 μmSb2O3        wt%松装密度       g/ml比表面积       m2/g耐磨性         wt%/h   A18.30.42.147.71.162.1-0.682500.1   B18.50.42.147.50.981.2-0.682520.1   C18.00.42.147.31.044.1-0.682500.2   D18.10.42.147.51.126.5-0.672440.4   E18.80.42.147.21.082.11.210.692480.1   a18.00.42.148.1---0.682550.1   b4.50.42.147.50.98--0.682500.1
[实施例6]
用试验性(pilot)反应装置进行实施例l~5的催化剂A~E及比较例1的催化剂b的活性评价。该试验性反应装置为催化剂在装置内边循环边交替重复进行反应与催化剂再生的循环式流化床,模拟以商业规模使用的烃油的FCC装置。
各催化剂在反应前在100%蒸汽气氛中、在750℃下烧成13小时,进行蒸汽处理。向2kg FCC平衡催化剂中混合10wt%该蒸汽处理得到的催化剂,投入上述反应装置中进行原料油的催化裂化反应。
反应条件如下:
原料油:脱硫减压轻油
反应温度:500℃
催化剂/原料油比:7g/g
原料油供给速度:10g/min
CRC(再生催化剂中的碳浓度):0.05wt%
另外,使用气相色谱法进行生成气体及生成油的分析,汽油为在C5~204℃的沸点范围内得到的生成油。
得到的生成油通过旋转带(理论塔板数为45,东科精器)法,分馏为汽油和循环油,用电量滴定法(ASTM D-3120)分析汽油中的硫浓度。
催化剂/原料油比为7g/g时的各生成物收率及汽油中的硫浓度如表2所示。
[表2]
                          催化剂A~E、b的活性评价
  平衡催化剂单独                           实施例    比较例
   A    B    C    D    E    b
转化率          wt%   74.3    73.5    74.2    74.0    73.8    74.3    72.7
氢              wt%   0.13    0.19    0.15    0.15    0.15    0.11    0.23
C1+C2+C2 *5)   wt%   1.5    1.6    1.5    1.5    1.5    1.5    1.6
LPG*1)          wt%   14.5    13.8    13.9    14.0    13.9    14.0    15.4
汽油*2)         wt%   54.8    54.2    55.1    54.8    54.7    55.2    50.1
LCO*3)          wt%   18.4    18.8    18.5    18.6    18.7    18.4    18.3
HCO*4)          wt%   7.3    7.7    7.3    7.4    7.5    7.3    8.8
焦炭            wt%   3.3    3.7    3.5    3.5    3.5    3.4    5.5
汽油的辛烷价   92.1    92.0    91.9    91.8    92.0    92.0    92.1
汽油中的硫浓度  wt-ppm   20    13    12    12    13    11    16
(表2的注释)
*1)LPG(液化石油气)中含有丙烷、丙烯、正丁烷、异丁烷、丁烯。
*2)汽油为C5~沸点204℃的馏分。
*3)LCO(轻质循环油)为沸点204℃~343℃的馏分。
*4)HCO(重质循环油)为沸点高于343℃的馏分。
*5)C1表示甲烷,C2表示乙烷,C2表示乙烯。

Claims (6)

1、一种用于催化裂化汽油的脱硫催化剂,其特征在于,在多孔无机氧化物微小球状粒子中含有粒子状氧化钒。
2、如权利要求1所述的用于催化裂化汽油的脱硫催化剂,其特征在于,所述粒子状氧化钒的平均粒径在0.1~10μm的范围内。
3、如权利要求2所述的用于催化裂化汽油的脱硫催化剂,其特征在于,所述粒子状氧化钒的含量以V2O5计在0.3~3wt%的范围内。
4、如权利要求1~3中的任一项所述的用于催化裂化汽油的脱硫催化剂,其特征在于,所述多孔无机氧化物微小球状粒子含有锑。
5、如权利要求1~4中的任一项所述的用于催化裂化汽油的脱硫催化剂,其特征在于,所述多孔无机氧化物微小球状粒子由结晶性硅铝酸盐沸石和多孔无机氧化物基质构成。
6、一种催化裂化汽油的脱硫方法,其特征在于,在催化裂化条件下使重质烃油及/或减压轻油与以5/95~50/50的重量比混合权利要求1~5中的任一项所述的用于催化裂化汽油的脱硫催化剂与烃类流化催化裂化催化剂得到的混合催化剂相接触,同时进行催化裂化反应和脱硫反应。
CN2006101627580A 2005-11-29 2006-11-28 用于催化裂化汽油的脱硫催化剂及催化裂化汽油的脱硫方法 Active CN1974726B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP344070/2005 2005-11-29
JP2005344070 2005-11-29

Publications (2)

Publication Number Publication Date
CN1974726A true CN1974726A (zh) 2007-06-06
CN1974726B CN1974726B (zh) 2012-12-05

Family

ID=38086385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101627580A Active CN1974726B (zh) 2005-11-29 2006-11-28 用于催化裂化汽油的脱硫催化剂及催化裂化汽油的脱硫方法

Country Status (7)

Country Link
US (1) US8048293B2 (zh)
JP (1) JP5283745B2 (zh)
KR (1) KR101352318B1 (zh)
CN (1) CN1974726B (zh)
AU (1) AU2006241381B2 (zh)
NL (1) NL1032884C2 (zh)
SG (1) SG132621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105583002A (zh) * 2014-10-20 2016-05-18 中国石油化工股份有限公司 一种脱硫催化剂及其制备方法和烃油脱硫的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671449A1 (en) * 2012-06-06 2013-12-11 Construction Research & Technology GmbH Use of vanadium pentoxide particles as a biocide
EP2877281B1 (en) * 2012-07-24 2021-08-18 Indian Oil Corporation Ltd Catalyst composition for fluid catalytic cracking, process for preparing the same and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831652A (en) * 1954-11-24 1958-04-22 American Cyanamid Co Production of microspheroidal catalysts
US2945824A (en) * 1956-03-05 1960-07-19 Union Oil Co Vanadium hydrocarbon conversion catalysts
US2911359A (en) * 1956-04-30 1959-11-03 Union Oil Co Desulfurization process and catalyst
US4111845A (en) * 1977-02-11 1978-09-05 Mckay Dwight L Cracking catalyst modified by antimony thiophosphate
EP0775519A4 (en) * 1995-06-08 2000-06-28 Nippon Catalytic Chem Ind VANADIUM-CONTAINING CATALYST, METHOD FOR THE PRODUCTION AND USE THEREOF
US6852214B1 (en) * 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
JP2003027065A (ja) 2001-07-12 2003-01-29 Idemitsu Kosan Co Ltd 接触分解ガソリンの脱硫方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105583002A (zh) * 2014-10-20 2016-05-18 中国石油化工股份有限公司 一种脱硫催化剂及其制备方法和烃油脱硫的方法
CN105583002B (zh) * 2014-10-20 2018-05-18 中国石油化工股份有限公司 一种脱硫催化剂及其制备方法和烃油脱硫的方法

Also Published As

Publication number Publication date
US8048293B2 (en) 2011-11-01
NL1032884C2 (nl) 2007-08-13
AU2006241381B2 (en) 2013-07-04
CN1974726B (zh) 2012-12-05
SG132621A1 (en) 2007-06-28
NL1032884A1 (nl) 2007-05-30
KR20070056980A (ko) 2007-06-04
JP2012066245A (ja) 2012-04-05
KR101352318B1 (ko) 2014-01-16
AU2006241381A1 (en) 2007-06-14
JP5283745B2 (ja) 2013-09-04
US20070119750A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
RU2408655C2 (ru) Композиции и способы, предназначенные для уменьшения выбросов nox в ходе каталитического крекинга с псевдоожиженным катализатором
CN1261216C (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN100335596C (zh) 流化床催化裂化中汽油硫的减少
KR101318000B1 (ko) 유동상 접촉 분해 공정을 위한 가솔린 황 감소 촉매
KR101120901B1 (ko) 유체 촉매적 분해 공정용 가솔린 황 감소 촉매
WO2013005225A1 (en) Process and composition of catalyst/ additive for reducing fuel gas yield in fluid catalytic cracking (fcc) process
TWI444463B (zh) 用於減低流體觸媒裂解之NOx排放之組成物及方法
CN101032694A (zh) 处理重质原料的催化剂组合物
CN1630552A (zh) 用于流体催化裂化方法中降低汽油硫的催化剂
CN1277612C (zh) 裂化催化剂组合物
CN1638860A (zh) 脱硫及用于此的新型组合物
CN1216691C (zh) 具有脱硫作用的分子筛组合物及其制备
CN1990827A (zh) 一种催化裂化脱硫助剂
CN1974726A (zh) 用于催化裂化汽油的脱硫催化剂及催化裂化汽油的脱硫方法
CN1276792C (zh) 一种含钒的烃类裂化催化剂
CN1916116A (zh) 一种催化裂化催化剂
CN1291787C (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN1501841A (zh) 具有超高动力学转化活性的基于沸石的催化剂
CN1142252C (zh) 一种抗钒的烃类裂化催化剂及制备
CN1286565C (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN1281717C (zh) 一种多产轻质油的烃油裂化方法
CN100351345C (zh) 一种石油烃催化裂化方法
CN1267532C (zh) 一种含分子筛的烃类裂化催化剂及其制备方法
CN1261531C (zh) 一种多产柴油和液化气的烃油裂化方法
CN1261528C (zh) 一种具有脱硫作用的裂化催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant