CN1910274B - 使用肠杆菌科菌株制备l-氨基酸的方法 - Google Patents
使用肠杆菌科菌株制备l-氨基酸的方法 Download PDFInfo
- Publication number
- CN1910274B CN1910274B CN200580002909XA CN200580002909A CN1910274B CN 1910274 B CN1910274 B CN 1910274B CN 200580002909X A CN200580002909X A CN 200580002909XA CN 200580002909 A CN200580002909 A CN 200580002909A CN 1910274 B CN1910274 B CN 1910274B
- Authority
- CN
- China
- Prior art keywords
- gene
- mikrobe
- malt
- amino acid
- orf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及制备L-氨基酸,特别是L-苏氨酸的方法,其中进行如下步骤:a)发酵产生所需的L-氨基酸的肠杆菌科微生物,其中malT基因或者编码该基因产物的核苷酸序列或等位基因是增强的;b)浓缩培养基或者微生物细胞中所需的L-氨基酸;和c)分离所需的L-氨基酸。
Description
发明领域
本发明涉及使用肠杆菌科的重组微生物制备L-氨基酸、特别是L-苏氨酸的方法,所用菌株中malT基因是增强的,特别是过表达的,本发明还涉及这些微生物。
发明背景
L-氨基酸,特别是L-苏氨酸,被用于人用药及制药工业,被用于食品业,特别被用于动物营养。
已知L-氨基酸是通过肠杆菌科菌株,特别是大肠杆菌(Escherichia coli(E.coli))和粘质沙雷氏菌(Serratia marcescens)的发酵而生产的。由于L-氨基酸的极其重要性,人们一直在进行改良生产方法的尝试。生产方法的改良可涉及发酵措施如搅拌和供氧,或涉及营养培养基的组成如发酵期间的糖浓度,或涉及产物形式的逐步发展(例如通过离子交换层析),或涉及微生物本身的固有产量性质。
为改良这些微生物的产量性质,可使用诱变、选择及突变体选择等方法。以此方法可获得抗代谢物例如苏氨酸类似物α-氨基-β-羟基戊酸(AHV)抗性的菌株,或者对于调节重要的代谢物是营养缺陷的并产生L-氨基酸例如L-苏氨酸的菌株。
近年来,通过扩增各个氨基酸生物合成基因并研究其对生产的作用,重组DNA技术的方法也已经用于改良生产L-氨基酸的肠杆菌科菌株。关于大肠杆菌和沙门氏菌的细胞和分子生物学的概括信息见于Neidhardt(ed):E.coil and Salmonella,Cellular and MolecularBiology,2nd Edition,ASM Press,Washington,D.C.,USA(1996)。
大肠杆菌的麦芽糖系统含有调节麦芽糖和麦芽糖糊精的摄取和代谢的10个基因(Boos,W.and Shuman,H.A.;Microbiology andMolecular Biology Reviews 16:204-229(1998))。这些基因是在MalT的控制下,MalT是具有901个氨基酸的大小为103kDa的一种转录激活物。MalT属于一个细菌反式激活物家族:MalT或LAL家族(Dannot.O.;Proceedings of the National Academy of Sciences of theUnited States of America 98:435-440(2001))。该家族的一般特点是大小>90kDa,N末端区域中具有一个ATP结合位点及C末端区域中具有LuxR同源性。MalT活性需要存在ATP和麦芽糖糊精作为效应物(Raibaud,O.and Richet,E.;Journal of Bacteriology 169:3059-3061(1989)和Richet,E.and Raibaud,O.;EMBO Reports 8:981-987(1989))。在细胞中,MalT作为单体以非结合形式存在,并且在存在ATP和麦芽三糖的情况被转变成寡聚活性形式,这样使得可以与mal启动子的序列协同结合(Vidal-Ingigliardi et al.;The Journal ofBiological Chemistry 286:24527-24530(1993))。
与阳性效应物相对比,已知有三种蛋白质可以负面影响MalT活性:MalK作为麦芽糖糊精转运系统的ATP水解亚基(Hofnung et al.;Genetics 76:169-184(1974)和Reyes,M and Shuman H.A.;Journal ofBacteriology 170:4598-4602(1988))。malK的无效突变导致调节子的组成型表达,但其过表达导致几乎检测不到的表达。麦芽糖调节子的另一种阻抑物是malY。
MalY与MalT竞争结合麦芽三糖,并因此抑制MalT的转录活性并使其稳定在失活的单体形式(Schreiber et al.;The Journal ofBiological Chemistry 35:765-776(2000))。抑制MalT活性的第三种蛋白质是Aes蛋白,这是降低mal基因表达的一种酶,是由具有其自身启动子的质粒编码的(Peist et al.;Journal of Bacteriology 161:1201-1208(1985)。
发明目的
本发明人的目的是提供新的措施以改良L-氨基酸,特别是L-苏氨酸的生产。
发明概述
本发明提供了肠杆菌科的重组微生物,所述微生物含有增强的或过表达的编码麦芽糖调节子的阳性转录激活物的malT基因或其等位基因,并以改良的方式生产L-氨基酸,特别是L-苏氨酸。
在所有情况中,进行对比的出发点是对于malT基因未重组的及含有未增强的malT基因的微生物。
这些微生物特别包括肠杆菌科的微生物,其中编码一种多肽的多核苷酸是增强的,所述多肽的氨基酸序列与选自由SEQ ID No:4和SEQ ID No:6组成的一组的氨基酸序列至少90%,特别是至少95%,优选至少98%或者至少99%,特别优选99.7%,非常优选100%相同。
优选与SEQ ID No:4或SEQ ID No:6的序列相同的氨基酸序列。
所述微生物含有增强的或过表达的选自如下一组的多核苷酸:
a)具有SEQ ID No:3或SEQ ID No:5所示核苷酸序列的多核苷酸;
b)具有在遗传密码简并范围内相应于SEQ ID No:3或SEQ ID No:5的核苷酸序列的多核苷酸;
c)具有在严格条件下与互补于SEQ ID No:3或SEQ ID No:5的序列杂交的序列的多核苷酸序列;
d)具有含有中性功能有义突变体(neutral-function sense mutant)的SEQ ID No:3或SEQ ID No:5序列的多核苷酸;
其中所述多核苷酸编码麦芽糖调节子的阳性转录激活物。
本发明还提供了一种使用肠杆菌科的重组微生物经发酵生产L-氨基酸,特别是L-苏氨酸的方法,所述微生物特别已经生产L-氨基酸并且其中至少malT基因或者编码其基因产物的核苷酸序列是增强的。
发明详述
优选应用所描述的微生物。
当下文提及L-氨基酸或氨基酸时,是指选自如下一组的一或多种氨基酸,包括其盐:L-天冬酰胺,L-苏氨酸,L-丝氨酸,L-谷氨酸,L-甘氨酸,L-丙氨酸,L-半胱氨酸,L-缬氨酸,L-甲硫氨酸,L-脯氨酸,L-异亮氨酸,L-亮氨酸,L-酪氨酸,L-苯丙氨酸,L-组氨酸,L-赖氨酸,L-色氨酸,L-精氨酸和L-高丝氨酸。特别优选L-苏氨酸。
文中术语“增强”描述了微生物中由相应的DNA编码的一或多种酶或蛋白质的胞内活性或浓度增加,例如通过使基因的拷贝数增加至少1个、将强力启动子与所述基因功能上连接或者使用编码具有高活性的相应酶或蛋白质的基因或等位基因进行,并且任选地组合这些措施。
等位基因一般是指特定基因的另一种形式,所述形式通过核苷酸序列中的差异加以区别。
由核苷酸序列即ORF、基因或等位基因编码的蛋白质,或者编码的核糖核酸一般称作基因产物。
通过增强措施,相应蛋白质的活性或浓度基于野生型蛋白质的活性或浓度或者基于相应的酶或蛋白质未重组的微生物或亲代菌株中所述蛋白质的活性或浓度一般增加至少10%、25%、50%、75%、100%、150%、200%、300%、400%或500%,直至最大1000%或2000%。未重组的微生物或亲代菌株是指对其未实施本发明的措施的微生物。
本发明还提供了通过发酵肠杆菌科的重组微生物制备L-氨基酸的方法,特征在于:
a)将产生所需的L-氨基酸的肠杆菌科的微生物在适于malT基因产物(麦芽糖调节子的阳性转录激活物)形成的条件下在培养基中培养,并且所述微生物中malT基因或其等位基因是增强的,特别是过表达的;
b)浓缩培养基或者所述微生物细胞中所需的L-氨基酸;
c)分离所需的L-氨基酸,发酵肉汤中的组分和/或其生物量的≥0-100%的量任选地保留在已经分离的产物中或被完全移走。
本发明还提供了具有增强的malT基因的微生物,特别是重组微生物,其可以从葡萄糖、蔗糖、乳糖、果糖、麦芽糖、糖蜜、任选淀粉、任选纤维素或者从甘油和乙醇中生产L-氨基酸。它们是选自埃希氏菌属、欧文氏菌属(Erwinia)、普罗威登斯菌属(Providencia)和沙雷氏菌属的肠杆菌科代表性菌株。优选埃希氏菌属和沙雷氏菌属。提及的是埃希氏菌属,特别是大肠杆菌菌种,及沙雷氏菌属,特别是粘质沙雷氏菌菌种。
重组微生物一般是通过转化、转导或接合或者这些方法的组合,使用含有所需的基因、这种基因的等位基因或其一部分和/或增强该基因表达的启动子的载体而产生。这种启动子可以是通过所述基因上游的内源调节序列增强突变产生的启动子,或者与该基因融合的有效启动子。
特别生产L-苏氨酸的埃希氏菌属菌株,特别是大肠杆菌菌种的合适菌株例如是:
-大肠杆菌H4581(EP0 301 572)
-大肠杆菌KY10935(Bioscience Biotechnology and Biochemistry61(11):1877-1882(1997)
-大肠杆菌VNIIgenetika MG442(US-A-4278,765)
-大肠杆菌VNIIgenetika M1(US-A-4,321,325)
-大肠杆菌VNIIgenetika 472T23(US-A-5,631,157)
-大肠杆菌BKIIM B-3996(US-A-5,175,107)
-大肠杆菌kat 13(WO 98/04715)
-大肠杆菌KCCM-10132(WO 00/09660)
生产L-苏氨酸的沙雷氏菌属菌株,特别是粘质沙雷氏菌菌种的合适菌株例如是:
-粘质沙雷氏菌HNr21(Applied and EnvironmentalMicrobiology 38(6):1045-1051(1979))
-粘质沙雷氏菌TLr156(Gene 57(2-3):151-158(1987))
-粘质沙雷氏菌T-2000(Applied Biochemistry andBiotechnology 37(3):255-265(1992))。
肠杆菌科生产L-苏氨酸的菌株优选具有选自如下一组的一或多种遗传或表型特征:α-氨基-β-羟基戊酸抗性、硫代赖氨酸(thialysine)抗性、乙硫氨酸抗性、α-甲基丝氨酸抗性、二氨基琥珀酸抗性、α-氨基丁酸抗性、疏螺旋体素抗性、环戊烷-羧酸抗性、利福平抗性、缬氨酸类似物例如缬氨酸氧肟酸抗性、嘌呤类似物例如6-二甲基氨基嘌呤抗性、需要L-甲硫氨酸、任选地不完全及可补偿地需要L-异亮氨酸、需要内消旋二氨基庚二酸、含有苏氨酸的二肽营养缺陷、L-苏氨酸抗性、苏氨酸萃余物抗性、L-高丝氨酸抗性、L-赖氨酸抗性、L-甲硫氨酸抗性、L-谷氨酸抗性、L-天冬氨酸抗性、L-亮氨酸抗性、L-苯丙氨酸抗性、L-丝氨酸抗性、L-半胱氨酸抗性、L-缬氨酸抗性、氟丙酮酸敏感性、缺陷的苏氨酸脱氢酶、任选地蔗糖利用能力、苏氨酸操纵子的增强、高丝氨酸脱氢酶I-天冬氨酸激酶I的增强、优选地反馈抗性形式、高丝氨酸激酶的增强、苏氨酸合酶的增强、天冬氨酸激酶的增强、任选地反馈抗性形式、天冬氨酸半醛脱氢酶的增强、磷酸烯醇丙酮酸羧化酶的增强、任选地反馈抗性形式、磷酸烯醇丙酮酸合酶的增强、转氢酶的增强、RhtB基因产物的增强、RhtC基因产物的增强、YfiK基因产物的增强、丙酮酸羧化酶的增强、及乙酸形成的弱化。
已经发现在malT基因或其等位基因增强,特别是过表达后,肠杆菌科的微生物以改良的方式生产L-氨基酸,特别是L-苏氨酸。
大肠杆菌基因的核苷酸序列属于现有技术范畴(见下文参考),也可见于Blattner等公布的大肠杆菌基因组序列(Science 277:1453-1462(1997))。已知宿主内源的酶(甲硫氨酸氨肽酶)可以分裂掉N末端的甲硫氨酸。
同样从也属于肠杆菌科的鼠伤寒沙门氏菌(Salmonellatyphimurium)中malT基因的核苷酸序列也是已知的。
通过但非限于如下数据描述malT基因:
描述:麦芽糖调节子的阳性转录激活物
功能:mal基因转录所必需的,由麦芽三糖和ATP诱导
参考文献:Cole S.T.and Raibaud O.;Gene 42(2):201-208(1986),
Richet E.and Raibaud O.;The EMBO Journal 8(3):981-987(1989),
Schreiber et al.;Molecular Microbiology 35(4):765-776(2001),
Schlegel et al.;The Journal of MolecularMicrobiology and Biotechnology;4(3):301-307(2002)
登记号:AE000418
核苷酸序列可见于National Library of Medicine(Bethesda,MD,USA)的National Center for Biotechnology Information(NCBI)的数据库;European Molecular Biologies Laboratories(EMBL,Heidelberg,Germany or Cambridge,UK)的核苷酸序列数据库或者日本的DNA数据库(DDBJ,Mishima,Japan)。
为了更加清楚,大肠杆菌malT基因的已知核苷酸序列示于SEQID No:3,鼠伤寒沙门氏菌(AE008862.1)的malT基因的已知序列示于SEQ ID No:5。由这些读框编码的蛋白质的氨基酸序列示作SEQ IDNo:4或SEQ ID No:6。
根据本发明可以使用正文参考中所描述的基因。也可以使用得自遗传密码简并或者由于中性功能的“有义突变”所致的基因的等位基因。优选使用内源基因。
“内源基因”或者“内源核苷酸序列”是指一个物种种群中存在的基因或等位基因或核苷酸序列。
malT基因的含有中性功能有义突变的合适等位基因包括但不限于导致其编码的蛋白质中有至多100个、或者至多90个、或者至多80个、或者至多70个、或者至多60个、或者至多50个、或者至多40个、或者至多30个、或者至多20个、优选至多10或至多5个、特别优选至多3个、或者至多2个或者至少1个保守氨基酸置换。
在芳香族氨基酸的情况中,保守置换是指苯丙氨酸、色氨酸和酪氨酸的彼此互换。在疏水性氨基酸的情况中,保守置换是指亮氨酸、异亮氨酸和缬氨酸的彼此互换。在极性氨基酸的情况中,保守置换是指谷氨酰胺和天冬酰胺的彼此互换。在碱性氨基酸的情况中,保守置换是指精氨酸、赖氨酸和组氨酸的彼此互换。在酸性氨基酸的情况中,保守置换是指天冬氨酸和谷氨酸的彼此互换。在含有羟基基团的氨基酸的情况中,保守置换是指丝氨酸和苏氨酸的彼此互换。所有其它氨基酸置换均称作非保守氨基酸置换。
同样,可以使用编码所述蛋白质的变体的那些核苷酸序列,其另外在N或C末端延长或缩短至少1个氨基酸。这种延长或缩短不超过50,40,30,20,10,5,3或2个氨基酸或者氨基酸基团。
合适的等位基因还包括编码其中插入(插入)或除去(缺失)至少一个氨基酸的蛋白质的那些基因。这种称作插入/缺失(indel)的改变的最大数目可涉及2,3,5,10,20但在任何情况下不超过30个氨基酸。
合适的等位基因进一步包括通过杂交,特别是在严格条件下杂交可获得的那些等位基因,所述杂交使用SEQ ID No:3或SEQ ID No:5或其一部分,特别是编码区或与其互补的序列进行。
通过杂交方式鉴别DNA序列的指导可见于例如但不限于Boehringer Mannheim GmbH的手册“The DIG System Users Guide forFilter Hybridization”(Mannheim,Germany,1993)及Liebl et al.(International Journal of Systematic Bacteriology 41:255-260(1991))所述。杂交在严格条件下发生,也就是说只有其中探针和靶序列(即用探针处理的多核苷酸)至少80%相同的杂交体形成。已知杂交的严格性,包括洗涤步骤,是通过改变缓冲液组分、温度和盐浓度而影响或决定的。杂交反应通常在与洗涤步骤相比相对低的严格条件下进行(Hybaid Hybridisation Guide,Hybaid Limited,Teddington,UK,1996)。
可以在大约50℃-68℃应用相应于5×SSC缓冲液的缓冲液进行杂交反应。探针也可以和与其序列低于80%相同性的多核苷酸杂交。这种杂交体较不稳定,在严格条件下通过洗涤除去。这可以例如通过使盐浓度降低至2×SSC及任选地随后为0.5×SSC(The DIGSystem User′s Guide for Filter Hybridisation,Boehringer Mannheim,Mannheim,Germany,1995),温度为大约50℃-68℃,大约52℃-68℃,大约54℃-68℃,大约56℃-68℃,大约58℃-68℃,大约60℃-68℃,大约62-68℃,大约64℃-68℃,大约66℃-68℃而实现。优选大约64℃-68℃或者大约66℃-68℃的温度范围。任选地可以使盐浓度降低至相应于0.2×SSC或0.1×SSC。与所应用的探针的序列或者与SEQ ID No:3或SEQ ID No:5所示核苷酸序列例如至少80%或者至少90%、91%、92%、93%、94%、95%、96%、97%、98%或者至少99%相同的多核苷酸片段可以通过使杂交温度从50℃逐步(每步大约1-2℃)升高至68℃而分离。关于杂交的进一步指导可以所谓的试剂盒形式商购(例如DIG Easy Hyb,得自RocheDiagnostics GmbH,Mannheim,Germany,Catalogue No.1603558)。以这种方式获得的核苷酸序列编码与SEQ ID No:4或SEQ ID No:6所示氨基酸序列至少90%相同,特别优选至少95%相同,优选至少98%或至少99%相同,特别优选至少99.8%相同的多肽。
为实现过表达,例如可以增加所述基因的表达或者蛋白质的催化性质。这两种措施可任选地组合。
因此,例如可以增加相应基因的拷贝数,或者可以突变结构基因上游的启动子和调节区或者核糖体接合位点。掺入结构基因上游的表达盒以同样方式发挥作用。通过可诱导的启动子,另外可以在经发酵生产L-苏氨酸期间增加表达,另外使用使得随着时间发生另外的基因表达的用于基因表达的启动子也是更加有利的。该表达同样通过延长m-RNA的寿命而改良。另外,酶活性也通过防止酶蛋白质的降解而增加。所述基因或基因构建体可以存在于不同数目拷贝的质粒中,或者可以整合进染色体中并扩增。或者,所述基因的过表达可另外通过改变培养基的组分和培养程序而实现。
过表达的方法在现有技术领域中充分描述,例如由Makrides et al.(Microbiological Reviews 60(3),512-538(1996))所描述。通过使用载体,拷贝数增加至少1个。可以使用的载体是例如US 5,538,873所述的质粒。也可以使用的载体是噬菌体,例如EP 0332448所述的噬菌体Mu或者噬菌体lambda(λ)。拷贝数的增加也可以通过在染色体的另外的位点掺入另外的拷贝而实现,例如掺入噬菌体λ的att位点中(Yu和Court,Gene 223,77-81(1998))。US 5,939,307揭示了通过掺入表达盒或者启动子,例如将tac启动子、trp启动子、lpp启动子或者噬菌体λ的PL启动子和PR-启动子掺入例如染色体苏氨酸操纵子的上游,可以实现表达增加。噬菌体T7的启动子、gear-box启动子或者nar启动子可以同样方式使用。也可以如EP 0 593 792所述的使用这些表达盒或启动子以过表达质粒结合的基因。通过使用lacIQ等位基因,可对质粒结合的基因的表达加以控制(Glascock和Weickert,Gene 223,221-231(1998))。另外,启动子的活性可以通过插入和/或缺失而置换一或多个核苷酸,从而修饰其序列而增加。随着时间的另外的基因表达可以例如Walker et al.(Journal of Bacteriology 181:1269-80(1999))所述,通过使用生长期依赖性fis启动子而实现。
这方面的全面指导可见于例如但不限于Chang和Cohen(Journalof Bacteriology 134:1141-1156(1978))、Hartley和Gregori(Gene 13:347-353(1981))、Amann和Brosius(Gene 40:183-190(1985))、Broer etal.(Proceedings of the National Academy of Sciences of the UnitedStates of America 80:21-25(1983))、LaVallie et al.(BIO/TECHNOLOGY 11:187-193(1993))、PCT/US97/13359、Llosa etal.(Plasmid 26:222-224(1991))、Quandt和Klipp(Gene 80:161-169(1989))、Hamilton et al.(Journal of Bacteriology 171:4617-4622(1989))、Jensen和Hammer(Biotechnology and Bioengineering 58:191-195(1998))和已知的遗传学和分子生物学教科书。
可以使用在肠杆菌中可复制的质粒载体,例如衍生自pACYC184(Bartolomé et al.;Gene 102:75-78(1991))、pTrc99A(Amann et al.;Gene 69:301-315(1988))的克隆载体或者pSC101衍生物(Vocke和Bastia;Proceedings of the National Academy of Sciences USA 80(21):6557-6561(1983))。在本发明的方法中可以使用用质粒载体转化的菌株,其中所述质粒载体至少携带malT基因或者编码其基因产物的核苷酸序列或等位基因。
术语“转化”是指分离的核酸被宿主(微生物)摄取。
也可以通过序列置换(Hamilton et al.;(Journal of Bacteriology171:4617-4622(1989))、接合或转导将影响特定基因表达的突变转移至各种菌株中。
关于遗传学和分子生物学术语的更详细的解释见于已知的遗传学和分子生物学教科书,例如Birge(Bacterial and BacteriophageGenetics,4th ed.,Springer Verlag,New York(USA),2000)或者Berg、Tymoczko和Stryer(Biochemistry,5th ed.,Freeman和Company,New York(USA),2002)或者Sambrook et al.(MolecularCloning,A Laboratory Manual,(3 volume set),Cold Spring HarborLaboratory Press,Cold Spring Harbor(USA),2001)。
除了过表达malT基因之外,增强已知苏氨酸生物合成途径的一或多种酶或者糖回补代谢的酶或者生产还原的烟碱腺嘌呤二核苷酸磷酸的酶或者糖酵解的酶或者PTS酶或者硫代谢的酶,对于使用肠杆菌科的菌株生产L-氨基酸,特别是L-苏氨酸是有益的。一般优选使用内源基因。
因此,例如可以同时增强选自如下一组的一或多个基因:
●thrABC操纵子的至少一个基因,其编码天冬氨酸激酶、高丝氨酸脱氢酶、高丝氨酸激酶和苏氨酸合酶(US-A-4,278,765),
●谷氨酸棒杆菌(Corynebacterium glutamicum)的pyc基因,其编码丙酮酸羧化酶(WO 99/18228),
●pps基因,其编码磷酸烯醇丙酮酸合酶(Molecular and GeneralGenetics 231(2):332-336(1992)),
●ppc基因,其编码磷酸烯醇丙酮酸羧化酶(WO 02/064808),
●pntA和pntB基因,其编码嘧啶转氢酶的亚基(European Journal ofBiochemistry 158:647-653(1986)),
●rhtB基因,其编码授予高丝氨酸抗性的蛋白质(EP-A-0994190),
●rhtC基因,其编码授予苏氨酸抗性的蛋白质(EP-A-1 013 765),
●谷氨酸棒杆菌的thrE基因,其编码苏氨酸输出载体蛋白(WO01/92545),
●gdhA基因,其编码谷氨酸脱氢酶(Nucleic Acids Research 11:5257-5266(1983);Gene 23:199-209(1983)),
●pgm基因,其编码葡糖磷酸变位酶(WO 03/004598),
●fba基因,其编码果糖二磷酸醛缩酶(WO 03/004664),
●ptsHIcrr操纵子的ptsH基因,其编码磷酸转移酶系统PTS的磷酸组氨酸蛋白己糖磷酸转移酶(WO 03/004674),
●ptsHIcrr操纵子的ptsI基因,其编码磷酸转移酶系统PTS的酶I(WO 03/004674),
●ptsHIcrr操纵子的crr基因,其编码磷酸转移酶系统PTS的葡萄糖特异性IIA成分(WO 03/004674),
●ptsG基因,其编码葡萄糖特异性IIBC成分(WO 03/004670),
●lrp基因,其编码亮氨酸调节子的调节物(WO 03/004665),
●fadR基因,其编码fad调节子的调节物(WO 03/038106),
●iclR基因,其编码主要中间代谢(central intermediate metabolism)的调节物(WO 03/038106),
●ahpCF操纵子的ahpC基因,其编码烷基氢过氧化物还原酶的小亚基(WO 03/004663),
●ahpCF操纵子的ahpF基因,其编码烷基氢过氧化物还原酶的大亚基(WO 03/004663),
●cysK基因,其编码半胱氨酸合酶A(WO 03/006666),
●cysB基因,其编码cys调节子的调节物(WO 03/006666),
●cysJIH操纵子的cysJ基因,其编码NADPH亚硫酸还原酶的黄素蛋白(WO 03/006666),
●cysJIH操纵子的cysI基因,其编码NADPH亚硫酸还原酶的血红蛋白(WO 03/006666),
●cysJIH操纵子的cysH基因,其编码腺苷酰硫酸还原酶(WO03/006666),
●rseABC操纵子的rseA基因,其编码具有抗sigmaE活性的膜蛋白(WO 03/008612),
●rseABC操纵子的rseC基因,其编码sigmaE因子的全局调节物(WO 03/008612),
●sucABCD操纵子的sucA基因,其编码2-酮戊二酸脱氢酶的脱羧酶亚基(WO 03/008614),
●sucABCD操纵子的sucB基因,其编码2-酮戊二酸脱氢酶的二氢硫辛酸转琥珀酰酶(dihydrolipoyltranssuccinase)E2亚基(WO03/008614),
●sucABCD操纵子的sucC基因,其编码琥珀酰-CoA合成酶的β-亚基(WO 03/008615),
●sucABCD操纵子的sucD基因,其编码琥珀酰-CoA合成酶的α-亚基(WO 03/008615),
●aceE基因,其编码丙酮酸脱氢酶复合物的E1成分(WO 03/076635),
●aceF基因,其编码丙酮酸脱氢酶复合物的E2成分(WO 03/076635),
●rseB基因,其编码sigmaE因子活性的调节物(MolecularMicrobiology 24(2):355-371(1997)),
●大肠杆菌的开放读框(ORF)yodA的基因产物(登录号AE000288,National Center for Biotechnology Information(NCBI,Bethesda,MD,USA),DE10361192.4),以及
●大肠杆菌的开放读框(ORF)yaaU的基因产物(登录号AE005181,National Center for Biotechnology Information(NCBI,Bethesda,MD,USA),DE10361268.8),
除了增强malT基因之外,选自如下一组的一或多个基因的弱化、特别是消除或者降低其表达对于L-氨基酸、特别是L-苏氨酸的生产是有益的:
●tdh基因,其编码苏氨酸脱氢酶(Journal of Bacteriology 169:4716-4721(1987)),
●mdh基因,其编码苹果酸脱氢酶(E.C.1.1.1.37)(Archives inMicrobiology 149:36-42(1987)),
●大肠杆菌的开放读框(orf)yjfA的基因产物(登录号AAC77180,National Center for Biotechnology Information(NCBI,Bethesda,MD,USA),WO 02/29080)),
●大肠杆菌的开放读框(orf)ytfP的基因产物(登录号AAC77179,National Center for Biotechnology Information(NCBI,Bethesda,MD,USA),WO 02/29080)),
●pckA基因,其编码磷酸烯醇丙酮酸羧化激酶(WO 02/29080),
●poxB基因,其编码丙酮酸氧化酶(WO 02/36797),
●dgsA基因,其编码磷酸转移酶系统的DgsA调节物(WO02/081721),也称作mlc基因,
●fruR基因,其编码果糖阻抑物(WO 02/081698),也称作cra基因,
●rpoS基因,其编码sigma38因子(WO 01/05939),也称作katF基因,
●aspA基因,其编码天冬氨酸铵裂合酶(WO 03/008603)。
文中术语“弱化”是指降低或消除微生物中由相应的DNA编码的一或多种酶的胞内活性或浓度,例如通过使用比在相应酶或蛋白质未重组的微生物或亲代菌株中弱的启动子,或者使用编码具有低活性的相应酶或蛋白质的基因或等位基因,或者使相应的酶或蛋白质或者开放读框或者基因失活及任选地组合这些措施进行。
通过弱化措施,相应蛋白质的活性或浓度与野生型蛋白质的活性或浓度相比,或者与相应酶或蛋白质未重组的微生物或亲代菌株中所述蛋白质的活性或浓度相比,一般降低至0-75%,0-50%,0-25%,0-10%或者0-5%。未重组的微生物或亲代菌株是指对其未实施本发明的措施的微生物。
为实现弱化,例如可以降低或消除基因或开放读框的表达或者酶蛋白的催化性质。可任选地组合这两种措施。
基因表达的降低可通过合适的培养、通过遗传修饰(突变)基因表达的信号结构、或者也可以通过反义RNA技术而产生。基因表达的信号结构是例如阻抑物基因、激活物基因、操纵子、启动子、弱化子、核糖体结合位点、起始密码子和终止子。这方面的信息可见例如但不限于Jensen和Hammer(Biotechnology and Bioengineering 58:191-195(1998))、Carrier和Keasling(Biotechnology Progress 15:58-64(1999))、Franch和Gerdes(Current Opinion in Microbiology 3:159-164(2000))及已知的遗传学和分子生物学教科书所述,所述教科书例如Knippers(″Molekulare Genetik″,6th edition,Georg Thieme Verlag,Stuttgart,Germany,1995)或者Winnacker(″Gene und Klone″,VCHVerlagsgesellschaft,Weinheim,Germany,1990)的教科书。
本领域已知导致酶蛋白催化性质改变或降低的突变。例如Qiu和Goodman(Journal of Biological Chemistry 272:8611-8617(1997)),Yano et al.(Proceedings of the National Academy of Sciences of theUnited States of America 95:5511-5515(1998)),Wente和Schachmann(Journal of Biological Chemistry 266:20833-20839(1991))所进行的研究工作。概括性描述可见于已知的遗传学和分子生物学教科书,例如Hagemann的教科书(″Allgemeine Genetik″,Gustav Fischer Verlag,Stuttgart,1986)。
可能的突变是转换、颠换、插入和缺失至少1个碱基对或核苷酸。根据突变所致氨基酸置换对酶活性的影响,称作“错义突变(missensemutation)”或“无义突变(nonsense mutation)”。错义突变导致蛋白质中一个特定的氨基酸置换为另一个,特别是非保守氨基酸置换。该蛋白质的功能性或活性被这种方式削弱,降低至0-75%,0-50%,0-25%,0-10%或者0-5%。无义突变在基因的编码区中导致终止密码子并因此导致翻译过早中断。在基因中插入或缺失至少一个碱基对导致移码突变,这样导致掺入不正确的氨基酸或者翻译过早中断。如果终止密码子由于突变的结果在编码区内形成,这样也导致翻译的过早终止。至少一或多个密码子的缺失典型地也导致酶活性的完全丧失。
关于产生这些突变的指导是本领域现有技术,可见于已知的遗传学和分子生物学教科书,例如Knippers(″Molekulare Genetik″,6thedition,Georg Thieme Verlag,Stuttgart,Germany,1995);Winnacker (″Gene und Klone″,VCH Verlagsgesellschaft,Weinheim,Germany,1990)或者Hagemann(″Allgemeine Genetik″,Gustav Fischer Verlag,Stuttgart,1986)。
基因中合适的突变可以通过基因或等位基因置换而掺入合适的菌株中。
常用的方法是由Hamilton et al.(Journal of Bacteriology 171:4617-4622(1989))所述的借助于有条件地复制pSC101衍生物pMAK705进行基因置换的方法。同样可以使用现有技术中描述的其它方法,例如Martinez-Morales et al.(Journal of Bacteriology 181:7143-7148(1999))或者Boyd et al.(Journal of Bacteriology 182:842-847(2000))所述方法。
也可以通过接合或者转导将特定基因中的突变或者影响特定基因或者开放读框表达的突变移至各个菌株中。
除了malT基因的增强之外,消除不希望的副反应对于L-氨基酸,特别是L-苏氨酸的生产可能是有益的(Nakayama:″Breeding of AminoAcid Producing Microorganisms″,in:Overproduction of MicrobialProducts,Krumphanzl,Sikyta,Vanek(eds.),Academic Press,London,UK,1982)。
根据本发明产生的微生物可通过分批法培养(分批培养)、补料分批法培养(补料方法)、重复补料分批法培养(重复补料方法)或者连续培养(DE102004028859.3或者US5,763,230)。已知的培养方法的概述见Chmiel的教科书(Bioprozesstechnik 1.Einführung in dieBioverfahrenstechnik(Gustav Fischer Verlag,Stuttgart,1991))或者Storhas的教科书(Bioreaktoren und periphere Einrichtungen(ViewegVerlag,Braunschweig/Wiesbaden,1994))中所述。
所用培养基必须以适当方式符合特定菌株的要求。关于各种微生物培养基的阐述见于美国细菌学会(American Society for Bacteriology)的“普通细菌学方法手册(Manual of Methods for GeneralBacteriology)”(美国华盛顿D.C.,1981)。
可使用的碳源包括糖及碳水化合物,例如葡萄糖、蔗糖、乳糖、果糖、麦芽糖、糖蜜、淀粉和任选地纤维素;油和脂肪如豆油、葵花油、花生油和椰脂;脂肪酸如棕榈酸、硬脂酸和亚油酸;醇如甘油和乙醇;及有机酸如乙酸。这些物质可单独或混合使用。
可使用的氮源包括含氮的有机化合物如胨、酵母提取物、肉膏、麦芽提取物、玉米浸液、大豆粉和尿素;或无机化物如硫酸铵、氯化铵、磷酸铵、碳酸铵和硝酸铵。氮源可单独或混合使用。
可使用的磷源包括磷酸、磷酸二氢钾或磷酸氢二钾,或相应含钠的盐。培养基另外还必须含有生长所必需的金属盐如硫酸镁或硫酸铁。最后,除了上述物质之外,还可使用生长必需物质如氨基酸和维生素。此外,可将适当前体加入培养基中。上述起始物质可以单批形式加入到培养基中或在培养期间以适当的方式补加。
发酵通常在pH5.5-9.0进行,特别是在pH6.0-8.0进行。可以适当方式加入碱性化合物如NaOH、KOH、氨或氨水,或酸性化合物如磷酸或硫酸,以控制培养物的pH值。抗泡沫剂例如脂肪酸聚乙二醇酯可用于控制泡沫产生。可向培养基中加入具有选择性作用的合适的物质例如抗生素以保持质粒的稳定性。可向培养物中充入氧气或含氧气体混合物,例如空气,以保持有氧条件。培养温度通常在20℃~45℃,优选30℃-40℃。持续培养直至L-氨基酸或L-苏氨酸形成最大量。此目的通常在10~160小时范围内达到。
L-氨基酸的分析可以通过阴离子交换层析,随后进行茚三酮衍生化作用进行,如Spackman等(Analytical Chemistry,30:1190-1206(1958))所述,或者可以通过反相HPLC进行,如Lindroth等(AnalyticalChemistry 51:1167-1174(1979))所述。
本发明的方法用于发酵生产L-氨基酸,例如L-苏氨酸、L-异亮氨酸、L-缬氨酸、L-甲硫氨酸、L-高丝氨酸、L-色氨酸和L-赖氨酸,特别是L-苏氨酸。
如下微生物根据布达佩斯条约保藏在德国微生物保藏中心(DSMZ,德国不伦瑞克):
●大肠杆菌菌株MG442,保藏号DSM 16574。
本发明借助于下文实施例得以更详细地说明。
使用的大肠杆菌基本培养基(M9)和完全培养基(LB)由J.H.Miller(A Short Course in Bacterial Genetics(1992),Cold Spring HarborLaboratory Press)描述。从大肠杆菌中分离质粒DNA及所有限制、连接、Klenow和碱性磷酸酶处理技术均根据Sambrook等(MolecularCloning-A Laboratory Manual(1989)Cold Spring Harbor LaboratoryPress)所述方法实施。除非特别说明,大肠杆菌的转化通过Chung等(Proceedings of the National Academy of Sciences of the United States ofAmerica 86:2172-2175(1989))所述方法实施。
菌株的制备和转化的温育温度为37℃。
实施例1:表达质粒pTrc99AmalT的构建
将大肠杆菌K12的malT基因使用聚合酶链反应(PCR)和合成的寡核苷酸扩增。从大肠杆菌E.coli K12 MG1655(登记号AE000418,Blattner et al.(Science 277:1453-1474(1997))的malT基因的核苷酸序列开始,合成PCR引物(MWG Biotech,Ebersberg,Germany)。引物含有限制酶的序列,在如下所示的核苷酸序列中以下划线标示。引物malT1含有XabI的限制切割位点,引物malT2含有HindIII的限制切割位点。
malT1:
5′-CCTCATTCTAGACAGTGAAGTGATTAA-3′(SEQ ID No:1)
malT2:
5′-GGCGCGTTATCAAGCTTAACTTACAC-3′(SEQ IDNo:2)
用于PCR的大肠杆菌K12 MG1655的染色体DNA使用QiagenGenomic-tips 100/G(QIAGEN,Hilden,Germany)根据厂商指导分离。使用特异性引物在标准PCR条件(Innis et al.(1990)PCR Protocols.AGuide to Methods and Applications,Academic Press)下使用Vent-DNA聚合酶(New England BioLabs,Frankfurt,Germany)可以扩增出大小大约为2755bp的DNA片段(SEQ ID No:3)。
将扩增的malT片段用限制酶HindIII和XbaI限制性酶切,并且在纯化(Purificaion Kit,QIAGEN,Hilden,Germany)后在0.8%琼脂糖凝胶中检测。将载体pTrc99A(Pharmacia Biotech,Uppsala,Sweden)用限制酶HindIII和XbaI切割,并与限制性切割后的malT片段连接。将大肠杆菌菌株TOP10 One Shot(TOPO TA Cloning Kit,Invitrogen,Groningen,The Netherlands)用连接混合物转化,在加入50μg/ml氨苄青霉素的LB琼脂上选择携带质粒的细胞。成功的克隆可通过用限制酶EcoRV和PauI对分离的质粒DNA进行对照切割证实。该质粒称作pTrc99AmalT(图1)。
实施例2:用菌株MG442/pTrc99AmalT制备L-苏氨酸
生产L-苏氨酸的大肠杆菌菌株MG442在专利说明书US-A-4,278,765中描述,根据布达佩斯条约以保藏号CMIM B-1628保藏在俄罗斯国家工业微生物保藏中心(VKPM,俄罗斯莫斯科)及以保藏号DSM 16574保藏在德国微生物保藏中心(DSMZ,德国不伦瑞克)。
将菌株MG442用实施例1所述的表达质粒pTrc99AmalT和载体pTrc99A转化,在具有50μg/ml氨苄青霉素的LB琼脂上选择携带质粒的细胞。成功的转化可通过用在分离质粒DNA之后用酶HpaI、HindIII/XbaI和EcoRV进行对照切割证实。以这种方式形成菌株MG442/pTrc99AmalT和MG442/pTrc99A。然后在具有如下组分的基本培养基上进一步增殖所选择的单个菌落:3.5g/l Na2HPO4*2H2O,1.5g/l KH2PO4,1g/l NH4Cl,0.1g/l MgSO4*7H2O,2g/l葡萄糖,20g/l琼脂,50mg/l氨苄青霉素。在于100ml锥形瓶中的10ml分批培养物中检测L-苏氨酸的形成。为此,接种含有如下组分的10ml预培养培养基:2g/l酵母提取物,10g/l(NH4)2SO4,1g/l KH2PO4,0.5g/lMgSO4*7H2O,15g/l CaCO3,20g/l葡萄糖,50mg/l氨苄青霉素,并将该批次在37℃以180rpm在Kühner AG(Birsfelden,Switzerland)的ESR温育器上温育16小时。
将此预培养物的250μl转接于10ml生产培养基中(25g/l(NH4)2SO4,2g/l KH2PO4,1g/l MgSO4*7H2O,0.03g/lFeSO4*7H2O,0.018g/l MnSO4*1H2O,30g/l CaCO3,20g/l葡萄糖,50mg/l氨苄青霉素),并将该混合物在37℃温育48小时。为了完全诱导malT基因的表达,在平行批次中加入100mg/l异丙基β-D-硫代半乳糖糖苷(IPTG)。以相同方式研究起始菌株MG442中L-苏氨酸的形成,但是培养基中不加入氨苄青霉素。在温育后,培养物悬浮液的光密度(OD)使用Dr.Lange(Düsseldorf,Germany)的LP2W光度计在660nm测定波长进行测定。
然后在无菌过滤的培养物上清中使用Eppendorf-BioTronik(Hamburg,Germany)氨基酸分析仪经离子交换层析和用茚三酮检测进行的过柱后反应而确定形成的L-苏氨酸的浓度。
实验结果示于表1。
表1
菌株 | 添加物 | OD(660nm) | L-苏氨酸g/l |
MG442 | - | 5.6 | 1.4 |
MG442/pTrc99A | - | 3.8 | 1.3 |
MG442/pTrc99AmalT | - | 5.9 | 2.1 |
MG442/pTrc99AmalT | IPTG | 7.2 | 2.4 |
附图简述:
图1:含有malT基因的质粒pTrc99AmalT的图谱
长度数据是大约值。所用缩写和名称具有如下含义:
●Amp:氨苄青霉素抗性基因
●lacI:trc启动子的阻抑蛋白的基因
●Ptrc:trc启动子区域,IPTG-可诱导的
●malT:malT基因的编码区
●5S:5S rRNA区
●rrnBT:rRNA终止子区域。
限制酶的缩写具有如下含义:
●EcoRV:来自大肠杆菌B945的限制性核酸内切酶
●HindIII:来自流感嗜血菌(Haemophilus influenzae)RC的限制性核酸内切酶
●HpaI:来自副流感嗜血菌(Haemophilusparainfluenzae)的限制性核酸内切酶
●PauI:来自嗜碱副球菌(Paracoccus alcaliphilus)的限制性核酸内切酶
●XbaI:来自野油菜黄单胞菌(Xanthomonas campestris)的限制性核酸内切酶
Claims (14)
1.埃希氏菌属的重组微生物,其含有增强的或过表达的编码麦芽糖调节子的阳性转录激活物的malT基因和增强的或过表达的编码基因产物是一种推定的转运蛋白的大肠杆菌yaaU开放读框,其中所述yaaU开放读框编码SEQ ID NO.8所示的多肽,并且所述重组微生物以改良的方式生产L-氨基酸,且其中malT基因是一种多核苷酸,其编码一种多肽,所述多肽的氨基酸序列是SEQ ID No:4或SEQ IDNo:6。
2.权利要求1的微生物,其含有过表达的或增强的相应于malT基因的选自如下一组的多核苷酸:
a)具有SEQ ID No:3或SEQ ID No:5所示核苷酸序列的多核苷酸;
b)具有在遗传密码简并范围内相应于SEQ ID No:3或SEQ IDNo:5的核苷酸序列的多核苷酸。
3.权利要求1或2的微生物,其中它们是使用含有malT基因和yaaU开放读框、这个基因/开放读框的等位基因和/或启动子的一或两个载体通过转化、转导或接合或者这些方法的组合产生的。
4.权利要求3的微生物,其中所述malT基因和/或yaaU开放读框或者等位基因的拷贝数增加至少1个。
5.权利要求4的微生物,其中所述malT基因和/或yaaU开放读框的拷贝数增加至少1个是通过将所述基因/ORF或等位基因整合进微生物的染色体中而实现的。
6.权利要求4的微生物,其中所述malT基因和/或yaaU开放读框的拷贝数增加至少1个是通过在染色体外复制的一或两个载体实现的。
7.权利要求1的微生物,其中为了实现增强,
a)malT基因和/或yaaU开放读框上游的启动子和调节区或者核糖体结合位点被突变,或者
b)表达盒或启动子掺入在malT基因和/或yaaU开放读框的上游。
8.权利要求1的微生物,其中所述malT基因和/或yaaU开放读框是在增强该基因/ORF表达的启动子控制下。
9.权利要求1的微生物,其中malT和yaaU基因的蛋白质产物的浓度或活性通过malT基因和yaaU开放读框的增强而在malT基因和yaaU开放读框未重组的微生物或亲代菌株中基因产物的活性或浓度的基础上增加至少10%。
10.权利要求1的微生物,其中它们产生L-苏氨酸或L-赖氨酸。
11.通过发酵埃希氏菌属的重组微生物制备L-氨基酸的方法,其中
a)将产生所需的L-氨基酸的微生物在培养基中在所需的L-氨基酸在培养基中或者在细胞中浓缩的条件下培养,并且所述微生物中编码麦芽糖调节子的阳性转录激活物的malT基因和编码基因产物是一种推定的转运蛋白的大肠杆菌yaaU开放读框或者编码基因产物MalT或YaaU的核苷酸序列或等位基因是过表达的,其中所述yaaU开放读框编码SEQ ID NO.8所示的多肽,且其中malT基因是一种多核苷酸,其编码一种多肽,所述多肽的氨基酸序列是SEQID No:4或SEQ ID No:6;和
b)分离所需的L-氨基酸,发酵肉汤中的组分和/或其生物量的全部或部分保留在已经分离的产物中或被完全移走。
12.权利要求11的方法,其中应用权利要求1-10的微生物。
13.权利要求11或12的方法,其中制备的L-氨基酸选自L-天冬酰胺、L-丝氨酸、L-谷氨酸、L-甘氨酸、L-丙氨酸、L-半胱氨酸、L-缬氨酸、L-甲硫氨酸、L-脯氨酸、L-异亮氨酸、L-亮氨酸、L-酪氨酸、L-苯丙氨酸、L-组氨酸、L-色氨酸、L-精氨酸和L-高丝氨酸。
14.权利要求13的方法,其中制备的L-氨基酸选自L-异亮氨酸、L-缬氨酸、L-甲硫氨酸、L-高丝氨酸、L-色氨酸。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004003411A DE102004003411A1 (de) | 2004-01-23 | 2004-01-23 | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae |
DE102004003411.7 | 2004-01-23 | ||
PCT/EP2005/000449 WO2005071062A1 (en) | 2004-01-23 | 2005-01-18 | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1910274A CN1910274A (zh) | 2007-02-07 |
CN1910274B true CN1910274B (zh) | 2012-11-28 |
Family
ID=34778107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200580002909XA Expired - Fee Related CN1910274B (zh) | 2004-01-23 | 2005-01-18 | 使用肠杆菌科菌株制备l-氨基酸的方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20050164356A1 (zh) |
EP (1) | EP1706482B1 (zh) |
KR (1) | KR20060127990A (zh) |
CN (1) | CN1910274B (zh) |
BR (1) | BRPI0507077A (zh) |
DE (1) | DE102004003411A1 (zh) |
MX (1) | MXPA06007721A (zh) |
RU (1) | RU2006130318A (zh) |
WO (1) | WO2005071062A1 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2396336C2 (ru) | 2007-09-27 | 2010-08-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) | СПОСОБ ПОЛУЧЕНИЯ АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia |
AR086790A1 (es) * | 2011-06-29 | 2014-01-22 | Metabolic Explorer Sa | Un microorganismo para la produccion de metionina con importacion de glucosa mejorada |
CN103173504B (zh) * | 2013-04-07 | 2014-07-23 | 宁夏伊品生物科技股份有限公司 | 用乌头酸酶表达弱化和/或酶活性降低的细菌发酵生产l-苏氨酸的方法 |
CN103173505B (zh) * | 2013-04-07 | 2014-07-23 | 宁夏伊品生物科技股份有限公司 | 用改变乌头酸酶调控元件的细菌发酵生产l-苏氨酸的方法 |
RU2546237C1 (ru) * | 2013-11-07 | 2015-04-10 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроогранизмов" (ФГУП "ГосНИИгенетика") | Рекомбинантный штамм escherichia coli-продуцент l-треонина |
CN104630300B (zh) * | 2013-11-13 | 2018-06-22 | 中国科学院上海生命科学研究院 | 一种l-氨基酸生产方法 |
CN104862329B (zh) * | 2015-04-23 | 2018-04-27 | 上海工业生物技术研发中心 | L-苏氨酸基因工程生产菌 |
RU2017146342A (ru) | 2015-06-04 | 2019-07-10 | Басф Се | Рекомбинантный микроорганизм для улучшенного получения химических продуктов тонкого органического синтеза |
RU2018100807A (ru) | 2015-06-12 | 2019-07-12 | Басф Се | Рекомбинантный микроорганизм для улучшенного получения аланина |
CN108866089A (zh) * | 2018-07-26 | 2018-11-23 | 西安医学院 | 提升大肠杆菌角鲨烯含量用质粒pCDAF及其制备和使用方法 |
JP7304953B2 (ja) * | 2018-12-26 | 2023-07-07 | デサン・コーポレイション | L-アミノ酸を生産する大腸菌変異株またはコリネバクテリウムグルタミカム変異株、およびそれを用いたl-アミノ酸の生産方法 |
CN111321178B (zh) * | 2020-03-02 | 2023-07-28 | 宁波酶赛生物工程有限公司 | 一种l-2-氨基丁酰胺的制备方法 |
EP4059950A4 (en) * | 2021-01-25 | 2023-03-15 | CJ Cheiljedang Corporation | NOVEL H(+)/CL(-) EXCHANGE TRANSPORTER VARIATION AND PROCESS FOR THE PRODUCTION OF L-TRYPTOPHAN USING THEM |
KR102703218B1 (ko) * | 2022-01-11 | 2024-09-06 | 대상 주식회사 | L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법 |
KR102421911B1 (ko) * | 2022-02-16 | 2022-07-21 | 대상 주식회사 | 징크 바인딩 디하이드로게나제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법 |
KR20230123543A (ko) * | 2022-02-16 | 2023-08-24 | 대상 주식회사 | 시그마 38 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법 |
WO2024090885A1 (ko) * | 2022-10-24 | 2024-05-02 | 대상 주식회사 | Dna-결합 전사 제어인자 malt 신규 변이체 및 이를 이용한 l-방향족 아미노산의 생산 방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763230A (en) | 1996-03-22 | 1998-06-09 | Triple-A B.V. P/A Produkschap Voor Veevoedor | Amino acid fermentation processes |
DE10039043A1 (de) * | 2000-08-10 | 2002-02-21 | Degussa | Neue für das luxR-Gen kodierende Nukleotidsequenzen |
MXPA03002639A (es) | 2000-09-30 | 2003-06-19 | Degussa | Proceso de fermentacion para la preparacion de l-aminoacidos utilizando cepas de la familia enterobacteriaceae. |
JP2002330763A (ja) * | 2001-05-02 | 2002-11-19 | Ajinomoto Co Inc | 発酵法による目的物質の製造法 |
ATE434663T1 (de) * | 2001-07-18 | 2009-07-15 | Evonik Degussa Gmbh | Verfahren zur herstellung von l-threonin durch enterobakteriaceae-stämmen mit verstärkter exprimierung der succ und sucd gene |
WO2003076635A1 (en) | 2002-03-13 | 2003-09-18 | Degussa Ag | Process for the preparation of l-amino acids using strains of the family enterobacteriaceae |
DE102004028859A1 (de) | 2003-08-01 | 2005-02-24 | Degussa Ag | Verfahren zur Herstellung von L-Threonin |
DE10361192A1 (de) | 2003-12-24 | 2005-07-28 | Degussa Ag | Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae |
-
2004
- 2004-01-23 DE DE102004003411A patent/DE102004003411A1/de not_active Withdrawn
- 2004-02-24 US US10/784,902 patent/US20050164356A1/en not_active Abandoned
-
2005
- 2005-01-18 MX MXPA06007721A patent/MXPA06007721A/es not_active Application Discontinuation
- 2005-01-18 WO PCT/EP2005/000449 patent/WO2005071062A1/en active Application Filing
- 2005-01-18 CN CN200580002909XA patent/CN1910274B/zh not_active Expired - Fee Related
- 2005-01-18 KR KR1020067016828A patent/KR20060127990A/ko not_active Application Discontinuation
- 2005-01-18 RU RU2006130318/13A patent/RU2006130318A/ru unknown
- 2005-01-18 EP EP05701018.3A patent/EP1706482B1/en not_active Not-in-force
- 2005-01-18 BR BRPI0507077-5A patent/BRPI0507077A/pt not_active Application Discontinuation
Non-Patent Citations (3)
Title |
---|
peist ralf等.Characterization of the aes Gene of Escherichia coli Encoding an Enzyme with Esterase Activity.《JOURNAL OF BACTERIOLOGY》.1997,第179卷(第24期),7679-7686. * |
RICHET E等.Purification and Properties of the MalT Protein, the Transcription Activator of the Escherichia coli Maltose Regulon.《JOURNAL OF BIOLOGICAL CHEMISTRY》.1987,第262卷(第26期),12647-12653. * |
RICHETE等.PurificationandPropertiesoftheMalTProtein the Transcription Activator of the Escherichia coli Maltose Regulon.《JOURNAL OF BIOLOGICAL CHEMISTRY》.1987 |
Also Published As
Publication number | Publication date |
---|---|
MXPA06007721A (es) | 2006-09-01 |
EP1706482A1 (en) | 2006-10-04 |
US20050164356A1 (en) | 2005-07-28 |
CN1910274A (zh) | 2007-02-07 |
RU2006130318A (ru) | 2008-02-27 |
DE102004003411A1 (de) | 2005-09-01 |
EP1706482B1 (en) | 2015-07-22 |
WO2005071062A1 (en) | 2005-08-04 |
KR20060127990A (ko) | 2006-12-13 |
BRPI0507077A (pt) | 2007-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2083080B1 (en) | Process for the preparation of L-threonine using strains of the Enterobacteriaceae family which contain an enhanced rseC gene | |
CN100359002C (zh) | 利用肠杆菌科的菌株生产l-氨基酸的方法 | |
CN1910274B (zh) | 使用肠杆菌科菌株制备l-氨基酸的方法 | |
WO2003008602A2 (en) | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an attenuated ugpb gene | |
EP1404855B1 (en) | Process for the preparation of l-threonine using strains of the enterobacteriaceae family | |
CN1993461B (zh) | 使用肠杆菌科菌株生产l-氨基酸的方法 | |
ZA200606068B (en) | Method for producing L-threonine using recombinent enterobacteriaceae with increased enolase activity | |
WO2004090149A1 (en) | Process for the production of l-amino acids using strains of the enterobacteriaceae family which contain an enhance yfidd orf and/or pfld gene | |
EP1548120A1 (en) | A process for the production of L-amino acids using strains of the enterobacteriaceae family which contain an enhanced fadR gene | |
CN1898392B (zh) | 使用肠杆菌科菌株制备l-氨基酸的方法 | |
CN1918283B (zh) | 使用肠细菌科菌株制备l-氨基酸的方法 | |
US7638313B2 (en) | Processes for the fermentative preparation of L-threonine using strains of Escherichia in which the yjgF gene is inactivated | |
EP1448778B1 (en) | Process for the preparation of non-aromatic l-amino acids using strains of the enterobacteriaceae family | |
EP1483394B1 (en) | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family | |
EP1382685B1 (en) | Process for the fermentative preparation of L-amino acids using strains of the enterobacteriaceae family with overexpressed rseB gene | |
EP1483388B1 (en) | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family | |
EP1686184B1 (en) | Process for the preparation of L-threonine using strains of the enterobacteriaceae family | |
EP2006386B1 (en) | Process for the preparation of L-amino acids using strains of the Enterobacteriaceae family | |
US20050153403A1 (en) | Process for preparing L-amino acids using strains of the enterobacteriaceae family |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: Essen, Germany Patentee after: Evonik Operations Limited Address before: Essen, Germany Patentee before: EVONIK DEGUSSA GmbH |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121128 Termination date: 20210118 |