DE10039043A1 - Neue für das luxR-Gen kodierende Nukleotidsequenzen - Google Patents

Neue für das luxR-Gen kodierende Nukleotidsequenzen

Info

Publication number
DE10039043A1
DE10039043A1 DE10039043A DE10039043A DE10039043A1 DE 10039043 A1 DE10039043 A1 DE 10039043A1 DE 10039043 A DE10039043 A DE 10039043A DE 10039043 A DE10039043 A DE 10039043A DE 10039043 A1 DE10039043 A1 DE 10039043A1
Authority
DE
Germany
Prior art keywords
gene
polynucleotide
sequence
luxr
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10039043A
Other languages
English (en)
Inventor
Bettina Moeckel
Caroline Kreutzer
Brigitte Bathe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to DE10039043A priority Critical patent/DE10039043A1/de
Priority to US09/903,771 priority patent/US6875586B2/en
Priority to DE60136713T priority patent/DE60136713D1/de
Priority to PCT/EP2001/008256 priority patent/WO2002012291A2/en
Priority to AU2002210420A priority patent/AU2002210420A1/en
Priority to AT01978249T priority patent/ATE415417T1/de
Priority to EP01978249A priority patent/EP1307478B1/de
Publication of DE10039043A1 publication Critical patent/DE10039043A1/de
Priority to US11/020,188 priority patent/US7173105B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

Isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe DOLLAR A a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält, DOLLAR A b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2, DOLLAR A c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und DOLLAR A c) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b oder c), DOLLAR A und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das luxR-Gen abgeschwächt vorliegt, und die Verwendung der Polynukleotidsequenzen als Hybridisierungssonden.

Description

Gegenstand der Erfindung sind für das luxR-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, durch Abschwächung des luxR-Gens. Das luxR-Gen kodiert für das LuxR-Protein, welches ein Transkriptionsaktivator ist.
Stand der Technik
L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung.
Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien, wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und die Aminosäuren produzieren.
Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L- Aminosäure-produzierenden Stämmen von Corynebacterium eingesetzt.
Aufgabe der Erfindung
Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das luxR- Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität des Transkriptionsaktivators LuxR aufweist.
Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1 oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit den zu den Sequenzen (i) oder (ii) komplementären Sequenzen hybridisiert, und gegebenenfalls
  • d) funktionsneutralen Sinnmutationen in (i).
Weitere Gegenstände sind:
eine replizierbare DNA, enthaltend die Nukleotidsequenz, wie in SEQ ID No. 1 dargestellt;
ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, Punkt d, insbesondere pCR2.1luxRint, hinterlegt in Escherichia coli DSM 13619 bei der DSMZ, Braunschweig (Deutschland);
und coryneforme Bakterien, die in dem luxR-Gen eine Insertion oder Deletion, insbesondere unter Verwendung des Vektors pCR2.1luxRint, enthalten.
Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID No. 1 enthält mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten DNA-Sequenz.
Polynukleotidsequenzen gemäß der Erfindung sind als Hybridisierungssonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für das LuxR-Protein kodieren oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit mit der Sequenz des luxR-Gens aufweisen.
Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase- Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das LuxR-Protein kodieren.
Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.
"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.
"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.
Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.
Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des LuxR-Proteins und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.
Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L- Lysin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das luxR-Gen kodierenden Nukleotidsequenzen abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert werden.
Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Aminosäuren, insbesondere L-Lysin aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium melassecola ATCC17965
Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020
oder daraus hergestellte L-Aminosäuren ptoduzierende Mutanten beziehungsweise Stämme, wie beispielsweise die L- Lysin produzierenden Stämme
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5
Corynebacterium glutamicum DSM 5714 und
Corynebacterium glutamicum DSM 12866.
Den Erfindern gelang es, das neue, für das LuxR-Protein kodierende luxR-Gen von C. glutamicum, welches ein Transkriptionsaktivator ist, zu isolieren.
Zur Isolierung des luxR-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16: 1563-1575) angelegt wurde. Börmann et al. (Molecular Microbiology 6(3), 317-326 (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmides pHC79 (Hohn und Collins, 1980, Gene 11, 291-298).
Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, 1979, Life Sciences, 25, 807-818) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli-Stämme, die restriktions- und rekombinationsdefekt sind wie beispielsweise der Stamm DH5α (Jeffrey H. Miller: "A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria", Cold Spring Harbour Laboratory Press, 1992).
Die mit Hilfe von Cosmiden oder anderen λ-Vektoren klonierten langen DNA-Fragmente können anschließend wiederum in gängige für die DNA-Sequenzierung geeignete Vektoren subkloniert werden.
Methoden zur DNA-Sequenzierung sind unter anderem bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America USA, 74: 5463-5467, 1977) beschrieben.
Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z. B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.
Auf diese Weise wurde die neue für das luxR-Gen kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des luxR-Genproduktes dargestellt.
Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Bio/Technology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.
Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology 41: 255-260 (1991)). Anleitungen zur Amplifikation von DNA- Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
Bei der Arbeit an der vorliegenden Erfindung konnte festgestellt werden, daß coryneforme Bakterien nach Abschwächung des luxR-Gens in verbesserter Weise Aminosäuren, insbesondere L-Lysin, produzieren.
Zur Erzielung einer Abschwächung können entweder die Expression des luxR-Gens oder die katalytischen Eigenschaften des Enzymproteins herabgesetzt oder ausgeschaltet werden. Gegebenenfalls können beide Maßnahmen kombiniert werden.
Die Verringerung der Genexpression kann durch geeignete Kulturführung oder durch genetische Veränderung (Mutation) der Signalstrukturen der Genexpression erfolgen. Signalstrukturen der Genexpression sind beispielsweise Repressorgene, Aktivatorgene, Operatoren, Promotoren, Attenuatoren, Ribosomenbindungsstellen, das Startkodon und Terminatoren. Angaben hierzu findet der Fachmann z. B. in der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949 (1988)), bei Voskuil und Chambliss (Nucleic Acids Research 26: 3548 (1998), bei Jensen und Hammer (Biotechnology and Bioengineering 58: 191 (1998)), bei Pátek et al. (Microbiology 142: 1297 (1996)), Vasicova et al. (Journal of Bacteriology 181: 6188 (1999)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995) oder dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990).
Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen, sind aus dem Stand der Technik bekannt; als Beispiele seien die Arbeiten von Qiu und Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) und Möckel ("Die Threonindehydratase aus Corynebacterium glutamicum: Aufhebung der allosterischen Regulation und Struktur des Enzyms", Berichte des Forschungszentrums Jülichs, Jül-2906, ISSN09442952, Jülich, Deutschland, 1994) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.
Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit von der Wirkung des Aminosäureaustausches auf die Enzymaktivität wird von Fehlsinnmutationen (missense mutations) oder Nichtsinnmutationen (nonsense mutations) gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar (bp) in einem Gen führen zu Rasterverschiebungsmutationen (frame shift mutations), in deren Folge falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur Erzeugung derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologle wie z. B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.
Eine gebräuchliche Methode, Gene von C. glutamicum zu mutieren, ist die von Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)) beschriebene Methode der Gen-Unterbrechung (gene disruption) und des Gen-Austauschs (gene replacement).
Bei der Methode der Gen-Unterbrechung wird ein zentraler Teil der Kodierregion des interessierenden Gens in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pK18mobsacB oder pK19mobsacE (Jäger et al., Journal of Bacteriology 174: 5462-65 (1992)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269: 32678-84; US-Patent 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) oder pEMl (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510-4516) in Frage. Der Plasmidvektor, der das zentrale Teil der Kodierregion des Gens enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben.
Nach homologer Rekombination mittels eines "cross-over"- Ereignisses wird die Kodierregion des betreffenden Gens durch die Vektorsequenz unterbrochen und man erhält zwei unvollständige Allele, denen jeweils das 3'- bzw. das 5'- Ende fehlt. Diese Methode wurde beispielsweise von Fitzpatrick et al. (Applied Microbiology and Biotechnology 42, 575-580 (1994)) zur Ausschaltung des recA-Gens von C. glutamicum verwendet.
In Fig. 1 ist beispielhaft der Plasmidvektor pCR2.1luxRint gezeigt, mit Hilfe dessen das luxR-Gen unterbrochen bzw. ausgeschaltet werden kann.
Bei der Methode des Genaustausches (gene replacement) wird eine Mutation wie z. B. eine Deletion, Insertion oder Basenaustausch in dem interessierenden Gen in-vitro hergestellt. Das hergestellte Allel wird wiederum in einen für C. glutamicum nicht replikativen Vektor kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation bzw. des Allels. Diese Methode wurde beispielsweise von Peters-Wendisch et al. (Microbiology 144, 915-927 (1998)) verwendet, um das pyc-Gen von C. glutamicum durch eine Deletion auszuschalten.
In das luxR-Gen kann auf diese Weise eine Deletion, Insertion oder ein Basenaustausch eingebaut werden.
Zusätzlich kann es für die Produktion von L-Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, zusätzlich zur Abschwächung des luxR-Gens eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Pentosephosphat-Zyklus oder des Aminosäure-Exports zu verstärken, insbesondere überzuexprimieren.
So kann beispielsweise für die Herstellung von L-Lysin gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • - das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
  • - das für die Enolase kodierende Gen eno (DE: 199 47 791.4),
  • - das für das zwf-Genprodukt kodierende Gen zwf (JP-A-09224661),
  • - das für die Pyruvat Carboxylase kodierende Gen pyc (Peters-Wendisch et al. (Microbiology 144, 915-927 (1998)),
  • - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222)
verstärkt, insbesondere überexprimiert werden.
Außerdem kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben der Abschwächung des luxR-Gens gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1, DSM 13047),
  • - das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478, DSM 12969),
  • - das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 199 51 975.7, DSM 13114)
abzuschwächen.
Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin vorteilhaft sein, neben der Abschwächung des luxR-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch-Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren, insbesondere L-Lysin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette, wie zum Beispiel Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren, wie zum Beispiel Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie zum Beispiel Glycerin und Ethanol und organische Säuren, wie zum Beispiel Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.
Als Stickstoffquelle können organische Stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten, wie zum Beispiel Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak beziehungsweise Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel, wie zum Beispiel Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie zum Beispiel Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff-haltige Gasmischungen, wie zum Beispiel Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat.
Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Anionenaustausch- Chromatographie mit anschließender Ninhydrin- Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.
Folgender Mikroorganismus wurde bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt:
  • - Escherichia coli Stamm TOP10F/pCR2.1luxRint als DSM 13619.
Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.
Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.
Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual, 1989, Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.
Die Zusammensetzung gängiger Nährmedien wie LB- oder TY- Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.
Beispiel 1 Herstellung einer genomischen Cosmid-Genbank aus C. glutamicum ATCC 13032
Chromosomale DNA aus C. glutamicum ATCC 13032 wurde wie bei Tauch et al., (1995, Plasmid 33: 168-179) beschrieben, isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA- Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCosl (Wahl et al. (1987), Proceedings of the National Academy of Sciences, USA 84: 2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCosl Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.
Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4- DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.
Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Res. 16: 1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1: 190) + 100 µg/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.
Beispiel 2 Isolierung und Sequenzierung des Gens luxR
Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27- 0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DHSαMCR (Grant, 1990, Proceedings of the National Academy of Sciences, U.S.A., 87: 4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123: 343-7) und auf LB- Agar (Lennox, 1955, Virology, 1: 190) mit 50 µg/ml Zeocin ausplattiert.
Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy- Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academies of Sciences, U.S.A., 74: 5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18: 1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems(Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29 : 1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14: 217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurden mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14: 217-231) angefertigt. Weitere Analysen wurden mit den "BLAST search programs" (Altschul et al., 1997, Nucleic Acids Research, 25: 3389-3402) gegen die non-redundant Datenbank des "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA) durchgeführt.
Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 639 bp, welches als luxR-Gen bezeichnet wurde. Das luxR-Gen kodiert für ein Polypeptid von 212 Aminosäuren.
Beispiel 3 Herstellung eines Integrationsvektors für die Integrationsmutagenese des luxR-Gens
Aus dem Stamm ATCC 13032 wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817-1828 (1994)) chromosomale DNA isoliert. Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des luxR-Gens wurden die folgenden Oligonukleotide für die Polymerase-Kettenreaktion ausgewählt:
luxRintA:
5'GCA ATC GAC GTC ATC TTG AT 3'
luxRintB:
5'GCA ACC AGC TTG AGA ACT TC 3'.
Die dargestellten Primer wurden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR protocols. A Guide to Methods and Applications, 1990, Academic Press) mit Pwo-Polymerase der Firma Boehringer die PCR Reaktion durchgeführt. Mit Hilfe der Polymerase-Kettenreaktion wurde ein 353 bp großes internes Fragment des luxR-Gens isoliert, welches in der SEQ ID No. 3 dargestellt ist.
Das amplifizierte DNA Fragment wurde mit dem TOPO TA Cloning Kit der Firma Invitrogen Corporation (Carlsbad, CA, USA; Katalog Nummer K4500-01) in den Vektor pCR2.1-TOPO (Mead at al. (1991), Bio/Technology 9: 657-663) ligiert.
Anschließend wurde der E. coli Stamm TOPlOF mit dem Ligationsansatz (Hanahan, In: DNA cloning. A Practical Approach. Vol. I, IRL-Press, Oxford, Washington DC, USA, 1985) transformiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), der mit 25 mg/l Kanamycin supplementiert worden war. Plasmid-DNA wurde aus einer Transformante mit Hilfe des QlAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktion mit dem Restriktionsenzym EcoRI und anschließender Agarosegel-Elektrophorese (0,8%) überprüft. Das Plasmid wurde pCR2.1luxRint genannt.
Beispiel 4 Integrationsmutagenese des luxE-Gens in dem Lysinproduzenten DSM 5715
Der in Beispiel 3 genannte Vektor pCR2.1luxRint wurde nach der Elektroporationsmethode von Tauch et al. (FEMS Microbiological Letters, 123: 343-347 (1994)) in C. glutamicum DSM 5715 elektroporiert. Bei dem Stamm DSM 5715 handelt es sich um einen AEC resistenten Lysin-Produzenten. Der Vektor pCR2.1luxRint kann in DSM 5715 nicht selbständig replizieren und bleibt nur dann in der Zelle erhalten, wenn er ins Chromosom von DSM 5715 integriert hat. Die Selektion von Klonen mit ins Chromosom integriertem pCR2.1luxRint erfolgte durch Ausplattieren des Elektroporationsansatzes auf LB Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), der mit 15 mg/l Kanamycin supplementiert worden war.
Für den Nachweis der Integration wurde das luxRint-Fragment nach der Methode "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) mit dem Dig- Hybridisierungskit der Firma Boehringer markiert. Chromosomale DNA eines potentiellen Integranten wurde nach der Methode von Eikmanns et al. (MiCrobiology 140: 1817-1828 (1994)) isoliert und jeweils mit den Restriktionsenzymen SalI, SacI und HindIII geschnitten. Die entstehenden Fragmente wurden mit Agarosegel- Elektrophorese aufgetrennt und mit dem Dig-Hybrisierungskit der Firma Boehringer bei 68°C hybridisiert. Das in Beispiel 3 genannte Plasmid pCR2.1luxRint hatte innerhalb des chromosomalen luxR-Gens ins Chromosom von DSM 5715 inseriert. Der Stamm wurde als DSM 5715::pCR2.1luxRint bezeichnet.
Beispiel 5 Herstellung von L-Lysin
Der in Beispiel 4 erhaltene C. glutamicum Stamm DSM 5715::pCR2.1luxRint wurde in einem zur Produktion von L- Lysin geeigneten Nährmedium kultiviert und der L- Lysingehalt im Kulturüberstand bestimmt.
Dazu wurde der Stamm zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn-Herz Agar mit Kanamycin (25 mg/l) für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das Vollmedium CgIII verwendet.
Medium Cg III
NaCl 2,5 g/l
Bacto-Pepton 10,0 g/l
Bacto-Yeast-Extrakt 10,0 g/l
Glucose (getrennt autoklaviert) 2% (w/v)
AL=L<Der pH-Wert wurde auf pH 7.4 eingestellt
Diesem wurde Kanamycin (25 mg/l) zugesetzt. Die Vorkultur wurde 24 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so daß die Anfangs-OD (660 nm) der Hauptkultur 0,1 OD betrug. Für die Hauptkultur wurde das Medium MM verwendet.
Medium MM
CSL (Corn Steep Liquor) 5,0 g/l
MOPS 20,0 g/l
Glucose (getrennt autoklaviert) 50,0 g/l
AL=L<Salze:
(NH4)2SO4) 25,0 g/l
KH2PO4 0,1 g/l
MgSO4.7 H2O 1,0 g/l
CaCl2.2 H2O 10,0 mg/l
FeSO4.7 H2O 10,0 mg/l
MnSO4.H2O 5,0 mg/l
Biotin (sterilfiltriert) 0,3 mg/l
Thiamin.HCl (sterilfiltriert) 0,2 mg/l
Leucin (sterilflitriert) 0,1 g/l
CaCO3 25,0 g/l
CSL, MOPS und die Salzlösung werden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend werden die sterilen Substrat- und Vitaminlösungen sowie das trocken autoklavierte CaCO3 zugesetzt.
Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Es wurde Kanamycin (25 mg/l) zugesetzt. Die Kultivierung erfolgte bei 33°C und 80% Luftfeuchtigkeit.
Nach 72 Stunden wurde die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete L-Lysinmenge wurde mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustausch-Chromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.
In Tabelle 1 ist das Ergebnis des Versuchs dargestellt.
Tabelle 1
SEQUENZPROTOKOLL
Folgende Figuren sind beigefügt:
Fig. 1 Karte des Plasmids pCR2.1luxRint.
Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung:
KmR: Kanamycin Resistenz-Gen
EcoRI: Schnittstelle des Restriktionsenzyms EcoRI
luxRint: internes Fragment des luxR-Gens
ColE1 ori: Replikationsursprung des Plasmids ColE1.

Claims (14)

1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das luxR-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens zu 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b), oder c),
wobei das Polypeptid bevorzugt die Aktivität des Transkriptionsaktivators LuxR aufweist.
2. Polynukleotide gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
3. Polynukleotide gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
4. Replizierbare DNA gemäß Anspruch 2 enthaltend
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit den zu den Sequenzen (i) oder (ii) komplementären Sequenzen hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Sinnmutationen in (i).
6. Coryneforme Bakterien, in denen das luxR-Gen abgeschwächt, bevorzugt ausgeschaltet wird.
7. Verfahren zur Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, dass man folgende Schritte durchführt,
  • a) Fermentation der die gewünschte L-Aminosäure produzierenden Bakterien, in denen man zumindest das luxR-Gen abschwächt,
  • b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und
  • c) Isolieren der L-Aminosäure.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
9. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
10. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man die Expression des (der) Polynukleotids(e), das (die) für das luxR- Gen kodiert (kodieren) verringert, insbesondere ausschaltet.
11. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man die regulatorischen Eigenschaften des Polypeptids herabsetzt, für das das Polynukleotid luxR kodiert.
12. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man für die Herstellung von L-Aminosäuren, insbesondere L-Lysin, Bakterien fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 12.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
  • 2. 12.2 das für die Enolase kodierende Gen eno,
  • 3. 12.3 das für das zwf-Genprodukt kodierende Gen zwf,
  • 4. 12.4 das für die Pyruvat-Carboxylase kodierende Gen pyc,
  • 5. 12.5 das für den Lysin-Export kodierende Gen lysE,
verstärkt, bevorzugt überexprimiert.
13. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe:
  • 1. 13.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
  • 2. 13.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
  • 3. 13.3 das für die Pyruvat-Oxidase kodierende Gen poxB abschwächt.
14. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
15. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für den Transkriptionsaktivator LuxR kodieren oder eine hohe Ähnlichkeit mit der Sequenz des luxR-Gens aufweisen, dadurch gekennzeichnet, dass man die Polynukleotidsequenzen gemäß den Ansprüchen 1 bis 4 als Hybridisierungssonden einsetzt.
DE10039043A 2000-08-10 2000-08-10 Neue für das luxR-Gen kodierende Nukleotidsequenzen Withdrawn DE10039043A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10039043A DE10039043A1 (de) 2000-08-10 2000-08-10 Neue für das luxR-Gen kodierende Nukleotidsequenzen
US09/903,771 US6875586B2 (en) 2000-08-10 2001-07-13 Nucleotide sequences coding for the luxR gene
DE60136713T DE60136713D1 (de) 2000-08-10 2001-07-18 Luxr-gen aus coryneformen bakterien und ein verfahren zur herstellung von l-aminosäuren
PCT/EP2001/008256 WO2002012291A2 (en) 2000-08-10 2001-07-18 Novel nucleotide sequences coding for the luxr gene and a process for the production of l-amino acids
AU2002210420A AU2002210420A1 (en) 2000-08-10 2001-07-18 Novel nucleotide sequences coding for the luxr gene
AT01978249T ATE415417T1 (de) 2000-08-10 2001-07-18 Luxr-gen aus coryneformen bakterien und ein verfahren zur herstellung von l-aminosäuren
EP01978249A EP1307478B1 (de) 2000-08-10 2001-07-18 Luxr-gen aus coryneformen bakterien und ein verfahren zur herstellung von l-aminosäuren
US11/020,188 US7173105B2 (en) 2000-08-10 2004-12-27 Nucleotide sequences coding for the LuxR gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10039043A DE10039043A1 (de) 2000-08-10 2000-08-10 Neue für das luxR-Gen kodierende Nukleotidsequenzen

Publications (1)

Publication Number Publication Date
DE10039043A1 true DE10039043A1 (de) 2002-02-21

Family

ID=7651971

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10039043A Withdrawn DE10039043A1 (de) 2000-08-10 2000-08-10 Neue für das luxR-Gen kodierende Nukleotidsequenzen
DE60136713T Expired - Lifetime DE60136713D1 (de) 2000-08-10 2001-07-18 Luxr-gen aus coryneformen bakterien und ein verfahren zur herstellung von l-aminosäuren

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE60136713T Expired - Lifetime DE60136713D1 (de) 2000-08-10 2001-07-18 Luxr-gen aus coryneformen bakterien und ein verfahren zur herstellung von l-aminosäuren

Country Status (6)

Country Link
US (2) US6875586B2 (de)
EP (1) EP1307478B1 (de)
AT (1) ATE415417T1 (de)
AU (1) AU2002210420A1 (de)
DE (2) DE10039043A1 (de)
WO (1) WO2002012291A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039043A1 (de) * 2000-08-10 2002-02-21 Degussa Neue für das luxR-Gen kodierende Nukleotidsequenzen
DE102004003411A1 (de) * 2004-01-23 2005-09-01 Degussa Ag Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050153402A1 (en) * 1999-06-25 2005-07-14 Basf Ag Corynebacterium glutamicum genes encoding regulatory proteins
US6831165B1 (en) * 1999-06-25 2004-12-14 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in homeostasis and adaptation
DE19929363A1 (de) 1999-06-25 2000-12-28 Basf Lynx Bioscience Ag Gene aus Corynebacterium glutamicum für die Folsäurebiosynthese und ihr Einsatz zur mikrobiellen Herstellung von Folsäure
KR100878333B1 (ko) 1999-06-25 2009-01-14 백광산업 주식회사 항상성 및 적응과 관련된 단백질을 코딩하는코리네박테리움 글루타미쿰 유전자
DE19929364A1 (de) 1999-06-25 2000-12-28 Basf Lynx Bioscience Ag Die Sequenz der Dihydroorotat-Dehydrogenase aus Corynebacterium glutamicum und deren Einsatz bei der mikrobiellen Produktion von Pyrimidinen und/oder mit Pyrimidin verwandten Verbindungen
DE19929365A1 (de) 1999-06-25 2000-12-28 Basf Lynx Bioscience Ag Teilsequenzen der Gene des Primär- und Sekundärmetabolismus aus Corynebacterium glutamicum und ihr Einsatz zur mikrobiellen Herstellung von Primär- und Sekundärmetaboliten
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
DE10039043A1 (de) * 2000-08-10 2002-02-21 Degussa Neue für das luxR-Gen kodierende Nukleotidsequenzen
US6815196B2 (en) * 2000-09-02 2004-11-09 Degussa Ag Nucleotide sequences encoding o-succinylhomoserine sulfhydrylase

Also Published As

Publication number Publication date
WO2002012291A3 (en) 2002-06-27
EP1307478A2 (de) 2003-05-07
US6875586B2 (en) 2005-04-05
US7173105B2 (en) 2007-02-06
AU2002210420A1 (en) 2002-02-18
US20020086404A1 (en) 2002-07-04
EP1307478B1 (de) 2008-11-26
US20060134761A1 (en) 2006-06-22
DE60136713D1 (de) 2009-01-08
ATE415417T1 (de) 2008-12-15
WO2002012291A2 (en) 2002-02-14

Similar Documents

Publication Publication Date Title
DE19951975A1 (de) Neue für das poxB-Gen codierende Nuleotidsequenzen
EP1111062B1 (de) Für das zwa1-Gen codierende Nukleotidsequenzen
DE10126164A1 (de) Für das metD-gen kodierende Nukleotidsequenzen
DE19959327A1 (de) Neue für das zwa2-Gen codierende Nukleotidsequenzen
EP1103611A1 (de) Für die Gene sucC und sucD kodierende Nukleotidsequenzen
EP1106684B1 (de) Polynukleotidsequenzen aus Corynebacterium glutamicum, die Succinatdehydrogenase-Untereinheiten (sdhA, sdhB, sdhC) kodierenden
DE10039044A1 (de) Neue für das IysR1-Gen kodierende Nukleotidsequenzen
DE60107858T2 (de) Nukleotid sequenzen kodierend für das lysr3 gen
DE10047865A1 (de) Neue für das deaD-Gen kodierende Nukleotidsequenzen
DE10039043A1 (de) Neue für das luxR-Gen kodierende Nukleotidsequenzen
DE10110760A1 (de) Neue für das otsA-Gen kodierende Nukleotidsequenzen
DE10045486A1 (de) Neue für das pstC2-Gen kodierende Nukleotidsequenzen
DE10042739A1 (de) Neue für das lipB-Gen kodierende Nukleotidsequenzen
DE60127422T2 (de) Für das citB-Gen kodierende Nukleotidsequenzen
DE10042742A1 (de) Neue für das lipA-Gen kodierende Nukleotidsequenzen
DE60105034T2 (de) Nukleotid sequenzen kodierend für das lysr2 gen
DE60127418T2 (de) Für das ccpa1-gen kodierende nukleotidsequenzen
DE60132215T2 (de) Nuleotidsequenzen die für das cita-gen kodieren
DE60127972T2 (de) Nukleotidsequenzen die für das dep34-gen kodieren
DE10136987A1 (de) Für das clpC-Gen kodierende Nukleotidsequenzen
DE60113131T2 (de) Nukleinsäuren kodierend für das tmk gen
DE10109022A1 (de) Neue für das chrS-Gen kodierende Nukleotidsequenzen
DE10112105A1 (de) Neue für das luxS-Gen kodierende Nukleotidsequenzen
DE10112098A1 (de) Neue für das chrA-Gen kodierende Nukleotidsequenzen
DE10108828A1 (de) Neue für das pepC-Gen kodierende Nukleotidsequenzen

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: DEGUSSA GMBH, 40474 DUESSELDORF, DE

8141 Disposal/no request for examination