CN1829827A - 用于电化学方法的电极及生产该电极的方法 - Google Patents

用于电化学方法的电极及生产该电极的方法 Download PDF

Info

Publication number
CN1829827A
CN1829827A CNA2004800216922A CN200480021692A CN1829827A CN 1829827 A CN1829827 A CN 1829827A CN A2004800216922 A CNA2004800216922 A CN A2004800216922A CN 200480021692 A CN200480021692 A CN 200480021692A CN 1829827 A CN1829827 A CN 1829827A
Authority
CN
China
Prior art keywords
solution
tin
precursor
coating
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800216922A
Other languages
English (en)
Other versions
CN1829827B (zh
Inventor
A·莫罗佐夫
A·德巴蒂斯蒂
S·费罗
G·N·马尔泰利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrie de Nora SpA
Original Assignee
De Nora Elettrodi SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Nora Elettrodi SpA filed Critical De Nora Elettrodi SpA
Publication of CN1829827A publication Critical patent/CN1829827A/zh
Application granted granted Critical
Publication of CN1829827B publication Critical patent/CN1829827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/04Halides
    • C01G19/08Stannic chloride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)
  • Primary Cells (AREA)
  • Chemically Coating (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

由含羟基氯化锡(IV)的前体溶液为起始制备具有含二氧化锡的催化涂层的用于电化学工艺的电极。沉积二氧化锡的方法的特征在于高的产率和改进的再现性。

Description

用于电化学方法的电极及生产该电极的方法
使用具有基于锡的氧化物,和尤其任选地与其它组分混合的二氧化锡的电催化涂层的金属电极是本领域公知的。特别地,含有与贵金属和/或其氧化物和/或能赋予腐蚀防护的金属氧化物混合的二氧化锡的催化涂层,在例如电冶金方法中或者针对水处理(自来水和废水处理)的情况通常用于适合氧气逸出的阳极。现有技术典型的氧气逸出电极由阀金属基底,优选钛或钛合金(其任选地具有保护陶瓷预层(pre-layer))为起始构成,其中含有能赋予腐蚀防护的至少一种金属(优选锡或钽)的氧化物和至少一种贵金属(优选铱),任选地氧化物形式的贵金属的催化涂层施加在所述预层上。下文公开的本发明涉及改进所有含锡的电催化涂层,例如针对氯气逸出的含钌涂层的性能和可再现性,但尤其适合于获得含有锡和铱的氧化物混合物的氧气逸出阳极。
由在水溶液内与等当量的贵金属前体混合的四价锡前体(尤其SnCl4)为起始制备基于锡的氧化物和基于贵金属的现有技术的涂层。US3710724公开了例如制备由SnCl4和H2IrCl6的混合物获得的用于氧气逸出的阳极涂层,和由SnCl4和RuOHCl3的混合物获得的用于氯气逸出的阳极涂层。这些混合物的特征在于高的还原电势(约0.8V NHE),在所述高的电势下,锡可仅仅稳定地以三价形式存在。如此获得的前体溶液尽管其具有宽的扩散,但在其工业应用上存在明显的问题,以致于限制了这类电极的使用。负面影响该制备方法的性能和可再现性的主要不便之处是四氯化锡高的挥发性,这引起在各种干燥步骤过程中,或者一般地在生产电极所要求的各种热处理过程中,它的无法控制的损失。前体的挥发性尤其妨碍获得化学计量组合物的氧化物涂层,因此妨碍获得明确的晶体结构的致密陶瓷层。根据与以前相同的工序制备的具有含二氧化锡的涂层的阳极的工业寿命因此可能彼此相差甚至两个数量级。通常由SnCl4前体为起始沉积SnO2的产率不超过15-20%,正如在J.Appl.Electrochem.,21(1991),136中所述。在同一篇文章中,说明了使用醇或2,4-戊二酮(乙酰丙酮)基溶液,产率可增加达到30%;然而,显而易见的是,从经济的角度考虑,特别就额外的处理成本来说,在工业方法中使用这类溶剂,这一数量级的改进证明是不合算的。现有技术中已知的不同措施(J.Electrochem.Soc.,143(1996),203)藉助在喷雾相内溶液热解的技术使得可降低四氯化物的挥发性。前体溶液的气溶胶因此在钛基底的预热表面上在400℃下分解;由此获得更光滑、更致密和粘附性更大的涂层,不过尚未用对应于起始化学计量的混合氧化物的组成来表征。在J.Appl.Electrochem.,21(1991),136中公开了施加Ru∶Sn摩尔比为1∶2的RuOHCl3+SnCl4如何导致在涂层内的RuO2含量必然高于80%,这是因为在沉积过程中一部分锡前体始终如一地挥发;在该制备方法中,这如何引起完全不足的再现性和可靠性对于本领域的专家来说是显而易见的。为了增加锡的沉积产率,还建议使用在无水有机溶剂内的前体,例如四丁基锡或(C16H30O4)2SnO(参见,J.Electrochem.Soc.,143(1996),203)以及使用(C5H11O)2SnCl2,正如在苏联专利SU314344中所公开的。后一文献公开了在正戊醇的水溶液存在下,通过采用分馏塔,使SnCl4沸腾制备二戊基锡前体(C5H11O)2SnCl2。然而,使用锡的有机盐还存在一些小的缺点,最明显在于使用溶剂,尤其在无水有机溶剂的情况下的处理和处置成本方面存在劣势。此外,锡的有机盐对湿气非常敏感,且容易导致几乎无粘合性和紧凑的氧化物层。最后,所述有机前体可在热解步骤过程中引起共存的贵金属氧化物的部分还原,并导致化学稳定性和催化活性方面的负面结果。
本发明的第一个目的是提供克服现有技术局限性的含锡的阳极涂层。
本发明进一步的目的是提供由克服现有技术局限性的前体为起始制备含锡涂层的方法。
在第一方面中,本发明在于具有含锡,尤其二氧化锡的阳极涂层的电极,其特征在于高密度和紧凑度,和可控的化学组成,由任选地非化学计量的羟基氯化物(其任选地具有有机取代基)制备。
在第二方面中,本发明在于含锡,尤其二氧化锡的电催化涂层用的新型前体,及其制造方法。
在进一步的方面中,本发明在于,由在水溶液中的四价羟基氯化锡为起始,施加在钛或其它阀金属的基体上,并热转化的含锡,尤其二氧化锡的电催化涂层的制造方法。
四价锡羟基氯化物是一种具有可变组成的络合物,其具有阳离子的内部络合球。这一组的原粒子(progenitor)的结构可用通式SnO(H2O)nCl2表示,其中n介于1至4。这些化合物的化学性质可与HCl胶溶的β-锡酸之一相似。其化学计量形式的原粒子SnO(H2O)nCl2的特征在于Cl∶Sn之比等于2;然而,可改变这一比例,和尤其降低它,从而分离特征在于氯缺陷的非化学计量形式的这类化合物,例如通式Sn(OH)2+xCl2-x·nH2O的化合物。然而,更有利地,氯化物阴离子可用其它阴离子或基团部分替代,从而形成Cl∶Sn低于2的羟基氯化物,所述羟基氯化物可用通式SnO(H2O)nR2-xClx表示。β-锡酸的热分解的特征在于,最初损失通过物理键合吸收的水(直到200℃),接着逐渐释放氢桥键的化学吸收的水。甚至在高于400℃的温度下,SnO2涂层维持显著程度的羟化,这表明表面-OH基的特殊热稳定性,所述-OH基具有离子交换性能且决定SnO2涂层的许多电催化特征。发明人已发现,由羟基氯化物为起始制备二氧化锡涂层导致尤其高的锡沉积物产率;此外,由羟基氯化物获得的涂层的稳定性、电催化活性和再现性性能非常高。根据本发明,由含Cl∶Sn之比低于2的锡(IV)的羟基氯化物,优选通式SnO(H2O)nR2-xClx的溶液为起始,制备含二氧化锡的催化涂层是尤其有利的。根据本发明一个特别的实施方案,由含Cl∶Sn之比介于1至1.9的锡(IV)的羟基氯化物的溶液为起始,制备含二氧化锡的催化涂层是尤其有利的。根据仍更优选的实施方案,有利地通过使用通式SnO(H2O)nR2-xClx的羟基氯化物获得介于1至1.9的所述Cl∶Sn之比,其中R是乙酸基(CH3COO-)。根据一个优选的实施方案,含锡(IV)的羟基氯化物的前体溶液进一步包括贵金属,优选铱或钌的氧化物的前体。本发明的前体溶液的热解导致形成含二氧化锡的涂层且产率高于80%,在最有利的情况下,达到约95%的数值。在希望本发明决不束缚于任何特定理论的情况下,可认为下文报道的考虑因素可有助于更好地理解这一功能。
本发明前体的热解工艺可包括为了简单起见,称为原粒子的SnO(H2O)nCl2根据下述流程图的脱水、水解和歧化反应:
1)
2a)
2b)
藉助以上所述的方法在反应2a中形成的四氯化物倾向于在能根据反应2b转化成氧化物之前部分挥发。前体SnO(H2O)nCl2因此可根据两个可供替代的竞争机理分解:在这些当中,前者(反应1)不牵涉高挥发性的物质SnCl4,从而确保在比现有技术的前体高的任何速度下锡的沉积产率。通过选择不同于原粒子SnO(H2O)nCl2的羟基氯化物,尤其具有较低氯含量的羟基氯化物,四氯化锡的形成更加受到抑制,从而导致仍然更高的沉积产率。根据本发明的优选实施方案,所选的羟基氯化物是用式SnO(H2O)nAc2-xClx表示的羟基乙酸氯化(HAC)锡(IV),其中Ac表示乙酸基(CH3COO-),和x理论上可以介于0至2,优选介于1至1.9。在迄今为止的文献中没有公开过锡(IV)的羟基乙酸氯化物的存在,也不存在关于单独或者在贵金属前体如钌或铱的氯化物的存在下,其在含水相内的可能稳定性的任何类型的暗示。发明人已发现一条用于其合成的简单和有效路线验证具有这一特征。仅仅存在含乙酸根离子的Sn(IV)溶液本身是令人惊奇的,因为本领域已知乙酸锡(IV)不可能存在于水溶液内。最可能地,在本发明的情况下,溶液中的乙酸根离子是Sn(IV)络合物的内部配位球的一部分。在下述实施例中公开了制备这些溶液的方法及其用于制备电极的用途,其目的仅仅是阐述而不是限制本发明。
实施例1
为了制备1升羟基氯化锡SnO(H2O)nCl2水溶液,将372.3gSnCl2·2H2O溶解在500ml水内。将170ml 30%过氧化氢逐渐加入到该溶液中,用恒温浴控制温度,直到检测放热终止,并相对于饱和氯化银参考电极(SSCE)达到介于0.5至0.6V的电势。然后用水使混合物的体积达到1升。然后获得稳定且无色的羟基氯化锡溶液,其中Sn(IV)为1.65M和密度为1.31g/l。通过元素分析证明Cl∶Sn之比恰好为2,正如所预期的。通过所称取的物质蒸发,随后在坩埚中,在110℃的温度下干燥至恒重,测定通过热解这一溶液获得的SnO2的产率。在烘箱中,在2小时内缓慢加热所得干凝胶到450℃,并维持在这一温度下直到达到恒重。残渣由锡石形式的SnO2组成,和所得热分解产率等于76%。
如此制备的羟基氯化锡溶液导致与铱或钌的氯化物溶液完全混溶。在热处理过程中,通过显微镜观察证实用这一方法获得的氧化物涂层的均匀度。
实施例2
通过添加约50g金属锡粉,改性1升实施例1的羟基氯化锡溶液,以便改变Cl∶Sn之比。在搅拌的同时,金属开始溶解,和在数小时之后,观察可识别其混浊外观的氢氧化物的形成。然后滗析该溶液,并与30%的过氧化氢一起添加,直到达到0.5-0.6V的氧化还原电势SSCE,和浊度消失。然后用水使该溶液达到获得Sn(IV)浓度为1.65M和密度为1.31g/ml的密度。由此获得式Sn(OH)2.15Cl1.85·nH2o的羟基氯化物,根据实施例1的溶胶-凝胶方法,其以81.5%的产率提供SnO2膜。
实施例3
制备锡浓度为1.65M相当于195g/l的Sn(IV)HAC(羟基乙酸氯化锡,Sn(OH)2Ac2-xClx)溶液。为此,将200g SnCl2·2H2O溶解在500ml水中,随后添加200ml乙酸和100g金属锡粉。在恒温条件下,将30%过氧化氢缓慢添加到该混合物中,直到检测放热终止和达到0.6VSSCE的电势。在室温下维持混合物3天,再次用金属锡饱和,然后进行过氧化氢的添加达到最多0.6V SSCE的电势。滗析所得浅黄色和特征为发乳光的溶液,并用水达到1.28g/ml的密度,对应于相当于195g/l的1.65M的锡浓度,和随后的元素分析表明Cl∶Sn之比等于1.20。在热解之后SnO2的产率(根据前面的实施例测量)为96%。这一数值在储存大于一年的相同溶液的样品上的第二次试验中是可再现的,因此证明其非常稳定。
实施例4
使用实施例3的溶液沉积组成为IrO2·2SnO2的混合氧化物涂层。喷砂10mm×20mm尺寸的2mm厚的钛板,直到达到约40微米的平均粗糙度Ra并在密度为1.30g/ml的苛性钠的沸腾水溶液中浸渍15分钟。
在所得表面上施加10ml/m2的2M TiCl4的水醇溶液(20%体积在水中的乙醇)。在120℃下干燥涂布表面15分钟,然后在120℃下再加热15分钟。在如此获得的TiO2预层上施加通过混合等体积的H2IrCl6(0.8M)和Sn(IV)HAC(1.65M)而制备的10ml/m2的前体溶液,其中后者对应于前一实施例的溶液。然后在120℃下干燥钛板并在500℃下加热15分钟。通过X-射线荧光检测的Ir含量等于0.80g/m2。然后同样地施加第二涂层,导致Ir含量增加到1.6g/m2。涂层看上去为黑色、光滑和有光泽,这表明高的粘合性和硬度。在随后的机械变形试验(弯曲试验)中,没有观察到涂层解离的现象。然后根据常见的实践进行加速持续试验,在50g/l Na2SO4溶液中在25℃的温度和在5000A/m2的电流密度下进行。在该试验中,周期性地从溶液中取出阳极,以便在漂洗和干燥之后进行涂层对基底粘合性的检测。通过施加压敏粘合剂胶带条,然后突然取下,以证明可能的脱层现象,从而进行本领域广泛公知的这种检测。这些周期性检测的结果每次均是否定性的。在观察电势增加1V(这常规地标记为失活点)之前,阳极工作了2250小时。所测量的比持续指数因此为7.106Ah/m2/g贵金属(Ir)。这一数值高于正如J.Appl.Electrochem.,26(1996)999中所报道的基于IrO2+Ta2O5的大多数现有技术典型的阳极的数值。在10000A/m2的电流密度下,在25℃下在1N H2SO4中,相对于以上所述的阳极的氧气释放0.43V的过电压,且塔费尔(Tafel)斜率为0.060V/dec。
对于本领域的专家来说,显而易见的是,可在对所列举的实施例的条件进行各种改性的情况下实践本发明。为了例举起见,发明人在500℃下进行的热解处理可或者在介于350至800℃的温度下进行,这取决于有效的工业应用和特定的所选前体。同样,电极的低温干燥步骤可显然在不同温度下,优选在介于80至200℃的温度下进行。
因此,要理解,前述说明不希望限制本发明,可根据不同实施方案使用它们且没有脱离本发明的范围,和其程度唯一地通过所附权利要求来限定。
在本申请的说明书和权利要求书中,措辞“包括”及其变体,例如“含”和“含有”不打算排除其它元素或额外组分的存在。

Claims (21)

1.一种热解形成含锡涂层用的前体溶液,它包括羟基氯化锡。
2.权利要求1的溶液,其中所述羟基氯化锡是用式Sn(OH)2+xCl2-x·nH2O表示的非化学计量的化合物,其中Cl∶Sn之摩尔比介于1至1.9。
3.权利要求1的溶液,其中所述羟基氯化锡是用式SnO(H2O)nR2-xClx表示的化合物,其中R优选是有机取代基。
4.权利要求3的溶液,其中Cl∶Sn之摩尔比介于1至1.9。
5.权利要求3或4的溶液,其中R是乙酸基(CH3COO-)。
6.前述任何一项权利要求的溶液,它进一步包括至少一种贵金属的前体。
7.权利要求6的溶液,其中所述至少一种贵金属的前体是铱或钌的氯化前体。
8.权利要求7的溶液,其中所述铱的氯化前体是H2IrCl6
9.一种具有电催化涂层的阳极,它包括锡,优选四价且为混合氧化物形式的锡,它通过热解前述任何一项权利要求的溶液而制备。
10.权利要求9的阳极,其中电催化涂层沉积在阀金属,优选钛或钛合金的基底上。
11.权利要求10的阳极,其中将陶瓷预层置于涂层和所述基底之间。
12.权利要求11的阳极,其中所述陶瓷预层包括二氧化钛。
13.权利要求9-12任何一项的阳极,其中所述涂层具有氯气释放反应的电催化性能和所述至少一种贵金属是钌。
14.权利要求9-12任何一项的阳极,其中所述涂层具有氧气释放反应的电催化性能和所述至少一种贵金属是铱。
15.一种制造热解形成含锡涂层用的前体溶液的方法,该方法包括任选地在温度和氧化还原电势控制下,添加过氧化氢到氯化亚锡溶液中。
16.权利要求15的方法,其中通过任选地在温度和氧化还原电势控制下,通过随后还原金属锡和进一步添加过氧化氢,从而降低在该溶液内的Cl∶Sn之比。
17.权利要求15或16的方法,其中所述氯化亚锡溶液进一步含有有机取代基的前体。
18.权利要求17的方法,其中所述有机取代基的前体是乙酸。
19.一种制造电极的方法,该方法包括施加权利要求1-8任何一项的溶液到任选地具有陶瓷预层的阀金属,优选钛或钛合金的基底上,接着进行热处理。
20.权利要求19的方法,其中以多涂层形式进行所述施加溶液,每一次施加之后接着进行热处理。
21.权利要求19或20的方法,其中所述热处理是在介于350至800℃的温度下热解,任选地之前在介于80至200℃的温度下干燥。
CN2004800216922A 2003-07-28 2004-07-27 用于电化学方法的电极及生产该电极的方法 Active CN1829827B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2003A001543 2003-07-28
IT001543A ITMI20031543A1 (it) 2003-07-28 2003-07-28 Elettrodo per processi elettrochimici e metodo per il suo ottenimento
PCT/EP2004/008397 WO2005014885A1 (en) 2003-07-28 2004-07-27 Electrode for electrochemical processes and method for producing the same

Publications (2)

Publication Number Publication Date
CN1829827A true CN1829827A (zh) 2006-09-06
CN1829827B CN1829827B (zh) 2010-06-09

Family

ID=34131202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800216922A Active CN1829827B (zh) 2003-07-28 2004-07-27 用于电化学方法的电极及生产该电极的方法

Country Status (18)

Country Link
US (2) US7695755B2 (zh)
EP (1) EP1656471B1 (zh)
JP (1) JP4533378B2 (zh)
KR (1) KR101110091B1 (zh)
CN (1) CN1829827B (zh)
AT (1) ATE450636T1 (zh)
AU (1) AU2004262666B2 (zh)
BR (1) BRPI0412350B1 (zh)
CL (1) CL2004001839A1 (zh)
DE (1) DE602004024410D1 (zh)
IL (1) IL172813A (zh)
IT (1) ITMI20031543A1 (zh)
MX (1) MXPA06001023A (zh)
MY (1) MY144312A (zh)
PE (1) PE20050640A1 (zh)
RU (1) RU2355823C2 (zh)
TW (1) TWI251035B (zh)
WO (1) WO2005014885A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210122A (zh) * 2010-11-26 2013-07-17 德诺拉工业有限公司 用于氯的电解析出的阳极

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1391767B1 (it) * 2008-11-12 2012-01-27 Industrie De Nora Spa Elettrodo per cella elettrolitica
ITMI20111132A1 (it) 2011-06-22 2012-12-23 Industrie De Nora Spa Anodo per evoluzione di ossigeno
CN103091435B (zh) * 2012-10-31 2015-06-03 轻工业环境保护研究所 一种有机肥料中药物残留的检测方法
ITMI20122035A1 (it) 2012-11-29 2014-05-30 Industrie De Nora Spa Elettrodo per evoluzione di ossigeno in processi elettrochimici industriali
WO2016207209A1 (en) * 2015-06-23 2016-12-29 Industrie De Nora S.P.A. Electrode for electrolytic processes
CN108339556A (zh) * 2018-02-01 2018-07-31 河南师范大学 一种碱式氯化亚锡非晶光催化材料的制备方法
IT201800010760A1 (it) * 2018-12-03 2020-06-03 Industrie De Nora Spa Elettrodo per evoluzione elettrolitica di gas
CN113767068A (zh) 2019-09-26 2021-12-07 株式会社Lg化学 氧化锡形成组合物
JP2022020222A (ja) 2020-07-20 2022-02-01 デノラ・ペルメレック株式会社 酸素発生用電極
JP7168729B1 (ja) 2021-07-12 2022-11-09 デノラ・ペルメレック株式会社 工業用電解プロセス用電極
WO2024008895A2 (en) 2022-07-08 2024-01-11 Industrie De Nora S.P.A. Electrode for electrolytic evolution of gas
EP4353866A1 (en) * 2022-10-13 2024-04-17 Titanium Technology S.L. Mixed metal oxide coatings for titanium alloys

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487352A (en) * 1892-12-06 Island
SU541849A1 (ru) * 1975-10-28 1977-01-05 Предприятие П/Я А-3481 Оксалоолов нна кислота в качестве промежуточного продукта дл получени двуокиси олова и способ ее получени
KR900000082B1 (ko) * 1986-02-08 1990-01-19 니혼 엑스란 고오교오 가부시끼가이샤 주석화합물 투명 수성용액 및 투명 도전성 산화주석의 제조법
JPS62267476A (ja) * 1986-05-13 1987-11-20 Mitsubishi Metal Corp 透明導電性被膜形成組成物
JPS62274087A (ja) 1986-05-22 1987-11-28 Permelec Electrode Ltd 耐久性を有する電解用電極及びその製造方法
KR900003954B1 (ko) * 1987-08-05 1990-06-05 니혼 엑스란 고오교오 가부시끼가이샤 주석산 무수물
GB8830296D0 (en) * 1988-12-28 1989-02-22 Unilever Plc Bleaching composition
JPH0339497A (ja) * 1989-07-06 1991-02-20 Japan Carlit Co Ltd:The スズメッキ方法
JPH0774470B2 (ja) * 1990-03-20 1995-08-09 ダイソー株式会社 酸素発生用陽極の製法
GB9018953D0 (en) * 1990-08-31 1990-10-17 Ici Plc Electrode
DE4124136A1 (de) * 1991-07-20 1993-01-21 Goldschmidt Ag Th Verfahren zum vergueten von hohlglaskoerpern
JP3457349B2 (ja) * 1993-02-10 2003-10-14 日本酸素株式会社 化学気相析出法による成膜用組成物
GB9316926D0 (en) 1993-08-13 1993-09-29 Ici Plc Electrode
US5736497A (en) * 1995-05-05 1998-04-07 Degussa Corporation Phosphorus free stabilized alkaline peroxygen solutions
JP2795824B2 (ja) * 1995-05-12 1998-09-10 オオタ株式会社 チタン系インプラントの表面処理方法及び生体親和性チタン系インプラント
JP2002146536A (ja) * 2000-11-08 2002-05-22 Japan Science & Technology Corp 酸化スズ薄膜の低温形成方法
WO2002090930A2 (en) * 2001-05-09 2002-11-14 Biofx Laboratories, Inc. Stabilizing peroxides with stannous halides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210122A (zh) * 2010-11-26 2013-07-17 德诺拉工业有限公司 用于氯的电解析出的阳极
CN103210122B (zh) * 2010-11-26 2016-01-20 德诺拉工业有限公司 用于氯的电解析出的阳极

Also Published As

Publication number Publication date
CL2004001839A1 (es) 2005-05-13
IL172813A (en) 2010-12-30
US20060153982A1 (en) 2006-07-13
US20100126851A1 (en) 2010-05-27
EP1656471B1 (en) 2009-12-02
US8182600B2 (en) 2012-05-22
IL172813A0 (en) 2006-06-11
MY144312A (en) 2011-08-29
TWI251035B (en) 2006-03-11
ATE450636T1 (de) 2009-12-15
BRPI0412350A (pt) 2006-09-05
US7695755B2 (en) 2010-04-13
KR101110091B1 (ko) 2012-02-15
ITMI20031543A1 (it) 2005-01-29
AU2004262666A1 (en) 2005-02-17
DE602004024410D1 (de) 2010-01-14
EP1656471A1 (en) 2006-05-17
TW200506100A (en) 2005-02-16
JP4533378B2 (ja) 2010-09-01
RU2006106187A (ru) 2006-08-10
BRPI0412350B1 (pt) 2014-01-28
AU2004262666B2 (en) 2009-07-16
JP2007500287A (ja) 2007-01-11
MXPA06001023A (es) 2006-04-27
KR20060052940A (ko) 2006-05-19
WO2005014885A1 (en) 2005-02-17
RU2355823C2 (ru) 2009-05-20
PE20050640A1 (es) 2005-08-25
CN1829827B (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
US8182600B2 (en) Electrode for electrochemical processes and method for producing the same
KR101645198B1 (ko) 전해 전지용 전극
US20130087461A1 (en) Catalyst coating and process for producing it
JP2006503187A (ja) 電気化学的電池における望ましくない酸化を阻害するためのコーティング
US8430997B2 (en) Electrode for electrolytic production of chlorine
CN1132269A (zh) 新型稳定的涂料溶液与由其制成的尺寸不变阳极
CN1924101A (zh) 具有高反应选择性的含钌涂层钛阳极及其制备方法
JP2012188706A (ja) 電解用電極及びその製造方法
JP2012251195A (ja) 電解用電極及びその製造方法
US4223049A (en) Superficially mixed metal oxide electrodes
RU2689985C2 (ru) Каталитическое покрытие и способ его изготовления
CN112313368A (zh) 用于电解析出氯的阳极
JPS62260088A (ja) 電解用電極及びその製造方法
JPH0711497A (ja) 酸素発生用電極及びその製法
JP2000328251A (ja) 酸化チタン被膜の形成方法および被膜形成用溶液
JPH06256985A (ja) 電解用電極の製造方法
JP2006283061A (ja) 粘土複合体膜の形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: IND DE NORA S. P. A.

Free format text: FORMER OWNER: DE NORA ELETTRODI S.P.A.

Effective date: 20130116

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130116

Address after: Milan Italy

Patentee after: Ind de Nora S. P. A.

Address before: Milan Italy

Patentee before: DE Nora Electrodi S. P. A.