CN1810727B - 硅熔体渗透陶瓷基质复合材料的方法 - Google Patents
硅熔体渗透陶瓷基质复合材料的方法 Download PDFInfo
- Publication number
- CN1810727B CN1810727B CN200610004031XA CN200610004031A CN1810727B CN 1810727 B CN1810727 B CN 1810727B CN 200610004031X A CN200610004031X A CN 200610004031XA CN 200610004031 A CN200610004031 A CN 200610004031A CN 1810727 B CN1810727 B CN 1810727B
- Authority
- CN
- China
- Prior art keywords
- precast billet
- billet
- melt infiltration
- precast
- ceramic matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62884—Coating the powders or the macroscopic reinforcing agents by gas phase techniques
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/62865—Nitrides
- C04B35/62868—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5268—Orientation of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
Abstract
熔体渗透纤维增强陶瓷基质复合预制坯(22或28)的方法,包括:(a)将预制坯浸入熔融硅浴里;(b)将该预制坯留在浴中达预定的时间;(c)从浴里取出该预制坯;和(d)冷却该预制坯。
Description
技术领域
本发明涉及陶瓷基质复合材料的制备方法,尤其是涉及用熔融硅熔体渗透(melt infiltrate)纤维增强陶瓷基质复合材料(CMC)的方法。
背景技术
已经研制出制备MICMC的多种工艺方案。公知的一种工艺是“预浸渍(prepreg)工艺”,另一种是“浆浇注(sluny cast)”工艺。
在“预浸渍”工艺中,第一步是通过化学汽相沉积(CVD)施加纤维涂层。纤维涂层用来在复合材料处理中保护纤维,提供低强度纤维基质界面,从而使得纤维基质脱胶和使纤维脱出“韧化”(pull-out toughenting)机制。CMC在过去典型地用碳作纤维涂层,但是也结合氮化硼或者掺杂硅的氮化硼用于提高抗氧化性。
在纤维涂层之后,从包含预成型基质成分(SiC和碳颗粒、粘合剂和溶剂)的浆料拉出纤维束,接着缠绕到滚筒上以形成单向预浸渍带。然后干燥该带,从滚筒上取下,切割成型,层叠并给予预定的纤维结构,层压以形成复合预制坯。可以在此阶段对预制坯进行机械加工,这有助于减少在最终致密化后对该部件最终处理的量。
浆浇注法与预浸渍法不同之处在于先将纤维缠绕或编织到布里,然后层叠形成复合预制坯状。然后使用化学汽相渗透(CVI)工艺将纤维涂层施加到预制坯上。在预制坯里的残留孔隙,一般30%到40%,通过将SiC颗粒浆浇注(或滑动浇注(slip casting))到预制坯中对其进行部分填充。
在两种工艺中最后的致密化步骤是硅熔体渗透步骤。将包含涂布SiC纤维、SiC和/或碳颗粒和有机粘合剂(在预浸渍工艺中)的复合预制坯加热到约1420℃以上,同时与硅金属源接触。熔融硅金属容易润湿SiC和/或碳,因此通过毛细工艺很容易将熔融硅金属吸入预制坯的残留孔隙里。该渗透不需要外部的驱动力,并且复合预制坯没有尺寸变化。
使用硅金属的CMC的目前熔体渗透工艺使用分批工艺,其中将硅金属粉 喷撒在待被熔体渗透部件的表面上,或者使用多孔碳引线将硅转移到熔融状态部件。在将炉加热到熔体渗透温度和自熔体渗透温度冷却都需要大量的时间。此外,在预制坯与熔融硅接触时,现有的分批型熔体渗透方法需要的时间使得预制坯化学浸蚀。现有的熔体渗透处理需要暴露于熔融硅约一个小时。
此外,现有的工艺需要将较少的硼添加到硅里以保证润湿并完成遍及预制坯的熔体渗透。由于燃烧产物的高压水蒸汽,公知硼会引起预制坯里的Si和SiC的加快腐蚀。
发明内容
根据本发明的示例实施方案,通过将纤维增强的CMC预制坯浸入熔融硅浴中来熔体渗透该预制坯。在一个示例实施方案中,部件用一个石墨支架悬挂在真空和/或惰性气氛炉中。该支架和CMC预制坯被降低放入熔融硅浴里,其中熔融硅润湿CMC预制坯表面并且渗透该部件。因为浸渍处理显著减少了熔体渗透CMC预制坯所需要的时间,也降低了熔融硅浸蚀预制坯的可能性。
在此公开的方法可以用在通常需要耐高温性的燃气涡轮发动机部件制备中。熔融浴浸渍技术可以用于提高熔体渗透部件的质量。在浴中时,实时(realtime)重量测量可以降低部件对部件的(part-to-part)可变性,提高整体稳定性。此外,可以单独地除去预制坯,而不除去部件的全部分批炉负载(batch furnaceload)。
因此,在较宽方面,本发明涉及熔体渗透纤维增强的陶瓷基质复合预制坯的方法,包括(a)将预制坯浸入熔融硅浴里;(b)将预制坯放置在浴中达预定的时间;(c)从浴里取出预制坯;(d)冷却预制坯。
在另一方面,本发明涉及形成陶瓷基质复合材料的方法,包括(a)将纤维涂层施加到纤维束;(b)将纤维束从由高和低温粘合剂、SiC粉末、炭黑和水组成的含水浆料里拉出,由此形成预浸渍带;(c)将预浸渍带缠绕在滚筒上;(d)切割、层叠和层压预浸渍带以形成复合预制坯;(e)通过将预制坯浸渍到熔融硅浴中来熔体渗透该预制坯。
附图说明
图1是用来制备CMC的预浸渍工艺的示意图。
图2是用来制备CMC的浆浇注工艺的示意图。
具体实施方式
图1是在陶瓷基质复合材料制备中使用的传统的预浸渍工艺的示意图。将纤维束10从滚筒上绕过后,纤维束经过容器14,其中通过公知的化学汽相沉积(CVD)工艺将陶瓷纤维涂层施加在底部(toe)。该涂层用来在复合材料处理过程中保护纤维并且提供低强度纤维基质界面,从而使得纤维基质脱胶和纤维脱出“韧化”机制。CMC在过去通常用碳作纤维涂层,但是也结合氮化硼或者掺杂硅的氮化硼用于提高抗氧化性。纤维涂覆之后,纤维束10从容器16拉出,该容器装有包含预制坯基质成分(SiC和碳颗粒、粘合剂和溶剂)的浆料然后缠绕滚筒18以形成单向预浸渍带20。然后干燥带,从滚筒上取下,切割成型,层叠并给予预期的纤维结构,并且层压形成复合材料预制坯22。可以在此阶段对预制坯进行机械加工,有助于减少在最终致密化后对部件的最终处理量。
参考图2,与浆浇注工艺有关,纤维束24缠绕或编织到纤维布26里。剪切布,层叠以形成预定形状的复合预制坯28。然后将预制坯放入室30里,在里面使用化学汽相渗透(CVI)方法将纤维涂层施加于预制坯。预制坯里的残留孔隙,典型的30%-40%,可以通过在容器32里将SiC颗粒浆浇注或滑动浇注入预制坯中进行部分填充。
两种方法中的最终致密化步骤都是硅熔体渗透步骤。复合预制坯,其在预浸渍外壳中包含涂覆的SiC纤维、SiC和/或碳颗粒和有机粘合剂,加热至约1420℃以上,同时与硅金属源接触。熔融硅金属容易润湿SiC和/或碳,因此通过毛细工艺,容易吸入预制坯残留孔隙里。该渗透不需要外部驱动力,并且复合预制坯没有尺寸变化。
根据本发明的示例实施方案,将通过传统的化学汽相渗透(CVI)工艺部分致密化的纤维增强CMC预制坯浸入例如改良的硅晶体生长炉中。具体而言,可以将预制坯悬挂于石墨支架的钼夹盘里。熔融硅池维持在约1450℃。将预制坯降低入熔融Si池中,允许在里面停留一段预定的时间,比如在约2到10分钟之间。然后从浴中取出熔体渗透预制坯,直接地在熔融炉表面上方冷却2到3分钟。随后,将预制坯放入封闭的和装填氩的气锁室中。当CMC冷却到500℃以下时,取出。已经发现将预制坯浸入和取出浴的速度比较重要。比如,以50到60英寸/分钟的正常速度直接沉浸,会产生未预期的气体放出和起沫或发泡。然而,在正常速度降低到1/2-10英寸/分钟时,在硅润湿预制坯前有多的多的 多的时间加热预制坯并且排出残留气体。
晶体生长炉可以通过电阻元件加热,感应或直接电加热以提高硅浴的温度。尽管已经证明硅晶体生长炉是适合用于本发明的炉,而相似功能的其它炉也可以使用。
上述方法将目前熔体渗透方法的时间从约一个小时到约2-10分钟。而且,不需要向硅中加入额外的硼来确保润湿。
或者,为了能够监控预制坯重量,CMC预制坯可以由负载室悬挂于炉内。该重量测量可以用来确定熔体渗透工艺完成的终点。本技术相对于目前分批技术也会节约大量能量和获得更高的零件生产量。在浴中的实时重量测量也降低了部件对部件的可变性,提高整体质量。可以单独除去预制坯,而不除去部件的全部浴炉负载。而且,如已经说明的,可以不必向硅中添加硼,从而提高CMC环境耐久性。
应该清楚可以使用其他的将预制坯浸入熔融硅浴的技术,本发明不限于在此描述的炉设置。
尽管以认为是最实际和优选的实施方案描述本发明,应该清楚本发明不限于公开的实施方案,而是相反,意指覆盖包括在附加的权利要求的精神和范围内的不同的修改和等同的设置。
部件列表
纤维束10
容器14
容器16
滚筒18
带20
复合预制坯22
纤维束24
纤维布26
复合预制坯28
室30
容器32
Claims (10)
1.一种形成陶瓷基质复合材料的方法,包括:
(a)将纤维束缠绕或编织到纤维布里;
(b)将所述纤维布剪切和层叠以形成预定形状的复合预制坯;
(c)在一个室中,通过化学汽相渗透方法,将纤维涂层施加到所述预制坯上;
(d)将SiC颗粒浆浇注到孔隙率为30-40%的所述预制坯中;
(e)将该预制坯浸入熔融硅浴里来将硅熔体渗透到所述预制坯中;
(f)从浴里取出该预制坯;和
(g)冷却该预制坯。
2.如权利要求1的方法,其中所述熔融浴保持在约1450℃的温度。
3.如权利要求1的方法,其中步骤(d)在一个气锁室中进行。
4.如权利要求1的方法,其中在步骤(d)期间,该室中充满气体。
5.如权利要求4的方法,其中所述气体是氩。
6.如权利要求1的方法,其中在步骤(a)期间,所述预制坯由负载室悬挂,从而测量所述预制坯的重量。
7.如权利要求1的方法,其中在步骤(a)和(c)期间,该预制坯以每分钟1/2到10英寸的速度移动。
8.如权利要求1的方法,其中在步骤(b)期间,该预制坯在浴中保留约2到约10分钟。
9.一种形成陶瓷基质复合材料的方法,包括:
(a)将纤维涂层施加到纤维束(10);
(b)将纤维束从由高温和低温粘合剂、SiC粉末、炭黑和水组成的含水浆料里拉出,由此形成预浸渍带(20);
(c)将预浸渍带(20)缠绕在滚筒(18)上;
(d)切割、层叠和层压预浸渍带以形成复合预制坯(22);和
(e)通过权利要求1的方法,熔体渗透该预制坯。
10.如权利要求9的方法,其中所述熔融浴保持在约1450℃的温度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/039,814 US20060163773A1 (en) | 2005-01-24 | 2005-01-24 | Method for performing silicon melt infiltration of ceramic matrix composites |
US11/039814 | 2005-01-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1810727A CN1810727A (zh) | 2006-08-02 |
CN1810727B true CN1810727B (zh) | 2011-08-17 |
Family
ID=36036087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610004031XA Expired - Fee Related CN1810727B (zh) | 2005-01-24 | 2006-01-24 | 硅熔体渗透陶瓷基质复合材料的方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060163773A1 (zh) |
EP (1) | EP1683771B1 (zh) |
JP (1) | JP4974209B2 (zh) |
CN (1) | CN1810727B (zh) |
DE (1) | DE602006002281D1 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7708851B2 (en) * | 2005-10-25 | 2010-05-04 | General Electric Company | Process of producing a ceramic matrix composite article and article formed thereby |
FR2906094B1 (fr) * | 2006-09-19 | 2010-05-14 | Centre Nat Etd Spatiales | Procede de reception et recepteur pour un signal de radionavigation module par une forme d'onde d'etalement cboc ou tmboc |
CA2679691A1 (en) * | 2007-03-07 | 2008-09-18 | Boston Scientific Limited | Radiopaque polymeric stent |
US8968820B2 (en) * | 2008-04-25 | 2015-03-03 | Nanotek Instruments, Inc. | Process for producing hybrid nano-filament electrodes for lithium batteries |
US8251651B2 (en) | 2009-01-28 | 2012-08-28 | United Technologies Corporation | Segmented ceramic matrix composite turbine airfoil component |
US20130167374A1 (en) * | 2011-12-29 | 2013-07-04 | General Electric Company | Process of producing ceramic matrix composites and ceramic matrix composites formed thereby |
CN102659441B (zh) * | 2012-04-28 | 2014-01-01 | 中南大学 | 复合结构预存应力筋增强陶瓷基复合材料及其制造方法 |
US9708226B2 (en) * | 2013-03-15 | 2017-07-18 | Rolls-Royce Corporation | Method for producing high strength ceramic matrix composites |
US9701072B2 (en) | 2013-10-30 | 2017-07-11 | General Electric Company | Methods of repairing matrix cracks in melt infiltrated ceramic matrix composites |
JP2016150873A (ja) * | 2015-02-18 | 2016-08-22 | 株式会社Ihi | セラミックス基複合材の製造方法 |
US9975815B2 (en) | 2015-02-26 | 2018-05-22 | General Electric Company | Methods for forming ceramic matrix composite articles |
US10150708B2 (en) | 2015-05-08 | 2018-12-11 | Rolls-Royce High Temperature Composites Inc. | Surface-aided melt infiltration for producing a ceramic matrix composite |
EP3241817B1 (en) | 2016-05-02 | 2021-01-27 | Rolls-Royce High Temperature Composites Inc | Forming a surface layer on a ceramic matrix composite article |
EP3241815B1 (en) | 2016-05-02 | 2019-11-13 | Rolls-Royce High Temperature Composites Inc | Reducing surface nodules in melt-infiltrated ceramic matrix composites |
FR3053328B1 (fr) * | 2016-06-29 | 2022-01-21 | Herakles | Procede de fabrication d'une piece en materiau composite a matrice ceramique |
RU2712999C1 (ru) * | 2016-09-06 | 2020-02-03 | АйЭйчАй КОРПОРЕЙШН | Способ получения композиционного материала с керамической матрицей |
FR3063724B1 (fr) * | 2017-03-08 | 2022-06-24 | Safran Ceram | Procede d'infiltration d'une preforme poreuse et four associe |
US11021779B2 (en) * | 2017-05-01 | 2021-06-01 | Rolls-Royce High Temperature Composites Inc. | Sacrificial 3-dimensional weaving method and ceramic matrix composites formed therefrom |
US10384981B2 (en) | 2017-06-14 | 2019-08-20 | General Electric Company | Methods of forming ceramic matrix composites using sacrificial fibers and related products |
US10801108B2 (en) * | 2017-08-28 | 2020-10-13 | Raytheon Technologies Corporation | Method for fabricating ceramic matrix composite components |
CN107573075B (zh) * | 2017-10-27 | 2020-07-24 | 洛阳理工学院 | 利用碳纤维预浸带制备C/SiC材料刹车盘的方法 |
US10745325B2 (en) | 2017-12-18 | 2020-08-18 | Rolls-Royce High Temperature Composites, Inc. | Protective layer for a ceramic matrix composite article |
US11198651B2 (en) | 2018-12-20 | 2021-12-14 | Rolls-Royce High Temperature Composites, Inc. | Surface layer on a ceramic matrix composite |
CN112390656B (zh) * | 2019-08-15 | 2022-12-20 | 北京信汇碳硅科技有限公司 | 一种连续制备陶瓷基复合材料型材的方法及制备得到的型材 |
US11565977B2 (en) * | 2019-11-08 | 2023-01-31 | Raytheon Technologies Corporation | Microstructured fiber interface coatings for composites |
US11607725B2 (en) | 2020-01-15 | 2023-03-21 | Rolls-Royce North American Technologies Inc. | Siphon delivery method for consistent melt infiltration |
US11040913B1 (en) * | 2020-08-14 | 2021-06-22 | Fireline, Inc. | Ceramic-metallic composites devoid of porosity and their methods of manufacture |
US12071380B2 (en) | 2020-09-16 | 2024-08-27 | Rolls-Royce High Temperature Composites, Inc. | Method to fabricate a machinable ceramic matrix composite |
US11753713B2 (en) * | 2021-07-20 | 2023-09-12 | General Electric Company | Methods for coating a component |
US11919088B1 (en) | 2021-12-23 | 2024-03-05 | Rolls-Royce High Temperature Composites Inc. | Pressure assisted melt infiltration |
CN116444286A (zh) * | 2023-01-30 | 2023-07-18 | 合肥富维康新材料科技有限公司 | 一种提高MI-SiC-SiC预制体熔融渗硅均匀性的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4141948A (en) * | 1973-04-24 | 1979-02-27 | General Electric Company | Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby |
US4171991A (en) * | 1978-04-12 | 1979-10-23 | Semix, Incorporated | Method of forming silicon impregnated foraminous sheet by immersion |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3327659C2 (de) * | 1983-07-30 | 1987-01-02 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Verfahren zur Herstellung eines Verbundkörpers |
DE3837378A1 (de) * | 1988-08-05 | 1990-02-08 | Claussen Nils | Keramischer verbundwerkstoff, verfahren zu seiner herstellung und verwendung |
US5294489A (en) * | 1992-04-02 | 1994-03-15 | General Electric Company | Protective coating with reactive interlayer on reinforcement in silicon carbide composite |
US5509555A (en) * | 1994-06-03 | 1996-04-23 | Massachusetts Institute Of Technology | Method for producing an article by pressureless reactive infiltration |
US5552049A (en) * | 1995-01-19 | 1996-09-03 | Du Pont Lanxide Composites, L.P. | Ceramic fiber reinforced filter |
US5840221A (en) * | 1996-12-02 | 1998-11-24 | Saint-Gobain/Norton Industrial Ceramics Corporation | Process for making silicon carbide reinforced silicon carbide composite |
GB9717152D0 (en) * | 1997-08-13 | 1997-10-22 | Surface Transforms Ltd | Improvements in or relating to carbon-carbon fibre composite materials |
JP3523526B2 (ja) * | 1999-06-08 | 2004-04-26 | ゼネラル・エレクトリック・カンパニイ | 珪素を溶融浸透した複合体中における珪素をドープされた窒化硼素で被覆された繊維 |
JP2002137971A (ja) * | 2000-10-25 | 2002-05-14 | Ekopuraza:Kk | 炭素繊維複合材料及びその製造方法 |
EP1219578B1 (en) * | 2000-12-27 | 2006-03-22 | Toshiba Ceramics Co., Ltd. | Silicon/silicon carbide composite and process for manufacturing the same |
JP2002201071A (ja) * | 2000-12-27 | 2002-07-16 | Toshiba Ceramics Co Ltd | 炭化ケイ素材の製造方法 |
US20060043628A1 (en) * | 2004-08-11 | 2006-03-02 | General Electric Company | CMC process using a water-based prepreg slurry |
-
2005
- 2005-01-24 US US11/039,814 patent/US20060163773A1/en not_active Abandoned
-
2006
- 2006-01-19 EP EP06250291A patent/EP1683771B1/en not_active Not-in-force
- 2006-01-19 DE DE602006002281T patent/DE602006002281D1/de active Active
- 2006-01-23 JP JP2006013487A patent/JP4974209B2/ja not_active Expired - Fee Related
- 2006-01-24 CN CN200610004031XA patent/CN1810727B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4141948A (en) * | 1973-04-24 | 1979-02-27 | General Electric Company | Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby |
US4171991A (en) * | 1978-04-12 | 1979-10-23 | Semix, Incorporated | Method of forming silicon impregnated foraminous sheet by immersion |
Also Published As
Publication number | Publication date |
---|---|
US20060163773A1 (en) | 2006-07-27 |
EP1683771B1 (en) | 2008-08-20 |
JP2006206431A (ja) | 2006-08-10 |
DE602006002281D1 (de) | 2008-10-02 |
EP1683771A1 (en) | 2006-07-26 |
JP4974209B2 (ja) | 2012-07-11 |
CN1810727A (zh) | 2006-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1810727B (zh) | 硅熔体渗透陶瓷基质复合材料的方法 | |
US9611180B2 (en) | Method for manufacturing a part made of CMC | |
CN102173815B (zh) | 一种陶瓷材料粉末坯体浸渍-先驱体裂解制备方法 | |
CN103266470B (zh) | 一种碳纤维抗氧化涂层及其制备方法 | |
JP2001505522A (ja) | 炭化珪素強化炭化珪素複合材料 | |
JP6276514B2 (ja) | セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法 | |
CN103332943A (zh) | 基于液硅熔渗法制备碳陶基复合材料的微结构设计及性能控制方法 | |
EP3348536B1 (en) | Method of melt infiltration utilizing a non-wetting coating for producing a ceramic matrix composite | |
CN103613400A (zh) | 一种碳纤维增强碳-碳化硅双元陶瓷基梯度复合材料的制备方法 | |
CN111170754B (zh) | 一种具有Si-Y-C三元陶瓷基体复合材料及制备方法 | |
CA2813350A1 (en) | Method of producing an internal cavity in a ceramic matrix composite | |
CN108101566A (zh) | Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法 | |
CN113045325B (zh) | 一种高强度碳/碳-碳化硅复合材料的制备方法 | |
CN109231993A (zh) | 一种含自润滑相高强度炭纤维增强陶瓷基体摩擦材料及其制备方法 | |
RU2760807C2 (ru) | Способ выполнения упрочненной волокнистой заготовки | |
CN112374917A (zh) | 一种高温陶瓷涂层及其制备方法 | |
CN103724033B (zh) | 一种立体织物增强氮化硅-碳化硅陶瓷复合材料及其制备方法 | |
CA2552364C (en) | Composite material and producing method therefor | |
JP7112215B2 (ja) | シリコン溶融ルツボ、シリコン溶融ルツボの製造方法、及び、反応焼結SiCの製造方法 | |
JP3100635B2 (ja) | ファイバー複合材料の製造方法 | |
CN106431452A (zh) | 弥散分布自愈合相B12(C,Si,B)3改性SiC/SiC复合材料的制备方法 | |
US20180312442A1 (en) | Discrete solidification of melt infiltration | |
JP4471692B2 (ja) | 離型層を有するシリコン溶融用容器の製造方法 | |
CN115385726B (zh) | 一种纤维表面抗水氧腐蚀涂层及其制备方法与应用 | |
CN114853480A (zh) | 一种高温透波氮化物复合材料天线罩的低成本快速制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110817 Termination date: 20170124 |