CN1771199A - 二氧化钛纳米管及其制造方法 - Google Patents

二氧化钛纳米管及其制造方法 Download PDF

Info

Publication number
CN1771199A
CN1771199A CNA2004800097073A CN200480009707A CN1771199A CN 1771199 A CN1771199 A CN 1771199A CN A2004800097073 A CNA2004800097073 A CN A2004800097073A CN 200480009707 A CN200480009707 A CN 200480009707A CN 1771199 A CN1771199 A CN 1771199A
Authority
CN
China
Prior art keywords
titania
sodium hydroxide
titania nanotube
nanotube
aqueous sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800097073A
Other languages
English (en)
Other versions
CN100548889C (zh
Inventor
长谷川彰
平尾一之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN1771199A publication Critical patent/CN1771199A/zh
Application granted granted Critical
Publication of CN100548889C publication Critical patent/CN100548889C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/807Gas detection apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/808Optical sensing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

一种二氧化钛纳米管及其制造方法,该二氧化钛纳米管,适用于光传感器及气体传感器,长度为1μm或1μm以上,优选直径为0.1μm或0.1μm以下,长宽比为100或100以上。

Description

二氧化钛纳米管及其制造方法
技术领域
本发明涉及二氧化钛纳米管(titania nanotube)及其制造方法。
背景技术
自从碳纳米管被发现以来,关于多种物质制造纳米管的可能性进行了探讨。其结果确认了以二氧化钛(TiO2)来制造纳米管。二氧化钛是具有光催化活性的物质之一,纳米管形状的二氧化钛,与其粉末相比,具有更高的光催化活性,因此被期待着有各种各样的应用。
作为这样的纳米管,已知直径为5~80nm、长度为50~150nm的纳米管(特开平10-152323号公报)。
但是,公报中所记载的二氧化钛纳米管,并不能满足于作为光传感器和气体传感器使用。
在这种情况下,本发明人为了开发适用于光传感器及气体传感器的二氧化钛纳米管,经过仔细探讨,完成了本发明。此外,本发明人也仔细探讨了二氧化钛纳米管的制造方法,使本发明得以完成。
即,本发明提供了一种二氧化钛纳米管,其长度为1μm或1μm以上。
此外,本发明提供了一种传感器(sensor),该传感器具有长度为1μm或1μm以上的二氧化钛纳米管和电极,并且二氧化钛纳米管和电极相连。
进一步地,本发明提供了一种二氧化钛纳米管的制造方法。该方法包括在60℃或60℃以上的温度将二氧化钛粉末分散在氢氧化钠水溶液中的步骤。
本发明中提供的二氧化钛纳米管,除了用于光传感器、气体传感器以外,还可以用于金属材料或树脂材料的强化材料。此外,采用这种二氧化钛纳米管的本发明的传感器可以用于监视机械工业或化学工业的制造装置的状况。并且,按照本发明的制造方法,可以很容易地得到这种二氧化钛纳米管。
具体实施方案
本发明的二氧化钛纳米管长度为1μm或1μm以上。从处理或加工的观点来说,二氧化钛纳米管的长度优选10μm或10μm以上,更优选100μm或100μm以上。另一方面,长度的上限虽然没有特定的限制,但通常为50mm或50mm以下,优选10mm或10mm以下。
本发明二氧化钛纳米管的断面通常为圆形,其直径优选0.1μm或0.1μm以下。直径的下限虽然没有特定的限制,但通常为5nm或5nm以上,优选8nm或8nm以上。直径小的二氧化钛纳米管用作传感器时,因其检测灵敏度提高,因此优选;用作金属材料或树脂材料的强化材料时,因强化母材的效果提高,因此优选。传感器的灵敏度提高的原因,虽然尚不明确,但推测为,由于直径变小,二氧化钛纳米管的比表面积增大,二氧化钛表面或里面的状态发生变化,这种影响所致。关于强化效果提高的原因,虽然也不明确,但推测为,二氧化钛纳米管之间易于相互缠绕,这种影响所致。
此外,本发明的二氧化钛纳米管,长宽比优选100或100以上。另一方面,长宽比的上限虽然没有特定的限制,通常约为108,优选约10000。长宽比是指二氧化钛长轴方向的长度L与最大宽度D(横截面为圆形时指直径)的比值L/D。
本发明的二氧化钛纳米管,除了用作传感器或强化材料以外,还可以用作光催化剂、紫外线吸收遮蔽剂、防晒剂、光电池用材料、导电性填充物、骨填充材料等。
本发明的传感器,具有长度为1μm或1μm以上的二氧化钛纳米管和电极(该电极的另一端与外部控制装置相连,起到传达二氧化钛纳米管的电学变化的作用),并且二氧化钛纳米管和电极相连。作为传感器的具体例子,如紫外传感器、红外传感器、可见光传感器之类的光传感器、以及气体传感器等。在光传感器中,由于二氧化钛纳米管的电学性质(导电性)因光照射量而变化,所以可以通过测定该变化求出光照射量。此外,在气体传感器中,由于二氧化钛纳米管的电学性质(导电性)因其管内吸附特定的气体分子而变化,所以可以通过测定该变化求出气体浓度。
与二氧化钛纳米管相连的电极,可以使用如金、铂或者银的线材。
本发明二氧化钛纳米管的制造方法,包括将二氧化钛粉末分散在氢氧化钠水溶液中的步骤。
制造中所用的二氧化钛粉末,可以列举例,如金红石型、锐钛矿型的二氧化钛(TiO2)。二氧化钛粉末的平均粒径优选50nm或50nm以下,更优选20nm或20nm以下,进一步优选10nm或10nm以下。另一方面,平均粒径的下限虽然没有特定的限制,但通常在约3nm或3nm以上,优选约6nm或6nm以上。此时的平均粒径以BET比表面积径表示,由二氧化钛粉末的真密度(g/cm3)与其BET比表面积(m2/g),根据下式来求出:
6/(BET比表面积×真密度)
氢氧化钠水溶液中氢氧化钠的浓度通常约为1M(摩尔/升)或1M以上,优选约3M或3M以上,更优选约7M或7M以上;此外,通常约为15M或15M以下,优选约13M或13M以下,更优选约12M或12M以下。
氢氧化钠水溶液和二氧化钛粉末的用量比为,相对于氢氧化钠水溶液100重量份,二氧化钛粉末的量通常约为0.01重量份或0.01重量份以上。此外,通常约为0.1重量份或0.1重量份以下,优选约0.04重量份或以下。
在60℃或60℃以上的温度下进行分散。分散时的氢氧化钠水溶液的温度优选约为90℃或90℃以上,更优选约100℃或100℃以上,此外优选约为120℃或120℃以下。分散时间通常约为1小时或1小时以上~约50小时或50小时以下。分散可以在常压(约0.08MPa~约0.12MPa)或减压(不足约0.08MPa)的条件下进行。
分散通常可以通过搅拌或者超声波照射进行,优选通过搅拌进行。具体来说,分散可以通过下述方法进行:将二氧化钛粉末和氢氧化钠水溶液加入到带有搅拌机的容器中,搅拌容器内的混合物的方法;将二氧化钛粉末和氢氧化钠水溶液混合后,采用超声波照射该混合物的方法;或者组合应用上述方法。
分散可以在对大气开放的容器中进行,也可以在密闭容器中进行。在氢氧化钠水溶液的水蒸汽分压高的条件下进行分散时,优选采用开放容器通过回流还原气化水进行操作,或者采用耐压的密闭容器。
通过分散得到的二氧化钛,通常在冷却到室温后从氢氧化钠水溶液中分离出来。分离可以通过过滤、倾析等方法进行。分离后的二氧化钛优选洗涤。洗涤可以按照例如下述方法进行:将二氧化钛与盐酸、硝酸等无机酸混合,中和二氧化钛中残留的氢氧化钠后,对所得浆状物进行固液分离(滤过、倾析等),得到的固体在水中进行再制浆(re-pulp)。
洗涤后的固体充分干燥后,也可以进一步在大气中加热。通过这些操作,可以提高二氧化钛纳米管的结晶性。
实施例
以下通过实施例说明本发明,但本发明并不局限于这些实施例。
实施例1
将10M氢氧化钠水溶液100重量份和二氧化钛粉末(テイカ制,金红石型,平均粒径10nm)0.0187重量份加入到PTFE容器中。在通过磁力搅拌器搅拌容器内混合物的同时,加热到110℃,并在110℃下保持20小时。
保持后,将容器内的混合物移入离心沉降管中,通过离心沉降使固体沉降后,除去上清液。往离心沉降管中加入蒸馏水混合后,通过离心沉降使固体沉降,通过此方法洗涤固体。
将得到的固体与0.1N硝酸混合,通过离心沉降使固体沉降,除去上清液后,将该固体与蒸馏水混合,然后使固体沉降,除去上清液,反复操作直到上清液的pH值变为7,得到二氧化钛纳米管。
上述二氧化钛纳米管,通过SEM(日立制作所制,S-510型)及TEM(日立制作所制,H-9000型)进行观察,结果表明长度为120μm,直径为50nm,长宽比为2400。
实施例2
在实施例1中,作为原料二氧化钛粉末,采用二氧化钛粉末(石原产业制,锐钛矿型,平均粒径6nm),除此之外的其他操作同实施例1。得到的二氧化钛纳米管长度为120μm,直径50nm,长宽比为2400。
比较例1
在实施例1中,采用氢氧化钙代替氢氧化钠,除此之外的其他操作同实施例1。得到的固体为粒状,未生成二氧化钛纳米管。

Claims (13)

1.一种二氧化钛纳米管,其长度为1μm或1μm以上。
2.权利要求1所述的二氧化钛纳米管,其直径为0.1μm或0.1μm以下。
3.权利要求1或2所述的二氧化钛纳米管,其长宽比为100或100以上。
4.一种传感器,其具有权利要求1~3中任意一项所述的二氧化钛纳米管和电极,并且二氧化钛纳米管和电极相连。
5.二氧化钛纳米管的制造方法,该方法包括在60℃或更高温度下将二氧化钛粉末分散在氢氧化钠水溶液中的步骤。
6.权利要求5所述的方法,其中二氧化钛粉末的平均粒径为50nm或50nm以下。
7.权利要求5或6所述的方法,其中相对于氢氧化钠水溶液100重量份,二氧化钛粉末的量为0.01重量份~0.1重量份。
8.权利要求5~7中任意一项所述的方法,其中氢氧化钠水溶液中氢氧化钠的浓度为1M~15M。
9.权利要求8所述的方法,其中氢氧化钠水溶液中氢氧化钠的浓度为3M~13M。
10.权利要求9所述的方法,其中氢氧化钠水溶液中氢氧化钠的浓度为7M~12M。
11.权利要求5~10中任意一项所述的方法,其中分散在90℃~120℃的温度下进行。
12.权利要求5~11中任意一项所述的方法,其中分散通过搅拌或超声波照射进行。
13.权利要求12所述的方法,其中分散通过搅拌进行。
CNB2004800097073A 2003-04-15 2004-04-08 二氧化钛纳米管及其制造方法 Expired - Fee Related CN100548889C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP109968/2003 2003-04-15
JP2003109968 2003-04-15

Publications (2)

Publication Number Publication Date
CN1771199A true CN1771199A (zh) 2006-05-10
CN100548889C CN100548889C (zh) 2009-10-14

Family

ID=33295938

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800097073A Expired - Fee Related CN100548889C (zh) 2003-04-15 2004-04-08 二氧化钛纳米管及其制造方法

Country Status (5)

Country Link
US (1) US8184930B2 (zh)
CN (1) CN100548889C (zh)
DE (1) DE112004000507T5 (zh)
TW (1) TWI354650B (zh)
WO (1) WO2004092072A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062750A (zh) * 2010-11-22 2011-05-18 大连理工大学 一种基于二氧化钛纳米管阵列的室温甲醛气体传感器
CN105873853A (zh) * 2013-09-16 2016-08-17 南洋理工大学 长形钛酸盐纳米管及其合成方法和用途
CN108927102A (zh) * 2018-07-24 2018-12-04 山东科技大学 一种二氧化钛纳米管材料的制备方法及应用
CN112921427A (zh) * 2021-04-02 2021-06-08 上海朗亿功能材料有限公司 改性二氧化钛纳米管、导电母粒和纤维、制备方法及应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585212B2 (ja) * 2004-03-19 2010-11-24 Jx日鉱日石エネルギー株式会社 ナノチューブ形状を有するチタニア及びその製造方法
JP4719848B2 (ja) * 2005-02-24 2011-07-06 独立行政法人科学技術振興機構 遷移金属酸化物ナノチューブ
US7931812B2 (en) * 2006-01-12 2011-04-26 University Of Arkansas Technology Development Foundation TiO2 nanostructures, membranes and films, and applications of same
US8822030B2 (en) 2006-08-11 2014-09-02 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
US7892447B2 (en) 2006-08-11 2011-02-22 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
FR2924362B1 (fr) * 2007-11-30 2012-07-13 Centre Nat Rech Scient Reacteur chimique avec superstructure nanometrique
MD4063C1 (ro) * 2010-02-18 2011-03-31 Технический университет Молдовы Procedeu de obţinere a nanotuburilor din dioxid de titan pe suport de titan
CZ2010348A3 (cs) * 2010-05-04 2011-02-09 Ústav makromolekulární chemie AV CR, v.v.i. Nanotrubky na bázi oxidu titanicitého a zpusob jejich prípravy
CN102115913B (zh) * 2011-01-22 2012-08-08 西北大学 一种二氧化钛纳米管薄膜的制备方法
KR20130053337A (ko) * 2011-11-15 2013-05-23 삼성전자주식회사 광촉매-함유 필터 재료 및 이를 채용한 광촉매 필터

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428692A (en) 1987-07-24 1989-01-31 Nippon Denki Home Electronics Contrast display circuit for monochromatic display device
JPH0624977B2 (ja) * 1988-05-11 1994-04-06 石原産業株式会社 針状二酸化チタン及びその製造方法
JPH072598A (ja) * 1993-05-12 1995-01-06 Ishihara Sangyo Kaisha Ltd 針状酸化チタンの製造方法
JPH07242422A (ja) * 1994-03-08 1995-09-19 Titan Kogyo Kk 微粒子針状酸化チタンおよびその製造方法
JP3983533B2 (ja) 1996-09-30 2007-09-26 中部電力株式会社 結晶チタニア
JP3513738B2 (ja) 1996-09-30 2004-03-31 中部電力株式会社 ナノチューブ体のチタニアの製造方法
US6027775A (en) 1996-09-30 2000-02-22 Chubu Electric Power Co., Inc. Crystalline titania and process for producing the same
JP4109809B2 (ja) 1998-11-10 2008-07-02 キヤノン株式会社 酸化チタンを含む細線の製造方法
JP2003034531A (ja) 2000-05-19 2003-02-07 Japan Science & Technology Corp ナノチューブあるいはナノワイヤー形状を有する金属酸化物とその製造方法
US20050255315A1 (en) 2002-12-21 2005-11-17 Shinsuke Yamanaka Oxide nanostructure, method for producing same, and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062750A (zh) * 2010-11-22 2011-05-18 大连理工大学 一种基于二氧化钛纳米管阵列的室温甲醛气体传感器
CN105873853A (zh) * 2013-09-16 2016-08-17 南洋理工大学 长形钛酸盐纳米管及其合成方法和用途
CN108927102A (zh) * 2018-07-24 2018-12-04 山东科技大学 一种二氧化钛纳米管材料的制备方法及应用
CN112921427A (zh) * 2021-04-02 2021-06-08 上海朗亿功能材料有限公司 改性二氧化钛纳米管、导电母粒和纤维、制备方法及应用
CN112921427B (zh) * 2021-04-02 2023-09-12 上海朗亿功能材料有限公司 改性二氧化钛纳米管、导电母粒和纤维、制备方法及应用

Also Published As

Publication number Publication date
US8184930B2 (en) 2012-05-22
WO2004092072A1 (ja) 2004-10-28
DE112004000507T5 (de) 2006-10-19
CN100548889C (zh) 2009-10-14
TWI354650B (en) 2011-12-21
US20060193766A1 (en) 2006-08-31
TW200422261A (en) 2004-11-01

Similar Documents

Publication Publication Date Title
CN1771199A (zh) 二氧化钛纳米管及其制造方法
Rahman et al. An optimized sol–gel synthesis of stable primary equivalent silica particles
Heath et al. Chitin nanowhisker aerogels
Song et al. Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach
CN1242342A (zh) 用均相沉淀由TiOCl2制作单分散结晶TiO2特细粉末方法
Quintero et al. Ultrasonic-assisted sol–gel synthesis of TiO 2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance
Ismagilov et al. Synthesis of nanoscale TiO2 and study of the effect of their crystal structure on single cell response
JP2008297147A (ja) アナタース型八面体酸化チタン微粒子の製造方法および酸化チタン微粒子群
JP4739120B2 (ja) 導電性酸化チタンとその製造方法
Akhter et al. TiO2 decorated CNTs nanocomposite for efficient photocatalytic degradation of methylene blue
JP3747260B1 (ja) 酸化チタン系ナノ生成物およびその製造方法
Moreira et al. Photocatalytic degradation of Prozac® mediated by TiO 2 nanoparticles obtained via three synthesis methods: sonochemical, microwave hydrothermal, and polymeric precursor
US20100056365A1 (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained thereby
Wahyuni et al. Characterization and photocatalytic activity of TiO 2 (rod)-SiO 2-polyaniline nanocomposite
Rotaru et al. Preparation of ferroelectric barium titanate through an energy effective solid state ultrasound assisted method
Taklimi et al. Chemical functionalization of helical carbon nanotubes: influence of sonication time and concentrations of sulfuric and nitric acids with 3: 1 mixing ratio
Adiatama et al. Synthesis and Characteristic of Nanosilica From Geothermal Sludge: Effect Of Surfactant
CN1171796C (zh) 氧化共沉淀制备掺锑纳米二氧化锡的方法
Hu et al. Fabrication of submicron barium sulfate aggregates in the presence of ethylenediaminetetraacetic acid anions
Zhang et al. In situ hybridization and characterization of fibrous hydroxyapatite/chitosan nanocomposite
Jiang et al. Effects of organic acids on the size-controlled synthesis of rutile TiO2 nanorods
Timaeva et al. New mechanochemical effects in the poly (N-vinylcaprolactam)—Nano-titanium oxides (IV) system
JP3616927B1 (ja) 酸化チタン系細線状生成物の製造方法
CN1530327A (zh) 一种晶型和大小可控的纳米二氧化钛材料的制备方法
Catalano et al. Towards the control of the biological identity of nanobiomaterials: Impact of the structure of 011¯ 0 surface terminations of nanohydroxyapatite on the conformation of adsorbed proteins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091014

Termination date: 20160408