CN1730917B - 内燃机的凸轮相位控制装置 - Google Patents

内燃机的凸轮相位控制装置 Download PDF

Info

Publication number
CN1730917B
CN1730917B CN2005100917153A CN200510091715A CN1730917B CN 1730917 B CN1730917 B CN 1730917B CN 2005100917153 A CN2005100917153 A CN 2005100917153A CN 200510091715 A CN200510091715 A CN 200510091715A CN 1730917 B CN1730917 B CN 1730917B
Authority
CN
China
Prior art keywords
cam phase
value
algorithm
combustion engine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005100917153A
Other languages
English (en)
Other versions
CN1730917A (zh
Inventor
田上裕
安井裕司
齐藤光宣
东谷幸祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN1730917A publication Critical patent/CN1730917A/zh
Application granted granted Critical
Publication of CN1730917B publication Critical patent/CN1730917B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1403Sliding mode control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/042Crankshafts position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明提供一种内燃机的凸轮相位控制装置,即使在因可变凸轮机构的结构而使凸轮相位随着内燃机转速的急剧变化产生偏移的情况下,也可以抑制随着内燃机转速的急剧变化而产生的凸轮相位的偏移,由此,可以确保良好的控制性和较高的控制精度。内燃机的凸轮相位控制装置具有ECU、改变凸轮相位的电磁式可变凸轮相位机构。ECU根据式(1)~(6)计算用于使凸轮相位收敛于目标凸轮相位的SLD控制输入,通过利用式(20)~(25)对SLD控制输入进行调制来计算增益调整值,根据内燃机转速计算校正值,利用校正值对增益调整值进行校正,由此计算用于控制可变凸轮控制机构的控制输入。

Description

内燃机的凸轮相位控制装置
技术领域
本发明涉及对作为内燃机的进气凸轮和排气凸轮的至少一方相对于曲轴的相位的凸轮相位进行控制的内燃机的凸轮相位控制装置。
背景技术
作为这种凸轮相位控制装置,本申请人(受让人:美国用)已经提出了特愿2004-70312号公报中所记载的装置。在该内燃机的进气曲轴的一端部设有油压式的可变凸轮相位机构。该可变凸轮相位机构包括:与链轮一体的外壳;容纳于该外壳内部的叶片;形成于外壳与叶片之间的超前侧油压室和滞后侧油压室;改变提供给这些油压室的油压的电磁控制阀。另外,链轮通过正时皮带与曲轴连接,叶片与进气凸轮轴连接为一体,且可以旋转。
在上述构成的可变凸轮相位机构中,通过电磁控制阀来改变提供给超前侧油压室和滞后侧油压室的油压,可以无级地改变链轮与进气凸轮轴之间的相位,即进气凸轮相对于曲轴的相位(以下称为“凸轮相位”)Cain。另外,通过电磁控制阀来关闭油路、保持超前侧和滞后侧油压室的油压,可以将凸轮相位Cain保持为该时刻的值。
另外,凸轮相位控制装置是通过可变凸轮相位机构进行使凸轮相位Cain收敛于目标凸轮相位Cain_cmd的控制的装置,且具有曲柄角传感器、凸轮角传感器和ECU(Electronically Controlled Unit:电子控制单元)等。在该凸轮相位控制装置中,利用ECU对凸轮相位Cain进行如下的控制。即,根据曲柄角传感器和凸轮角传感器的检测信号计算凸轮相位Cain,根据发动机转速NE和油门开度AP计算目标凸轮相位Cain_cmd。
另外,根据目标值过滤型2自由度滑动模式控制算法,计算用于使凸轮相位Cain收敛于目标凸轮相位Cain_cmd的控制值Rcain,并且,通过利用基于Δ∑调制算法的调制算法对控制值Rcain进行调制,来计算对于可变凸轮相位机构的控制输入Ucain。在该调制算法中,控制输入Ucain的调制宽度被设定成预定值,并且,按照控制值Rcain的值来设定成为其调制宽度的中心的值Ucain_oft_adp。
通过如上那样计算控制输入Ucain,即使在因电磁控制阀的电磁线圈发热、可变凸轮相位机构个体之间的动作特性发生偏差、以及经年变化等而使控制值Rcain产生偏差和变动的情况下,也能够将控制输入Ucain的调制宽度限制成比较小的值,并计算控制输入Ucain,作为Δ∑调制算法特有的频繁发生切换动作的值。结果,可以确保凸轮相位控制的高控制精度。
另外,作为可变凸轮相位机构,本申请人(受让人:美国用)已经提出了特愿2003-289910号公报中所记载的机构。该可变凸轮相位机构为电磁式机构,设于链轮与进气凸轮轴之间,并具有电磁铁和复位弹簧等。在该可变凸轮相位机构中,通过一边克服复位弹簧的弹推力,一边使电磁铁的电磁力变化,可以无级地改变凸轮相位Cain。另外,当将电磁力保持一定时,凸轮相位Cain被保持为电磁力与复位弹簧的弹推力相互平衡的值。
上述后者的电磁式可变凸轮相位机构与前者的油压式装置相比,具有如下优点:浪费的时间更少,可以确保更高的响应性,因此考虑将后者的电磁式可变凸轮相位机构应用于前者的凸轮相位控制装置上.但是,在这种情况下,可能会产生如下的问题.
即,由于可变凸轮相位机构被设于进气凸轮轴与链轮之间,并且链轮通过正时皮带(或正时链条)与曲轴连接,因此当因急剧的油门踏板操作、急剧的刹车踏板操作以及变档中的离合器操作等而引起内燃机转速急剧上升或急剧下降时,由此引起的、作用于链轮上的正时皮带和曲轴等的惯性力急剧变化。在该情况下,在电磁式的可变凸轮相位机构中,由于通过使电磁力与复位弹簧的弹推力之间的相对大小关系变化来改变凸轮相位Cain,因此当上述惯性力急剧变化时,其大小关系偏离由控制输入确定的原来的关系,所以凸轮相位Cain偏离与控制输入对应的值。结果,凸轮相位Cain向目标凸轮相位Cain_cmd的收敛性降低,随着凸轮相位控制的控制精度的降低,存在燃烧状态和排气特性恶化的可能性。
作为解决上述问题的1个方法,考虑将控制输入Ucain的调制宽度设定成能够覆盖因上述凸轮相位Cain的偏移引起的控制值Rcain的变动那样的较大的值。但是,在该方法中,由于将控制输入Ucain的调制宽度的大小反映到凸轮相位Cain自身上,因此反而可能使其控制性降低。即使在采用Δ调制算法或者∑Δ调制算法来代替Δ∑调制算法的情况下,也同样产生上述问题。
发明内容
本发明的目的在于提供一种内燃机的凸轮相位控制装置,即使在因可变凸轮相位机构的结构而使凸轮相位随着内燃机转速的急剧变化产生偏移的情况下,也可以抑制伴随着内燃机转速的急剧变化而产生的相位的偏移,由此可以确保良好的控制性和高控制精度。
为了达到上述目的,本发明提供了一种内燃机的凸轮相位控制装置,其对作为进气凸轮和排气凸轮中的至少一方相对于曲轴的相位的凸轮相位进行控制,其特征在于,包括:
可变凸轮相位机构,其通过改变在使所述凸轮相位超前的方向上作用的第1力与在使所述凸轮相位滞后的方向上作用的第2力之间的大小关系,来改变所述凸轮相位,并且,通过将该第1力和第2力保持为相互平衡的关系,来保持所述凸轮相位;
内燃机转速检测单元,其检测所述内燃机的内燃机转速;
凸轮相位检测单元,其检测所述凸轮相位;
目标凸轮相位设定单元,其设定成为所述凸轮相位控制的目标的目标凸轮相位;
控制值计算单元,其根据预定的控制算法计算用于使所述检测出的凸轮相位跟随所述目标凸轮相位的控制值;以及
控制输入计算单元,其通过根据所述检测出的内燃机转速来校正该计算的控制值,计算用于控制所述可变凸轮相位机构的控制输入。
根据该内燃机的凸轮相位控制装置的结构,根据预定的控制算法来计算用于使所检测的凸轮相位跟随目标凸轮相位的控制值,通过按照所检测的内燃机转速来校正所算出的控制值,计算用于控制可变凸轮相位机构的控制输入.在该可变凸轮相位机构中,由于通过改变在使凸轮相位超前的方向上作用的第1力与在使凸轮相位滞后的方向上作用的第2力之间的大小关系,来改变凸轮相位,并且,通过将第1力和第2力保持为相互平衡的关系来保持凸轮相位,因此在结构上,当因内燃机转速的急剧变化,而使作用于可变凸轮机构上的惯性力急剧变化时,可能会使第1和第2力的关系偏离原来的状态,使凸轮相位偏离与控制输入对应的原来的值.与此相对,在该凸轮相位控制装置中,由于通过按照内燃机转速来校正控制值,来计算用于控制可变凸轮相位机构的控制输入,因此即使在因内燃机转速急剧变化,而使作用于可变凸轮相位机构上的惯性力急剧变化的情况下,也可以合适地地补偿该影响,可以将可变凸轮相位机构的第1和第2力的关系保持在适当的状态.结果,可以抑制随着内燃机转速的急剧变化而产生的凸轮相位的偏移,由此,可以确保凸轮相位控制中的良好的控制性和较高的控制精度.另外,本说明书中的“控制值的计算”和“控制输入的计算”等的“计算”并不限于通过程序进行运算,也包括利用电路生成表示它们的电信号.
优选的是,在所述控制值计算单元的所述预定的控制算法中,根据预定的跟随控制算法,来计算用于使所述检测出的凸轮相位跟随所述目标凸轮相位的跟随控制值,并且,利用基于Δ调制算法、Δ∑调制算法以及∑Δ调制算法中的一种的算法来对该计算的跟随控制值进行调制,从而计算所述控制值。
根据这种优选方式的结构,根据预定的跟随控制算法,来计算用于使所检测出的凸轮相位跟随目标凸轮相位的跟随控制值,并且利用基于Δ调制算法、Δ∑调制算法以及∑Δ调制算法中的一种的算法来对所算出的跟随控制值进行调制,从而计算上述控制值。一般地,在通过可变凸轮相位机构,使凸轮相位跟随目标凸轮相位的变化来进行控制的情况下,当只利用跟随控制算法进行控制时,由于可变凸轮相位机构的非线性特性,控制性和控制精度可能降低。与此相对,在该凸轮相位控制装置中,利用基于Δ调制算法、Δ∑调制算法以及∑Δ调制算法中的一种的算法来对利用预定的跟随控制算法算出的跟随控制值进行调制,来计算控制值,并且由于通过对这样的控制值进行校正来计算用于控制可变凸轮相位机构的控制输入,因此可计算控制输入作为在预定范围内频繁重复反转的值,由此,可以避免可变凸轮相位机构的非线性特性的影响,同时可以进行凸轮相位控制。结果,可以提高凸轮相位控制的控制性和控制精度。
优选的是,所述控制输入计算单元根据所述内燃机转速来计算用于校正所述控制值的校正值,所述控制值计算单元的所述预定的跟随控制算法是基于定义了所述跟随控制值、所述校正值和所述凸轮相位之间的关系的控制对象模型的算法,所述内燃机的凸轮相位控制装置还具有辨识单元,该辨识单元根据所述跟随控制值、所述校正值和所述凸轮相位,利用预定的辨识算法辨识所述控制对象模型的模型参数。
根据该优选方式的结构,利用控制输入计算单元根据内燃机转速计算用于对控制值进行校正的校正值,控制值计算单元的预定的跟随控制算法是基于定义了跟随控制值、校正值及凸轮相位的关系的控制对象模型的算法,利用辨识单元按照跟随控制值、校正值以及凸轮相位,根据预定的辨识算法辨识控制对象模型的模型参数.一般地,在使用控制对象模型的同时执行凸轮相位控制的情况下,由于因预热的进行而导致的内燃机的摩擦变化、可变凸轮相位机构个体之间的动作特性的偏差以及经年变化等,使得控制对象模型的动态特性可能会偏离实际的动态特性.另外,在与校正值无关地构成控制对象模型的情况下,由于根据内燃机转速计算校正值,因此可以认识到随着内燃机转速的变动幅度的增减,控制对象模型的动态特性看上去发生变化,由此控制对象模型的动态特性可能被识别为偏离实际动态特性的方向.与此相对,在该凸轮相位控制装置中,由于控制对象模型用定义了跟随控制值、校正值以及凸轮相位的关系的模型构成,并按照跟随控制值、校正值以及凸轮相位,根据预定的辨识算法辨识该模型参数,因此通过例如使用车载辨识器作为辨识单元,可以避免因预热的进行而导致的内燃机的摩擦变化、可变凸轮相位机构的个体之间的动作特性的偏差、经年变化以及内燃机转速的变动等的影响,同时能够使控制对象模型的动态特性快速地与其实际动态特性相适应.由此,可以进一步提高凸轮相位控制的稳定性和控制精度.
优选的是,上述控制值计算单元的上述预定的控制算法包括预定的响应指定型控制算法。
一般地,在通过可变凸轮相位机构,使凸轮相位跟随目标凸轮相位的变化来进行控制的情况下,有时由于因预热的进行而导致的内燃机的摩擦变化、可变凸轮相位机构的个体之间的动作特性的偏差以及经年变化等,而使凸轮相位相对于目标凸轮相位产生振动性动作、过冲以及偏差。即使在根据内燃机转速来校正控制值的情况下,在内燃机转速的变动幅度较大时,由于该校正程度也变大,因此该问题可能变得更明显。与此相对,根据该内燃机的凸轮相位控制装置,由于控制值计算单元的预定控制算法包括预定的响应指定型控制算法,因此可以避免上述的振动性动作、过冲以及偏差的产生,同时可以使凸轮相位高精度且迅速地跟随目标凸轮相位。由此,可以进一步提高凸轮相位控制的控制性和控制精度。
优选的是,上述控制值计算单元的上述预定的控制算法包括预定的2自由度控制算法。
如上所述,在通过可变凸轮相位机构,使凸轮相位跟随目标凸轮相位的变化来进行控制的情况下,有时产生凸轮相位相对于目标凸轮相位的振动性动作、过冲以及偏差,如发明1的发明那样,即使在根据内燃机转速来校正控制值的情况下,在内燃机的转速的变动幅度较大时,由于该校正程度也变大,因此该问题可能变得更加明显。与此相对,根据该内燃机的凸轮相位控制装置,由于控制值计算单元的预定的控制算法包括预定的2自由度控制算法,因此在使用例如目标值过滤型2自由度控制算法作为2自由度控制算法的情况下,可以根据目标值过滤算法来适当设定凸轮相位对目标凸轮相位的跟随速度,并且根据反馈控制算法来适当设定凸轮相位对目标凸轮相位的跟随动作。结果,可以避免上述的振动性动作、过冲以及偏差的产生,同时可以使凸轮相位高精度地跟随目标凸轮相位,由此,可以进一步提高凸轮相位控制的控制性和控制精度。
优选的是,所述控制输入计算单元根据所述内燃机转速计算用于校正所述控制值的校正值,所述凸轮相位控制装置还具有干扰估计值计算单元,该干扰估计值计算单元根据所述校正值,利用预定的估计算法计算用于对所述可变凸轮相位机构受到的干扰进行补偿的干扰估计值,所述控制值计算单元还根据所述计算的干扰估计值来计算所述控制值。
根据该优选方式的结构,根据内燃机转速计算用于校正控制值的校正值,根据校正值利用预定的估计算法计算用于补偿可变凸轮相位机构受到的干扰的干扰估计值,还根据所算出的干扰估计值来计算控制值.这样,在还根据干扰估计值计算控制值的情况下,在与校正值无关地计算干扰估计值时,内燃机转速的变动幅度增大,校正值的绝对值增大,因此凸轮相位相对于目标凸轮相位产生振动性动作、过冲以及偏差,即使在此时,仍将它们看作是由于干扰而产生的,并计算干扰估计值以补偿该干扰.结果,在内燃机转速的变动幅度降低时,根据该干扰估计值而计算的控制值可能为不适当的值.与此相对,在该凸轮相位控制装置中,由于根据校正值计算干扰估计值,因此即使在校正值随着内燃机转速的变动而变动的情况下,仍可加进校正值,同时计算适当的干扰估计值.由此,可以计算控制值作为能合适地补偿可变凸轮相位机构受到的干扰的值.结果,可以进一步提高凸轮相位控制的控制性以及控制精度.
通过基于附图的下述详细说明来进一步明确本发明的上述及其它的目的、特征、以及优点,在附图中同样的符号表示图中同样的部件。
附图说明
图1是表示本发明第1实施方式的凸轮相位控制装置及应用了该装置的内燃机的概略结构的图。
图2是示意性地表示可变凸轮相位机构的概略结构的剖面图。
图3是沿图2的A-A线方向看到的行星齿轮装置的示意图。
图4是沿图2的B-B线方向看到的电磁制动器的示意图。
图5是表示可变凸轮相位机构的动作特性的特性曲线。
图6是表示可变凸轮相位机构的电磁铁的动作特性的特性曲线。
图7是表示第1实施方式的凸轮相位控制装置的概略结构的方框图。
图8是表示计算模型参数的基本值a1_bs、a2_bs所使用的图表的一例的图。
图9是表示计算校正系数Kasc所使用的图表的一例的图。
图10是表示计算校正值Rdne所使用的图表一例的图。
图11是用于说明发动机转速急剧变化时作用于可变凸轮相位机构的惯性力的影响的特性曲线。
图12是表示DSM控制器的概略结构的方框图。
图13是表示凸轮相位控制处理的流程图。
图14是表示计算目标凸轮相位的映射值的映射图的一例的图。
图15是表示第1实施方式的凸轮相位控制装置的控制结果的一例的时序图。
图16是表示比较例的控制结果的时序图。
图17是表示计算校正值Rdne所使用的图表的变形例的图。
图18是表示第2实施方式的凸轮相位控制装置中的SDM控制器的概略结构的方框图。
图19是表示第3实施方式的凸轮相位控制装置中的DM控制器的概略结构的方框图。
具体实施方式
下面参照附图对本发明第一实施方式的凸轮相位控制装置进行说明。本实施方式的凸轮相位控制装置1控制内燃机(以下称为“发动机”)3的进气凸轮5的相位(以下称为“凸轮相位”)Cain,即进气凸轮轴4相对于曲轴10的相对相位,如图1所示,该凸轮相位控制装置1具有改变凸轮相位Cain的可变凸轮相位机构30,和用于控制该可变凸轮相位机构30的ECU 2等。如后面所述,该ECU 2执行凸轮相位控制处理。
发动机3是4冲程DOHC型汽油发动机,具有进气凸轮轴4和排气凸轮轴7.进气凸轮轴4上针对每个气缸设置有对进气阀6进行开闭驱动的进气凸轮5,在排气凸轮轴7上针对每个气缸设置有对排气阀9进行开闭驱动的排气凸轮8.
如图2所示,在该进气凸轮轴4上设置有可自由旋转的链轮4a,且该链轮4a被配置成与进气凸轮轴同轴。该链轮4a通过正时链条4b与曲轴10连接,并且,通过上述可变凸轮相位机构30的后述的行星齿轮装置31与进气凸轮轴4连接。根据上述结构,曲轴10每旋转2周,进气凸轮轴4旋转1周。另外,排气凸轮轴7也具有与其一体的链轮(未图示),并且该排气凸轮轴7通过该链轮和未图示的正时链条与曲轴10连接,由此,曲轴10每旋转2周,排气凸轮轴转1周。
如后面所述,可变凸轮相位机构30是通过电磁力无级地改变凸轮相位Cain的电磁式机构,如图2~图4所示,其具有行星齿轮装置31和电磁制动器32等。
该行星齿轮装置31是在进气凸轮轴4和链轮4a之间传递旋转的装置,具有:齿圈31a、3个行星轮31b、太阳轮31c以及行星架31d。该齿圈31a与电磁制动器32的后述的外壳33连接,并与外壳33同轴且一体地旋转。另外,太阳轮31c安装在进气凸轮轴4的末端部,并与进气凸轮轴4同轴且一体地旋转。
另一方面,行星架31d大致形成为三角形,在其3个角部分别突出设置有轴31e。行星架31d通过这些轴31e与链轮4a连接,由此,与链轮4a同轴且一体地旋转。
另外,各行星轮31b可自由旋转地被行星架31d的各轴31e所支承,这些行星轮31b配置在太阳轮31c与齿圈31a之间,并始终与它们啮合。
并且,上述电磁制动器32具有外壳33、磁芯34、电磁铁35以及复位弹簧36。外壳33形成为中空状,在其内部设有磁芯34,该磁芯34可相对地自由转动。磁芯34具有截面为圆形的基部34a和从该基部34a呈放射状延伸的2个臂部34b、34b。磁芯34的基部34a安装在行星架31d上,由此,与行星架31d同轴且一体地旋转。
另一方面,在外壳33的内周面相互隔开间隔地设有共计2组止动器33a、33b,其中以最滞后位置和最超前位置的一对止动器33a、33b为一组。磁芯34的各臂部34b配置在一对止动器33a、33b之间,由此,磁芯34可在最滞后位置(图4实线所示位置)和最超前位置(图4所示双点划线所示位置)之间相对于外壳33相对转动,最滞后位置为臂部34b与最滞后位置止动器33a抵接并卡止的位置,最超前位置为臂部34b与最超前位置止动器33b抵接并卡止的位置。
另外,复位弹簧36以被压缩的状态搭在一个最超前位置止动器33b和与该止动器33b对置的臂部34b之间,通过该复位弹簧36的弹推力Fspr(第2力),臂部34b被向最滞后位置止动器33a侧弹推。
另一方面,电磁铁35安装在与复位弹簧35相反一侧的最超前位置止动器33b上,并以在同一平面上的状态设置在该最超前位置止动器33b的与臂部34b对置的一侧的端部。该电磁铁35与ECU 2电连接,当该电磁铁35被来自ECU 2的控制输入Ucain(电压信号)励磁时,电磁铁35利用该电磁力Fsol(第1力),一边克服复位弹簧36的弹推力Dspr一边吸引对置的臂部34b,使其向最超前位置止动器33b侧转动。
对如上构成的可变凸轮相位机构30的动作进行说明.在该可变凸轮相位机构30中,在没有对电磁制动器32的电磁铁35励磁时,磁芯34通过复位弹簧36的弹推力Fspr被保持在其臂部34b与最滞后位置止动器33a抵接的最滞后位置,由此,凸轮相位Cain保持为最滞后值Cainrt(参照图5).
在该状态下,当链轮4a随着发动机运转中的曲轴10的旋转而向图4的箭头Y1方向旋转时,行星架31d和齿圈31a一体地旋转,由此行星轮31b不旋转,而太阳轮31c与行星架31d和齿圈31a一体地旋转。即,链轮4a与进气凸轮轴4一体地向箭头Y1方向旋转。
另外,在磁芯34被保持在最滞后位置的状态下,当电磁铁35被来自ECU 2的控制输入Ucain励磁时,通过电磁铁35的电磁力Fsol,磁芯34的臂部34b克服复位弹簧36的弹推力Fspr被吸引向最超前位置止动器33b侧即最超前位置侧,并转动至电磁力Fsol与弹推力Fspr相互平衡的位置。换言之,外壳33相对磁芯34向与箭头Y1相反的方向相对转动。
由此,齿圈31a相对行星架31d向图3的箭头Y2方向相对转动,同时,行星轮31b向图3的箭头Y3方向转动,由此,太阳轮31c向图3的箭头Y4方向转动。结果,进气凸轮轴4相对于链轮4a向链轮的旋转方向(即图3的箭头Y2的反方向)相对转动,由此凸轮相位Cain超前。
在该情况下,外壳33的转动通过齿圈31a、行星轮31b以及太阳轮31c传递给进气凸轮轴4,因此利用行星齿轮装置30的加速作用,进气凸轮轴4相对于链轮4a转动外壳33的转动角度所增大的角度部分。即,进气凸轮5的凸轮相位Cain的超前量被设定成外壳33的转动角度所增大的值。这是由于电磁铁35的电磁力Fsol在可以作用的距离上有限制,因此对其进行补偿,使凸轮相位Cain在更大的范围内变化。
如上所述,在可变凸轮相位机构30中,电磁力Fsol向使凸轮相位Cain超前的方向作用,复位弹簧36的弹推力Fspr向使凸轮相位Cain滞后的方向作用。另外,在电磁力Fsol不变化的情况下,凸轮相位Cain被保持为电磁力Fsol和弹推力Fspr互相平衡的值。
接下来,对上述构成的可变凸轮相位机构30的动作特性进行说明。如图5所示,在可变凸轮相位机构30中,凸轮相位Cain根据向电磁铁35的控制输入Ucain,在最滞后值Cainrt(例如,凸轮角0°)和最超前值Cainad(例如,凸轮角55°)之间连续变化,并且,具有表示控制输入Ucain增大的方向时的凸轮相位Cain值的实线曲线与表示控制输入Ucain减小的方向时的凸轮相位Cain值的虚线曲线相互不同的、所谓的迟滞特性。
如图6所示,这是由于具有如下特性而引起的:在电磁铁35被控制输入Ucain励磁、产生电磁力Fsol时,起动时的电磁力Fsol的上升延迟。另外,如该图所示,电磁铁35的电磁力Fsol在控制输入Ucain从0值向正侧增大的情况下,以及在从0值向负侧减少的情况下,具有表示相同倾向的特性,即具有以控制输入Ucain的0值为中心表示线性对称的倾向的特性。因此,当将控制输入Ucain设定成以0值为中心反转的值时,电磁力Fsol相互抵消。
由于可变凸轮相位机构30具有上述特性,因此在本实施方式中,通过后述的控制算法,在发动机转速NE稳定的正常运转中,计算控制输入Ucain,作为在正值的规定最大值Ucainmax(参照图6)和在正值的规定最小值Ucainmin(参照图6)之间重复进行反转的值.如图6所示,该最小值Ucainmin被设定成起动时的电磁力Fsol的上升延迟区域范围之外的值,由此,电磁力Fsol被控制成:根据控制输入Ucain,在脱离了起动时的上升延迟区域的范围内大致呈线性变化.结果,凸轮相位Cain被控制成:在最滞后值Cainrt和最超前值Cainad之间线性变化,而相对于控制输入Ucain几乎不表现出迟滞特性(参照后述的图11中的实线所示的曲线).
在本实施方式中,使用如上所述的可变凸轮相位机构30来代替现有的油压式可变凸轮相位机构的原因如下所述。即,现有的油压式可变凸轮相位机构的油压由于油压泵等的起动而上升,在直到可以控制凸轮相位Cain之前,需要时间,并且,在油温极低时,具有响应性恶化的特性,存在浪费的时间长、响应性低的缺点。相对之下,本实施方式的可变凸轮相位机构30具有如下优点:不需要等待油压的上升,不会受到油温的影响,从起动时即可适当地控制凸轮相位Cain,并且浪费的时间更少,可以确保更高的响应性,因此利用该可变凸轮相位机构30。
另一方面,在进气凸轮轴4的与可变凸轮相位机构30相反的一侧的端部设有凸轮角传感器20。该凸轮角传感器20(凸轮相位检测单元)例如由永久磁铁转子和MRE传感器(pick-up)构成,随着进气凸轮轴4的旋转,每到预定的凸轮角(例如1°)向ECU 2输出作为脉冲信号的CAM信号。
另外,在发动机3上设有曲柄角传感器21。曲柄角传感器21例如与凸轮角传感器20同样地由永久磁铁转子和MRE传感器构成,随着曲轴10的旋转,该曲柄角传感器21向ECU 2输出均作为脉冲信号的CRK信号和TDC信号。
CRK信号每到预定的曲柄角(例如每到30度)输出1个脉冲。ECU2根据该CRK信号计算发动机3的转速(以下称为“发动机转速”)NE,并根据CRK信号和来自上述凸轮角传感器20的CAM信号计算凸轮相位Cain。另外,TDC信号是表示各气缸的活塞11位于比吸入行程开始时的TDC位置稍微靠前的规定曲柄角度位置的信号,每到预定的曲柄角输出1个脉冲。另外,在本实施方式中,曲柄角传感器21相当于发动机转速检测单元和凸轮相位检测单元。
并且,ECU 2与油门开度传感器22和点火开关(以下称为“IG·SW”)23连接。该油门开度传感器22检测未图示的油门踏板的开度(以下称为“油门开度”)AP,并将该检测信号输出给ECU 2。另外,IG·SW 23通过点火钥匙(未图示)的操作而被接通(ON)/断开(OFF),并且将表示其ON/OFF状态的信号输出给ECU 2。
ECU 2由微计算机构成,该微计算机由I/O接口、CPU、RAM和ROM等构成,ECU 2根据上述各种传感器20~22的检测信号和IG·SW23的ON/OFF信号等判别发动机3的运转状态,并且,如下所述,执行凸轮相位控制处理。
另外,在本实施方式中,ECU 2相当于发动机转速检测单元、凸轮相位检测单元、目标凸轮相位设定单元、控制值计算单元、控制输入计算单元,辨识单元以及干扰估计值计算单元。
接下来,对本实施方式的凸轮相位控制装置1进行说明。如图7所示,该凸轮相位控制装置1包括:2自由度滑动模式控制器(以下称为“2自由度SLD控制器”)40、参数调度器(parameter scheduler)41、部分参数辨识器42、校正值计算部43、加法器44以及DSM控制器50。具体地说,它们都由ECU 2构成。
在该凸轮相位控制装置1中,如下所述,计算控制输入Ucain,并通过将该控制输入Ucain输入至可变凸轮相位机构30,将凸轮相位Cain控制成目标凸轮相位Cain_cmd。另外,如后所述,根据发动机3的运转状态计算该目标凸轮相位Cain_cmd。
首先,利用2自由度SLD控制器40,根据目标凸轮相位Cain_cmd和凸轮相位Cain等,通过后述的控制算法,计算SLD控制输入Rsld.另外,在本实施方式中,2自由度SLD控制器40相当于控制值计算单元,SLD控制输入Rsld相当于跟随控制值.
另外,利用参数调度器41计算后述控制对象模型的模型参数a1、a2,然后利用部分参数辨识器42,根据后述的辨识算法,计算控制对象模型的模型参数b1、b2和干扰估计值c1。这些模型参数a1、a2、b1、b2和干扰估计值c1用于在2自由度SLD控制器40中计算SLD控制输入Rsld。另外,在本实施方式中,部分参数辨识器42相当于干扰估计值计算单元和辨识单元。
并且,如后所述,利用校正值计算部43(控制输入计算单元),根据发动机转速NE计算校正值Rdne,利用加法器44,计算虚拟控制输入Rcain作为SLD控制输入Rsld和校正值Rdne的和。该虚拟控制输入Rcain用于在部分参数辨识器42中计算模型参数b1、b2和干扰估计值c1。
另外,在DSM控制器50中,根据SLD控制输入Rsld和校正值Rdne,通过后述的控制算法,计算控制输入Ucain。另外,在本实施方式中,DSM控制器50相当于控制值计算单元和控制输入计算单元。
接下来,对上述2自由度SLD控制器40进行说明。在该2自由度SLD控制器40中,通过下式(1)~(6)所示的目标值过滤型2自由度滑动模式控制算法,计算SLD控制输入Rsld,作为用于使凸轮相位Cain跟随目标凸轮相位Cain_cmd的值。另外,根据后述的理由,该SLD控制输入Rsld被计算成正值。在下式(1)~(6)中,带标号(k)的各离散数据表示以规定周期被取样(或计算)的数据,标号k表示各离散数据的取样周期的顺序。例如,标号k表示是在本次的取样定时被取样的值,标号k-1表示是在上次的取样定时被取样的值。这一点在以下的离散数据中也是同样。另外,在下面的说明中,适当省略各离散数据中的标号(k)。
Cain_cmd_f(k)=-POLE_f·Cain_cmd_f(k-1)+(1+POLE_f)·Cain_cmd(k)
                                                     ……(1)
Rsld(k)=Req(k)+Rrch(k)                              ……(2)
Req ( k ) = 1 b 1 ( k ) { ( 1 - POLE - a 1 ( k ) ) · Cain ( k ) + ( POLE - a 2 ( k ) ) · Cain ( k - 1 )
- b 2 ( k ) · Rcain ( k - 1 ) - c 1 ( k ) + Cain _ cmd _ f ( k )
+ ( POLE - 1 ) · Cain _ cmd _ f ( k - 1 ) - POLE · Cain _ cmd _ f ( k - 2 ) }
……(3)
Rrch ( k ) = - Krch b 1 ( k ) · σs ( k ) ……(4)
σs(k)=Ecain(k)+POLE·Ecain(k-1)                    ……(5)
Ecain(k)=Cain(k)-Cain_cmd_f(k)                      ……(6)
利用该控制算法,首先根据式(1)所示的一次延迟过滤算法,计算目标凸轮相位的过滤值Cain_cmd_f。在该式(1)中,POLE_f是目标值过滤设定参数,并被设定成满足-1<POLE_f<0的关系的值。
然后,根据式(2)~(6)所示的滑动模式控制算法,计算SLD控制输入Rsld。即,如式(2)所示,算出SLD控制输入Rsld作为等价控制输入Req和到达律输入Rrch的和。
该等价控制输入Req由式(3)算出。在该式(3)中,a1、a2、b1、b2表示后述式(7)的控制对象模型的模型参数,c1表示用于补偿干扰和模型化误差的干扰估计值。这些模型参数a1、a2由参数调度器41算出,模型参数b1、b2和干扰估计值c1由部分参数辨识器42算出(辨识)。另外,式(3)中的POLE是切换函数设定参数,并被设定成满足-1<POLE_f<POLE<0的关系的值。
另一方面,到达律输入Rrch由式(4)算出。在该式(4)中,Krch表示预定的到达律增益,σs为如式(5)那样定义的切换函数。该式(5)的Ecain是根据式(6)计算出的跟随误差。
上述式(1)~(6)如下导出。首先,将控制对象定义成以虚拟控制输入Rcain(=Rsld+Rdne)作为输入、以凸轮相位Cain作为输出的系统,并作为离散时间系统模型进行模型化,从而得到下述式(7)。这里,如前所述,由于虚拟控制输入Rcain被作为SLD控制输入Rsld和校正值Rdne的和而算出,因此上述式(7)相当于定义了SLD控制输入Rsld、校正值Rdne及凸轮相位Cain之间的动态特性的关系。
Cain(k+1)=a1·Cain(k)+a2·Cain(k-1)
           +b1·Rcain(k)+b2·Rcain(k-I)+cI       ……(7)
接下来,考虑将该式(7)中的模型参数a1、a2、b1、b2及干扰估计值c1置换成由参数调度器41和部分参数辨识器42计算出的算出值(辨识值)的模型,根据这种模型,当使用目标值过滤型2自由度滑动模式控制理论来使凸轮相位Cain跟随目标凸轮相位Cain_cmd时,可以导出上述式(1)~(6)。
根据上述2自由度SLD控制器40的控制算法,能够以较高的水平确保凸轮相位Cain对目标凸轮相位Cain_cmd的跟随性、跟随动作及干扰抑制能力。即,在式(1)的过滤算法中,通过在-1<POLE_f<0的范围内任意设定目标值过滤设定参数POLE_f,可以自由地指定跟随性。另外,在式(2)~(6)的滑动模式控制算法中,可以根据干扰估计值c1来抑制模型化误差和干扰的影响,并且通过在-1<POLE<0的范围内任意设定切换函数设定参数POLE,可以自由地指定跟随动作和干扰抑制能力。
接下来,对上述参数调度器41进行说明,如下所示,在该参数调度器41中计算模型参数a1、a2。首先,根据发动机转速NE,通过检索图8所示的图表来计算模型参数a1、a2的基本值a1_bs、a2_bs。在该图表中,基本值a1_bs被设定成发动机转速NE越高,该基本值a1_bs越大,与此相反,基本值a2_bs被设定成发动机转速NE越高,该基本值a2_bs越小。这是由于当发动机转速NE上升时,正时链条4b产生发动机转速NE以外的周期的动作,凸轮相位Cain的动作稳定性降低,结果,上述模型的动态特性发生变化,因此要使模型与该动态特性的变化相适应。
另外,通过检索图9所示的图表来计算校正系数Kasc。在该图表中,校正系数Kasc被设定成凸轮相位Cain越是最超前值Cainad侧的值,校正系数Kasc的值越大。这是因为当使凸轮相位Cain超前时,气门重叠(valve overlap)即内部EGR量增大,由此燃烧变动增加,通过正时链条4b传递给可变凸轮相位机构30,凸轮相位Cain的动作的稳定性降低,所以需要对此进行补偿。
然后,使用上述那样计算出的基本值a1_bs、a2_bs和校正系数Kasc,通过下式(8)、(9)计算模型参数a1、a2。
a1=a1_bs·Kasc                                    ……(8)
a2=a2_bs·Kasc                                    ……(9)
接下来,对上述部分参数辨识器42进行说明。在该部分参数辨识器42中,根据下式(10)~(17)所示的递归型辨识算法,来辨识值模型参数b1、b2和干扰估计值c1的向量θ。即,部分参数辨识器42作为车载辨识器来构成。
θ(k)=θ(k-1)+KP(k)·E_id(k)                       ……(10)
θT(k)=[b1(k),b2(k),c1(k)]                       ……(11)
E_id(k)=W(k)-W_hat(k)                              ……(12)
W(k)=Cain(k)-a1(k)·Cain(k-1)-a2(k)·Cain(k-2)     ……(13)
W_hat(k)=θT(k)·ζ(k)
        =b1(k)·Rcain(k-1)+b2(k)·Rcain(k-2)+c1(k) ……(14)
ζT(k)=[Rcain(k-1),Rcain(k-2),1]                 ……(15)
KP ( k ) = P ( k ) · ζ ( k ) 1 + ζ T ( k ) · P ( k ) · ζ ( k ) ……(16)
P ( k + 1 ) = 1 λ 1 { I - λ 2 · P ( k ) · ζ ( k ) · ζ T ( k ) λ 1 + λ 2 · ζ T ( k ) · P ( k ) · ζ ( k ) } · P ( k ) ……(17)
上述式(10)的向量θ是如式(11)那样定义了其转置矩阵的向量,式(10)的KP表示增益系数的向量,E_id表示跟随误差。根据上述式(12)~式(15)计算该跟随误差E_id。式(12)的W表示如式(13)那样定义的虚拟输出,式(12)的W_hat表示如式(14)那样定义的虚拟输出的辨识值。式(14)的ζ(k)是如式(15)那样定义了其转置矩阵的向量。并且,根据式(16)计算上述增益系数的向量KP,式(16)的P是如式(17)那样定义的3次方阵。另外,式(17)的I表示3次单位矩阵,λ1、λ2表示加权参数。
在上述的辨识算法中,根据式(17)的加权参数λ1、λ2的设定,选择下述4个辨识算法中的1个。
即,
λ1=1、λ2=0,固定增益算法
λ1=1、λ2=1,最小平方算法
λ1=1、λ2=λ,递减增益算法
λ1=λ、λ2=1,加权最小平方算法
其中,λ为设定成0<λ<1的预定值。
另外,在本实施方式的部分参数辨识器42中,为了将辨识值精度和向量θ对最佳值的跟随速度均保持为最佳,采用加权最小平方算法。
上述式(10)~(17)的算法可以如下导出。即,在上述式(7)的模型中,当使各变量移动一个离散时间,将模型参数a1、a2、b1、b2和干扰估计值c1置换成它们的计算值和辨识值,并将Cain的项移项至左边时,可得到下式(18)。
Cain(k)-a1(k)·Cain(k-1)-a2(k)·Cain(k-2)=b1(k)·Rcain(k-1)
                                           +b2(k)·Rcain(k-2)+c1(k)
                                                   ……(18)
在该式(18)中,当将左边定义为W,将右边定义为W_hat时,可得到上述式(13)、(14).这里,若将W考虑成虚拟的控制对象的输出,将W_hat考虑成这种控制对象的输出的辨识值,则可以将式(14)考虑成这种虚拟控制对象的模型.因此,当为了对虚拟控制对象模型的模型参数进行辨识值,使虚拟输出W接近虚拟输出的辨识值W_hat,而使用递归型辨识算法时,可导出上述式(10)~(17).
接下来,对上述校正值计算部43进行说明。在该校正值计算部43中,根据旋转变化量DNE,通过检索图10所示的表格,来计算校正值Rdne。该旋转变化量DNE被作为发动机转速NE的本次值和上次值的偏差[NE(k)-NE(k-1)]来算出。另外,在图10中,DNE1表示正的预定值。
在该图表中,校正值Rdne在-DNE1≤DNE≤DNE1的范围内被设定成0值,在DNE1<DNE的范围内,被设定成负值,并且该校正值Rdne被设定成旋转变化量DNE越大,校正值Rdne的绝对值越大。另外,在DNE<-DNE1的范围内,校正值Rdne被设定成正值,并且被设定成旋转变化量DNE越大,该校正值越大。
如上述那样设定校正值Rdne的理由如下。即,在本实施方式的可变凸轮相位机构30中,如前所述,链轮4a通过正时链条4b与曲轴10连接,并且与电磁制动器32的磁芯34一体地旋转,因此在发动机转速NE从稳定的正常运转状态急剧上升的情况下,正时链条4b和曲轴10等的惯性力急剧增加。由此,电磁制动器32的磁芯34压缩复位弹簧36同时相对于外壳33向图4的箭头Y1方向相对旋转。即,在发动机转速NE急剧上升的情况下,随之急剧增加的惯性力向使凸轮相位Cain超前的方向作用,因此使凸轮相位Cain超前所必需的控制输入Ucain的值比正常运转的情况要小。
结果,如图11所示,发动机转速NE急剧上升时的凸轮相位Cain的特性曲线(双点划线所示的曲线),相对于正常运转时的特性曲线(实线所示曲线)向控制输入Ucain较小的一例偏移,当计算控制输入Ucain作为在上述最大值Ucainmax和最小值Ucainmin之间反复进行反转的值时,凸轮相位Cain变成被保持为最超前值Cainad的状态。因此,为了补偿这种急剧增加的惯性力的影响,避免凸轮相位Cain被保持为最超前值Cainad的状态,可以根据惯性力的增大程度,将控制输入Ucain校正成更小的值。
在该情况下,如后面所述,由于在DSM控制器50中通过将增益调整值u和校正值Rdne相加来计算控制输入Ucain,因此为了将控制输入Ucain校正成更小的值,可以将校正值Rdne设定成负值。除此之外,由于旋转变化量DNE反映上述惯性力的增大程度,因此可以根据这种旋转变化量DNE来计算校正值Rdne。根据以上理由,校正值Rdne在DNE1<DNE的范围内被设定成负值,并且被设定成旋转变化量DNE越大,校正值Rdne的绝对值越大。
另一方面,在发动机转速NE急剧降低的情况下,与上述相反,由于正时链条4b和曲轴10等的惯性力急剧减小,因此电磁制动器32的磁芯34拉伸复位弹簧36,同时相对于外壳33向与图4的箭头Y1相反的方向相对旋转。即,在发动机转速NE急剧减小的情况下,随之急剧减小的惯性力向使凸轮相位Cain滞后的方向作用,因此使凸轮相位Cain超前所需要的控制输入Ucain的值大于正常运转时的值。
结果,如图11所示,发动机转速NE急剧降低时的凸轮相位Cain的特性曲线(虚线所示的曲线),相对于正常运转时的特性曲线向控制输入Ucain较大的一侧偏移,当与正常运转时同样地,将控制输入Ucain设定成在最大值Ucainmax和最小值Ucainmin之间反复反转的值时,凸轮相位Cain变成被保持为最滞后值Cainrt的状态.因此,为了补偿这种急剧减小的惯性力的影响,避免凸轮相位Cain被保持为最滞后值Cainrt的状态,可以根据惯性力的减少程度,将控制输入Ucain校正成更大的值.据此,校正值Rdne在DNE<-DNE1的范围内,被设定成旋转变化量DNE越大,校正值Rdne的值越大.
并且,在-DNE1≤DNE≤DNE1的范围内,发动机3处于正常运转状态,因为正时链条4b和曲轴10等的惯性力的变化程度较小、可以忽视对凸轮相位Cain的影响,因此将校正值Rdne设定成0值。
如上所述,在2自由度SLD控制器40和校正值计算部43中,分别计算SLD控制输入Rsld和校正值Rdne,并使用它们,通过加法器44根据下式(19)计算虚拟输入控制Rcain。
Rcain(k)=Rsld(k)+Rdne(k)                    ……(19)
接下来,参照图12,对上述DSM控制器50进行说明。如下所述,该DSM控制器50通过使用了Δ∑调制算法的控制算法,根据上述SLD输入控制Rsld(k)和校正值Rdne(k),计算控制输入Ucain(k)。
即,如图12所示,当将来自2自由度SLD控制器40的SLD控制输入Rsld(k)输入到限制器50a时,通过该限制器50a生成对SLD控制输入Rsld(k)进行了限制处理的限制值r1(k),通过差分器50b,生成限制值偏差r2(k),作为限制值r1(k)与来自偏移值发生部50c的规定偏移值Ucain_oft之间的偏差。并且,通过差分器50d,生成偏差信号值δ(k),作为该限制值偏差r2(k)与被延迟元件50e延迟的调制输出u”(k-1)之间的偏差。
接下来,通过积分器50f生成偏差积分值σ(k),作为偏差信号值δ(k)与偏差积分值的延迟值σ(k-1)的和,然后通过中继要素50g根据偏差积分值σ(k)生成调制输出u”(k),作为预定值+R/-R。并且,通过放大器50h,生成作为控制值的增益调整值u(k),来作为利用规定振幅调整增益F(=KDSM)对调制输出u”(k)进行了增益调整后的值,然后通过加法器50i生成控制输入Ucain(k),作为来自上述信号发生器50c的规定偏移值Ucain_oft、增益调整值u(k)、以及校正值Rdne的总和。
该DSM控制器50的控制算法用下式(20)~(26)表示。
r1(k)=Lim(Rsld(k))                               ……(20)
r2(k)=r1(k)-Ucain_oft                            ……(21)
δ(k)=r2(k)-u”(k-1)                             ……(22)
σ(k)=σ(k-1)+δ(k)                              ……(23)
u”(k)=fn1(σ(k))                                ……(24)
u(k)=KDSM·u”(k)                                ……(25)
Ucain(k)=Ucain_oft+u(k)+Rdne(k)
                                                  ……(26)
在上述式(20)中,Lim(Rsld(k))表示利用上述限制器50a对SLD控制输入Rsld(k)进行了限制处理后的限制值,具体来讲,计算该Lim(Rsld(k))作为将SLD控制输入Rsld(k)限制在由预定的下限值rmin和预定的上限值rmax所预定的范围内的值。即,在Rsld(k)<rmin时,Lim(Rsld(k))=rmin,在rmin≤Rsld(k)≤rmax时,Lim(Rsld(k))=Rsld(k),在Rsld(k)>rmax时,Lim(Rsld(k))=rmax。根据下述理由,该下限值rmin和上限值rmax均被设定成正值。
另外,在上述式(24)中,fn1(σ(k))是相当于上述中继要素50g的非线性函数,其值在σ(k)≥0时,fn1(σ(k))=R,在σ(k)<0时,fn1(σ(k))=-R(另外,在σ(k)=0时,也可以设定成fn1(σ(k))=0)。另外,根据后述理由,该值R被设定成始终满足R>|r2(k)|的关系的正的预定值。另外,上述式(25)的KDSM是相当于上述振幅调整增益F的振幅调整增益,根据后述理由,其被设定成小于等于值1的值。
在DSM控制器50中,通过基于上述的Δ∑调制算法的控制算法,计算控制输入Ucain,因此,在根据该控制输入Ucain来控制可变凸轮相位机构30的情况下,为了确保良好的控制性和较高的控制精度,必须计算控制输入Ucain,作为在最大值Ucainmax和最小值Ucainmin之间频繁重复反转、并且向最大值Ucainmax的反转频度和向最小值Ucainmin的反转频度的比例各接近一半的值。因此,为了实现该目标,如前所述,SLD控制输入Rsld被计算成正值,并将预定值R、限制处理的上下限值rmin、rmax和偏移值Ucain_oft设定成如前所述的值。
另外,由于计算控制输入Ucain作为偏移值Ucain_oft、增益调整值u、和校正值Rdne的总和,因此,即使在发动机转速NE急剧变化的情况下,也能通过补偿伴随该急剧变化而产生的、正时链条4b和曲轴10等的惯性力的急剧变化程度的影响,来计算控制输入Ucain作为在最大值Ucainmax和最小值Ucainmin之间频繁重复反转的值。由此,可以确保良好的控制性和较高的控制精度。
下面,参照图13对由ECU 2执行的凸轮相位Cain的控制处理进行说明。如该图所示,在该处理中,首先,在步骤1(图中省略为S1。以下相同)中,判别标记F_EVTCOK是否为“1”。在未图示的故障判定处理中,在可变凸轮相位机构30正常时,将该标记F_EVTCOK设成“1”,在可变凸轮相位机构30发生故障时,将该标记F_EVTCOK设成“0”。
在步骤1的判别结果为“是”、可变凸轮相位机构30正常时,前进至步骤2,判别发动机起动标记F_ENGSTART是否为“1”。在发动机3的起动过程中,将该发动机起动标记F_ENGSTART设成“1”,在发动机3起动结束时,将该发动机起动标记F_ENGSTART设成“0”。
在该判别结果为“否”、发动机3起动结束时,前进至步骤3,根据发动机转速NE和油门开度AP,通过检索图14所示的映射图,来计算目标凸轮相位的映射值Cain_cmd_map。在该图中,AP1~AP3表示AP1<AP2<AP3的关系成立的油门开度AP的预定值。在该映射图中,目标凸轮相位Cain_cmd在油门开度AP较小且处于中间旋转区域时,被设定成比其它时候更靠近超前侧的值。这是由于在这种运转状态下,必须减小内部EGR量,减小泵损。
接下来,前进至步骤4,将在步骤3中计算出的映射值Cain_cmd_map设定成目标凸轮相位Cain_cmd。接下来,前进至步骤5,如前所述,计算模型参数a1、a2。即,根据发动机转速NE,通过检索图8的图表,计算基本值a1_bs、a2_bs,根据凸轮相位Cain,通过检索图9的图表,计算校正系数Kasc,并且通过前述式(8)、(9),计算模型参数a1、a2。
在紧接着步骤5的步骤6中,根据前述式(10)~(17)的递归型辨识算法,计算模型参数b1、b2和干扰估计值c1。接下来,在步骤7中,根据前述式(1)~(6)的目标值过滤型2自由度滑动模式控制算法,计算SLD控制输入Rsld。
接下来,在步骤8中,通过从发动机转速的本次值NE(k)中减去前次值NE(k-1),来计算旋转变化量DNE,然后,在步骤9中,如前所述,根据旋转变化量DNE,通过检索图10所示的图表,来计算校正值Rdne。
接下来,前进至步骤10,将虚拟控制输入Rcain设定成在步骤7中计算出的SLD控制输入Rsld和在步骤9中计算出的校正值Rdne的和。该虚拟控制输入Rcain被存储在RAM中,例如在执行下次的凸轮相位控制处理时,该虚拟控制输入Rcain被用作虚拟控制输入的前次值Rcain(k-1)。
接下来,在步骤11中,在根据上述式(20)~(26)的控制算法计算出控制输入Ucain后,结束本处理。
另一方面,在步骤2的判别结果为“是”、发动机正在起动时,前进至步骤12,将目标凸轮相位Cain_cmd设定成预定的起动时用值Cain_cmd_st。接着,如上所述,执行步骤5~11之后,结束本处理。
另一方面,在步骤1的判别结果为“否”、可变凸轮相位机构30发生故障时,前进至步骤13,在将控制输入Ucain设成0值后,结束本处理。由此,将凸轮相位Cain控制成最滞后值Cainrt。
接下来,对如上构成的本实施方式的凸轮相位控制装置1的凸轮相位Cain的控制结果进行说明。图15是表示在将目标凸轮相位Cain_cmd保持为固定值的状态下,发动机转速NE急剧增加时的本实施方式的凸轮相位控制装置1的控制结果示例。图16是表示为了进行比较,而在将目标凸轮相位Cain_cmd保持为固定值、并且设定成校正值Rdne=0的状态下,发动机转速NE急剧增加时的控制结果的示例。
参照该两个图,可知:在发动机转速NE开始增大时(t1时刻、t11时刻),与比较例相比,本实施方式的控制结果中的、在上述时刻之后的凸轮相位Cain相对于目标凸轮相位Cain_cmd的背离程度更小。另外,可知:与比较例的时间(t11~t12)相比,本实施方式的控制结果中的、凸轮相位Cain收敛到目标凸轮相位Cain_cmd的时间(t1~t2)更短。这样,可知:根据本实施方式的凸轮相位控制装置1,通过使用校正值Rdne计算控制输入Ucain,即使在因发动机转速NE急剧变化而引起作用于可变凸轮相位机构30的惯性力急剧变化的情况下,也能够合适地补偿其影响。
如上所述,根据第1实施方式的凸轮相位控制装置,根据目标值过滤型2自由度滑动模式控制算法,算出SLD控制输入Rsld,通过利用基于Δ∑调制算法的控制算法对其进行调制,可以算出控制输入Ucain。这样,通过对SLD控制输入Rsld进行调制,来计算控制输入Ucain作为在预定的最大值Ucainmax和预定的最小值Ucainmin之间频繁反转的值,因此与只利用SLD控制输入Rsld来对可变凸轮相位机构30进行控制的情况相比,可以避免由于可变凸轮相位机构30的非线性特性引起的控制性和控制精度的降低。另外,由于计算控制输入Ucain作为利用校正值Rdne进行校正后的值,因此即使在因发动机转速NE急剧变化而引起作用于可变凸轮相位机构30的惯性力急剧变化的情况下,也能够合适地补偿该影响,由此可以抑制伴随着发动机转速NE急剧变化而产生的凸轮相位Cain的偏移。结果,可以确保凸轮相位控制中的良好的控制性和较高的控制精度。
另外,如本实施方式的凸轮相位控制装置那样,在通过可变凸轮相位机构30进行使凸轮相位Cain跟随目标凸轮相位Cain_cmd的控制的情况下,由于伴随着预热的进行而产生的发动机3的摩擦的变化、可变凸轮相位机构30的个体之间的动作特性的偏差、以及经年变化等,可能会引起上述式(7)的模型的动态特性偏离实际值、凸轮相位Cain相对于目标凸轮相位Cain_cmd产生振动性动作、过冲和偏差.由于计算控制输入Ucain作为利用校正值Rdne根据发动机转速NE进行校正后的值,因此在发动机转速NE的变动幅度较大时,其校正程度也变大,校正值Rdne作为干扰发挥作用,由此该问题可能变得更加明显.
相对之下,在本实施方式中,由于根据目标值过滤型2自由度滑动模式控制算法来计算SLD控制输入Rsld,因此可以避免上述那样的振动性动作和过冲的产生,同时可以使凸轮相位Cain高精度且快速地跟随目标凸轮相位Cain_cmd。除此之外,利用参数调度器41根据发动机转速NE和凸轮相位Cain来计算模型参数a1、a2,利用部分参数辨识器42,车载辨识值模型参数b1、b2和干扰估计值c1,并且使用这样计算出的模型参数a1、a2、b1、b2、干扰估计值c1和校正值Rdne,来计算SLD控制输入Rsld,因此可以合适地补偿作为干扰的校正值Rdne的影响,和因上述摩擦的变化等引起的模型化误差,可以使上述模型的动态特性与实际的动态特性相适合。结果,可以提高凸轮相位控制的控制性和控制精度。
并且,由于构成为利用参数调度器41计算模型参数a1、a2,因此与使用部分参数辨识器42对它们进行辨识值的情况相比,可以缩短运算时间,可以降低ECU 2的运算负荷。
另外,第1实施方式是使用了将电磁铁35的电磁力Fsol作为第1力来发挥作用,而将复位弹簧36的弹推力Fspr作为第2力来发挥作用的电磁式可变凸轮相位机构30的示例,但是本发明的可变凸轮相位机构并不限于此,可以是通过改变2个力的大小关系来改变凸轮相位Cain,并通过将该2个力控制成相互平衡的关系来保持凸轮相位Cain的机构。例如可以使用如下的可变凸轮相位机构:2个电磁力分别作为第1力和第2力向凸轮相位Cain的超前方向和滞后方向作用,并且通过将该2个电磁力控制成相互平衡的状态,将凸轮相位Cain保持为该时刻的值。
另外,在第1实施方式中,因上述可变凸轮相位机构30的结构,引起凸轮相位Cain在发动机转速NE急剧上升时向超前侧偏移,而在发动机转速NE急剧降低时向滞后侧偏移,因此构成为利用图10所示的表格来计算校正值Rdne,但是与上述相反,在可变凸轮相位机构30中,在构成为凸轮相位Cain在发动机转速NE急剧上升时向滞后侧偏移、而在发动机转速NE急剧降低时向超前侧偏移的情况下,使用图17所示的表格来计算校正值Rdne。
并且,第1实施方式是使用基于目标值过滤型2自由度滑动模式控制算法和基于Δ∑调制算法的控制算法,来作为计算出用于使凸轮相位Cain跟随目标凸轮相位Cain_cmd的控制值的预定控制算法的示例,但是预定的控制算法并不限于此,只要是可以使凸轮相位Cain跟随目标凸轮相位Cain_cmd的算法即可。例如可以使用PID控制算法等一般的反馈控制算法。另外,第1实施方式是使用了目标值过滤型2自由度滑动模式控制算法来作为预定的跟随控制算法的示例,但是预定的跟随控制算法并不限于此,只要是可以使凸轮相位Cain跟随目标凸轮相位Cain_cmd的算法即可。例如可以使用PID控制算法等一般的反馈控制算法。
另外,第1实施方式是使用滑动模式控制算法来作为响应指定型控制算法的示例,但是响应指定型控制算法并不限于此,可以是反演(backstepping)控制算法等可以指定凸轮相位Cain向目标凸轮相位Cain_cmd收敛的速度的控制算法。
并且,第1实施方式是使用了目标值过滤型2自由度滑动模式控制算法来作为2自由度控制算法的示例,但是,2自由度控制算法当然并不限于此。例如,作为2自由度控制算法,可以使用在1次延迟过滤算法中组合了PID控制算法等反馈控制算法的算法。
另外,第1实施方式是通过将根据旋转变化量DNE而计算出的补偿输入Rdne与增益调整值u相加来计算出控制输入Ucain的示例,但是控制输入Ucain的计算方法并不限于此,只要是通过根据发动机转速NE校正增益调整值u,来计算控制输入Ucain即可.例如,可以根据旋转变化量DNE计算校正系数,通过将该校正系数与增益调整值u和偏移值Ucain_oft的和相乘,来计算控制输入Ucain.
并且,第1实施方式是通过参数调度器41来计算模型参数a1、a2,并通过部分参数辨识器42来计算模型参数b1、b2和干扰估计值c1的示例,但是这些值的计算方法并不限于实施方式的示例,只要是适当地算出这些值的方法即可。例如,可以根据发动机转速NE和凸轮相位Cain,通过参数调度器来计算模型参数a1、a2、b1、b2,并且通过自适应干扰观测器来计算干扰估计值c1。另外,也可以通过可变增益式或者固定增益式的车载辨识器来计算模型参数a1、a2、b1、b2,并且通过自适应干扰观测器来计算干扰估计值c1。
另外,第1实施方式是将控制输入Ucain直接输入到可变凸轮相位机构30中的示例,但是也可以将其它电气回路和控制器等对控制输入Ucain进行了处理后的值输入到可变凸轮相位机构30中。例如通过PMW电路进一步对控制输入Ucain进行调制,将该调制后的值输入到可变凸轮相位机构30中。
另外,第1实施方式是将可变凸轮相位机构30用于改变进气凸轮5的凸轮相位Cain的示例,也可以将可变凸轮相位机构30用于改变排气凸轮8相对于曲轴10的凸轮相位。
接下来,对第2实施方式的凸轮相位控制装置1A进行说明。该第2实施方式的凸轮相位控制装置1A与第1实施方式的凸轮相位控制装置1相比,不同点仅在于使用图18所示的SDM控制器60来代替DSM控制器50,其它与第1实施方式的凸轮相位控制装置1同样地构成,因此下面仅对SDM控制器60进行说明。该SDM控制器60如下所述,通过使用了∑Δ调制算法的控制算法,根据上述SLD控制输入Rsld(k)和校正值Rdne(k),来计算控制输入Ucain(k)。另外,在本实施方式中,SDM控制器60相当于控制值计算单元和控制输入计算单元。
在该SDM控制器60中,如图18所示,当将来自SLD控制器40的SLD控制输入Rsld(k)输入到限制器60a中时,由该限制器60a生成限制值r1(k),然后由差分器60b生成限制值偏差r2(k)来作为限制值r1(k)与来自偏移值发生部60c的规定偏移值Ucain_oft之间的偏差。接下来,由积分器60d生成偏差积分值σr(k)作为限制值偏差r2(k)与偏差积分值的延迟值σr(k-1)的和。另一方面,由积分器60e生成调制输出积分值σu”(k)作为由延迟元件60f延迟后的调制输出u”(k-1)与调制输出积分值的延迟值σu”(k-1)的和。并且,由差分器60g生成偏差信号值δ(k)作为偏差积分值σr(k)与调制输出积分值σu”(k)的偏差。
接下来,由中继要素60h根据偏差信号值δ(k)生成调制输出u”(k)作为预定值+R/-R。并且,由放大器60i生成增益调整值u(k)作为用预定的振幅调整增益F(=KDSM)对调制输出u”(k)进行了增益调整后的值,然后由加法器60j生成控制输入Ucain(k),作为增益调整值u(k)、上述偏移值Ucain_oft以及校正值Rdne(k)的总和。
上述的SDM控制器60的控制算法用下式(27)~(34)表示。
r1(k)=Lim(Rsld(k))                           ……(27)
r2(k)=r1(k)-Ucain_oft                        ……(28)
σr(k)=σr(k-1)+r2(k)                        ……(29)
σu”(k)=σu”(k-1)+u”(k-1)                 ……(30)
δ(k)=σr(k)-σu”(k)                        ……(31)
u”(k)=fn1(δ(k))                            ……(32)
u(k)=KDSM·u”(k)                            ……(33)
Ucain(k)=Ucain_oft+u(k)+Rdne(k)
                                              ……(34)
上述式(27)的限制值Lim(Rsld(k))的限制宽度被设定成与上述式(20)相同的值。并且,式(32)的非线性函数fn1(δ(k))被设定成在δ(k)≥0时,fn1(δ(k))=R,在δ(k)<0时,fn1(δ(k))=-R(另外,在δ(k)=0时,也可以设定成fn1(δ(k))=0)。
并且,根据前述理由,预定值R被设定成始终满足R>|r2(k)|的关系的正值。并且,式(28)、(34)的偏移值Ucain_oft和式(32)的振幅调整增益KDSM分别被设定成可以避免控制输入Ucain的符号的反转的适当值(KDSM≤1)。
根据上述的SDM控制器60,利用基于∑Δ调制算法的控制算法对SLD控制输入Rsld进行调制,由此来计算控制输入Ucain,并且作为由校正值Rdne进行校正后的值来计算。因此,在本实施方式的凸轮相位控制装置1A中,也可以获得和前述第1实施方式的凸轮相位控制装置1相同的作用效果。
接下来,对第3实施方式的凸轮相位控制装置1B进行说明。该第3实施方式的凸轮相位控制装置1B与第1实施方式的凸轮相位控制装置1相比,不同之处仅在于使用图19所示的DM控制器70来代替DSM控制器50,其它与第1实施方式的凸轮相位控制装置1同样地构成,因此下面仅对DM控制器70进行说明。该DM控制器,通过使用了Δ调制算法的控制算法,根据SLD控制输入Rsld(k)和校正值Rdne(k),来计算控制输入Ucain(k)。另外,在本实施方式中,DM控制器70相当于控制值计算单元和控制输入计算单元。
在该DM控制器70中,如图19所示,当将来自SLD控制器40的SLD控制输入Rsld(k)输入到限制器70a中时,由该限制器70a生成限制值r1(k),然后由差分器70b生成限制值偏差r2(k)来作为限制值r1(k)与来自偏移值发生部70c的规定偏移值Ucain_oft的偏差。另一方面,由积分器70d生成调制输出积分值σu”(k)作为由延迟元件70e延迟后的调制输出u”(k-1)与调制输出积分值的延迟值σu”(k-1)的和。并且,由差分器70f生成偏差信号值δ(k)作为限制值偏差r2(k)与调制输入积分值σu”(k)的偏差。
接下来,由中继要素70g根据偏差信号值δ(k)生成调制输出u”(k)作为预定值+R/-R。并且,由放大器70h生成增益调整值u(k)作为用预定的振幅调整增益F(=KDSM)对调制输出u”(k)进行了增益调整后的值,然后由加法器70i生成控制输入Ucain(k),作为增益调整值u(k)、上述偏移值Ucain_oft以及校正值Rdne(k)的总和。
上述DM控制器70的控制算法用下式(35)~(41)表示。
r1(k)=Lim(Rsld(k))                            ……(35)
r2(k)=r1(k)-Ucain_oft                         ……(36)
σu”(k)=σu”(k-1)+u”(k-1)                  ……(37)
δ(k)=r2(k)-σu”(k)                          ……(38)
u”(k)=fn1(δ(k))                             ……(39)
u(k)=KDSM·u”(k)                             ……(40)
Ucain(k)=Ucain_oft+u(k)+Rdne(k)
                                               ……(41)
该式(35)的Lim(Rsld(k))被设定成与上述式(20)、(27)相同的限制宽度。并且,式(39)的非线性函数fn1(δ(k))也被设定成与上述式(32)相同的值。即,在δ(k)≥0时,fn1(δ(k))=R,在δ(k)<0时,fn1(δ(k))=-R(另外,在δ(k)=0时,也可以设定成fn1(δ(k))=0)。
并且,根据前述理由,预定值R被设定成始终满足R>|r2(k)|的关系的正值。并且,如前所述,式(36)、(41)的偏移值Ucain_oft和式(40)的振幅调整增益KDSM分别被设定成可以避免控制输入Ucain的符号的反转的适当值(KDSM≤1)。
根据上述的DM控制器70,利用基于Δ调制算法的控制算法对SLD控制输入Rsld进行调制,由此来计算控制输入Ucain,并且作为由校正值Rdne进行校正后的值来计算。因此,在本实施方式的凸轮相位控制装置1B中,也可以获得和前述第1实施方式的凸轮相位控制装置1相同的作用效果。
以上对本发明的优选实施方式进行了说明,对于本领域技术人员,可以理解,在不脱离本发明的精神和范围的情况下可以进行各种变更。

Claims (6)

1.一种内燃机的凸轮相位控制装置,其对作为进气凸轮和排气凸轮中的至少一方相对于曲轴的相位的凸轮相位进行控制,其特征在于,包括:
可变凸轮相位机构,其通过改变在使所述凸轮相位超前的方向上作用的第1力与在使所述凸轮相位滞后的方向上作用的第2力之间的大小关系,来改变所述凸轮相位,并且,通过将该第1力和第2力保持为相互平衡的关系,来保持所述凸轮相位;
内燃机转速检测单元,其检测所述内燃机的内燃机转速;
凸轮相位检测单元,其检测所述凸轮相位;
目标凸轮相位设定单元,其设定成为所述凸轮相位控制的目标的目标凸轮相位;
控制值计算单元,其根据预定的控制算法计算用于使所述检测出的凸轮相位跟随所述目标凸轮相位的控制值;以及
控制输入计算单元,其通过根据所述检测出的内燃机转速来校正该计算的控制值,计算用于控制所述可变凸轮相位机构的控制输入。
2.根据权利要求1所述的内燃机的凸轮相位控制装置,其特征在于,
在所述控制值计算单元的所述预定的控制算法中,根据预定的跟随控制算法,来计算用于使所述检测出的凸轮相位跟随所述目标凸轮相位的跟随控制值,并且,利用基于Δ调制算法、Δ∑调制算法以及∑Δ调制算法中的一种的算法来对该计算的跟随控制值进行调制,从而计算所述控制值。
3.根据权利要求2所述的内燃机的凸轮相位控制装置,其特征在于,
所述控制输入计算单元根据所述内燃机转速计算用于校正所述控制值的校正值,
所述控制值计算单元的所述预定的跟随控制算法是基于定义了所述跟随控制值、所述校正值和所述凸轮相位之间的关系的控制对象模型的算法,
所述内燃机的凸轮相位控制装置还具有辨识单元,该辨识单元根据所述跟随控制值、所述校正值和所述凸轮相位,利用预定的辨识算法辨识所述控制对象模型的模型参数。
4.根据权利要求1所述的内燃机的凸轮相位控制装置,其特征在于,
所述控制值计算单元的所述预定的控制算法包括预定的响应指定型控制算法。
5.根据权利要求1所述的内燃机的凸轮相位控制装置,其特征在于,所述控制值计算单元的所述预定的控制算法包括预定的2自由度控制算法。
6.根据权利要求1至5中的任意一项所述的内燃机的凸轮相位控制装置,其特征在于,
所述控制输入计算单元根据所述内燃机转速计算用于校正所述控制值的校正值,
所述内燃机的凸轮相位控制装置还具有干扰估计值计算单元,该干扰估计值计算单元根据所述校正值,利用预定的估计算法计算用于对所述可变凸轮相位机构受到的干扰进行补偿的干扰估计值,
所述控制值计算单元还根据所述计算的干扰估计值来计算所述控制值。
CN2005100917153A 2004-08-06 2005-08-08 内燃机的凸轮相位控制装置 Expired - Fee Related CN1730917B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004-230990 2004-08-06
JP2004230990 2004-08-06
JP2004230990A JP4263149B2 (ja) 2004-08-06 2004-08-06 内燃機関のカム位相制御装置

Publications (2)

Publication Number Publication Date
CN1730917A CN1730917A (zh) 2006-02-08
CN1730917B true CN1730917B (zh) 2010-05-05

Family

ID=35478456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100917153A Expired - Fee Related CN1730917B (zh) 2004-08-06 2005-08-08 内燃机的凸轮相位控制装置

Country Status (6)

Country Link
US (1) US7316212B2 (zh)
EP (1) EP1628006B1 (zh)
JP (1) JP4263149B2 (zh)
CN (1) CN1730917B (zh)
DE (1) DE602005005258T2 (zh)
TW (1) TW200619496A (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4459674B2 (ja) * 2004-03-23 2010-04-28 本田技研工業株式会社 変調アルゴリズムを用いたプラントの制御装置
US7979195B2 (en) * 2007-09-07 2011-07-12 GM Global Technology Operations LLC Valvetrain control systems for internal combustion engines with multiple intake and exhaust timing based lift modes
US7584044B2 (en) * 2008-02-05 2009-09-01 Gm Global Technology Operations, Inc. Camshaft phaser position control system
US8360743B2 (en) 2009-01-23 2013-01-29 Randy Walters Rotary pressure production device
JP5752960B2 (ja) * 2011-03-10 2015-07-22 ダイヤモンド電機株式会社 電磁式可変バルブタイミング装置用の制御装置
US20120331502A1 (en) * 2011-06-22 2012-12-27 Mcintire John P Method and apparatus for automatically creating media streams
US8548716B2 (en) * 2011-11-23 2013-10-01 Ford Global Technologies, Llc Variable cam control in an engine
US8714123B2 (en) * 2012-01-18 2014-05-06 Ford Global Technologies, Llc Oil pressure modification for variable cam timing
US9683468B2 (en) * 2014-06-24 2017-06-20 Ford Global Technologies, Llc Camshaft positioning
US10047824B2 (en) * 2014-07-29 2018-08-14 Deere & Company Method for pre-balancing and machining a crankshaft based on a mass distribution method
DE102016216978A1 (de) * 2016-09-07 2018-03-08 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Hochdruckpumpe für die Kraftstoffeinspritzung in einen Verbrennungsmotor
DE102016223971A1 (de) * 2016-12-01 2018-06-07 Schaeffler Technologies AG & Co. KG Aktorik zur variablen Einstellung eines Verdichtungsverhältnisses einer Brennkraftmaschine
US10190450B2 (en) * 2016-12-14 2019-01-29 GM Global Technology Operations LLC Camshaft deactivation system for an internal combustion engine
JP2019027435A (ja) 2017-07-31 2019-02-21 ボーグワーナー インコーポレーテッド e−位相器クッション止め部
EP3578769A1 (de) 2018-06-01 2019-12-11 Ovalo GmbH Verstellvorrichtung, insbesondere nockenwellenversteller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131812A1 (en) * 2002-01-16 2003-07-17 Hitachi Unisia Automotive, Ltd. Control apparatus of variable valve timing mechanism and method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224944B2 (ja) * 2000-03-01 2009-02-18 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
JP3748517B2 (ja) * 2001-05-08 2006-02-22 三菱電機株式会社 内燃機関のバルブタイミング制御装置
JP2004137901A (ja) * 2002-10-15 2004-05-13 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP4121914B2 (ja) * 2003-08-08 2008-07-23 本田技研工業株式会社 制御装置
JP4225186B2 (ja) * 2003-11-19 2009-02-18 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131812A1 (en) * 2002-01-16 2003-07-17 Hitachi Unisia Automotive, Ltd. Control apparatus of variable valve timing mechanism and method thereof

Also Published As

Publication number Publication date
TW200619496A (en) 2006-06-16
JP4263149B2 (ja) 2009-05-13
DE602005005258T2 (de) 2008-06-26
CN1730917A (zh) 2006-02-08
EP1628006B1 (en) 2008-03-12
JP2006046259A (ja) 2006-02-16
DE602005005258D1 (de) 2008-04-24
US7316212B2 (en) 2008-01-08
US20060027197A1 (en) 2006-02-09
EP1628006A3 (en) 2006-11-02
EP1628006A2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
CN1730917B (zh) 内燃机的凸轮相位控制装置
CN100495260C (zh) 使用δς调制算法来控制设备的控制装置
JP4326386B2 (ja) 制御装置
CN101220774B (zh) 内燃机的进气量控制系统以及控制系统
US7584044B2 (en) Camshaft phaser position control system
EP1710638A1 (en) Controller
JP4145520B2 (ja) 内燃機関のカム位相制御装置
US20050075780A1 (en) Control apparatus for controlling a plant by using a delta-sigma modulation
US7725237B2 (en) Control apparatus
EP1686437A1 (en) Controller
US7143728B1 (en) Control apparatus
EP1686250B1 (en) Control apparatus
EP1653304B1 (en) Controller
WO2006069156A1 (en) Variable cam timing (vct) system utilizing a set of variable structure optimal control methods
CN100480907C (zh) 具有部分地辨识模型参数的辨识器的、控制设备的控制装置及其方法
JP4414360B2 (ja) 所定の変調アルゴリズムを用いてプラントを制御する制御装置
JP4060767B2 (ja) 制御装置
JP2008123549A (ja) 制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100505

Termination date: 20110808