CN1707892A - 一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺 - Google Patents

一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺 Download PDF

Info

Publication number
CN1707892A
CN1707892A CNA2005100492755A CN200510049275A CN1707892A CN 1707892 A CN1707892 A CN 1707892A CN A2005100492755 A CNA2005100492755 A CN A2005100492755A CN 200510049275 A CN200510049275 A CN 200510049275A CN 1707892 A CN1707892 A CN 1707892A
Authority
CN
China
Prior art keywords
mgo
layer
target
potential
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100492755A
Other languages
English (en)
Other versions
CN100356642C (zh
Inventor
邱东江
吴惠桢
余萍
陈奶波
徐天宁
丁扣宝
施红军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB2005100492755A priority Critical patent/CN100356642C/zh
Publication of CN1707892A publication Critical patent/CN1707892A/zh
Application granted granted Critical
Publication of CN100356642C publication Critical patent/CN100356642C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)

Abstract

本发明的c-MgxZn1-xO/MgO多量子阱异质结构材料,其结构特征是:由6个~25个c-MgxZn1-xO/MgO“势阱/势垒”周期所构成;MgO材料做势垒层,c-MgxZn1-xO(即立方MgxZn1-xO)材料做势阱层;每个“势阱/势垒”周期中的垒层厚度为20nm~30nm,阱层厚度为2nm~3nm。本发明的c-MgxZn1-xO/MgO多量子阱异质结构材料,其制备工艺特征是:采用电子束反应蒸发方法,通过让高能聚焦电子束交替轰击MgO陶瓷靶材和(MgO) x (ZnO) 1-x陶瓷靶材,在衬底表面交替生长超薄MgO势垒层和超薄c-MgxZn1-xO势阱层得到c-MgxZn1-xO/MgO多量子阱异质结构材料产品。

Description

一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺
技术领域
本发明属于氧化物晶体薄膜及其多层异质结构的气相外延制备技术领域,具体涉及一种在单晶衬底表面生长得到的、具有紫外-深紫外强发光特征的立方相MgxZn1-xO/MgO(即c-MgxZn1-xO/MgO)多量子阱异质结构产品及其利用电子束反应蒸发方法生长该产品的制备技术。
技术背景
近年来,蓝光、紫外光发光材料及其发光二极管、激光二极管、紫外光探测器等光电器件以其潜在的巨大应用市场成为了当前的研究热点,其中ZnO系列与GaN系列一样是重要材料之一。ZnO是一种宽带隙(室温下禁带宽度3.37eV)半导体材料,具有低介电常数、大光电耦合系数、高化学稳定性及优良的光电、压电特性,而且熔点高,激子束缚能大(60meV),在非线性光学器件、发光器件、紫外光探测器件、表面声波器件及太阳能电池等领域有重要应用。另一方面,在上述光电器件中往往采用异质结构(包括量子阱、超晶格等异质结构)以提高器件的性能,如提高器件的光电转换效率、改善器件的光谱响应特性等。三元系MgxZn1-xO合金是由ZnO和MgO二种材料按一定摩尔比例互溶而成,它有两种晶体结构,分别是与ZnO一致的纤锌矿结构(六方相MgxZn1-xO,即h-MgxZn1-xO)和与MgO一致的NaCl结构(立方相MgxZn1-xO,即c-MgxZn1-xO)。改变MgxZn1-xO材料中Mg的含量可实现其光学带隙在3.37eV~7.7eV(MgO的室温带隙为7.7eV)范围内连续可调,其晶体结构也随薄膜中Mg含量的高、低而呈现与MgO一致的立方结构或与ZnO一致的六方结构,且这二种不同结构薄膜的晶格常数分别与MgO或ZnO的非常相近,适合与ZnO或MgO材料组合制造半导体异质结构器件,如ZnO/h-MgxZn1-xO或c-MgxZn1-xO/MgO多量子阱器件。迄今为止,已有不少关于ZnO/h-MgxZn1-xO多量子阱异质结构材料及其光电器件研制的报道,采用的材料制备方法主要有分子束外延(MBE)和脉冲激光沉积(PLD);但尚未见到采用工艺相对较简单且易实现大面积生长的电子束反应蒸发技术制备多量子阱异质结构材料的报道,也未见到有关c-MgxZn1-xO/MgO多量子阱异质结构材料及相关器件研制的报道。
发明内容
本发明采用一种较为简单的电子束反应蒸发方法,以多晶MgO陶瓷靶和多晶(MgO)x(ZnO)1-x陶瓷靶分别作为生长MgO外延层和c-MgxZn1-xO外延层的蒸发源材料,在衬底表面交替生长均匀性好的MgO和c-MgxZn1-xO超薄外延层,制备出高质量的c-MgxZn1-xO/MgO多量子阱结构。该多量子阱结构的势垒层(MgO层)厚度控制在20nm~30nm,势阱层(c-MgxZn1-xO层)厚度控制在2nm~3nm。每个多量子阱结构样品包含6对~30对c-MgxZn1-xO/MgO周期。该多量子阱结构材料经光荧光光谱检测,表明具有很强的位于395nm~405nm波段的紫外光和位于285nm~290nm波段的深紫外光发光特性。
本发明的具有紫外-深紫外强发光特征的c-MgxZn1-xO/MgO多量子阱结构材料是采用电子束反应蒸发方法得到的,其具体工艺步骤如下:
(1)清洗衬底并装入到生长室内的衬底架中,分别将压制好并经1200℃烧结过的MgO靶材和(MgO)x(ZnO)1-x靶材置于二个甘埚中,置二个坩锅于一个可转动的甘埚架中,用挡板隔离靶材和衬底。
(2)用真空泵抽反应室真空至≤3×10-3Pa的真空度。
(3)加热衬底至合适的温度。
(4)以适当流量(10~20sccm之间的某一值)充入高纯氧气(O2,纯度99.99%),使反应室真空度达到3×10-2Pa并保持恒定,使氧化物外延层的生长在富氧条件下进行,以减小氧空位缺陷密度。
(5)先将高能电子束对准MgO靶材,调节电子束束流至25mA~35mA之间的某一值;根据生长速率快慢的不同要求,通过调节电子束束斑的扫描频率等参数,将MgO靶的蒸气压控制在2.0×10-2Pa~5.0×10-2Pa之间的某一值,使MgO靶稳定、均匀地蒸发;打开挡板,选择适当的、且经过标定的MgO外延层生长速率生长第1层MgO势垒层,层厚控制在20nm~30nm之间的某一值。生长完第1层MgO势垒层后,关挡板。
(6)转动甘埚架,使高能电子束对准(MgO)x(ZnO)1-x靶材;调节电子束束流至30mA~40mA之间的某一值;调节电子束斑的扫描频率,使(MgO)x(ZnO)1-x靶的蒸气压控制在5.0×10-2Pa~8.0×10-2Pa之间的某一值,使(MgO)x(ZnO)1-x靶稳定、均匀地蒸发;打开挡板,选择适当的、且经过标定的c-MgxZn1-xO外延层生长速率生长第1层c-MgxZn1-xO势阱层,层厚控制在2nm~3nm之间的某一值。生长完第1层c-MgxZn1-xO势阱层后,关挡板,再转动甘埚架,使电子束对准MgO靶。
(7)同步骤(5),按标定好的MgO外延层生长速率生长第2层MgO势垒层,其厚度与第1层MgO势垒层一致。这样,经过步骤(6)和(7)之后,便生长好了第1对c-MgxZn1-xO/MgO“势阱/势垒”周期。
(8)同步骤(6)和(7),分别生长第2层c-MgxZn1-xO势阱层和第3层MgO势垒层,便形成了第2对c-MgxZn1-xO/MgO“势阱/势垒”周期。
(9)同步骤(8),生长第3对、第4对、第5对、………、第n对c-MgxZn1-xO/MgO“势阱/势垒”周期。
(10)当一共生长完n对c-MgxZn1-xO/MgO“势阱/势垒”周期后,关电子枪高压,结束生长。
(11)待衬底温度降至室温,生长室放大气,取出样品。
本发明的工艺步骤(1)提到的衬底是单晶Si抛光片或单晶蓝宝石抛光片。
本发明的工艺步骤(1)提到的(MgO)x(ZnO)1-x靶材是由纯度为99.99%的MgO和ZnO粉末按一定的质量百分比均匀混合,并经压制和1200℃高温烧结而成;质量百分比x为5%或10%。
本发明的工艺步骤(3)提到的合适的衬底温度为200℃~250℃。
本发明的工艺步骤(5)和(6)分别提到MgO外延层和c-MgxZn1-xO外延层的生长速率的标定,其中:
MgO外延层生长速率的标定步骤为:
I)清洗衬底并装入衬底架,置MgO靶材于坩锅中,用挡板隔离靶材和衬底;
II)用真空泵抽反应室真空至≤3×10-3Pa的真空度;
III)加热衬底至200℃~250℃之间的某一温度;
IV)以适当流量(10sccm~20sccm之间的某一值)的流量充入纯度为99.99%的高纯氧气,使反应室真空度达到3×10-2Pa并保持恒定;
V)调节电子束束流至25mA~35mA之间的某一值,使MgO靶材开始蒸发;根据生长速率快慢的不同要求,通过调节电子束斑的扫描频率等参数,将MgO靶的蒸气压控制在2.0×10-2Pa~5.0×10-2Pa之间的某一值,使MgO靶稳定、均匀地蒸发;打开挡板开始生长MgO外延层;
VI)当MgO外延层生长经历了一定时间,关挡板,关电子束源,结束生长;
VII)待衬底温度降至室温,生长室放大气,取出样品。
VIII)测量MgO外延层的厚度,并按公式“生长速率=外延层的厚度/生长时间”计算出MgO外延层的生长速率。
通过以上步骤(I)~(VIII)进行多次重复性实验,最终标定出MgO外延层的生长速率随电子束流和靶材分压强等参数的变化曲线。例如,在电子束束流为30mA及MgO靶的分压强为2.0×10-2Pa的条件下,MgO外延层的生长速率经标定为10/s;而在电子束流为35mA及MgO靶的分压强为5.0×10-2Pa的条件下,MgO外延层的生长速率经标定为34/s。
c-MgxZn1-xO外延层的生长速率的标定步骤为:
a)清洗衬底并装入衬底架,置(MgO)x(ZnO)1-x靶材于坩锅中,用挡板隔离靶材和衬底;
b)用真空泵抽反应室真空至≤3×10-3Pa的真空度;
c)加热衬底至200℃~300℃之间的某一温度;
d)以适当流量(10sccm~20sccm之间的某一值)充入纯度为99.99%的高纯氧气,使反应室内的真空度达到3×10-2Pa并保持恒定;
e)调节电子束束流至30mA~40mA之间的某一值,使(MgO)x(ZnO)1-x靶稳定、均匀地蒸发;通过调节电子束束斑的扫描频率等参数,将(MgO)x(ZnO)1-x靶的蒸气压控制在5.0×10-2Pa~8.0×10-2Pa之间的某一值;打开挡板开始生长c-MgxZn1-xO外延层;
f)当(MgO)x(ZnO)1-x外延层生长经历了一定时间,关挡板,关电子束源,结束生长;
g)待衬底温度降至室温,生长室放大气,取出样品。
h)测量c-MgxZn1-xO外延层的厚度,并按公式“生长速率=外延层的厚度/生长时间”计算出c-MgxZn1-xO外延层的生长速率。
通过以上步骤(a)~(h)进行多次重复性实验,最终标定出c-MgxZn1-xO外延层的生长速率随电子束流和靶材分压强等参数的变化曲线。例如,在电子束束流为30mA及(MgO)x(ZnO)1-x靶的分压强为5.0×10-2Pa的条件下,c-MgxZn1-xO外延层的生长速率经标定为2/s。
本发明的工艺步骤(10)提到共生长n对c-MgxZn1-xO/MgO“势阱/势垒”周期,其中n为6对~25对。
本发明的c-MgxZn1-xO/MgO多量子阱结构的制备技术是在电子束蒸发-气相反应沉积系统中实现的,利用电子枪发射的高能聚焦电子束交替轰击MgO和(MgO)x(ZnO)1-x靶材,电子束的动能变成热能,使得热蒸发的靶材分子或原子离开靶材表面,散射并沉积到已加热的衬底表面,通过一系列的分子、原子动力学过程,在衬底表面交替生成MgO、c-MgxZn1-xO、MgO、c-MgxZn1-xO、MgO…多层超薄外延层,即形成c-MgxZn1-xO/MgO多量子阱结构。
本发明的主要技术优点在于:
制备工艺易于控制,生长温度低(200~250℃),原料无毒副作用且易于获得,适用于大面积晶体薄膜的制备,不存在尾气排放或副产品的再处理等问题,因此制备成本低,有利于规模生产。
本发明的成品优点在于:
所制备的c-MgxZn1-xO/MgO多量子阱异质结构的势阱层(c-MgxZn1-xO层)的厚度≤3nm,该尺度可以与c-MgxZn1-xO材料的激子有效玻尔半径相比拟,因而具有量子限制效应。对所制备c-MgxZn1-xO/MgO多量子阱异质结构的光荧光光谱测试表明,其具有紫外-深紫外强发光特征,有望在短波长发光二极管、激光二极管等光电器件领域有重要应用。
附图说明
图1是根据本发明的一个优选实施例的单晶Si基c-MgxZn1-xO/MgO多量子阱异质结构的示意图,由22对c-MgxZn1-xO/MgO“势阱/势垒”周期所构成,其中每个c-MgxZn1-xO势阱层的厚度为3nm,每个MgO势垒层的厚度为30nm。制备该多量子阱异质结构所采用的二个靶材分别是MgO靶和(MgO)0.05(ZnO)0.95靶。
图2是根据本发明的一个优选实施例的单晶Si基c-MgxZn1-xO/MgO多量子阱异质结构的室温光荧光光谱,在约398nm波长处有一个强的紫外发光峰,在约287nm处有一个深紫外发光峰。该荧光光谱的激发光源是Xe灯的240nm谱线。该荧光光谱存在着由于干涉效应所导致的光谱调制现象。
具体实施方式
实施例:
1)清洗单晶Si抛光片衬底并装入到生长室内的衬底架中,分别将压制好并经1200℃烧结过的MgO靶材和(MgO)0.05(ZnO)0.95靶材置于二个甘埚中,置二个坩锅于一个可转动的甘埚架中,用挡板隔离靶材和衬底;
2)用真空泵抽反应室真空至≤3×10-3Pa的真空度;
3)加热衬底至200℃;
4)以20sccm的流量充入纯度为99.99%的高纯氧气,使反应室内的真空度达到3×10-2Pa并保持恒定;
5)将高能电子束对准MgO靶材;调节电子束束流至30mA,通过调节电子束斑的扫描频率使MgO靶的蒸气压达到2.0×10-2Pa并保持恒定(即选择经过标定的10/s的MgO外延层生长速率);然后打开挡板,生长30秒钟后,关挡板,即得到厚度30nm的第1层MgO势垒层。
6)转动甘埚架,使高能电子束对准(MgO)x(ZnO)1-x靶材;在电子束束流仍保持30mA的条件下,通过调节电子束斑的扫描频率使(MgO)x(ZnO)1-x靶材的蒸气压达到5.0×10-2Pa并保持恒定(即选择经过标定的2/s的c-MgxZn1-xO外延层生长速率);然后开挡板,生长15秒钟后,关挡板,即得到厚度3nm的第1层c-MgxZn1-xO势阱层。
7)按步骤5),生长第2层MgO势垒层,其厚度与第1层MgO势垒层一致;这样,经过步骤(6)和(7)之后,便生长好了第1对c-MgxZn1-xO/MgO“势阱/势垒”周期;
8)紧接着,同步骤(6)和(7),分别生长第2层c-MgxZn1-xO势阱层和第3层MgO势垒层,便形成了第2对c-MgxZn1-xO/MgO“势阱/势垒”周期;
9)同样地,同步骤(8),生长第3对、第4对、第5对、………、第22对c-MgxZn1-xO/MgO“势阱/势垒”周期;
10)当一共生长完22对c-MgxZn1-xO/MgO“势阱/势垒”周期后,关电子枪高压,结束生长。
11)待衬底温度降至室温,生长室放大气,取出样品,即得到具有22对“势阱/势垒”周期的c-MgxZn1-xO/MgO多量子阱异质结构样品。该样品经光荧光光谱检测表明,在约398nm波长处有一个强的紫外发光峰,在约287nm处有一个深紫外发光峰。

Claims (7)

1、一种c-MgxZn1-xO/MgO多量子阱异质结构材料,其结构特征是:由6个~25个c-MgxZn1-xO/MgO“势阱/势垒”周期所构成;MgO材料做势垒层,c-MgxZn1-xO材料做势阱层;每个“势阱/势垒”周期中的垒层厚度为20~30nm,阱层厚度为2~3nm;采用电子束反应蒸发方法,通过让高能聚焦电子束交替轰击MgO陶瓷靶材和(MgO)x(ZnO)1-x陶瓷靶材,在衬底表面交替生长超薄MgO势垒层和超薄c-MgxZn1-xO势阱层得到c-MgxZn1-xO/MgO多量子阱异质结构材料产品。
2、权利要求1所述的c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺,工艺步骤如下:
(1)清洗衬底并装入到生长室内的衬底架中,分别将压制好并经1200℃烧结过的MgO靶材和(MgO)x(ZnO)1-x靶材置于二个甘埚中,置二个坩锅于一个可转动的甘埚架中,用挡板隔离靶材和衬底;
(2)用真空泵抽反应室真空至≤3×10-3Pa的真空度;
(3)加热衬底至合适的温度;
(4)以适当流量(10~20sccm之间的某一值)充入高纯氧气(O2,纯度99.99%),使反应室真空度达到3×10-2Pa并保持恒定,使氧化物外延层的生长在富氧条件下进行,以减小氧空位缺陷密度;
(5)先将高能电子束对准MgO靶材,调节电子束束流至25mA~35mA之间的某一值,根据生长速率快慢的不同要求,通过调节电子束束斑的扫描频率等参数,将MgO靶的蒸气压控制在2.0×10-2Pa~5.0×10-2Pa之间的某一值,使MgO靶稳定、均匀地蒸发,打开挡板,选择适当的、且经过标定的MgO外延层生长速率生长第1层MgO势垒层,层厚控制在20nm~30nm之间的某一值,生长完第1层MgO势垒层后,关挡板;
(6)转动甘埚架,使高能电子束对准(MgO)x(ZnO)1-x靶材,调节电子束束流至30mA~40mA之间的某一值,调节电子束斑的扫描频率,使(MgO)x(ZnO)1-x靶的蒸气压控制在5.0×10-2Pa~8.0×10-2Pa之间的某一值,使(MgO)x(ZnO)1-x靶稳定、均匀地蒸发;打开挡板,选择适当的、且经过标定的c-MgxZn1-xO外延层生长速率生长第1层c-MgxZn1-xO势阱层,层厚控制在2~3nm之间的某一值,生长完第1层c-MgxZn1-xO势阱层后,关挡板,再转动甘埚架,使电子束对准MgO靶;
(7)同步骤(5),按标定好的MgO外延层生长速率生长第2层MgO势垒层,其厚度与第1层MgO势垒层一致,这样,经过步骤(6)和(7)之后,便生长好了第1对c-MgxZn1-xO/MgO“势阱/势垒”周期;
(8)同步骤(6)和(7),分别生长第2层c-MgxZn1-xO势阱层和第3层MgO势垒层,便形成了第2对c-MgxZn1-xO/MgO“势阱/势垒”周期;
(9)同步骤(8),生长第3对、第4对、第5对、………、第n对c-MgxZn1-xO/MgO“势阱/势垒”周期;
(10)当一共生长完n对c-MgxZn1-xO/MgO“势阱/势垒”周期后,关电子枪高压,结束生长;
(11)待衬底温度降至室温,生长室放大气,取出样品。
3、根据权利要求1、2所述的c-MgxZn1-xO/MgO多量子阱异质结构及其制备工艺,其特征是:所述的衬底材料是单晶Si抛光片或单晶蓝宝石抛光片。
4、根据权利要求1、2所述的c-MgxZn1-xO/MgO多量子阱异质结构及其制备工艺,其特征是:所述的MgO陶瓷靶材是由纯度为99.99%的MgO粉末经压制并在约1200℃的高温下烧结而成;所述的(MgO)x(ZnO)1-x陶瓷靶材是由纯度为99.99%的MgO粉末和纯度为99.99%的ZnO粉末按一定的质量比均匀混合,经压制后在约1200℃的高温下烧结而成,质量比x为5%或10%。
5、根据权利要求1、2所述的c-MgxZn1-xO/MgO多量子阱异质结构及其制备工艺,其特征是:所述的合适生长温度为200~250℃。
6、根据权利要求1、2所述的c-MgxZn1-xO/MgO多量子阱异质结构及其制备工艺,其特征是:所述的c-MgxZn1-xO/MgO“势阱/势垒”周期共有6~25个。
7、根据权利要求1、2所述的c-MgxZn1-xO/MgO多量子阱异质结构及其制备工艺,其特征是:所述的每个c-MgxZn1-xO/MgO“势阱/势垒”周期中的阱层厚度为2~3nm,垒层厚度为2~3nm。
CNB2005100492755A 2005-01-28 2005-01-28 一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺 Expired - Fee Related CN100356642C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100492755A CN100356642C (zh) 2005-01-28 2005-01-28 一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100492755A CN100356642C (zh) 2005-01-28 2005-01-28 一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺

Publications (2)

Publication Number Publication Date
CN1707892A true CN1707892A (zh) 2005-12-14
CN100356642C CN100356642C (zh) 2007-12-19

Family

ID=35581597

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100492755A Expired - Fee Related CN100356642C (zh) 2005-01-28 2005-01-28 一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺

Country Status (1)

Country Link
CN (1) CN100356642C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132691A (ja) * 2015-01-16 2016-07-25 スタンレー電気株式会社 紫外発光材料、及び、紫外光源

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359706B (zh) * 2008-08-22 2010-10-13 浙江大学 一种ZnO基多量子阱发光二极管
CN102263370B (zh) * 2010-10-09 2013-07-10 吉林大学 p-ZnO和n-GaN组合的多层端发射激光器及制备方法
CN101976800B (zh) * 2010-10-09 2012-02-08 吉林大学 ZnO和GaN组合ZnO基端面发射激光器及其制备方法
CN102263369B (zh) * 2010-10-09 2013-08-07 吉林大学 p-ZnO和n-GaN组合的ZnO基端发射激光器及制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423983B1 (en) * 2000-10-13 2002-07-23 North Carolina State University Optoelectronic and microelectronic devices including cubic ZnMgO and/or CdMgO alloys
WO2002056392A1 (fr) * 2001-01-05 2002-07-18 Japan Science And Technology Corporation Element a semi-conducteur optique utilisant une transition optique entre des sous-bandes a heterostructure zno
TW550839B (en) * 2001-07-25 2003-09-01 Shinetsu Handotai Kk Light emitting element and method for manufacturing thereof
CN1314831C (zh) * 2002-11-15 2007-05-09 浙江大学 立方相、宽禁带MgZnO晶体薄膜的低温制备技术
JP2004200339A (ja) * 2002-12-18 2004-07-15 Sharp Corp 酸化物半導体レーザ素子
JP4278394B2 (ja) * 2003-01-22 2009-06-10 シャープ株式会社 酸化物半導体発光素子
JP2004247411A (ja) * 2003-02-12 2004-09-02 Sharp Corp 半導体発光素子および製造方法
JP2004363373A (ja) * 2003-06-05 2004-12-24 Sharp Corp 酸化物半導体発光素子および酸化物半導体発光素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132691A (ja) * 2015-01-16 2016-07-25 スタンレー電気株式会社 紫外発光材料、及び、紫外光源

Also Published As

Publication number Publication date
CN100356642C (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
Hou et al. Electrical and optical properties of Al-doped ZnO and ZnAl 2 O 4 films prepared by atomic layer deposition
CN1707892A (zh) 一种c-MgxZn1-xO/MgO多量子阱异质结构材料及其制备工艺
CN108417676B (zh) 基于等离子体增强效应的核壳结构钙钛矿led及其制备方法
CN1564314A (zh) 一种制备高质量氧化锌基单晶薄膜的方法
KR101458629B1 (ko) ZnO계 화합물 반도체 층의 제조방법
JP2012169621A (ja) AlInGaN層の成長方法、光電子装置、光電池装置、および電子装置
CN111384214B (zh) 一种量子阱结构的制备方法和量子阱结构
CN1314831C (zh) 立方相、宽禁带MgZnO晶体薄膜的低温制备技术
CN102185071B (zh) 一种非极性ZnO基发光器件及其制备方法
CN114657637B (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法
CN1727516A (zh) 纤锌矿结构Zn1-xMgxO半导体纳米晶体薄膜的低温制备方法
CN108330536A (zh) PA-MBE同质外延高质量GaN单晶薄膜的制备方法
CN1707752A (zh) 掺氮空穴型氧化锌薄膜材料的喷雾热解制备方法
KR20080005002A (ko) 스퍼터링을 이용한 산화아연계 산화물 박막의 제조방법
KR101089585B1 (ko) 산화아연 박막 및 산화아연 기반 발광소자의 제조방법
Wu et al. Growth and characterization of epitaxial ZnO nanowall networks using metal organic chemical vapor deposition
TWI450320B (zh) 製備光激發光奈米矽薄膜結構之方法
CN104451867A (zh) 一种制备高质量ZnMgBeO薄膜的方法
CN102115910B (zh) 一种芯壳型纳米线的制备方法
CN1635191A (zh) 在γ-LiAlO2衬底上制备ZnO单晶薄膜的方法
JP6092657B2 (ja) p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造
CN101494269B (zh) 一种用缓冲层制备氧化锌薄膜的方法
JP5912968B2 (ja) p型ZnO系半導体膜の製造方法、及び、ZnO系半導体素子の製造方法
KR100692604B1 (ko) CuAu상 ⅠⅢⅥ₂단결정 박막의 형성방법
Khomchenko et al. Doping the thin films by using the original Close Space Sublimation method.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee