CN1702782A - 一种水基磁性液体及其制备方法 - Google Patents

一种水基磁性液体及其制备方法 Download PDF

Info

Publication number
CN1702782A
CN1702782A CN 200510034767 CN200510034767A CN1702782A CN 1702782 A CN1702782 A CN 1702782A CN 200510034767 CN200510034767 CN 200510034767 CN 200510034767 A CN200510034767 A CN 200510034767A CN 1702782 A CN1702782 A CN 1702782A
Authority
CN
China
Prior art keywords
water
magnetic liquid
preparing
carboxymethyl chitosan
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510034767
Other languages
English (en)
Other versions
CN100362605C (zh
Inventor
沈辉
孙启凤
徐雪青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CNB2005100347677A priority Critical patent/CN100362605C/zh
Publication of CN1702782A publication Critical patent/CN1702782A/zh
Application granted granted Critical
Publication of CN100362605C publication Critical patent/CN100362605C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种水基Fe3O4磁性液体的制备方法,其目的在于克服现有技术中的不足,提供一种磁性强,效率高的水基磁性液体及其制备方法。本发明采用了壳聚糖的衍生物——羧甲基壳聚糖作为表面活性剂合成Fe3O4磁性颗粒水基磁性液体。采用具有生物相容性的羧甲基壳聚糖来制备水基磁性液体以用于作为特殊治疗和诊断的药物载体,从而拓宽了磁性液体在现代医学领域的应用范围。

Description

一种水基磁性液体及其制备方法
技术领域
本发明涉及一种水基Fe3O4磁性液体的制备方法。
技术背景
所谓磁性液体,是指吸附有表面活性剂的纳米磁性颗粒在载液中高度分散而形成的胶体体系。主要由纳米磁性颗粒、表面活性剂和载液组成。其工艺技术可以从以下几点分类描述:
一、制备方法:磁性液体的制备方法主要有机械研磨法、化学共沉淀法、热分解法、火花电蚀法、还原法及真空蒸度法等,其中化学共沉淀法是目前最普遍的使用方法。
二、磁性颗粒载液:主要有水或水溶液、碳氢化合物、有机硅油全氟化液体等作为磁性颗粒的载液。根据磁性液体不同用途选用相应的载液,用在机械密封、扬声器上阻尼等多为油基类磁性液体,而应用到医药上的磁性液体则一般是以水为载液。
三、水基药用磁性液体表面活性剂,即相关表面改性剂:目前有采用聚乙二醇、氨基酸类、聚丙烯酸类、聚丙烯酰胺和多糖类等同时具有生物功能性和亲水性类表面改性剂,来改性Fe3O4磁颗粒使其能在水溶液中稳定分散且具有与蛋白质、基因、细胞连接等医用功能。目前存在的不足之处是这些水基磁性液体的磁性偏弱,及效率不高。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种磁性强,效率高的水基磁性液体及其制备方法。
本发明采用了壳聚糖的衍生物——羧甲基壳聚糖作为表面活性剂合成Fe3O4磁性颗粒水基磁性液体。采用具有生物相容性的羧甲基壳聚糖来制备水基磁性液体以用于作为特殊治疗和诊断的药物载体,从而拓宽了磁性液体在现代医学领域的应用范围。我国具有丰富的甲壳质资源,且壳聚糖在医药和食品保健等应用上有着众多优越性,而壳聚糖的衍生物——羧甲基壳聚糖除了保留了壳聚糖原有的优越性外,因其上有新的官能团,有着更加独特的功能,且能作为良好的改性剂制备水基Fe3O4磁性液体,充分利用这种天然高分子并对其进行开发和应用有良好的经济效益和社会效益。此种磁性液体同时含有氨基和羧基等活性基团,便于与蛋白质、基因或细胞等进行连接,从而适于作磁性载体材料,并可望用作磁靶向药物载体,能广泛应用于生物医学领域。
本发明是采用化学共沉淀法制备纳米Fe3O4磁性颗粒,并采用羧基壳聚糖作为表面活性剂在合成Fe3O4磁性颗粒的同时对其进行表面改性方法制备以水为载液的水基磁性液体。化学共沉淀法制备四氧化三铁磁性颗粒的化学反应式为:
为达到发明的目的,采取了以下的制备技术方案:
1.纳米颗粒的合成与改性:
采用化学共沉淀法合成纳米Fe3O4颗粒,并采用合成Fe3O4颗粒与改性Fe3O4颗粒同步进行的方案。分别将三氯化铁与二氯化铁或硫酸亚铁配制成盐溶液,按一定比例两种溶液混合配成铁盐混合溶液。称取定量的羧甲基壳聚糖溶解于氨水中后,将铁盐混合溶液注入其中于水浴条件下反应。
改性方案:本发明所使用的改性方案是一个至关重要的关键技术之一。可以有两种改性方案,一是合成磁颗粒的同时加入表面活性剂使合成与改性同步进行,二是先合成磁性颗粒之后再加入表面活性剂进行改性。采用第二种方案羧甲基壳聚糖不能在Fe3O4粒子形成良好的包覆层,在水溶液中的稳定性效果没有第一种方案好。为此本发明主要是采用合成磁颗粒的同时加入表面活性剂使合成与改性同步进行的方案,即合成时同时加入表面活性剂,制备出的磁性液体效果较好,羧甲基壳聚糖能在Fe3O4粒子形成良好的包覆层,在水溶液中稳定。一般是将三氯化铁配成质量浓度为60%~70%的水溶液,将二氯化铁或硫酸亚铁配制成浓度为15%~30%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液。将羧甲基壳聚糖与25%氨水的质量比在1∶5~1∶30范围内配成溶液,最佳为1∶15,在50~100℃的水浴条件下,较佳温度为90℃左右,高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量比在1∶1~1∶6范围内,1∶1、1∶2效果较佳。反应初期搅拌速度在900~1200转/分钟范围内,反应后期搅拌速度在300~800转/分钟范围内。制备磁性液体的总计时间在没有通氮气的条件下,可在30mint~60mint范围内波动,但最佳时间为40mint左右,如通氮气条件时间可以增长到2h以上,有氮气的保护磁性颗粒不容易被氧化。本发明还可以在超声的条件下制备磁性液体,使Fe3O4磁性颗粒能够在溶液中更好的分散,增强稳定性,从而改善磁性液体的效果。
2.磁性液体的纯化:
在合成水基磁性液体后需要对液体做进一步的纯化处理。
离心——反应完毕将磁性液体取出,采用离心机高速离心四个小时以上去除没有改性好的和尺寸大于20nm的纳米Fe3O4磁性颗粒;这些颗粒由于表面没有被羧甲基壳聚糖包覆,易发生团聚,不能在水溶液中稳定存在。因此磁性液体经离心处理后,不稳定的纳米Fe3O4磁性颗粒便沉淀到溶液的底部,而能够长期稳定均匀分散在溶液中的纳米Fe3O4磁性颗粒便被保留在溶液中。
超滤——可以采取超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,以便更好的和基因、蛋白质连接。滤膜级别则根据羧甲基壳聚糖的分子量进行选择。
本发明具有如下效果:本发明所制备的水基磁性液体能与细胞、蛋白质或基因进行连接,磁性液体饱和磁化强度可达1.6~2.5emμ/g,磁颗粒的平均粒径为10nm左右,平均水动力半径为50nm左右,可在PH4~10范围内保持稳定,适用作细胞、蛋白质、基因的磁性载体,并有望用作磁靶向药物载体等生物医学领域。以上数据的测定方法为:水基磁性液体的饱和磁化强度采用振动样品磁强计测定,磁颗粒的直径采用透射电镜和X射线衍射进行测定,水动力直径采用激光光散射仪进行测定。
附图说明
图1羧甲基壳聚糖在纳米Fe3O4颗粒表面形成吸附层结构示意图;
图2本发明磁性液体的透射电镜照片;
图3本发明磁性液体的磁滞回线图;
图4本发明磁性液体的红外吸收光谱。
具体实施方式
以下结合附图对本发明做进一步的说明。
所谓磁性液体,是指吸附有表面活性剂的纳米磁性颗粒在载液中高度分散而形成的胶体体系。主要由纳米磁性颗粒、表面活性剂和载液组成,本发明所公开的一种水基磁性液体,其纳米磁性颗粒采用Fe3O4颗粒,表面活性剂为羧甲基壳聚糖,载液为水,羧甲基壳聚糖在纳米Fe3O4颗粒表面形成吸附层结构示意图如图1所示。本发明采用化学共沉淀法来制备水基磁性液体,优选的方案是采用磁性颗粒合成与改性同步进行的化学共沉淀法制备水基磁性液体。本发明的磁性液体的透射电镜照片如图2所示,图3为磁性液体的磁滞回线图,红外吸收光谱如图4所示。
实施例1
将FeCl3·6H2O配成质量浓度为66.6%的水溶液,将FeSO4·7H2O配制成浓度为21.9%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液,将羧甲基壳聚糖与25%氨水的质量比为范围内配成溶液,羧甲基壳聚糖与25%氨水的质量比为1∶5。在90℃左右的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量为1∶1,反应时间控制在30分钟左右,反应初期搅拌速度为1200转/分钟,反应后期搅拌速度为650转/分钟。反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体,稳定磁液体中的铁含量为3.504mg/ml,最后将制得的稳定水基磁性液体进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,最后稳定磁性液体的饱和磁化强度分别为0.24emμ/g。
实施例2
将FeCl3·6H2O配成质量浓度为66.6%的水溶液,将FeSO4·7H2O配制成浓度为21.9%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液,将羧甲基壳聚糖与25%氨水的质量比为范围内配成溶液,羧甲基壳聚糖与25%氨水的质量比为1∶10。在90℃左右的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量为2∶1,在有氮气保护的条件下进行反应,反映时间控制在2个小时以上。反应初期搅拌速度为1200转/分钟,反应后期搅拌速度为650转/分钟。反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体,稳定磁液体中的铁含量为2.679mg/ml,最后将制得的稳定水基磁性液体进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,最后稳定磁性液体的饱和磁化强度分别为0.43emμ/g。
实施例3
将FeCl3·6H2O配成质量浓度为66.6%的水溶液,将FeSO4·7H2O配制成浓度为21.9%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液,将羧甲基壳聚糖与25%氨水的质量比为范围内配成溶液,羧甲基壳聚糖与25%氨水的质量比为1∶15。在90℃左右的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量为3∶1,同时在有氮气保护和超声条件下进行反应,反映时间控制在2个小时以上。反应初期搅拌速度为1000转/分钟,反应后期搅拌速度为800转/分钟。反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体,稳定磁液体中的铁含量为2.991mg/ml,最后将制得的稳定水基磁性液体进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,最后稳定磁性液体的饱和磁化强度分别为0.62emμ/g。
实施例4
将FeCl3·6H2O配成质量浓度为66.6%的水溶液,将FeSO4·7H2O配制成浓度为21.9%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液,将羧甲基壳聚糖与25%氨水的质量比为范围内配成溶液,羧甲基壳聚糖与25%氨水的质量比为1∶20。在60℃左右的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量为4∶1,反应时间控制在30分钟左右,反应初期搅拌速度为1200转/分钟,反应后期搅拌速度为650转/分钟。反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体,稳定磁液体中的铁含量为2.885mg/ml,最后将制得的稳定水基磁性液体进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,最后稳定磁性液体的饱和磁化强度分别为0.50emμ/g。
实施例5
将FeCl3·6H2O配成质量浓度为66.6%的水溶液,将FeSO4·7H2O配制成浓度为21.9%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液,将羧甲基壳聚糖与25%氨水的质量比为范围内配成溶液,羧甲基壳聚糖与25%氨水的质量比为1∶25。在80℃左右的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量为5∶1,反应时间控制在30分钟左右,反应初期搅拌速度为1200转/分钟,反应后期搅拌速度为650转/分钟。反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体,稳定磁液体中的铁含量为2.833mg/ml,最后将制得的稳定水基磁性液体进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,最后稳定磁性液体的饱和磁化强度分别为0.32emμ/g。
实施例6
将FeCl3·6H2O配成质量浓度为66.6%的水溶液,将FeSO4·7H2O配制成浓度为21.9%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液,将羧甲基壳聚糖与25%氨水的质量比为范围内配成溶液,羧甲基壳聚糖与25%氨水的质量比为1∶30。在95℃左右的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量为5∶1,反应时间控制在30分钟左右,反应初期搅拌速度为1200转/分钟,反应后期搅拌速度为650转/分钟。反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体,稳定磁液体中的铁含量为2.833mg/ml,最后将制得的稳定水基磁性液体进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖,最后稳定磁性液体的饱和磁化强度分别为0.16emμ/g。
实施例7
本实施例是采用第二种制备方案,即先合成磁性颗粒之后再加入表面活性剂进行改性。其特征在于包括以下几个步骤:
①将FeCl3·6H2O配成质量浓度为21.3%的水溶液,将FeCl2·4H2O配成质量浓度为9.1%的水溶液,按Fe2+∶Fe3+=2∶1配比将两种溶液混合配成铁盐混合溶液;
②将铁盐混合溶液在水浴锅中预热5分钟后,在搅拌铁盐混合溶液的条件下注入摩尔数为Fe3+摩尔数5倍的浓氨水使反应进行;水浴温度控制在75℃左右、搅拌速度控制在400转/分钟、反应时间控制在30分钟。
③反应结束后将合成出来的磁性液体进行磁坐沉降,待磁颗粒被磁力吸附沉降下来后倒出上层清液,然后在加蒸馏水反复清洗数次,用蒸馏水洗涤磁颗粒约5~6次以便去除Cl-、NH4+等影响磁颗粒稳定分散的杂质离子,然后将磁性液体超声处理,即得到在水中稳定分散的磁性颗粒。
④将一定量的羧甲基壳聚糖配成水溶液,加入步骤③制备好的稳定磁性液体中,将混合液调节为酸性PH=4.7,于水浴锅中反应,水浴温度控制在50℃左右、搅拌速度控制在200转/分钟、反应时间控制在30分钟,水基磁性液体的饱和磁化强度为0.30emμ/g。
实施例8
本实施例是采用第二种制备方案,即先合成磁性颗粒之后再加入表面活性剂进行改性,基本步骤如实施例7所示,区别在于在步骤④中将混合液调节为中性PH=7.2,于水浴锅中反应,水基磁性液体的饱和磁化强度为0.82emμ/g。
实施例9
本实施例是采用第二种制备方案,即先合成磁性颗粒之后再加入表面活性剂进行改性,基本步骤如实施例7所示,区别在于在步骤④中将混合液调节为碱性PH=9.2,于水浴锅中反应,水基磁性液体的饱和磁化强度为0.57emμ/g。

Claims (10)

1.一种水基磁性液体,包括磁性颗粒、表面活性剂和载液,其特征是所述的表面活性剂为羧甲基壳聚糖。
2.一种制备权利要求1所述的水基磁性液体的方法,其特征是采用化学共沉淀法制备水基磁性液体。
3.根据权利要求2所述制备水基磁性液体的方法,其特征是采用磁性颗粒合成与改性同步进行的化学共沉淀法制备水基磁性液体。
4.根据权利要求3述制备水基磁性液体的方法,其特征在于包括以下步骤:
①将三氯化铁配成质量浓度为60%~70%的水溶液,将二氯化铁或硫酸亚铁配制成浓度为15%~30%的水溶液,按Fe2+∶Fe3+=1∶1.5~2配比将两种溶液混合配成铁盐混合溶液;
②将羧甲基壳聚糖与25%氨水的质量比在1∶5~1∶30范围内配成溶液,在50~100℃的水浴条件下高速搅拌使羧甲基壳聚糖溶解于氨水,同时注入Fe2+、Fe3+混合液,控制羧甲基壳聚糖与合成后的Fe3O4质量比在1∶1~6∶1范围内,反应时间控制在30~60分钟之间;
③反应完毕将磁性液体取出进行离心分离不稳定的颗粒,得稳定的磁性液体。
5.根据权利要求3述制备水基磁性液体的方法,其特征是制得稳定的水基磁性液体后,进一步采用超滤办法去除磁性液体中存在的没有被磁性颗粒所吸附的游离态羧甲基壳聚糖。
6.根据权利要求3述制备水基磁性液体的方法,其特征是在步骤②中反应初期搅拌速度在900~1200转/分钟范围内,反应后期搅拌速度在300~800转/分钟范围内。
7.根据权利要求3述制备水基磁性液体的方法,其特征是羧甲基壳聚糖与合成后的Fe3O4质量比最佳为1∶1或1∶2,羧甲基壳聚糖与25%氨水的质量比最佳为1∶15。
8.根据权利要求3述制备水基磁性液体的方法,其特征是步骤②还可以在有氮气保护的条件下进行反应,反映时间控制在2个小时以上。
9.根据权利要求3述制备水基磁性液体的方法,其特征是可以在超声条件下制备磁性液体。
10.根据权利要求2所述制备磁性液体的方法,其特征是所述方法分成以下两个步骤:第一步先通过化学共沉淀法合成稳定分散的磁性颗粒,再进行第二步表面改性反应的方法制备水基磁性液体。
CNB2005100347677A 2005-05-25 2005-05-25 一种水基磁性液体及其制备方法 Expired - Fee Related CN100362605C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100347677A CN100362605C (zh) 2005-05-25 2005-05-25 一种水基磁性液体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100347677A CN100362605C (zh) 2005-05-25 2005-05-25 一种水基磁性液体及其制备方法

Publications (2)

Publication Number Publication Date
CN1702782A true CN1702782A (zh) 2005-11-30
CN100362605C CN100362605C (zh) 2008-01-16

Family

ID=35632455

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100347677A Expired - Fee Related CN100362605C (zh) 2005-05-25 2005-05-25 一种水基磁性液体及其制备方法

Country Status (1)

Country Link
CN (1) CN100362605C (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519437C (zh) * 2006-01-26 2009-07-29 中国科学院等离子体物理研究所 复合型无机高分子水质净化剂及磁聚清除藻华的方法
CN102225329A (zh) * 2011-05-09 2011-10-26 华中师范大学 碳与四氧化三铁介孔复合材料及其制备和在治理环境污水中的应用
CN104528837A (zh) * 2014-12-15 2015-04-22 沈阳药科大学 稳定的纳米四氧化三铁磁流体的制备方法
CN105529126A (zh) * 2016-02-02 2016-04-27 遵义医学院 一锅法制备纳米水基磁流体
CN107029252A (zh) * 2017-04-06 2017-08-11 广西医科大学 一种特异性磁性Endoglin适配体成像探针系统的制备方法
CN107195418A (zh) * 2017-06-07 2017-09-22 常州市海若纺织品有限公司 一种水基磁流变液的制备方法
CN107492434A (zh) * 2017-10-18 2017-12-19 方利俊 一种以片状碳酸钙为模板的水基磁性液体及其制备方法
CN107610874A (zh) * 2017-10-18 2018-01-19 方利俊 一种水基磁性液体及其制备方法
CN109516503A (zh) * 2019-01-11 2019-03-26 福州大学 一种高稳定性水基纳米磁性流体的制备方法
CN110152023A (zh) * 2019-04-25 2019-08-23 国家纳米科学中心 一种t1-t2双核磁共振成像造影剂及其制备方法和应用
CN110663509A (zh) * 2019-09-02 2020-01-10 三峡大学 一种加强土壤中水分定向迁移的装置及方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519437C (zh) * 2006-01-26 2009-07-29 中国科学院等离子体物理研究所 复合型无机高分子水质净化剂及磁聚清除藻华的方法
CN102225329A (zh) * 2011-05-09 2011-10-26 华中师范大学 碳与四氧化三铁介孔复合材料及其制备和在治理环境污水中的应用
CN102225329B (zh) * 2011-05-09 2013-06-05 华中师范大学 碳与四氧化三铁介孔复合材料及其制备和在治理环境污水中的应用
CN104528837A (zh) * 2014-12-15 2015-04-22 沈阳药科大学 稳定的纳米四氧化三铁磁流体的制备方法
CN105529126A (zh) * 2016-02-02 2016-04-27 遵义医学院 一锅法制备纳米水基磁流体
CN107029252B (zh) * 2017-04-06 2020-07-28 广西医科大学 一种特异性磁性Endoglin适配体成像探针系统的制备方法
CN107029252A (zh) * 2017-04-06 2017-08-11 广西医科大学 一种特异性磁性Endoglin适配体成像探针系统的制备方法
CN107195418A (zh) * 2017-06-07 2017-09-22 常州市海若纺织品有限公司 一种水基磁流变液的制备方法
CN107195418B (zh) * 2017-06-07 2019-05-28 王鸳 一种水基磁流变液的制备方法
CN107610874A (zh) * 2017-10-18 2018-01-19 方利俊 一种水基磁性液体及其制备方法
CN107492434A (zh) * 2017-10-18 2017-12-19 方利俊 一种以片状碳酸钙为模板的水基磁性液体及其制备方法
CN109516503A (zh) * 2019-01-11 2019-03-26 福州大学 一种高稳定性水基纳米磁性流体的制备方法
CN110152023A (zh) * 2019-04-25 2019-08-23 国家纳米科学中心 一种t1-t2双核磁共振成像造影剂及其制备方法和应用
CN110152023B (zh) * 2019-04-25 2022-05-17 国家纳米科学中心 一种t1-t2双核磁共振成像造影剂及其制备方法和应用
CN110663509A (zh) * 2019-09-02 2020-01-10 三峡大学 一种加强土壤中水分定向迁移的装置及方法

Also Published As

Publication number Publication date
CN100362605C (zh) 2008-01-16

Similar Documents

Publication Publication Date Title
CN1702782A (zh) 一种水基磁性液体及其制备方法
US11045789B1 (en) Biomass intelligent fiber-based amphoteric multifunctional adsorptive material and preparation method and use thereof
Tarasi et al. Laccase immobilization onto magnetic β-cyclodextrin-modified chitosan: improved enzyme stability and efficient performance for phenolic compounds elimination
CN110665465B (zh) 用于糖肽富集的磁性共价有机框架材料及其制备方法与应用
CN1229305C (zh) 超声处理制备铁氧体-二氧化硅核壳纳米粒子的方法
US20160002438A1 (en) Core-shell nanoparticles and method for manufacturing the same
CN107583617B (zh) 一种吸附双氯酚酸钠的磁性微球
Song et al. DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability
Govan et al. Imogolite: a nanotubular aluminosilicate: synthesis, derivatives, analogues, and general and biological applications
CN1747078A (zh) 一种聚合物改性水基磁性液体及其制备方法
CN101125685A (zh) 亲油性四氧化三铁纳米颗粒的制备方法
CN1193383C (zh) 具有强磁场响应能力的磁性核壳微粒及其制备方法
CN1773636A (zh) 一种水基磁性液体及其制备方法
CN113307359A (zh) 一种生物流化床用复合载体材料及其制备方法
CN108658193A (zh) 一种新型磁性絮凝剂的制备方法
JP2007189932A (ja) 磁性を有するキトサン系微生物固定化用担体及びその製造方法
CN1260743C (zh) 一种制备n-酰基肌氨酸改性水基磁性液体的方法
CN111100840A (zh) 特异性捕获和有效释放循环肿瘤细胞的磁性纳米复合物及其制备方法
JP2007049052A (ja) 複合磁性粒子の製造方法及び複合磁性粒子
KR102609429B1 (ko) 양쪽성 이온으로 표면 치환된 나노입자의 제조방법
CN100406381C (zh) 功能性仿生二氧化硅纳米粒子及其制备方法
CN112441591A (zh) 一种硅酸锰微球的绿色一步水热合成方法及应用
CN112237906A (zh) Php修饰的磁性纳米微球、制备方法及其在dna分离中的应用
CN115569632B (zh) 一种磁性活性炭纤维吸附剂及其制备方法
CN113976083B (zh) 一种污水处理用纳米材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080116