CN1701495B - 具有斐波纳契数列的电荷泵 - Google Patents

具有斐波纳契数列的电荷泵 Download PDF

Info

Publication number
CN1701495B
CN1701495B CN038246821A CN03824682A CN1701495B CN 1701495 B CN1701495 B CN 1701495B CN 038246821 A CN038246821 A CN 038246821A CN 03824682 A CN03824682 A CN 03824682A CN 1701495 B CN1701495 B CN 1701495B
Authority
CN
China
Prior art keywords
voltage
capacitor
level
stages
voltage level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN038246821A
Other languages
English (en)
Other versions
CN1701495A (zh
Inventor
若尔-安德里安·瑟尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk Technologies LLC
Original Assignee
SanDisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk Corp filed Critical SanDisk Corp
Publication of CN1701495A publication Critical patent/CN1701495A/zh
Application granted granted Critical
Publication of CN1701495B publication Critical patent/CN1701495B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明揭示一种电荷泵(10),其包括交替充电和串联耦合的复数个电容器(16、32、48、24、40、56)。当串联耦合时,一给定电容器两端的电压将等于其负极端子上的电压加上前一电容器两端的电压。每一电荷泵级(A-F)均设置用于实现遵循斐波纳契数列的电压升高。

Description

具有斐波纳契数列的电荷泵
技术领域
本发明大体而言涉及电荷泵领域,更具体而言涉及一种设置用于实现遵循斐波纳契数列的电压升高的电荷泵。
背景技术
电荷泵使用一转换过程来提供一高于其DC输入电压的DC输出电压。通常,一电荷泵将有一电容器耦合至一输入与一输出之间的开关。在一时钟半周期期间,即充电半周期期间,电容器并联耦合至该输入以充电至输入电压。在一第二时钟周期期间,即转移半周期期间,已充电电容器与输入电压串联耦合以提供一两倍于输入电压电平的输出电压。该过程如图1a和图1b所示。在图1a中,使电容器5与输入电压VIN并联排列以说明该充电半周期。在图1b中,则使已充电电容器5与输入电压串联排列以说明该转移半周期。因此,如在图1b中所见,已充电电容器5的正极端子将相对于地为2*VIN
上述一般性电荷泵提供一不超过输入电压VCC两倍的输出电压。美国专利第5,436,587号揭示一具有一电压加法级后随复数个电压倍增级的电荷泵,其中各级的级联方式可获得大大高于两倍VCC的输出电压,该专利的内容以引用方式并入本文中。电压加法级是每一输出电压信号仅使用一个电容器,而电压倍增级则每一输出电压信号需要两个电容器,因此增加了制造成本。然而,以电压加法级取代所有的电压倍增级会大大增加串联电阻。
因此,所属技术领域中需要每一级仅需一个电容器的有效的电荷泵。
发明内容
根据本发明的一方面,一电荷泵包括复数个电压级,其中每一电压级包括一电容器。在工作期间,所述电荷泵对所述电容器充电并与所述电容器串联耦合,以使一第一电压级内已充电电容器的正极端子耦合至一第二电压级内已充电电容器的一负极端子,依此类推。所述电荷泵对所述电容器充电的方式使得,对于一大于1的整数k,第k个电压级内电容器两端的电压大致等于其负极端子上的电压加上第(k-1)个电压级内电容器两端的电压。
根据本发明的另一方面,一种产生电压的方法包括一如下过程:交替地对复数个电容器充电,然后串联耦合所述复数个已充电电容器。所述已充电电容器串联耦合的方式使所述复数个电压级内一第一电容器的正极端子耦合至所述复数个电压级内一第二电容器的负极端子,依此类推。电容器的充电方式使得,对于一大于1的整数k,电容器两端的电压大致等于其负极端子上的电压加上第(k-1)个电容器两端的电压。
以下说明和图式揭示本发明的其它方面及优点。
附图说明
通过查阅下列图式可以更好地了解本发明的不同方面和特征,其中:
图1a为一一般性电荷泵中充电半周期的简化电路图。
图1b为一一般性电荷泵中转移半周期的简化电路图。
图2为一根据本发明一实施例的电荷泵的电路图,该电荷泵具有根据一斐波纳契数乘法设置的电压量。
图3为一图解说明图2所示电荷泵中电容器的串联耦合半周期的简化电路图。
图4为一对图2所示电荷泵的修改,其使在最后电压级充电期间不出现二级管压降。
图5为一图解说明图4所示电荷泵中电容器的串联耦合半周期的简化电路图。
具体实施方式
本发明提供一可每级使用一个电容器的电荷泵。每一级均以一整数乘以电源电压,以使每一级所产生的电压信号与整数倍增可遵循斐波纳契数列的一部分。在一斐波纳契数列中,第k个数(第一个和第二个数都等于1,因而除外)等于第(k-1)与第(k-2)个数之和。因此,一斐波纳契数列如下:1,1,2,3,5,8,13,21,等等。
现在参见图2,其显示一具有六个级A至F的实例性电荷泵10。这些级可根据其接收哪一时钟信号来加以组织。级A至C接收一时钟信号CLK,而级D至F接收一互补时钟信号CLKBAR。这两个时钟信号均可在地电平(LOW(低))与输入电源电压VCC(HIGH(高))之间振荡。或者,时钟信号的HIGH状态可不同于VCC。重要的是,该HIGH状态的振幅须足以导通其所控制的晶体管。不失一般性地,可假定CLK信号始于一为LOW的第一时钟半周期,接着是一为HIGH的第二时钟半周期,再接着是一为LOW的第三时钟半周期,依此类推。这样,在奇数编号的时钟半周期内,CLK信号为LOW,而在偶数编号的时钟半周期内,CLK信号为HIGH。类似地,CLKBAR信号在奇数编号的时钟半周期内,为HIGH,而在偶数编号的时钟半周期内为LOW。
每一级的结构可以相同。举例而言,在级A内,一p-mos FET12的源极与一n-mos FET 14的漏极耦合至一电容器16的负极端子。电容器16的正极端子耦合至一n-mos FET 18的源极。在级B内,一p-mos FET 20的源极和一n-mosFET 22的漏极耦合至一电容器24的负极端子。电容器24的正极端子耦合至一n-mos FET 26的源极。在级B内,一p-mos FET 28的源极与一n-mos FET 30的漏极耦合至一电容器32的负极端子,电容器32的正极端子耦合至一n-mos FET34的源极。在级E内,一p-mos FET 36的源极与一n-mos FET 38的漏极耦合至一电容器40的负极端子,电容器40的正极端子耦合至一n-mos FET 42的源极。在级C内,一p-mos FET 44的源极与一n-mos FET 46的漏极耦合至一电容器48的负极端子。电容器48的正极端子耦合至一n-mos FET 50的源极。最后,在级F内,一p-mos FET 52的源极与一n-mos FET 54的漏极耦合至一电容器56的负极端子。电容器56的正极端子耦合至一n-mos FET 58的源极。
级A至C内的电容器16、32和48将在CLK信号的奇数半周期内串联耦合。在该时间期间,来自串联耦合电容器的电压用于对级E至F内的电容器24、40和56充电。类似地,级D至F内的电容器24、40和56将在CLK信号的偶数半周期内串联耦合。在该等偶数半周期期间,来自串联耦合电容器的电压用于对级A至C内的电容器16、32和48充电。
图3图解说明串联耦合及充电半周期。为清楚起见,仅显示每一电压级内的电容器,其由相应字母A至F标识。在CLK信号的偶数半周期期间,级A至C内的电容器分别充电到VCC、3*VCC和8*VCC伏特。在CLK信号的奇数半周期期间,该等已充电电容器串联耦合,且电压级A内电容器的负极端子充电到VCC。结果,级A至C内的电容器正极端子上的电压将分别为2*VCC、5*VCC和13*VCC伏特。在该奇数半周期期间,这些相同的电压用于对级D至F内的电容器充电。因此,级D内的电容器将充电到2*VCC,级E内的电容器将充电到5*VCC,级F内的电容器将充电到13*VCC伏特(减去一二极管压降,如下文所解释)。
类似地,在CLK信号的一偶数半周期期间,级D至F内的已充电电容器串联耦合。级D中的已充电电容器的负极端子充电到VCC伏特。结果,级D至F内电容器正极端子上的电压将分别为3*VCC、8*VCC和21*VCC伏特。然后,按下述方式使用这些电压对其余的级充电。级A为“起始”级,因而并不自级C至F接收充电电压,而是充电到VCC伏特。然而,来自级D的电压将级B内的电容器充电到3*VCC伏特,来自级E的电压将级C内的电容器充电到8*VCC伏特。
注意当该等级串联耦合时由此产生的电压所遵循的形式。为清楚起见,将忽略VCC项,从而将VCC标记为1,将,将2*VCC标记为2,依此类推。从级A的电容器负极端开始,该节点为1。级A内电容器两端的电压提供另一个1。级A内电容器正极端子上的电压提供一2。继续注意(对每一电容器而言按顺序)电容器负极端上的电压、电容器两端的电压及电容器正极端上的电压,级A至C出现下列形式:1,1,2,3,5,8和13。该数列形成一如上所述斐波纳契数列的一部分。所观察到的级D至F的电压与此相同:1,2,3,5,8,13和21。该数列也形成斐波纳契数列的自第二个“1”开始的一部分。
这些电压以下列形式产生。重新参见图2,在级A的CLK信号的奇数半周期(在该信号为LOW时)期间,n-mos晶体管14处于关断(OFF)状态,而p-mos晶体管12处于导通(ON)状态。因此,电容器16的负极端子将充电到VCC。假定电容器16先前已充电到VCC,则电容器16的正极端子上的电压信号V21将大致等于2*VCC。这样标记电压信号21是因为其在CLK信号的奇数半周期内等于2*VCC而在CLK信号的偶数半周期内等于1*VCC。类似信号也将遵循类似的命名法,以使第一个数等于在CLK信号的奇数半周期内的VCC倍数、第二个数等于在偶数半周期内的倍数。尽管电容器16已充电到VCC,但所属领域的技术人员应了解,该电荷将会因电荷共享、电容耦合、及/或泄漏和其他相关过程而丢失。所以,本文使用的“大致等于”一给定电压电平应理解为包括任何此等损耗。在级D内,互补时钟信号CLKBAR在CLK信号的奇数半周期内为HIGH,从而导通n-mos FET 22并关断p-mos FET 20。因此,电容器24的负极端子上的电压信号V01将被拉向地电平。类似地,级E和F内的电压信号V03和V08也将接地。
电压信号V01又控制级B内p-mos晶体管28的栅极,从而导通该晶体管并将电容器32的负极端子上的信号V20拉至一2*VCC的电压。假定电容器32先前已充电到3*VCC,则电容器32正极端子上的电压信号V53将大致等于5*VCC。在级C内,为LOW的电压信号V03将导通p-mos FET 44,从而容许由电压信号V53将电容器48的负极端子上的电压信号V50充电到5*VCC-在n-mos FET 46已因CLK信号为LOW状态而关断的条件下。假定电容器48已充电到8*VCC,则电容器48的正极端子上的电压信号V13-8将大致等于13*VCC。照此方式,分别位于级A、B和C内的电容器16、32和48在CLK信号的奇数半周期内串联耦合。
如参照图3所论述,来自这些级串联耦合的电容器的电压用于在CLK信号的奇数半周期内对其余级内的电容器充电。举例而言,在级D内,n-mos FET 26在其漏极处接收电压信号V21。由于该FET在其栅极处接收电压信号V50,所以其将导通,从而将电容器24相对于其接地的负极端子充电到2*VCC。此又使电压信号V23也将充电到2*VCC。类似地,在级E内,由于n-mos FET在其栅极处接收电压信号V13-8,所以其将导通,从而容许电压信号V53将电容器40相对于其接地的负极端子充电到5*VCC。此又使电压信号V58也将充电到5*VCC。最后,在级F内,二极管连接的n-mos FET 58将由电压信号V13-8导通,从而允许该电压信号将电容器56相对于其接地的负极端子充电到13*VCC(减去二极管压降)。此又使电压信号V13-21也将充电到13*VCC。
按照类似的方式,在CLK信号的偶数半周期内,分别位于级D、E和F内的电容器24、40和56也将串联耦合。在该等偶数半周期期间,CLKBAR信号将为LOW,从而关断n-mos FET 22、38和54并防止串联耦合的电容器相应的负极端子接地。同时,由于CLK信号为HIGH状态,因而分别位于级A、B和C内的n-mos FET 14、30和46将导通,从而将电容器16、32和48相应的负极端子上的信号V10、V20和V50拉至地电平。在级D内,p-mos FET 20将导通,从而允许电源电压VCC将电容器24负极端子上的信号V01充电到VCC。由于电容器24已充电到2*VCC,因而电容器24正极端子上的电压信号V23此时大致等于3*VCC。由于控制其栅极的信号V50为LOW状态,因而晶体管26将关断,以防止电压信号V23通过该晶体管往回放电。此又使电压信号V23耦合至级E内的p-mos FET 36的源极。因为该晶体管在其栅极处接收此时为LOW的电压信号V20,所以p-mos FET 36将导通,以将电容器40负极端子上的信号V03充电到3*VCC。在电容器40早已充电到5*VCC的条件下,电容器40的正极端子上的电压信号V58将大致等于8*VCC。电压信号V58将不通过n-mos FET42往回放电,这是因为其因电压信号V13-8为8*VCC电压而关断。此又使电压信号V58耦合至级F内p-mos FET 52的源极。由于该晶体管在其栅极处接收电压信号V53的LOW状态,所以其将导通,从而将电容器56的负极端子上的电压信号V08充电到8*VCC。由于电容器56已充电到13*VCC(减去晶体管58上的二极管压降),所以电容器56正极端子上的电压信号V13-21将大致等于21*VCC。在二极管连接的晶体管58的源极将处于一高于其漏极的电位的条件下,其将关断,以防止电压信号V13-21通过该晶体管往回放电。
如参照图3所论述,来自级D和E内串联耦合的电容器的电压用于在CLK信号的偶数半周期期间对级B和C内的电容器充电。作为起始级的级A此时按下述方式使用电源电压VCC对其电容器16充电。电压信号V08的8*VCC电位耦合至n-mos晶体管18的栅极,从而将其导通并将电压信号V12拉至VCC、将电容器16相对于其接地端子充电到VCC。类似地,电压信号V08也将导通级B内的n-mos FET 34,从而允许电压信号V23将电容器32相对于其接地端子充电到3*VCC并将电压信号V53也拉至3*VCC。最后,电压信号V13-21导通级C内的n-mos FET 50,从而允许电压信号V58将电容器48充电到8*VCC并将电压信号V13-8也拉至8*VCC。注意,在偶数和奇数时钟半周期二者期间,p-mos FET 28、36、44和52与n-mos FET 18、26、34、42和50的所有栅极信号均是自产生的。不过,级F内的n-mos FET 58带来一个问题。这里,电容器56在CLK信号的奇数半周期期间将充电到13*VCC。因此,为在该充电过程期间使n-mos FET 58保持导通,需要栅极电压为13*VCC加上阈电压。但此时,13*VCC的电压是从电荷泵10所能获得的最高电压。因此,一个解决方案是如图所示以二极管形式连接该晶体管。另一选择为,可构建一附加输出级(未图示)来提供一等于13*VCC加上(至少)阈电压的选通电压。例如,美国专利第5,436,587号揭示一可经修改用于接收电压信号V13-21并提供一适当选通电压的输出级。尽管此一实施例将需要附加组件,但它不会遭受图2所示电压信号V13-21所经历的二极管压降。
通过查阅图2和图3,可推而广之在任一半时钟周期期间构造一具有一任意数目N个串联耦合电容器的电荷泵。在此一电荷泵内,第一复数个N级将包括第一级、第二级,依此类推,每一级皆包括一电容器。第二复数个N级从第(N+1)级开始,接下来是第(N+2)级,依此类推,每一级也包括一电容器。在一时钟信号的奇数半周期内,第一级内的电容器的正极端子耦合至第二级内的电容器的负极端子,依此类推。在该时钟信号的偶数半周期内,第(N+1)级内的电容器的正极端子耦合至第(N+2)级内的电容器的负极端子,依此类推。对于第一复数个电压级中的第二级及更高级,以及第二复数个电压级中的第(N+2)级及更高级,一级内任一给定电容器两端的电压大致等于该给定电容器负极端子上的电压加上前一级内的电容器两端的电压。在奇数半周期内,第一复数个级内的电容器正极端子上的电压用于对第二复数个级内相应的电容器充电。换句话说,第一级内的电容器正极端子上的电压对第(N+1)级内的电容器充电,第二级内的电容器正极端子上的电压对第(N+2)级内的电容器充电,依此类推。在偶数半周期内,第(N+1)级内的电容器正极端子上的电压对第二级内的电容器充电,依此类推,以使第(2*N-1)级内的电容器正极端子上的电压对第N级内的电容器充电。
如以上参照图2中电荷泵10所论述,为提供正确的选通电压,此一布置中的最后一级可能需要二极管连接的晶体管,此会在所产生电压中引入二极管压降;或者需要一输出级,此需要额外的组件。为避免使用这两种替代方案,可以对第一复数个电压级内的第N级和第二复数个电压级内的第2*N级进行修改,以使每一修改后的级为其他级提供选通电压。在此一实施例中,第2*N级将不会引入二极管压降,也不需要一附加输出级。
现在参见图4,一电荷泵70图解说明了此修改。级A至F可具有与参照图2所论述的相同的组件。这里,级A至F中的电容器将如前述般串联耦合:在CLK信号的奇数半周期期间,级A至C中的电容器串联耦合,且将来自串联耦合电容器的电压用于对其余的电容器充电。类似地,电容器D至F在CLK信号的偶数半周期期间串联耦合且将来自该等串联耦合电容器的电压用于对其余的电容器充电。然而,级C和F内的电容器并不如上述般充电。
为图解说明区别,图5显示了图4所示的电荷泵70的串联耦合及半周期充电。为清楚起见,只显示每一电压级内的电容器,其由相应字母A至F标识。在CLK信号的偶数半周期期间,级A至C内的电容器分别充电到VCC、3*VCC和3*VCC伏特。在CLK信号的奇数半周期内,这些已充电的电容器串联耦合且电压级A中的电容器的负极端子充电到VCC。结果,级A至C内的电容器正极端子上的电压将分别为2*VCC、5*VCC和8*VCC伏特。在该奇数半周期内,这些相同的电压用于对级D至F内的电容器充电。然而,未使用级C内的电容器正极端子上的8*VCC电压。而是两次使用级B内电容器正极端子上的5*VCC电压。因此,级D内的电容器将充电到2*VCC,级E内的电容器将充电到5*VCC,级F内的电容器将充电到5*VCC伏特。
类似地,在CLK信号的一偶数半周期期间,级D至F内的已充电电容器串联耦合。级D内的已充电电容器的负极端子充电到VCC伏特。结果,级D至F内的电容器的正极端子上的电压将分别为3*VCC、8*VCC和13*VCC伏特。然后,使用这些电压按如下方式对其余级充电。级A为“起始”级,因而其不自级D至F接收一充电电压,而是被充电到VCC伏特。不过,来自级D的电压分别将级B和C中的电容器充电到3*VCC伏特。正如在前一半周期内未使用来自级C的电压一样,来自最后一级F的电压不用于充电。
注意在该等级串联耦合时由此产生的电压所遵循的形式。如参照图3所论述,VCC项将被忽略,以将VCC标记为1,将2*VCC标记为2,依此类推。从级A的电容器负极端开始,该节点为1。级A内电容器两端的电压提供另一个1。级A内的电容器正极端子上的电压提供一2。继续注意(对于每一电容器而言皆按顺序)电容器负极端上的电压、电容器两端的电压和电容器正极端上的电压,级A至B会出现下列形式:1,1,2,3,5。该数列形成如上所述斐波纳契数列的一部分。所观察到的级D至E的电压与此相似:1,2,3,5,8。该数列也形成一斐波纳契数列的从第二个“1”开始的一部分。因为相对图2中所表示修改了最后一级C及F,所以在这两种情况中来自这些级的电压都不延续该斐波纳契数列。
重新参看图4,如参照图2所述。对分别位于级A、D和B内的电容器16、24和32进行充电。在CLK信号的奇数半周期内,来自级B的电压信号V53耦合至级D内的电容器40的负极端子。假定电容器48已相对于其负极端子充电到5*VCC,电容器48正极端子上的电压信号V83此时大致等于8*VCC。因电压信号V83耦合至n-mos FET 42的栅极,从而将其导通,因而来自级B的电压信号V53可将电容器40相对于其接地的负极端子充电到5*VCC。此又使电容器40的正极端子上的电压信号V58也将等于5*VCC。来自级E的电压信号V58用于对通过n-mos FET 58耦合的级F内的电容器56充电,n-mos FET 58由电压信号V83的8*VCC电压来导通。注意,不需要使用二极管连接的晶体管,从而会避免电容器56的充电电压中的任何二极管压降。此时,电容器56的负极端子通过导通的n-mos FET 54拉至地电平。
在CLK信号的偶数半周期期间,级D内电容器24的正极端子上的电压信号V23大致等于3*VCC。该电压信号对级B内的电容器32及级C内的电容器48二者充电。电压信号58将大致等于8*VCC,并将耦合至级F内的已充电电容器56的负极端子。因此,电压信号V5-13此时大致等于13*VCC。
通过查阅图4和图5,可推而广之来构造如下电荷泵:其在任一半时钟周期期间均具有一任意数目N个串联耦合电容器,其中来自第N个电容器的电压不用于对其他电容器充电。在此一电荷泵中,一第一复数N个级将包括一第一级、一第二级,依此类推,每一级均包括一电容器。一第二复数N个级从一第(N+1)级开始,接下来是一第(N+2)级,依此类推,每一级也包括一电容器。在一时钟信号的奇数半周期内,第一级内电容器的正极端子耦合至第二级内电容器的负极端子,依此类推。在该时钟信号的偶数半周期内,第(N+1)级内的电容器的正极端子耦合至第(N+2)级内电容器的负极端子,依此类推。在奇数半周期内,在第一复数个级内的电容器正极端子上的电压用于对第二复数个级内相应的电容器充电。换句话说,第一级内的电容器的正极端子上的电压对第(N+1)级内的电容器充电,第二级内的电容器正极端子上的电压对第(N+2)级内的电容器充电,依此类推,直至第(N-1)级内的电容器正极端子上的电压对第(2*N-1)电压级内的电容器充电。这里,该形式断开,以使第(2*N)电压级内的电容器也自第(N-1)电压级(而不是第N电压级)内的电容器正极端子接收其充电电压。
在偶数半周期内,第一电压级由电源VCC充电,第(N+1)级内的电容器正极端子上的电压对第二级内的电容器充电,第(N+2)级内的电容器正极端子上的电压对第三级内的电容器充电,依此类推,直至第(2*N-2)电压级内的电容器正极端子上的电压对第(N-1)电压级内的电容器充电。这里,该形式断开,以使第N电压级内的电容器也自第(2*N-2)电压级(而不是第(2*N-1)级)内的电容器正极端子接收其充电电压。在此一布置中,各电压级可具有如图4所示的结构,以使第2*N电压级可在其电容器正极端子上具有一n-mos FET(类似于n-mos FET58)。不管电压级的数目如何,第N电压级内的电容器正极端子上的电压将总是高到足以导通该n-mos FET,以使第2*N电压级内的电容器可以充电。通过此种方式,即会避免使用图2中二极管连接的晶体管58。
虽然上文是参照特定的实施例来说明本发明,但本说明仅为本发明应用的一实例,而不应视为对本发明的限制。因此,对所揭示实施例的特征的各种修改和组合仍归属于权利要求书所涵盖的本发明范围内。

Claims (3)

1.一种电荷泵,其包括:
第一复数个电压级,其中每一电压级包括一电容器,所述电压级是构造成用于对所述电容器充电并串联耦合所述电容器,以使一第一电压级内的电容器的正极端子耦合至一第二电压级内的电容器的一负极端子,依此类推,且其中所述电容器被充电及串联耦合,以便对于一大于1的整数k来说,第k电压级内的电容器两端的电压等于其负极端子上的电压加上第(k-1)电压级内的电容器两端的电压,以及
第二复数个电压级,其中在所述第二复数个电压级内,每一电压级包括一电容器,所述第二复数个电压级是构造成用于对所述电容器充电并串联耦合已充电电容器,以使一第一电压级内的电容器的正极端子耦合至一第二电压级内的电容器的一负极端子,依此类推,且其中所述电容器被充电及串联耦合,以便对于一大于1的整数m来说,第m电压级内的电容器两端的电压等于其负极端子上的电压加上第(m-1)电压级内的电容器两端的电压,
其中所述第一复数个电压级的所述电压级内的所述电容器的所述串联耦合发生在一时钟信号的一第一相期间,以及
所述第二复数个电压级的所述电压级内的所述电容器的所述串联耦合发生在所述时钟信号的一第二相期间,
在所述时钟信号的所述第一相期间,所述第二复数个电压级的所述电压级内的所述电容器是由所述第一复数个电压级的所述电压级内的所述串联耦合的电容器的正极端子上的电压充电,以及
所述第一复数个电压级的所述第一电压级内的所述电容器的所述正极端子上的电压对所述第二复数个电压级的所述第一电压级内的所述电容器充电,所述第一复数个电压级的所述第二电压级内的电容器的正极端子上的电压对所述第二复数个电压级的所述第二电压级内的电容器充电,依此类推,以及
在所述时钟信号的所述第二相期间,所述第一复数个电压级内的所述第一电压级由电源电压VCC充电,所述第二复数个电压级的所述第一电压级内的所述电容器的所述正极端子上的电压对所述第一复数个电压级的所述第二电压级内的电容器充电,所述第二复数个电压级的所述第二电压级内的所述电容器的正极端子上的电压对所述第一复数个电压级的第三电压级内的电容器充电,依此类推,
其中所述第一和第二复数个电压级分别具有N个电压级且每一复数个电压级与一附加电压级相关联,且其中每一附加电压级包括一电容器,且其中在所述时钟信号的所述第一相期间,所述第一复数个电压级内的第N电压级内的电容器的正极端子耦合至与所述第一复数个电压级相关联的附加电压级内的电容器的负极端子,且其中在所述时钟信号的所述第二相期间,所述第二复数个电压级内的第N电压级内的电容器的正极端子耦合至与所述第二复数个电压级相关联的附加电压级内的电容器的负极端子。
2.如权利要求1所述的电荷泵,其中在所述时钟信号的所述第一相期间,所述第一复数个电压级的所述第N电压级内的所述电容器的所述正极端子上的电压对与所述第二复数个电压级相关联的所述附加电压级内的所述电容器充电。
3.如权利要求2所述的电荷泵,其中在所述时钟信号的所述第二相期间,所述第二复数个电压级的第(N-1)电压级内的电容器的正极端子上的电压对与所述第一复数个电压级相关联的所述附加电压级内的所述电容器充电。
CN038246821A 2002-09-27 2003-09-19 具有斐波纳契数列的电荷泵 Expired - Fee Related CN1701495B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/260,115 2002-09-27
US10/260,115 US6861894B2 (en) 2002-09-27 2002-09-27 Charge pump with Fibonacci number multiplication
PCT/US2003/029503 WO2004030192A1 (en) 2002-09-27 2003-09-19 Charge pump with fibonacci series

Publications (2)

Publication Number Publication Date
CN1701495A CN1701495A (zh) 2005-11-23
CN1701495B true CN1701495B (zh) 2010-11-10

Family

ID=32029613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038246821A Expired - Fee Related CN1701495B (zh) 2002-09-27 2003-09-19 具有斐波纳契数列的电荷泵

Country Status (8)

Country Link
US (2) US6861894B2 (zh)
EP (1) EP1543605A1 (zh)
JP (1) JP4477500B2 (zh)
KR (1) KR101106483B1 (zh)
CN (1) CN1701495B (zh)
AU (1) AU2003272567A1 (zh)
TW (1) TWI320259B (zh)
WO (1) WO2004030192A1 (zh)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734718B1 (en) * 2002-12-23 2004-05-11 Sandisk Corporation High voltage ripple reduction
US6922096B2 (en) * 2003-08-07 2005-07-26 Sandisk Corporation Area efficient charge pump
JP2005235315A (ja) * 2004-02-19 2005-09-02 Elpida Memory Inc 昇圧回路
JP2006158132A (ja) * 2004-11-30 2006-06-15 Renesas Technology Corp チャージポンプ方式電源回路
US7397299B2 (en) * 2004-12-28 2008-07-08 The Hong Kong University Of Science And Technology N-stage exponential charge pumps, charging stages therefor and methods of operation thereof
JP2008159736A (ja) * 2006-12-22 2008-07-10 Elpida Memory Inc 半導体装置及びその電源供給方法
US8044705B2 (en) 2007-08-28 2011-10-25 Sandisk Technologies Inc. Bottom plate regulation of charge pumps
US20090058507A1 (en) * 2007-08-28 2009-03-05 Prajit Nandi Bottom Plate Regulated Charge Pump
US7586362B2 (en) * 2007-12-12 2009-09-08 Sandisk Corporation Low voltage charge pump with regulation
US7586363B2 (en) * 2007-12-12 2009-09-08 Sandisk Corporation Diode connected regulation of charge pumps
US7969235B2 (en) 2008-06-09 2011-06-28 Sandisk Corporation Self-adaptive multi-stage charge pump
US20090302930A1 (en) * 2008-06-09 2009-12-10 Feng Pan Charge Pump with Vt Cancellation Through Parallel Structure
US8710907B2 (en) 2008-06-24 2014-04-29 Sandisk Technologies Inc. Clock generator circuit for a charge pump
US7683700B2 (en) * 2008-06-25 2010-03-23 Sandisk Corporation Techniques of ripple reduction for charge pumps
US7795952B2 (en) * 2008-12-17 2010-09-14 Sandisk Corporation Regulation of recovery rates in charge pumps
US7973592B2 (en) 2009-07-21 2011-07-05 Sandisk Corporation Charge pump with current based regulation
US8154334B2 (en) * 2009-07-21 2012-04-10 Intersil America Inc. System and method for pre-charging a bootstrap capacitor in a switching regulator with high pre-bias voltage
US8339183B2 (en) 2009-07-24 2012-12-25 Sandisk Technologies Inc. Charge pump with reduced energy consumption through charge sharing and clock boosting suitable for high voltage word line in flash memories
US20110148509A1 (en) 2009-12-17 2011-06-23 Feng Pan Techniques to Reduce Charge Pump Overshoot
US8432732B2 (en) 2010-07-09 2013-04-30 Sandisk Technologies Inc. Detection of word-line leakage in memory arrays
US8305807B2 (en) 2010-07-09 2012-11-06 Sandisk Technologies Inc. Detection of broken word-lines in memory arrays
US8514630B2 (en) 2010-07-09 2013-08-20 Sandisk Technologies Inc. Detection of word-line leakage in memory arrays: current based approach
US8106701B1 (en) 2010-09-30 2012-01-31 Sandisk Technologies Inc. Level shifter with shoot-through current isolation
US8294509B2 (en) 2010-12-20 2012-10-23 Sandisk Technologies Inc. Charge pump systems with reduction in inefficiencies due to charge sharing between capacitances
US8339185B2 (en) 2010-12-20 2012-12-25 Sandisk 3D Llc Charge pump system that dynamically selects number of active stages
US8581658B2 (en) * 2011-04-08 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Charge pump
US8537593B2 (en) 2011-04-28 2013-09-17 Sandisk Technologies Inc. Variable resistance switch suitable for supplying high voltage to drive load
US8379454B2 (en) 2011-05-05 2013-02-19 Sandisk Technologies Inc. Detection of broken word-lines in memory arrays
US8750042B2 (en) 2011-07-28 2014-06-10 Sandisk Technologies Inc. Combined simultaneous sensing of multiple wordlines in a post-write read (PWR) and detection of NAND failures
US8775901B2 (en) 2011-07-28 2014-07-08 SanDisk Technologies, Inc. Data recovery for defective word lines during programming of non-volatile memory arrays
US8726104B2 (en) 2011-07-28 2014-05-13 Sandisk Technologies Inc. Non-volatile memory and method with accelerated post-write read using combined verification of multiple pages
US8699247B2 (en) 2011-09-09 2014-04-15 Sandisk Technologies Inc. Charge pump system dynamically reconfigurable for read and program
US8400212B1 (en) 2011-09-22 2013-03-19 Sandisk Technologies Inc. High voltage charge pump regulation system with fine step adjustment
US8514628B2 (en) 2011-09-22 2013-08-20 Sandisk Technologies Inc. Dynamic switching approach to reduce area and power consumption of high voltage charge pumps
US8395434B1 (en) 2011-10-05 2013-03-12 Sandisk Technologies Inc. Level shifter with negative voltage capability
US8730722B2 (en) 2012-03-02 2014-05-20 Sandisk Technologies Inc. Saving of data in cases of word-line to word-line short in memory arrays
US8710909B2 (en) 2012-09-14 2014-04-29 Sandisk Technologies Inc. Circuits for prevention of reverse leakage in Vth-cancellation charge pumps
US9164526B2 (en) 2012-09-27 2015-10-20 Sandisk Technologies Inc. Sigma delta over-sampling charge pump analog-to-digital converter
US9810723B2 (en) 2012-09-27 2017-11-07 Sandisk Technologies Llc Charge pump based over-sampling ADC for current detection
US8836412B2 (en) 2013-02-11 2014-09-16 Sandisk 3D Llc Charge pump with a power-controlled clock buffer to reduce power consumption and output voltage ripple
US8981835B2 (en) 2013-06-18 2015-03-17 Sandisk Technologies Inc. Efficient voltage doubler
US9024680B2 (en) 2013-06-24 2015-05-05 Sandisk Technologies Inc. Efficiency for charge pumps with low supply voltages
US9077238B2 (en) 2013-06-25 2015-07-07 SanDisk Technologies, Inc. Capacitive regulation of charge pumps without refresh operation interruption
US9007046B2 (en) 2013-06-27 2015-04-14 Sandisk Technologies Inc. Efficient high voltage bias regulation circuit
US9165683B2 (en) 2013-09-23 2015-10-20 Sandisk Technologies Inc. Multi-word line erratic programming detection
US9083231B2 (en) 2013-09-30 2015-07-14 Sandisk Technologies Inc. Amplitude modulation for pass gate to improve charge pump efficiency
US9154027B2 (en) 2013-12-09 2015-10-06 Sandisk Technologies Inc. Dynamic load matching charge pump for reduced current consumption
US9484086B2 (en) 2014-07-10 2016-11-01 Sandisk Technologies Llc Determination of word line to local source line shorts
US9514835B2 (en) 2014-07-10 2016-12-06 Sandisk Technologies Llc Determination of word line to word line shorts between adjacent blocks
US9443612B2 (en) 2014-07-10 2016-09-13 Sandisk Technologies Llc Determination of bit line to low voltage signal shorts
US9460809B2 (en) 2014-07-10 2016-10-04 Sandisk Technologies Llc AC stress mode to screen out word line to word line shorts
US9330776B2 (en) 2014-08-14 2016-05-03 Sandisk Technologies Inc. High voltage step down regulator with breakdown protection
US9202593B1 (en) 2014-09-02 2015-12-01 Sandisk Technologies Inc. Techniques for detecting broken word lines in non-volatile memories
US9240249B1 (en) 2014-09-02 2016-01-19 Sandisk Technologies Inc. AC stress methods to screen out bit line defects
US9449694B2 (en) 2014-09-04 2016-09-20 Sandisk Technologies Llc Non-volatile memory with multi-word line select for defect detection operations
KR101603120B1 (ko) * 2015-05-27 2016-03-14 (주)멜파스 전하 펌프
US9917507B2 (en) 2015-05-28 2018-03-13 Sandisk Technologies Llc Dynamic clock period modulation scheme for variable charge pump load currents
US9647536B2 (en) 2015-07-28 2017-05-09 Sandisk Technologies Llc High voltage generation using low voltage devices
US9659666B2 (en) 2015-08-31 2017-05-23 Sandisk Technologies Llc Dynamic memory recovery at the sub-block level
US9520776B1 (en) 2015-09-18 2016-12-13 Sandisk Technologies Llc Selective body bias for charge pump transfer switches
US9698676B1 (en) 2016-03-11 2017-07-04 Sandisk Technologies Llc Charge pump based over-sampling with uniform step size for current detection
CN106374738B (zh) * 2016-10-11 2019-02-26 北京大学深圳研究生院 一种Fibonacci电荷泵
CN108448890B (zh) * 2018-04-12 2019-07-23 武汉新芯集成电路制造有限公司 电荷泵
CN109004824B (zh) * 2018-07-23 2020-02-14 中车青岛四方机车车辆股份有限公司 信号输出控制电路
KR102174233B1 (ko) 2018-12-27 2020-11-04 연세대학교 산학협력단 저전력 환경에서 동작하는 고효율 전하 펌프 회로
EP4262969A1 (en) * 2020-12-18 2023-10-25 Medtronic, Inc. Device with switched capacitor charge pump sensing circuitry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9300836A (nl) * 1993-05-14 1994-12-01 Catena Microelect Bv Integreerbare spanningsvermenigvuldiger voor hoge vermenigvuldigingsfactoren.
CN1040931C (zh) * 1995-03-17 1998-11-25 摩托罗拉公司 高效的倍压器
CN1229302A (zh) * 1998-03-16 1999-09-22 日本电气株式会社 用于产生负电压的电荷泵

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1364618A (en) * 1971-12-03 1974-08-21 Seiko Instr & Electronics Voltage boosters
US5051881A (en) * 1990-07-05 1991-09-24 Motorola, Inc. Voltage multiplier
US5397931A (en) * 1993-03-31 1995-03-14 Texas Instruments Deutschland Gmbh Voltage multiplier
US5436857A (en) * 1993-11-22 1995-07-25 Ncr Corporation Personal computer module system and method of using
US5436587A (en) 1993-11-24 1995-07-25 Sundisk Corporation Charge pump circuit with exponetral multiplication
US5491623A (en) * 1994-09-23 1996-02-13 Fluke Corporation Voltage multiplier using switched capacitance technique
US5508971A (en) * 1994-10-17 1996-04-16 Sandisk Corporation Programmable power generation circuit for flash EEPROM memory systems
US5606491A (en) * 1995-06-05 1997-02-25 Analog Devices, Inc. Multiplying and inverting charge pump
US5596532A (en) * 1995-10-18 1997-01-21 Sandisk Corporation Flash EEPROM self-adaptive voltage generation circuit operative within a continuous voltage source range
US5856918A (en) * 1995-11-08 1999-01-05 Sony Corporation Internal power supply circuit
FR2742942B1 (fr) * 1995-12-26 1998-01-16 Sgs Thomson Microelectronics Generateur de creneaux de haute tension
JPH09312968A (ja) * 1996-05-22 1997-12-02 Nec Corp チャージポンプ回路
JP3316468B2 (ja) * 1999-03-11 2002-08-19 セイコーエプソン株式会社 昇圧回路、昇圧方法および電子機器
DE19915644C2 (de) 1999-04-07 2001-05-17 Texas Instruments Deutschland Ladungspumpe
JP3480423B2 (ja) 2000-05-25 2003-12-22 松下電器産業株式会社 電源回路
US6466489B1 (en) * 2001-05-18 2002-10-15 International Business Machines Corporation Use of source/drain asymmetry MOSFET devices in dynamic and analog circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9300836A (nl) * 1993-05-14 1994-12-01 Catena Microelect Bv Integreerbare spanningsvermenigvuldiger voor hoge vermenigvuldigingsfactoren.
CN1040931C (zh) * 1995-03-17 1998-11-25 摩托罗拉公司 高效的倍压器
CN1229302A (zh) * 1998-03-16 1999-09-22 日本电气株式会社 用于产生负电压的电荷泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
同上.

Also Published As

Publication number Publication date
KR101106483B1 (ko) 2012-01-20
TW200409444A (en) 2004-06-01
US20040061548A1 (en) 2004-04-01
EP1543605A1 (en) 2005-06-22
KR20050084606A (ko) 2005-08-26
US7135910B2 (en) 2006-11-14
TWI320259B (en) 2010-02-01
JP4477500B2 (ja) 2010-06-09
WO2004030192A1 (en) 2004-04-08
US20050168267A1 (en) 2005-08-04
US6861894B2 (en) 2005-03-01
AU2003272567A1 (en) 2004-04-19
CN1701495A (zh) 2005-11-23
JP2006500898A (ja) 2006-01-05

Similar Documents

Publication Publication Date Title
CN1701495B (zh) 具有斐波纳契数列的电荷泵
US6922096B2 (en) Area efficient charge pump
US6445243B2 (en) Charge-pump circuit and control method thereof
US5036229A (en) Low ripple bias voltage generator
KR100516083B1 (ko) Dc-dc 컨버터
US7116156B2 (en) Charge pump circuit
US7622984B2 (en) Charge pump circuit and methods of operation thereof
JP4865317B2 (ja) 電荷ポンプ回路及び電荷ポンプ方法
CN101159412A (zh) 包含升压电路的电子器件
EP1697807A2 (en) High efficiency, low cost, charge pump circuit
KR20030027730A (ko) Dc-dc 컨버터의 제어 방법
US11022992B2 (en) Voltage regulator
US6707335B2 (en) Control method of charge-pump circuit
US4962512A (en) Step-up circuit
US7446521B2 (en) DC DC voltage boost converter
US6674317B1 (en) Output stage of a charge pump circuit providing relatively stable output voltage without voltage degradation
US6184594B1 (en) Multi-stage charge pump having high-voltage pump control feedback and method of operating same
JP2009225637A (ja) 電圧発生回路
US9685854B2 (en) Charge pump apparatus and charge pumping method
US6437637B2 (en) Charge-pump circuit and control method thereof
US11442484B2 (en) Voltage regulator
CN113746327B (zh) 电荷泵电路、电荷泵系统及集成电路芯片
CN114465612A (zh) 一种浮动开关驱动电路及方法
CN116961407A (zh) 电荷泵系统、自举电路、芯片及电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SANDISK TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SANDISK CORP.

Effective date: 20120322

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120322

Address after: Texas, USA

Patentee after: Sanindisco Technology Co.,Ltd.

Address before: California, USA

Patentee before: Sandisk Corp.

C56 Change in the name or address of the patentee

Owner name: SANDISK TECHNOLOGY CO., LTD.

Free format text: FORMER NAME: SANDISK TECHNOLOGIES, INC.

CP01 Change in the name or title of a patent holder

Address after: Texas, USA

Patentee after: Sandy Technology Corp.

Address before: Texas, USA

Patentee before: Sanindisco Technology Co.,Ltd.

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Texas, USA

Patentee after: SANDISK TECHNOLOGIES LLC

Address before: Texas, USA

Patentee before: Sandy Technology Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101110