CN1691291A - 制造半导体器件的方法 - Google Patents

制造半导体器件的方法 Download PDF

Info

Publication number
CN1691291A
CN1691291A CNA2005100641020A CN200510064102A CN1691291A CN 1691291 A CN1691291 A CN 1691291A CN A2005100641020 A CNA2005100641020 A CN A2005100641020A CN 200510064102 A CN200510064102 A CN 200510064102A CN 1691291 A CN1691291 A CN 1691291A
Authority
CN
China
Prior art keywords
cobalt
nickel
temperature
silicide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100641020A
Other languages
English (en)
Inventor
朴成炯
李凞德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MagnaChip Semiconductor Ltd
Original Assignee
MagnaChip Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MagnaChip Semiconductor Ltd filed Critical MagnaChip Semiconductor Ltd
Publication of CN1691291A publication Critical patent/CN1691291A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/68Details, e.g. of pipes or valve systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开一种制造半导体器件的方法。该方法包括步骤:a)在其上形成有晶体管的硅衬底上相继沉积镍层及钴层;b)通过快速热处理,由沉积在该硅衬底上的该镍层及该钴层形成硅化物层;以及c)退火并湿蚀刻步骤b)中获得的半导体器件。因为形成镍/钴双层,减小了N多晶硅与P多晶硅之间的电阻差,并增强了形成硅化物后的后续热处理工艺期间的热稳定性。

Description

制造半导体器件的方法
技术领域
本发明关于一种制造半导体器件的方法,具体而言,本发明关于一种制造半导体器件的方法,该方法形成镍/钴(Ni/Co)双层,而不是形成现有半导体器件中使用的钴/镍(Co/Ni)双层,藉此减小N多晶硅与P多晶硅之间的电阻差,并且确保热处理期间的增强的热稳定性。
背景技术
一般而言,硅化物工艺所表示的工艺为,当在硅衬底上沉积如钴、镍、钛及类似物等金属后,通过热处理与硅形成反应化合物。
由于近来半导体器件领域的深亚微米设计趋势,线宽被缩小,造成频繁的凝聚现象(cohesion phenomenon),其中硅化物线凝聚,然后在后续热处理工艺期间截断。
具体而言,在最近未来的纳米级半导体中,由于缩短栅长度所造成的短沟道效应,必须对该半导体应用浅结。在浅结中,需要提供硅化镍,在形成硅化物时,硅化镍所消耗的镍量少于硅化钴。
因此,现行0.13μm(微米)或以下的逻辑技术方面的持续趋势为,使用硅化镍来取代硅化钴,藉此增强短沟道效应。硅化镍的优点在于,硅化镍在小于0.10μm的精细线宽方面具有依据线宽的恒定薄片电阻、以及低的硅消耗率及低的比电阻,因此硅化镍的应用正扩展至纳米CMOS(complementaryMetal Oxide Semiconductor;互补金属氧化物半导体)。
然而,硅化镍对于形成硅化物之后的热处理工艺呈现非常弱的热特性。
即,因后续热处理工艺,硅化镍的晶粒会局部重新组合,从而形成较大的晶粒,这造成聚集现象,其中晶粒的均匀度恶化且线被截断。
因此,一种传统方法运用钴/镍双层来形成硅化物,藉此解决此问题。即,虽然现有的硅化镍会因后续热处理工艺而结合为由一硅化镍转化成的二硅化镍,但是当藉由添加钴来形成硅化物时,就可以抑制二硅化镍,并且即使形成二硅化镍,二硅化钴会起降低总电阻的作用。
然而,当先沉积钴再沉积镍时,硅化钴先于硅化镍形成,导致大量消耗硅,这尤其在多晶硅层的情况下发生,因而造成N多晶硅与P多晶硅间的电阻不同的问题。
图1是示出使用如上所述的传统钴/镍双层时多晶硅之间的大的电阻差的图示。
如图1所示,当使用传统钴/镍双层时,存在多晶硅之间的大电阻差的问题。
另外,图2是说明通过如上所述的传统钴/镍双层所形成的N有源层的不稳定的热特性的图示。
如图2所示,当使用传统钴/镍双层时,由于异常氧化而无法侦测该N有源层的薄片电阻,因而造成钴/镍结构中N有源层的热特性不稳定的问题。
发明内容
本发明的设计是为了解决前面提及的问题,并且本发明的目的是提供一种制造半导体器件的方法,该方法形成镍/钴(Ni/Co)双层,而不是形成现有半导体器件中使用的钴/镍双层,藉此减小N多晶硅与P多晶硅之间的电阻差,并确保热处理期间的增强的热稳定性。
根据本发明的一个方面,前述及其他目的可通过提供一种制造半导体器件的方法来实现,该方法包括步骤:a)在其上形成有晶体管的硅衬底上相继沉积镍层及钴层;b)通过快速热处理(RTP)由沉积在该硅衬底上的该镍层及该钴层来形成硅化物层;以及c)退火及湿蚀刻步骤b)所获得的该半导体器件。
可以在1mTorr真空压力及15cm衬底距离的条件下,在与硅衬底的温度相同的温度沉积镍至100埃的厚度。
可以在1mTorr真空压力及15cm衬底距离的条件下,在与硅衬底的温度相同的温度沉积钴至10埃的厚度。
可在500至700℃的温度执行RTP 30秒、60秒或90秒。
可在650或700℃的温度执行退火处理30分钟。
可使用比率为4∶1的H2SO4和H2O2的混合物来执行湿蚀刻工艺15分钟。
根据本发明的方法,提供的优异效果在于形成镍/钴双层,从而减小N多晶硅与P多晶硅之间的电阻差,减少浅结的硅消耗,并提高形成硅化物之后的后续热处理工艺过程中的热稳定性。
附图说明
由以下参考附图的详细说明,可更清楚地理解本发明的上述及其他目的及特征,其中:
图1是说明由传统钴/镍双层形成的多晶硅层之间的电阻差的图示;
图2是说明由传统钴/镍双层形成的N有源层的不稳定热特性的图示;
图3a到3c是断面图,示出根据本发明的制造半导体器件的步骤;
图4为一图示,说明使用根据本发明的镍/钴双层时,多晶硅层之间的电阻差;以及
图5为一图示,说明使用根据本发明的镍/钴双层时,N有源层的稳定的热特性。
附图标记说明
10硅衬底                      15器件分隔膜
20栅氧化物膜                  30多晶硅
40源极/漏极区                 45间隔物
50镍层                        55硅化物层
60钴层
具体实施方式
现在将参考附图来详细说明优选实施例。所提供的实施例是为了说明的目的,并且不应认为本发明范畴受限于实施例。
图3a到3c是显示根据本发明的制造半导体器件的步骤的断面图。
首先,如图3a所示,在形成有器件分隔膜15且定义有P阱的硅衬底10上,形成由栅氧化物膜20及多晶硅30所组成的栅极,接着在该栅极的两侧形成介电膜间隔物45。接着,在该栅极两侧的下部处的硅衬底10中注入杂质,形成源极/漏极区40以提供一晶体管。
接着,如图3b所示,在该晶体管上相继沉积镍层50及钴层60,使得该镍层50的厚度为100埃,该钴层60的厚度为10埃。
另外,优选地,在3E-7Torr基础压力(base pressure)、1mTorr真空压力、及沉积源(图中未描绘)与硅衬底之间15cm衬底距离的条件下,在与硅衬底的温度相同的温度沉积镍层50及钴层60。
接着,在550℃的温度以快速热处理(RTP)来热处理沉积在该衬底上的镍层50及钴层60持续60秒,形成硅化物层。
于是,如图3c所示,在有硅存在之处,通过镍层50及钴层60的选择性反应形成硅化物层55。
此处,优选地,在500至700℃的温度执行RTP热处理30秒、60秒或90秒。
接着,对该衬底上的该硅化物层55执行退火处理以评估热稳定性,然后执行湿蚀刻工艺以去除剩下的残余物。
此处,可在650或700℃的温度执行退火处理30分钟,并可用比率为4∶1的H2SO4和H2O2的混合物来执行湿蚀刻工艺15分钟。
图4为一图示,示出使用如上所述的本发明的镍/钴双层时,多晶硅层之间的薄片电阻差减小。
参考图4,与图1相比,当使用根据本发明的镍/钴双层时,N多晶硅与P多晶硅之间的薄片电阻显著降低,并且与热处理前的电阻相比,热处理后的电阻几乎不增加。
即,在本发明中,镍先于钴沉积,形成硅化钴之前形成硅化镍,从而硅消耗量相对降低。
另外,图5为一图示,表明当使用如上所述的本发明的镍/钴双层时,获得N有源层的稳定的热特性。
如图5所示,与传统钴/镍双层(其中如图2所示未侦测到N有源层的薄片电阻)比较,当使用根据本发明的镍/钴双层时,在热处理后侦测到N有源层的薄片电阻,从而提供了热稳定性。
即,通过在现有硅化镍上额外沉积Co层,利用硅化钴的特性,本发明使得低薄片电阻能得以维持,硅化钴的该特性是,当硅化钴在高温热处理后转化成二硅化物时,由于CoSi2(二硅化物)相的低薄片电阻而能达成热稳定性。
另外,关于镍/钴与硅的组合所造成的新相,形成三元相(Ni1-xCox)Si2,而不会形成具有高薄片电阻的NiSi2(二硅化物)相,从而维护低薄片电阻及热稳定性。
从前文的说明可得知,根据本发明,形成镍/钴双层,因而减小N多晶硅与P多晶硅之间的电阻差,减少浅结的硅消耗量,并且增强形成硅化物后的后续热处理工艺期间的热稳定性。
应明白,如上文所述的实施例及附图中已基于解说目的予以描述,并且本发明仅受限于随附的权利要求。另外,本领域技术人员应明白,还可进行各种修改、增加及代替方案,而不会脱离如随附的权利要求所提出的本发明范畴与精神。

Claims (6)

1.一种制造半导体器件的方法,包括步骤:
a)在其上形成有晶体管的硅衬底上相继沉积镍层及钴层;
b)通过快速热处理(RTP),由沉积在该硅衬底上的该镍层及该钴层形成硅化物层;以及
c)退火并湿蚀刻。
2.如权利要求1的方法,其中在1mTorr真空压力及15cm衬底距离的条件下,在与该硅衬底的温度相同的温度沉积镍至100埃的厚度。
3.如权利要求1的方法,其中在1mTorr真空压力及15cm衬底距离的条件下,在与该硅衬底的温度相同的温度沉积钴至10埃的厚度。
4.如权利要求1的方法,其中在500至700℃的温度进行该RTP热处理30秒、60秒或90秒。
5.如权利要求1的方法,其中在650或700℃的温度进行该退火处理30分钟。
6.如权利要求1的方法,其中使用比率为4∶1的H2SO4和H2O2的混合物来执行该湿蚀刻工艺15分钟。
CNA2005100641020A 2004-04-09 2005-04-11 制造半导体器件的方法 Pending CN1691291A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040024597A KR20050099326A (ko) 2004-04-09 2004-04-09 반도체 소자의 제조 방법
KR24597/04 2004-04-09

Publications (1)

Publication Number Publication Date
CN1691291A true CN1691291A (zh) 2005-11-02

Family

ID=35061112

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100641020A Pending CN1691291A (zh) 2004-04-09 2005-04-11 制造半导体器件的方法

Country Status (4)

Country Link
US (1) US20050227469A1 (zh)
KR (1) KR20050099326A (zh)
CN (1) CN1691291A (zh)
TW (1) TW200534399A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426291B1 (en) * 2000-08-31 2002-07-30 Micron Technology, Inc. Method of co-deposition to form ultra-shallow junctions in MOS devices using electroless or electrodeposition
US6528402B2 (en) * 2001-02-23 2003-03-04 Vanguard International Semiconductor Corporation Dual salicidation process
US6534871B2 (en) * 2001-05-14 2003-03-18 Sharp Laboratories Of America, Inc. Device including an epitaxial nickel silicide on (100) Si or stable nickel silicide on amorphous Si and a method of fabricating the same
JP2005504885A (ja) * 2001-07-25 2005-02-17 アプライド マテリアルズ インコーポレイテッド 新規なスパッタ堆積方法を使用したバリア形成

Also Published As

Publication number Publication date
TW200534399A (en) 2005-10-16
US20050227469A1 (en) 2005-10-13
KR20050099326A (ko) 2005-10-13

Similar Documents

Publication Publication Date Title
US7923322B2 (en) Method of forming a capacitor
CN1309052C (zh) 用于制造垂直dram中的钨/多晶硅字线结构的方法及由此制造的器件
US6458699B1 (en) Methods of forming a contact to a substrate
CN1315196C (zh) 肖特基势垒晶体管及其制造方法
CN1846313A (zh) 用于高性能器件的金属替换栅极的结构和方法
CN1741274A (zh) 集成电路元件及其形成方法
CN1179402C (zh) 半导体器件制作工艺
JPH10223889A (ja) Misトランジスタおよびその製造方法
US11309214B2 (en) Semiconductor device with graphene-based element and method for fabricating the same
CN1610115A (zh) 具有hmp金属栅的半导体器件
CN1815703A (zh) 半导体装置及其制造方法
CN1691297A (zh) 制造具有双栅结构的半导体器件的方法
CN1885546A (zh) 半导体器件及其制造方法
KR100631937B1 (ko) 텅스텐 게이트 형성방법
CN1691291A (zh) 制造半导体器件的方法
CN1897280A (zh) 半导体结构及其形成方法
CN1249794C (zh) 半导体元件的硅化物膜的形成方法
CN103137450A (zh) 一种沟槽型功率mos器件及其制造工艺方法
CN1300827C (zh) 堆叠式栅极结构及具有该堆叠式栅极结构的场效晶体管的制造方法
US6893910B1 (en) One step deposition method for high-k dielectric and metal gate electrode
KR100523658B1 (ko) 구리 확산 장벽 제조 방법
KR101868630B1 (ko) 원주 구조의 나노 입자를 갖는 반도체 소자의 게이트 및 그 제조방법
CN1231949C (zh) 形成栅极结构的方法、自对准接触孔结构及其形成方法
CN1612306A (zh) 处理包含含氧氮化硅介质层的半导体器件的方法
JP2001102455A (ja) 半導体デバイスの誘電体層内に接点用開口を形成する方法。

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication