CN1684290A - 一种用于二次锂电池的正极材料和用途 - Google Patents

一种用于二次锂电池的正极材料和用途 Download PDF

Info

Publication number
CN1684290A
CN1684290A CNA200410031151XA CN200410031151A CN1684290A CN 1684290 A CN1684290 A CN 1684290A CN A200410031151X A CNA200410031151X A CN A200410031151XA CN 200410031151 A CN200410031151 A CN 200410031151A CN 1684290 A CN1684290 A CN 1684290A
Authority
CN
China
Prior art keywords
fepo
battery
positive electrode
ions
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200410031151XA
Other languages
English (en)
Inventor
王德宇
陈立泉
李泓
黄学杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CNA200410031151XA priority Critical patent/CN1684290A/zh
Publication of CN1684290A publication Critical patent/CN1684290A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种用于二次锂电池的正极材料。该材料为具有橄榄石结构的磷酸盐材料,化学式为LixAyMmNnTtPO4,其中,A为Na、K、Ca、Cu、Ag、Hg、Au或Li;M为Fe或Mn;N为Ni、Mg、Co、Cu、Zn、Ti、Fe或Mn;T为Li、Na、K、Cu、Ag、Hg、Au;且元素M,N,T不同时为一种元素;x,y,m,n,t代表摩尔百分比,0.8≤x≤1,0.001≤y≤0.2,0.7≤m≤1,0≤n≤0.3,0≤t≤0.2,且1≤x+y≤1.05。该正极材料用于二次锂电池的正极,与常规的负极、电解液组成二次锂电池。该正极材料使用半径大于锂离子的一些离子替换锂离子,或采用一价金属离子替换铁离子,得到的正极材料的电子电导率和离子电导率都有数量级的提高,其倍率性能也显著提高,并显示出较高的可逆储锂能量。

Description

一种用于二次锂电池的正极材料和用途
技术领域
本发明涉及一种用于二次锂电池的正极材料,具体地说是涉及一种二次锂电池用的具有磷酸盐结构的正极材料及其用途。
背景技术
LiFePO4是一种新型二次锂电池的正极活性材料。在1997年,J.B.Goodenough等申请专利(5,910,382,USA)提出将它作为二次锂电池的正极材料。同年,Armand等将LiFePO4的铁位掺杂和磷位掺杂申请了专利(6,514,640,USA)。LiFePO4这类材料,其优点是原料便宜、不污染环境、安全性能好和理论容量较高(170mAhg-1),但是该材料的电导率很低,导致倍率性能差,限制了它的实际应用。目前,LiFePO4被认为电子电导率很低,改进的方法是表面进行碳包覆,包碳材料的倍率性能得到很大改善,但碳的加入会导致密度的降低,从而影响电池的能量密度。(Zhaohui Chen,and J.R.Dahn.Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy,Volumetric Energy,and Tap Density.J.Electrochem.Soc.,149(9),A1184-A1189(2002))。另外,包碳这种方法仅仅提高了LiFePO4的表面电导,只能在一定程度上改善它的倍率性能。2002年,Chiang等提出了采用锂位掺杂高价金属离子的办法来提高LiFePO4的电导率(Sung-yoon chung,Jasont.Bloking and Yet-ming Chiang.Electronicallyconductive phospho-olivines as lithium storage electrodes.Nature material,2,123-128(2002))。Chiang认为在锂位掺杂半径小于锂离子的高价金属离子,会产生大量空位,因此大大提高LiFePO4的电子电导,继而改善了倍率性能。但是电池材料的倍率特性不仅仅与电子电导有关,而且与离子电导有关前述的对LiFePO4的包覆以及掺杂单纯提高电子电导,并不能满足高功率锂离子电池对倍率性能的要求。
发明内容
本发明的目的是为了克服现有LiFePO4作为二次锂电池的正极材料时,自身的电导率低,而碳包覆和前述位置的掺杂也只提高了电子电导的缺点,从而提供一种可以综合提高本体的电子电导率和离子电导率,从根本上改善材料的倍率性能的用于二次锂电池的正极材料。
本发明的目的是通过如下的技术方案实现的:
本发明提供一种用于二次锂电池的正极材料,其为具有橄榄石结构的磷酸盐材料,化学式为LixAyMmNnTtPO4
其中,A为Na、K、Ca、Cu、Ag、Hg、Au或Li;
M为Fe或Mn;
N为Ni、Mg、Co、Cu、Zn、Ti、Fe或Mn;
T为Li、Na、K、Cu、Ag、Hg、Au;
且元素M,N,T不同时为一种元素;
x,y,m,n,t代表摩尔百分比,0.8≤x≤1,0.001≤y≤0.2,0.7≤m≤1,0≤n≤0.3,0≤t≤0.2,且1≤x+y≤1.05。
使用本发明提供的用于二次锂电池的正极材料的优益之处在于:使用半径大于锂离子的一些离子替换锂离子,或采用一价金属离子替换铁离子,得到具有橄榄石结构的磷酸盐材料,这类正极材料的电子电导率和离子电导率都有数量级的提高,其倍率性能也显著提高,并显示出较高的可逆储锂能量。
本发明提供一种上述用于二次锂电池的正极材料的用途,可将此用于二次锂电池的正极材料制成二次锂电池的正极,与常规的负极、电解液组成二次锂电池。正极中使用的导电添加剂为碳、导电金属氧化物或金属;负极所使用的活性物质包括金属锂、锂合金、可脱嵌锂的碳材料、锂过渡金属氮化物或锂钛尖晶石;正极与负极之间充满电解液,正极和负极的一端分别焊上引线与相互绝缘的电池壳两端相连。
具体实施方式
实施例1、制备本发明的用于二次锂电池的正极材料Li0.99Na0.01FePO4
磷酸盐正极活性材料Li0.99Na0.01FePO4可以通过以下步骤制备。首先,按照摩尔比称取Li2CO3、Na2CO3、FeC2O4·2H2O和NH4H2PO4,机械球磨后(转速为500转/分钟,3小时),将改混合物在Ar-H2混合气(Ar∶H2=92∶8,v/v)保护下热处理(热处理的步骤为:用1小时从室温升温至400℃,在400℃恒温8小时后,用两小时降到室温),再次球磨(转速为500转/分钟,1小时)后,混合物再次烧结(烧结步骤为:用2小时从室温升温至600℃,在600℃恒温24小时后,用3小时降到室温)。
将Li0.99Na0.01FePO4正极与乙炔黑和10%的环己烷溶液在常温常压下混合形成浆料(活性材料∶乙炔黑∶PVDF=75∶15∶10),均匀涂敷于铝箔衬底上,所得的薄膜厚度约2~20μm,作为模拟电池的正极。
模拟电池的负极使用锂片,电解液为1mol LiPF6溶于1L EC和DMC的混合溶剂中(体积比1∶1)。将正极、负极、电解液在氩气保护的手套箱内组装成模拟电池。
模拟电池的倍率测试步骤:首先以30mA/g充电至4.5V,然后倍率电流放电至2.0V,所放出的容量即为该倍率下的放电容量,放电结束后再以30mA/g放电至2.0V。然后进行下一倍率的测试。其中放电电流1C=150mA/g。该模拟电池的测试结果列于表1。
实施例2~59
按实施例1的方法制备各种组成的本发明的用于二次锂电池的正极材料,并制成模拟电池的正极。
模拟电池的负极(除实施例52~55以外)、电解液及电池组装同于实施例1,正极材料的组成及模拟电池的测试结果列于表1。
实施例52~59中模拟电池的负极使用MCMB作为负极活性材料,电极制备过程如下:将负极活性材料MCMB、乙炔黑和5%PVDF的环己烷溶液在常温常压下混合形成浆料(活性材料∶乙炔黑∶PVDF=90∶5∶5),均匀涂敷于铜箔衬底上,所得的薄膜厚度约2~20um,作为模拟电池的负极。
                                  表1、正极材料的组成及模拟电池的测试结果
 实施例   正极材料            放电容量 实施例   正极材料            放电容量
0.2C 1C 10C 30C 0.2C 1C 10C 30C
 1   Li0.99Na0.01FePO4  133  125  100  71 31   Li0.9Au0.1Fe0.8Co0.2PO4  128  112  88  62
 2   Li0.999Na0.001FePO4  153  121  84  47 32   Li0.8Na0.2Fe0.7Co0.3PO4  108  95  73  48
 3   Li0.98Na0.02FePO4  129  120  99  73 33   Li0.99Na0.01Fe0.99Ni0.01PO4  129  109  88  58
 4   Li1.05FePO4  145  133  106  81 34   Li0.99Na0.01Fe0.8Ni0.1Mg0.1PO4  122  109  91  65
 5   Li0.9Na0.1FePO4  120  115  89  76 35   Li1.02Fe0.7Ni0.2Co0.1PO4  109  98  85  62
 6   Li0.8Na0.2FePO4   115   87   71   56 36   Li0.99K0.01Fe0.99Cu0.01PO4   132  118  96  64
 7   Li0.999K0.001FePO4   148   126   90   45 37   Li0.99Ag0.01Fe0.9Au0.2PO4   122  109  91  65
 8   Li0.98K0.02FePO4   135   126   99   78 38   LiFe0.98Ag0.04PO4   138  125  96  75
 9   Li0.8K0.2FePO4   113   87   69   61 39   Li0.99Na0.01Fe0.99Zn0.01PO4   131  119  88  67
 10   Li0.998Ca0.002FePO4   145   126   76   55 40   LiFe0.98Hg0.04PO4   139  120  103  78
 11   Li0.96Ca0.04FePO4   130   119   88   65 41   Li0.8Au0.2Fe0.7Zn0.3PO4   98  87  65  51
 12   Li0.8Ca0.02FePO4   105   83   54   21 42   Li0.999Na0.001Fe0.99Ti0.01PO4   139  122  95  76
 13   Li0.999Cu0.001FePO4   153   128   71   39 43   Li0.9K0.1Fe0.9Ti0.1PO4   122  105  84  61
 14   Li0.98Cu0.02FePO4   137   116   68   59 44   Li0.99Au0.01Fe0.7Ti0.3PO4   110  86  73  51
 15   Li0.8Cu0.2FePO4   118   89   73   58 45   Li0.99Na0.01MnPO4   132  118  88  63
 16   Li0.999Ag0.001FePO4   147   118   65   47 46   Li0.8Ca0.2Mn0.8Ti0.2PO4   95  72  58  32
 17   Li0.98Ag0.02FePO4   132   109   75   64 47   Li0.99Cu0.01Mn0.99Ni0.01PO4   141  117  86  49
 18   Li0.8Ag0.2FePO4   108   86   61   44 48   Li0.98Cu0.02MnPO4   131  111  91  62
 19   Li0.999Hg0.001FePO4   149   127   74   51 49   Li0.999Na0.001Mn0.9Mg0.1PO4   136  114  78  54
 20   Li0.98Hg0.02FePO4   130   121   79   63 50   Li0.99Au0.01Mn0.7Co0.3PO4   98  77  55  36
 21   Li0.8Hg0.2FePO4   105   88   57   46 51   Li0.98K0.02Mn0.8Zn0.2PO4   115  91  72  59
 22   Li0.999Au0.001FePO4   152   121   78   41 52   Li0.99Na0.01MnPO4   117  89  68  52
 23   Li0.98Au0.02FePO4   134   114   91   75 53   Li0.99Na0.01FePO4   112  85  63  48
 24   Li0.8Au0.2FePO4   111   92   61   49 54   Li0.99K0.01Fe0.9Co0.1PO4   103  74  57  45
 25   Li0.99Na0.01Fe0.99Mg0.01PO4   126   114   84   79 55   Li0.99Na0.01Fe0.9Ni0.1PO4   97  72  60  51
 26   LiFe0.95Na0.1PO4   128   119   100   81 56   Li0.99Na0.01Fe0.95Ni0.02Li0.06PO4   130  115  85  74
 27   LiFe0.93Ag0.14PO4   145   138   119   83 57   Li0.99Na0.01Fe0.95Cu0.02Na0.06PO4   135  120  90  78
 28   Li0.99K0.01Fe0.7Mg0.3PO4   109   100   94   70 58   Li0.99Na0.01Fe0.95Mg0.02Hg0.06PO4   145  130  100  75
 29   Li0.98Ca0.02Fe0.99Co0.01PO4   133   121   99   70 59   Li0.99Na0.01Fe0.9Li0.2PO4   140  120  110  76
 30   Li0.999Au0.001Fe0.9Co0.1PO4   141   123   81   43

Claims (2)

1、一种用于二次锂电池的正极材料,其为具有橄榄石结构的磷酸盐材料,化学式为LixAyMmNnTtPO4
其中,A为Na、K、Ca、Cu、Ag、Hg、Au或Li;
M为Fe或Mn;
N为Ni、Mg、Co、Cu、Zn、Ti、Fe或Mn;
T为Li、Na、K、Cu、Ag、Hg、Au;
且元素M,N,T不同时为一种元素;
x,y,m,n,t代表摩尔百分比,0.8≤x≤1,0.001≤y≤0.2,0.7≤m≤1,0≤n≤0.3,0≤t≤0.2,且1≤x+y≤1.05。
2、一种权利要求1所述的用于二次锂电池的正极材料的用途。
CNA200410031151XA 2004-04-13 2004-04-13 一种用于二次锂电池的正极材料和用途 Pending CN1684290A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA200410031151XA CN1684290A (zh) 2004-04-13 2004-04-13 一种用于二次锂电池的正极材料和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA200410031151XA CN1684290A (zh) 2004-04-13 2004-04-13 一种用于二次锂电池的正极材料和用途

Publications (1)

Publication Number Publication Date
CN1684290A true CN1684290A (zh) 2005-10-19

Family

ID=35263493

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200410031151XA Pending CN1684290A (zh) 2004-04-13 2004-04-13 一种用于二次锂电池的正极材料和用途

Country Status (1)

Country Link
CN (1) CN1684290A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053823A2 (en) 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha Positive electrode active material, lithium secondary battery, and manufacture methods therefore
WO2009092098A2 (en) 2008-01-17 2009-07-23 A123 Systems, Inc. Mixed metal olivine electrode materials for lithium ion batteries
CN101807691A (zh) * 2010-04-19 2010-08-18 湘西自治州矿产与新材料技术创新服务中心 锂离子电池锂位钠掺杂磷酸氧钒锂正极材料的制备方法
WO2010139142A1 (zh) * 2009-06-02 2010-12-09 盐光科技(嘉兴)有限公司 二次锂电池正极材料及其制备方法
WO2010139125A1 (zh) * 2009-06-02 2010-12-09 Xu Ruisong 一种纳米级锂电池正极材料及其制备方法
EP2287947A1 (en) * 2008-05-22 2011-02-23 GS Yuasa International Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery
CN102044667A (zh) * 2010-11-26 2011-05-04 兰州金川新材料科技股份有限公司 一种球形掺杂磷酸铁锂/炭复合粉体的制备方法
CN102511095A (zh) * 2009-09-24 2012-06-20 威伦斯技术公司 磷酸锰和相关的电极活性材料
CN103474655A (zh) * 2013-07-11 2013-12-25 苏州懿源宏达知识产权代理有限公司 一种具备高导电性的钾锰掺杂磷酸铁锂复合正极材料的制备方法
WO2017109707A1 (en) * 2015-12-21 2017-06-29 HYDRO-QUéBEC Olivine-type compounds: method for their preparation and use in cathode materials for sodium-ion batteries

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053823A3 (en) * 2007-10-25 2009-06-11 Toyota Motor Co Ltd Positive electrode active material, lithium secondary battery, and manufacture methods therefore
US20100203389A1 (en) * 2007-10-25 2010-08-12 Toyota Jidosha Kabushiki Kaisha Positive electrode active material, lithium secondary battery, and manufacture methods therefore
WO2009053823A2 (en) 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha Positive electrode active material, lithium secondary battery, and manufacture methods therefore
WO2009092098A2 (en) 2008-01-17 2009-07-23 A123 Systems, Inc. Mixed metal olivine electrode materials for lithium ion batteries
EP2238637A4 (en) * 2008-01-17 2016-08-03 A123 Systems Llc MIXED METAL OLIVINE ELECTRODE MATERIAL FOR LITHIUM ION BATTERIES
EP2287947A1 (en) * 2008-05-22 2011-02-23 GS Yuasa International Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery
US8431271B2 (en) 2008-05-22 2013-04-30 Gs Yuasa International Ltd. Positive active material for lithium secondary battery and lithium secondary battery
EP2287947A4 (en) * 2008-05-22 2013-03-13 Gs Yuasa Int Ltd POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
EP2287944A1 (en) * 2009-06-02 2011-02-23 Ruisong Xu Nanometer-level positive electrode material for lithium battery and method for making the same
EP2287944A4 (en) * 2009-06-02 2014-04-23 Ruisong Xu NANOMATRICAL POSITIVE ELECTRODE MATERIAL FOR LITHIUM BATTERY AND METHOD OF MAKING SAME
US20110114899A1 (en) * 2009-06-02 2011-05-19 Ruisong Xu Nano-Positive Electrode Material of Lithium Cell and Method for Preparation thereof
US8470207B2 (en) * 2009-06-02 2013-06-25 Ruisong Xu Nano-positive electrode material of lithium cell and method for preparation thereof
CN101567449B (zh) * 2009-06-02 2012-06-27 徐瑞松 一种纳米级锂电池正极材料及其制备方法
CN101908624B (zh) * 2009-06-02 2012-10-10 盐光科技(武汉)有限公司 二次锂电池正极材料及其制备方法
WO2010139125A1 (zh) * 2009-06-02 2010-12-09 Xu Ruisong 一种纳米级锂电池正极材料及其制备方法
RU2477908C2 (ru) * 2009-06-02 2013-03-20 Жуйсун СЮЙ Наноматериал положительного электрода литиевого элемента и способ его получения
WO2010139142A1 (zh) * 2009-06-02 2010-12-09 盐光科技(嘉兴)有限公司 二次锂电池正极材料及其制备方法
CN102511095A (zh) * 2009-09-24 2012-06-20 威伦斯技术公司 磷酸锰和相关的电极活性材料
CN101807691A (zh) * 2010-04-19 2010-08-18 湘西自治州矿产与新材料技术创新服务中心 锂离子电池锂位钠掺杂磷酸氧钒锂正极材料的制备方法
CN102044667A (zh) * 2010-11-26 2011-05-04 兰州金川新材料科技股份有限公司 一种球形掺杂磷酸铁锂/炭复合粉体的制备方法
CN103474655A (zh) * 2013-07-11 2013-12-25 苏州懿源宏达知识产权代理有限公司 一种具备高导电性的钾锰掺杂磷酸铁锂复合正极材料的制备方法
CN103474655B (zh) * 2013-07-11 2016-08-03 沧州锐星化学科技有限公司 一种具备高导电性的钾锰掺杂磷酸铁锂复合正极材料的制备方法
WO2017109707A1 (en) * 2015-12-21 2017-06-29 HYDRO-QUéBEC Olivine-type compounds: method for their preparation and use in cathode materials for sodium-ion batteries
CN108698828A (zh) * 2015-12-21 2018-10-23 魁北克电力公司 橄榄石型化合物、其制备方法及在钠离子电池的阴极材料中的用途
JP2019503324A (ja) * 2015-12-21 2019-02-07 ハイドロ−ケベック オリビン型化合物:それらの調製のための方法、およびナトリウムイオン電池のためのカソード材料中での使用
JP2021119116A (ja) * 2015-12-21 2021-08-12 ハイドロ−ケベック オリビン型化合物:それらの調製のための方法、およびナトリウムイオン電池のためのカソード材料中での使用
JP7094218B2 (ja) 2015-12-21 2022-07-01 ハイドロ-ケベック オリビン型化合物:それらの調製のための方法、およびナトリウムイオン電池のためのカソード材料中での使用
US11569506B2 (en) 2015-12-21 2023-01-31 HYDRO-QUéBEC Olivine-type compounds: method for their preparation and use in cathode materials for sodium-ion batteries
JP7395103B2 (ja) 2015-12-21 2023-12-11 ハイドロ-ケベック オリビン型化合物:それらの調製のための方法、およびナトリウムイオン電池のためのカソード材料中での使用

Similar Documents

Publication Publication Date Title
Barghamadi et al. A review on Li-S batteries as a high efficiency rechargeable lithium battery
CN100377392C (zh) 用于二次锂电池的含氧空位的磷酸铁锂正极材料及其用途
CN102232253B (zh) 用于锂二次电池的阴极活性材料,其制备方法及包含其的锂二次电池
JP6756279B2 (ja) 正極活物質の製造方法
WO2013011871A1 (ja) 全固体電池およびその製造方法
Wang et al. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety
CN111279528A (zh) 非水系电解质二次电池用正极活性物质及其制造方法、非水系电解质二次电池用正极复合材糊料及非水系电解质二次电池
CN105895887B (zh) 一种多元素掺杂的磷酸盐正极材料、其制备方法及锂离子电池
CN109742324A (zh) 锂离子电池及其正极片及其制备方法
CN111293288B (zh) 一种NaF/金属复合补钠正极活性材料、正极材料、正极及其制备和在钠电中的应用
JP6108520B2 (ja) リチウムイオン二次電池正極およびこれを用いたリチウムイオン二次電池
CN101101986A (zh) 高性价比锂离子电池正极材料Li3V2(PO4)3的制备方法
CN111559741B (zh) 一种聚阴离子型复合材料的制备方法
CN1684290A (zh) 一种用于二次锂电池的正极材料和用途
Lu et al. Influence of bio-derived agar addition on the electrochemical performance of LiFePO4 cathode powders for Li-ion batteries
CN117059786B (zh) 一种钠离子电池正极材料及其制备方法和应用
CN1328808C (zh) 一种用于二次锂电池的氮磷酸盐的正极材料及其用途
Şahan et al. Effect of silver coating on electrochemical performance of 0.5 Li 2 MnO 3. 0.5 LiMn 1/3 Ni 1/3 Co 1/3 O 2 cathode material for lithium-ion batteries
CN109216692B (zh) 改性三元正极材料及其制备方法、锂离子电池
CN108172813B (zh) 一种复合正极材料及其制备方法
CN1979928A (zh) 一种层状结构含锂复合金属氧化物材料及其应用
KR100897180B1 (ko) 도전제로서 은 나노 입자를 함유하는 양극 합제 및그것으로 구성된 리튬 이차전지
KR101316066B1 (ko) 이차전지용 양극재료 및 이의 제조방법
CN113839104A (zh) 一种锂电池负极及锂电池
CN104900860A (zh) 一种富锂正极材料的表面改性方法、包含表面改性后富锂正极材料的正极及锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned