CN1675387A - 制造储氢合金的活性研磨法 - Google Patents

制造储氢合金的活性研磨法 Download PDF

Info

Publication number
CN1675387A
CN1675387A CNA038192527A CN03819252A CN1675387A CN 1675387 A CN1675387 A CN 1675387A CN A038192527 A CNA038192527 A CN A038192527A CN 03819252 A CN03819252 A CN 03819252A CN 1675387 A CN1675387 A CN 1675387A
Authority
CN
China
Prior art keywords
compound
magnesium
hydrogen
aforementioned arbitrary
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038192527A
Other languages
English (en)
Other versions
CN1308472C (zh
Inventor
A·S·普拉特
O·古特弗莱施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresden Solid And Materials Research Institute
Johnson Matthey PLC
Original Assignee
Dresden Solid And Materials Research Institute
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresden Solid And Materials Research Institute, Johnson Matthey PLC filed Critical Dresden Solid And Materials Research Institute
Publication of CN1675387A publication Critical patent/CN1675387A/zh
Application granted granted Critical
Publication of CN1308472C publication Critical patent/CN1308472C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Threshing Machine Elements (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

一种制造储氢材料的方法,其包括在还原气氛的条件下,在足以产生所需粒度和结晶大小的颗粒的时间内,使镁源粉碎。引入至少一种可还原的PGM化合物,该化合物在粉碎期间充分地进行还原,以使它充分地分布在颗粒的表面上。

Description

制造储氢合金的活性研磨法
本发明涉及到生产储氢材料的方法和如此产生的材料,特别涉及到基于镁和镁合金生产储氢材料的方法。
金属氢化物作为能量贮存介质有很大的益处。镁和镁合金的氢化物特别有吸引力,因为它们潜在地将高储氢容量,对于纯MgH2为7.6重量%,与低价格和适宜的氢化合物生成热结合起来了。可是由于很差的吸收动力学,实际的应用受到了限制。例如,通常的镁的氢化需要在300℃和300℃以上的温度下进行长时间的处理。
Zaluska进行的,发表在合金和化合物期刊,288(1999),P217-225上的最近的研究表明使用高能球磨通过促进纳晶微观结构能够改进镁的氢吸收动力学。这样的加工增加了金属的表面积,因此氢化物的生成不限于金属的表面区域,也会引入大量的结构缺陷,而这些缺陷往往会助长氢的穿透。为了防止镁的氧化,粉碎法是在惰性气氛,例如氢气氛围的条件下进行,这一点是很重要的。使在300℃的条件下氢化时间减少到几分钟,则可以改进吸收动力学。可是这个温度对于许多的实际用途仍然太高。增强吸收动力学的其它方法已经包括了添加剂和催化剂的使用。例如,已经报到少量3d过渡金属例如Ti,V,Mn,Fe或Ni的加入,以便即是在减压条件下允许氢的吸收在室温下进行,随后的吸收在235℃的温度下进行。
WO 9623906描述了使用高能球磨来产生具有良好氢吸特点的纳晶镁和镁合金的粉末。铂族金属,Pd,Pt,Ru,Rh,Ir和Os(下文称作PGM)的簇状化合物可以与镁颗粒的表面相连,以催化氢的吸收。到粉碎法结束时引入PGM。这些材料被说成是在室温,高压和低压的条件下能吸收和解吸附氢,可是,本说明书只含有在230℃和230℃以上的温度下进行的实验的实施例。再一次强调了在惰性气氛的条件下为防止粉末氧化进行粉碎的重要性。本方法有两个主要的缺点;首先,PGM以金属形态(元素形态)引入,细粒状时,这些金属极易自然,其次,被处理的材料在能够使用之前,它仍然需要负载氢。这需要氢化容器形式的额外的装置,也需要将材料由粉碎设备输送到使用场所的设备,而处处要防止污染。
Okino等人在物质杂志(Acta mater)45(1997),P331-341上叙述了在氢气氛围的条件下MgN2球磨情况,以便产生纳米结构的镁-镍氢化物。在加工期间,务必要保证没有其它的元素引入,因此避免了杂质对氢化和材料结构特性的影响。
所希望的目的就是避免使用有危害的细分散的PGM,产生能负载氢,无需进一步处理就可供使用的储氢材料。这就是本发明以期实现的目的。
根据本发明,制造储氢材料的方法包括在还原气氛的条件下,在足以产生具有所需粒度和结晶大小的颗粒的时间内粉碎镁源,至少引入一种可还原的PGM化合物;其中至少一种PGM化合物在粉碎期充分地被还原,并充分地分布在颗粒的表面上。
还原气氛优选地包括氢。氢气既可以单独使用,也可以以与惰性气体如氮或氩的混合物形式使用。液体氨可用作氢源,在使用之前,氨可催化裂解成氢和氮。催化裂解液体氨提供氢的方法是众所周知的,从安全和成本的角度来看,催化裂解法也提供了有利的条件。
由于使用了还原气氛,本发明具有显著的胜过以往已知的方法例如WO 9623906的方法的优点。在粉碎期间,氢被引入镁源的晶格中。这样所得到的材料已经充分地氢化了,在使用前,无需另外的加工。也可认为,由于晶格氢的存在,镁源的脆度增加,这导致更有效的粉碎,因此得到了较小的颗粒粒度和结晶粒度。另一个优点就是使用可还原的PGM化合物来代替金属本身的能力。如上所述,使用PGM化合物的危险性较小。在某些情况下,PGM化合物也可能比相应的金属显著地便宜,较易提供细粒形态。
镁源可以包括镁金属本身,镁的氢化物或者镁与一种或多种其它金属形成的合金,或者金属间化合物,或者氢化合金或者氢化金属间化合物。合适的合金和金属间化合物实例包括镁与过渡金属例如镍,铁,或锰的二元合金或金属间化合物。任何的合金或金属间化合物都可以预形成,例如Mg2Ni,或者,可以向镁的混合物中引入合金元素,粉碎法经由机械合金作用而形成合金或金属间化合物。镁源优选地含有镁金属,镁氢化物,镁镍合金,或金属间化合物,或氢化镁镍合金,或金属间化合物。也可以使用混合镁源。
假如镁源在粉碎期间能碎成所需要的粒度,则它的物理形态相对而言并不重要。粉末,颗粒,金属屑或其它的松散形态(bulk form)都可以使用,其中粉末形态是优选的。
使用球磨进行粉碎是优选的,使用高能球磨更优选。这将大量的机械功引入镁源中,使得粒度和结晶大小减小。研磨介质(球)与待粉碎材料量之比可由本领域普通技术人员推知。合适地,使用的磨料与被磨材料重量比为5或5以上。行星磨,振动磨和喷射磨是合适的。或者,也可以使用其它已知的粉碎方法。虽然本发明的方法并不需要,但是在粉碎期间允许额外加热的磨在某些情况下可能是有益的。
引入至少一种可还原的PGM化合物直至粉碎步骤结束是优选的。这保证PGM化合物和它的还原产物留在颗粒表面上或表面附近。如果PGM化合物在本方法中加入太早,则可能有充分的扩散时间而进入大部分的镁源中,这会损害PGM的催化效果,因此损害了材料的储氢能力。PGM化合物加入的精确时期将因若干因素例如粉碎过程的强烈程度和镁源的初始物理形态的不同而不同。可是典型情况是,如果使用高能球磨,则PGM化合物可在粉碎的最终时刻引入。
至少一种可还原的PGM化合物源优选地含有氧化物,水合氧化物,卤化物或其它的盐类,或它们的任何混合物。钯的氧化物和水合氧化物,例如PdO和PdO·H2O,以及钌的氧化物,例如RuO2是特别优选的。还包括例如钌黑和钯黑等物质。这样的一些化合物在氢气条件下,在粉碎期间很容易还原形成相应的金属。钯倾向于在粒子上形成薄的不连续的涂层,而钌倾向于形成附着于颗粒的孤立的簇。
合适地,颗粒具有小于100微米的平均粒度,更合适地小于20微米,优选地小于5微米,例如1微米。
颗粒也有很小的结晶大小,这一点很重要。颗粒优选地具有小于100纳米的平均结晶大小,更优选地小于50纳米,例如30纳米。
现在只根据实例并参照下列的附图对本发明进行描述,附图内容为:
图1表示了氢从未催化的纳米结晶MgH2样品上和从未根据本发明的与PdO·H2O共磨80小时的纳米结晶MgH2样品上解吸附的曲线图。
图2表示了氢从未催化的纳米结晶的MgH2样品上和从根据本发明的与钌黑共磨研磨时间的最终10小时,2小时,1小时,30分钟和15分钟的纳米结晶的MgH2样品上解吸附的曲线图;
图3表示了氢从未催化的Mg2Ni样品上和从根据本发明的与PdO·H2O共研磨研磨时间的最终1小时的Mg2Ni样品上解吸附的曲线图;和
图4表示了氢从未催化的Mg2Ni样品上和从根据本发明的与钌黑共研磨研磨时间的最终10小时,2小时,1小时,30分钟和15分钟的Mg2Ni样品上解吸附的曲线图。
实施例1
微晶MgH2的制备
将筛目大小45微米和纯度99.8%的镁粉装入PARR反应器中。将粉末在氢气压60巴的条件下加热到400℃达3小时。
实施例2
氢解吸附测量
使用下列的步骤对如下文所述而制备的所有样品进行了氢解吸附的测量。样品(约100毫克)放在动力真空装置中,以10℃/分钟的速度进行加热。为防止污染,所有样品在纯氩的气氛中在手套箱中进行处理。图1-4表示了结果。
对比例1
P6行星球磨装有如实施例1所制备的MgH2粉末。磨球与粉末之比是13∶1(按重量计)。然后在氢气氛(纯度99.9%)下,在压力7巴的条件下研磨粉末80小时。
对比例2
除了用Mg2Ni粉(<250微米的筛目大小)代替MgH2填充球磨机外,重复对比例1。
对比例3
P6行星球磨装有如实施例1所制备的MgH2粉末,加入0.5重量%的PdO·H2O。磨球与粉末之比按重量计是13∶1。粉末和金属氧化物在氢气(纯度99.9%)气氛下,在压力7巴时,共磨80小时。
如图1所示,在该实施例1氢解吸附温度和对比例1所制备的未催化样品2测量的温度之间几乎没有什么差别。这种形为是由于Pd物质扩散入大部分MgH2粉末中所致,这损害了材料的催化活性。
实施例4
P6行星球磨装有如实施例1所制备的MgH2粉末。磨球与粉末之比按重量计是13∶1。然后在氢气(99.9%纯度)气氛下,在压力7巴下研磨粉末80小时。在单独实验时,在研磨的最终10小时,2小时,1小时,30分钟和15分钟加入1重量%的钌黑。
如图2所示,氢气从与钌黑共研磨了最终10小时的样品上的解吸附是在与对比例1所制备的未催化样品2测量的温度大致相同的温度下开始的。最终共磨2-4小时的样品所观察到的氢解吸附温度下降很小。最终共磨5小时和15-6分钟的样品显示出解吸附温度的进一步下降。发现这一系列实验的最佳共磨时间是30分钟。该样品7使开始解吸附的温度下降到100℃以下,该温度比未催化样品2的温度低超过100℃。
实施例5
P6行星球磨装入Mg2Ni粉末(<250微米筛目大小)。磨球与粉末之比按重量计是13∶1。然后在氢气(纯度99.9%)气氛下,在压力7巴下研磨粉末80小时。在研磨的最终1小时时,加入0.5重量%的PdO·H2O。
如图3所示,该样品8氢开始解吸附的温度大致是100℃,该温度比如对比例2所制备的未催化样品9所观察到的温度低超过50℃。
实施例6
除了球磨装有Mg2Ni粉末(<250微米筛目大小)以代替MgH2外,重复实施例4。在单独的实验中,在进行球磨的最终10小时,2小时,1小时,30分钟和15分钟再一次加入钌黑。
如图4所示,氢从与钌黑共研磨最终10小时(研磨10)的样品上进行的解吸附与对比例2所制备的未催化样品9测得的解吸附相比较稍稍地迟后。对于共磨最终2-11小时的样品观察到了氢解吸附的温度有很少的下降。共磨最终12小时和30(13)分钟的样品显示出解吸附温度进一步的下降。对于共磨最终15分钟(14)的样品观察到了更进一步的下降。该样品使开始解吸附的温度下降到100℃以下,该温度比未催化样品9的温度低超过50℃。

Claims (10)

1.一种制造储氢材料的方法,该方法包括在还原气氛下将镁源粉碎达足以产生具有所需要的粒度和结晶大小的颗粒的时间,并引入至少一种可还原的PGM化合物;其中该至少一种PGM化合物在粉碎期间被充分地还原,并充分地分布在该颗粒的表面上。
2.根据权利要求1的方法,其中该还原气氛含有氢。
3.根据权利要求1或2的方法,其中该镁源含有镁金属,镁氢化物或镁与一种或多种其它金属的合金或金属间化合物,或氢化合金或氢化金属间化合物。
4.根据前述任一权利要求的方法,其中粉碎是使用球磨进行的。
5.根据前述任一权利要求的方法,其中引入该至少一种可还原的PGM化合物直至粉碎步骤结束。
6.根据前述任一权利要求的方法,其中该至少一种可还原的PGM化合物含有氧化物,氢化氧化物,卤化物或其它的盐,或它们的任何混合物。
7.根据权利要求6的方法,其中该至少一种可还原的PGM化合物包含PdO、PdO·H2O、钯黑、钌黑或RuO2
8.根据前述任一权利要求的方法,其中该颗粒具有<100微米的平均粒度。
9.根据前述任一权利要求的方法,其中该颗粒具有<100纳米的平均结晶大小。
10.根据前述任一权利要求的方法而制备的储氢材料。
CNB038192527A 2002-08-16 2003-08-01 制造储氢合金的活性研磨法 Expired - Fee Related CN1308472C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0219112.0A GB0219112D0 (en) 2002-08-16 2002-08-16 Reactive milling process
GB0219112.0 2002-08-16

Publications (2)

Publication Number Publication Date
CN1675387A true CN1675387A (zh) 2005-09-28
CN1308472C CN1308472C (zh) 2007-04-04

Family

ID=9942452

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038192527A Expired - Fee Related CN1308472C (zh) 2002-08-16 2003-08-01 制造储氢合金的活性研磨法

Country Status (13)

Country Link
US (1) US7540439B2 (zh)
EP (1) EP1534870B1 (zh)
JP (1) JP2005535785A (zh)
KR (1) KR20050061458A (zh)
CN (1) CN1308472C (zh)
AT (1) ATE314496T1 (zh)
AU (1) AU2003246975B2 (zh)
CA (1) CA2495576A1 (zh)
DE (1) DE60303043T2 (zh)
GB (1) GB0219112D0 (zh)
NO (1) NO20050414L (zh)
PL (1) PL197763B1 (zh)
WO (1) WO2004016817A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004595A (zh) * 2015-08-05 2015-10-28 江西稀有稀土金属钨业集团有限公司 一种储氢合金取样、制样的方法与系统
CN108445572A (zh) * 2018-04-28 2018-08-24 西安柯莱特信息科技有限公司 一种调节非对称传输信号的光学偏振器及其调节方法
CN108594350A (zh) * 2018-04-28 2018-09-28 西安柯莱特信息科技有限公司 一种可动态调节非对称传输信号的光学偏振器及使用方法
CN112723310A (zh) * 2020-12-30 2021-04-30 榆林学院 一种氢化镁的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0408393D0 (en) * 2004-04-15 2004-05-19 Johnson Matthey Plc Particulate alloy comprising magnesium and nickel
CN101120111B (zh) * 2004-12-07 2012-02-22 昆士兰州大学 用于储氢的镁合金
KR100811116B1 (ko) 2006-11-14 2008-03-06 한국과학기술연구원 마그네슘계 수소저장재료의 제조방법
US20100078122A1 (en) * 2008-10-01 2010-04-01 Angstrom Power Incorporated Methods of manufacturing fluid storage components
AU2011220329B2 (en) 2010-02-24 2016-11-24 Hydrexia Pty Ltd Hydrogen release system
WO2012141761A1 (en) * 2011-02-16 2012-10-18 Han Nee Methods of making and using palladium alloys
CN107810065A (zh) * 2015-06-15 2018-03-16 耐驰干法研磨技术有限公司 用于粉碎碾磨材料的方法和用于实施这种方法的碾磨机
CA2991310C (en) 2015-07-23 2023-08-08 Hydrexia Pty Ltd Mg-based alloy for hydrogen storage
CN106629591A (zh) * 2015-11-04 2017-05-10 北京有色金属研究总院 一种镁基氢化物复合储热材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785801A (en) * 1968-03-01 1974-01-15 Int Nickel Co Consolidated composite materials by powder metallurgy
DE3247360A1 (de) 1982-12-22 1984-07-05 Studiengesellschaft Kohle mbH, 4330 Mülheim Verfahren zur herstellung aktiver magnetsiumhdrid-magnesium-wasserstoffspeichersysteme
JPH11503489A (ja) * 1995-02-02 1999-03-26 ハイドロ−ケベック ナノ結晶Mg基−材料及びその水素輸送と水素貯蔵への利用
GB9708873D0 (en) * 1997-05-01 1997-06-25 Johnson Matthey Plc Improved hydrogen storage material
JP4717257B2 (ja) * 2000-05-31 2011-07-06 本田技研工業株式会社 水素吸蔵合金粉末および車載用水素貯蔵タンク

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004595A (zh) * 2015-08-05 2015-10-28 江西稀有稀土金属钨业集团有限公司 一种储氢合金取样、制样的方法与系统
CN108445572A (zh) * 2018-04-28 2018-08-24 西安柯莱特信息科技有限公司 一种调节非对称传输信号的光学偏振器及其调节方法
CN108594350A (zh) * 2018-04-28 2018-09-28 西安柯莱特信息科技有限公司 一种可动态调节非对称传输信号的光学偏振器及使用方法
CN112723310A (zh) * 2020-12-30 2021-04-30 榆林学院 一种氢化镁的制备方法
CN112723310B (zh) * 2020-12-30 2023-09-08 榆林学院 一种氢化镁的制备方法

Also Published As

Publication number Publication date
GB0219112D0 (en) 2002-09-25
KR20050061458A (ko) 2005-06-22
PL197763B1 (pl) 2008-04-30
DE60303043D1 (de) 2006-02-02
CA2495576A1 (en) 2004-02-26
AU2003246975B2 (en) 2009-01-22
CN1308472C (zh) 2007-04-04
EP1534870A1 (en) 2005-06-01
WO2004016817A1 (en) 2004-02-26
AU2003246975A1 (en) 2004-03-03
DE60303043T2 (de) 2006-07-13
NO20050414L (no) 2005-03-07
US20060108457A1 (en) 2006-05-25
US7540439B2 (en) 2009-06-02
ATE314496T1 (de) 2006-01-15
PL373768A1 (en) 2005-09-19
JP2005535785A (ja) 2005-11-24
EP1534870B1 (en) 2005-12-28

Similar Documents

Publication Publication Date Title
CN1308472C (zh) 制造储氢合金的活性研磨法
CN1223423C (zh) 纳米复合材料、其制备方法和其在储存和运输氢中的用途
CN101671788B (zh) 镁基储氢材料纳米化方法
JP3452940B2 (ja) 非蒸発ゲッターを製造する方法及びこの方法で製造したゲッター
CN100471557C (zh) 具有高存储容量和优良室温动力学的Mg-Ni储氢复合材料
Bobet et al. Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding
CN105734323B (zh) 一种纳米镁基可逆储氢复合材料及其制备方法
JPH07268403A (ja) ナノ結晶質粉体並びに水素の輸送及び保管方法
Janot et al. Hydrogen sorption properties for surface treated MgH2 and Mg2Ni alloys
Zhang et al. Catalytic effect comparison of TiO2 and La2O3 on hydrogen storage thermodynamics and kinetics of the as-milled La-Sm-Mg-Ni-based alloy
Jurczyk et al. Nanocrystalline materials for Ni–MH batteries
US6627148B1 (en) Safe, ecomomical transport of hydrogen in pelletized form
Janot et al. Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating
JP2002513086A (ja) 熱水素貯蔵のためのマグネシウムの機械的合金
Qi et al. Improved hydrogen storage thermodynamics and kinetics of La–Ce–Mg–Ni alloy by ball milling
GB2498630A (en) Binder for cubic boron nitride or diamond composite
Bobet et al. Improvements of hydrogen storage properties of Mg-based mixtures elaborated by reactive mechanical milling
CN1485450A (zh) 用钨合金废料生产超细晶粒碳化钨——铁系复合粉的方法
Jurczyk Nanostructured electrode materials for Ni-MH x batteries prepared by mechanical alloying
McCormick Mechanical alloying and mechanically induced chemical reactions
Han et al. Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum
Nowak et al. Nanotechnology for the Storage of Hydrogen
Révész et al. The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides
Chen et al. Influence of TiC catalyst on absorption/desorption behaviors and microstructures of sodium aluminum hydride
Jalil The role of SiC on the desorption temperature of Mg-based hydrogen storage materials prepared by intensive milling method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20100801