CN1643249A - 风力涡轮机叶片上的过渡区 - Google Patents

风力涡轮机叶片上的过渡区 Download PDF

Info

Publication number
CN1643249A
CN1643249A CNA038064057A CN03806405A CN1643249A CN 1643249 A CN1643249 A CN 1643249A CN A038064057 A CNA038064057 A CN A038064057A CN 03806405 A CN03806405 A CN 03806405A CN 1643249 A CN1643249 A CN 1643249A
Authority
CN
China
Prior art keywords
blade
fiber
wind turbine
turbine blade
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038064057A
Other languages
English (en)
Other versions
CN1328500C (zh
Inventor
P·格雷博
L·F·安德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power AS
Original Assignee
LM Glasfiber AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27837992&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1643249(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LM Glasfiber AS filed Critical LM Glasfiber AS
Publication of CN1643249A publication Critical patent/CN1643249A/zh
Application granted granted Critical
Publication of CN1328500C publication Critical patent/CN1328500C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种风力涡轮机的叶片以及用于制造风力涡轮机叶片壳体的预制过渡壳体坯件,叶片或过渡壳体坯件由纤维加强聚合物制成,该聚合物包括具有第一硬度和在断裂处具有第一延伸率的第一种类型的纤维(1,3,6)和具有不同的硬度和在断裂处具有不同延伸率的第二种类型的纤维(2,5,7)。根据本发明,这两种类型的纤维分布到聚合物基体中。当从与叶片的纵向方向的相垂直的剖面图看去时,这两种类型纤维的含量比在叶片或过渡壳体坯件的长度方向上连续变化。

Description

风力涡轮机叶片上的过渡区
技术领域
本发明涉及如权利要求1的前序部分所述的风力涡轮机叶片,以及如权利要求13的前序部分所述的预制过渡层叠件。
通常,风力涡轮机叶片由纤维加强聚合物的两半叶片壳体制成。将模制好的这两半叶片壳体沿着边缘并通过两个支撑件被粘合在一起,其中支撑件在这之前就被粘合到一半叶片壳体的内表面处。然后将另一半叶片壳体放置于支撑件的顶部,将其沿着边缘粘合到另一半上。
通常,这两半叶片壳体本质上是由真空注入形成,均匀分配的纤维、粗纱被层叠至模具部件内并且被罩上真空袋,其中纤维、粗纱为纤维束、粗纱带或毡,而毡是由单纤维或纤维粗纱针织毡粘接而成。通常,通过在模具的内表面和真空袋之间的空腔内产生真空(通常为80%-90%),树脂被吸入并且填充到含有纤维材料的型腔中。为了获得树脂的最优化分配,在真空袋和纤维材料之间经常采用所谓的分配层和分配通道。
所采用的聚合物通常为聚酯或环氧树脂,纤维加强通常是基于玻璃纤维的加强。然而,使用比玻璃纤维硬度更高的碳纤维也是已知的,但是它在断裂处具有比玻璃纤维更小的延伸率。可以加入碳纤维以获得更高的硬度并且/或者具有更轻的重量。因此,可以让一部分纤维加强由碳纤维构成,从而在不使叶片损失太大的硬度下减轻叶片的重量。然而,由于碳纤维比玻璃纤维昂贵很多,因此由于这个缺陷使它受到了阻碍,这就是为什么碳纤维加强聚合物的涡轮机叶片没有被广泛使用的原因。其它类型的加强纤维,例如芳族聚酸胺纤维(Kevlar)和其它类型的塑料纤维、人造纤维,例如,大麻纤维和亚麻纤维也可以用于风力涡轮机叶片的制造。
背景技术
WO98/53200和WO00/79128提供了一种风力涡轮机叶片壳体,该叶片壳体由带有碳纤维层的玻璃纤维加强聚合物形成,碳纤维层的导电属性可以被用于加热叶片上的积冰。碳纤维层可以被植入到玻璃纤维层叠件中。
从WO00/14405中已知的是采用带有碳纤维加强聚合物的纵向带来对玻璃纤维聚合物风力涡轮机叶片进行加强。同样还公开了所谓的混合合成物材料,在该混合合成物中玻璃纤维和碳纤维的混合物被用作纤维加强材料。
US6287122披露了被拉长的组合物产品的制造方法,其中通过改变纤维的含量或编织纤维的角度方向来使产品的硬度在沿着长度方向上发生变化。
US5520532披露了一种具有硬度变化的纤维加强聚合物的模具,通过改变纤维毡层的层数来获得所述硬度。
US4077740披露了由纤维合成材料制成的直升飞机转子叶片,当从叶片的纵向方向上看去时,叶片的硬度发生变化。此特征是通过改变纤维的方向使振动阻尼增强来获得。
当然,风力涡轮机叶片的硬度取决于壳体的厚度、横截面的几何形状以及材料。风力涡轮机叶片的横截面尺寸以及壳体厚度在叶片的纵向方向上发生变化。自然地,大横截面的尺寸位于叶根处,通常此处叶片的横截面基本上为圆形。此外沿着叶片,可以采取基本上与椭圆一致的更扁平的形状。
如上所述,已知将不同类型的纤维组合到层叠件中以获得理想的属性或者以获得不同类型的纤维之间有关重量、硬度以及在断裂处的延伸率的属性的协调。然而,在叶片的纵向方向上具有变化的材料属性的叶片的结构也是理想的。由于碳纤维的硬度高并且密度低,因此采用它们是有益的,但是在另一方面,它与玻璃纤维相比价格高昂。因此,理想的是采用碳纤维加强,在此处把它作为加强更为有益。这样,在叶片的最外部分使用碳纤维加强并且在叶片的最里边的部分使用玻璃纤维,从而减少了最外边部分的重量并且由此也使静负荷转矩达到最小。因此,在叶片的最里边的部分只需要较少的材料和/或较小的横截面积,从而减轻了涡轮机轮毂的负荷。同时还可以增加叶片的最外边部分的硬度,这就降低了由于叶片发生严重弯曲而使叶片顶部撞击到涡轮机塔的危险。近年来,由于风力涡轮机叶片的长度不断地增加而造成的由于静负荷和硬度不够所带来的问题有所上升。并且这种趋势看起来会在未来一直持续。
为了减小安装法兰及其类似物的尺寸,可能需要叶根具有小的横截面积。叶片整个的重量可以通过在叶片的最里边,即叶根处,采用碳纤维作为加强材料而被极大地减轻。
其它类型的纤维,例如象大麻纤维或亚麻纤维这样的纤维素纤维,也是用于加强风力涡轮机叶片的潜在材料。
在风力涡轮机叶片的不同部分采用不同类型的加强纤维也存在其它的原因。如果采用彼此不同类型的、并且具有不同硬度以及在断裂时具有不同延伸率的纤维类型对风力涡轮机叶片的两个在纵向方向上并置的区进行加强的话,那么叶片的硬度就会突然改变。在大的动负荷或静负荷下,大部分的应力被硬度最高的纤维的最外面部分所接收,就会导致这些纤维,以至叶片处于受到破坏的高度危险中。不同的提法是,叶片的弯曲造成了在硬度最大的区域内的两区之间的边界表面上的应力集中。在风力涡轮机叶片承受动负荷时这个问题尤为严重。
发明内容
本发明的目的是提供一种纤维加强的聚合物的风力涡轮机叶片,它包括具有第一硬度和在断裂处具有第一延伸率的第一种类型的纤维,和具有不同的硬度和在断裂处具有不同延伸率的第二种类型的纤维,其中叶片的区域可以在不受到例如,硬度发生突然改变的副作用的阻碍下,对关于强度、静负荷和硬度方面进行优化。
本发明的目的通过在聚合物基体上分布两种类型的纤维来获得,这两种纤维的含量比在叶片的纵向方向上发生连续地变化。在本文中,表达“连续地”应该被理解为更宽泛的涵义,因此应该被理解为包括“逐渐地”和“均匀地”的涵义。
因此,在风力涡轮机叶片的两个区域之间形成平稳地过渡,所述区域由于一种类型的纤维与另一种类型的纤维的含量比不同而具有两种不同的硬度。
在本发明的实施例中,第一种纤维可以为玻璃纤维,而第二种纤维可以为碳纤维,由此风力涡轮机叶片成形为碳纤维的含量朝叶片的尖端增多。这样,叶片最外部的重量就减轻了,由此,还使静负荷转矩达到最小化。这样,在叶片的最里边的部分只需要较少的材料和/或者较小的横截面积,因此也就减轻了涡轮机轮毂的负荷。
在一定的硬度下,可以通过在最外端采用碳纤维来使静负荷减小,由此作用在叶片壳体和叶根部分处动负荷也就减小了,其中所述部分对动负荷特别敏感。
通过改变外端部分的碳纤维含量或者外端部分的长度,那么自然频率和硬度都会发生改变。这样,硬度和自然频率可以被优化到特定的条件。
硬度相对高的外端部和硬度相对低的内端部使得关于气动阻尼的弯曲(或挠曲)形状得到优化,该阻尼取决于在振动中沿着叶片发生的集合弯曲。气动阻尼增加是有益的,这是因为这样空气动力载荷被减小了。
与仅仅是由玻璃纤维加强的聚合物或仅仅是由碳纤维加强的聚合物的叶片相比,本发明的叶片实现了硬度与成本的最优化。
包括叶根的风力涡轮机的端部也可以包含相对较多的碳纤维,其中碳纤维的硬度比玻璃纤维高,由此,叶根的横截面尺寸以及由此带来的安装法兰和类似物的尺寸都减小了。
根据本发明的实施例,含量比可以从第一水平连续增加或降低到第二水平。
根据本发明的优选实施例,该含量比可以仅仅只在比叶片的长度短的一个长度的过渡区内发生改变。这样,含量比可以仅仅在一有限区域内变化,由于生产的原因这种变化是有益的。
根据本发明的优选实施例,过渡区设于具有基本上均匀含量比的第一和第二区之间。过渡区的长度例如可以在0.5到1米之间。然而,大于10米或者甚至更长的长度也是优选的。包括叶根的第一区可以包含占绝大多数的玻璃纤维,而包括叶尖的第二区可以包含占绝大多数的碳纤维,由此,过渡区可以设于叶片中心的某位置处。
在替换实施例中,叶片可以被分成包括叶根的过渡区和包括叶片其余部分的附加区。这样,从叶根到附加区的开始位置处,碳纤维的含量稳步上升,由此碳纤维的含量基本上保持恒定。
在一个可选的实施例,叶片可以被分成包括叶尖的过渡区和包括叶片其余部分的附加区。
包括叶尖的区域的长度可以构成叶片整个长度的5%、10%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或者甚至叶片整个长度的90%。
在一个实施例中,不同长度的第一种类型的纤维或纤维束从过渡区的第一端延伸,而其它类型的纤维或纤维束从过渡区的相对端延伸,由此可以获得特别是硬度的平稳过渡。
根据另一实施例,过渡区可以由几个纤维层构成的层叠件形成,其中,每个纤维层在纵向方向上的某一位置处具有边界表面,纤维层包括位于边界表面的一侧上的碳纤维,以及位于边界表面的另一侧上的玻璃纤维,每个纤维层的边界层都在叶片的纵向方向上相对于彼此转移。因此,就以一种特别简单的方式获得了硬度在过渡层内的逐渐变化。
根据本发明的替换实施例,边界表面可以在平行于纤维层的剖面视图中呈锯齿形。由此获得了硬度在过渡区内的平稳过渡。
在实施例中,锯齿状的边界表面的顶部可以在叶片的横向方向上彼此相互转移(或移位)。从而获得了硬度在过渡区内的平稳过渡。
根据本发明,可以将两种类型的纤维分布到延伸在叶片纵向方向上的加强带中,叶片截面的其它部分具有恒定含量的第一种类型的纤维和/或第二种类型的纤维。叶片的负荷支承部分通常由这种加强带制成,并且自然地,本发明也特别适用于这种加强部件。
本发明还涉及一种用于制造风力涡轮机叶片的壳体的预制过渡壳体坯件,所述过渡壳体坯件由纤维加强聚合物制成,该聚合物包括具有第一硬度和在断裂处具有第一延伸率的第一种类型的纤维和具有不同的硬度和在断裂处具有不同延伸率的第二种类型的纤维,其中当从与叶片的纵向方向相垂直的剖面图看时,这两种类型纤维的含量比在叶片的长度方向上发生变化,这两种类型的纤维分布到聚合物基体中,并且含量比在过渡壳体坯件的纵向长度方向上连续变化。由于过渡壳体坯件不在风力涡轮机叶片自身的制造中就可以被制成,因此,这种预制的过渡壳体坯件使风力涡轮机叶片的制造更为迅速和简单。
预制的过渡壳体坯件可以被制成带,用于对形成叶片的压力侧和吸入侧和离横截面中心间隔开最远的叶片壳体区域进行加强。
如果现有的风力涡轮机设有更长的叶片,那么可以用过渡区来代替叶片的最外部分,该过渡区包括一个或多个过渡壳体坯件和由碳纤维形成的叶尖。该叶片的重量不大于或者仅仅是稍微重于完全是由玻璃纤维加强聚合物制成的原始叶片。可替换的是,可以将已有的风力涡轮机叶片或者叶片的最外边部分进行切除并用带有或不带有过渡区的碳纤维叶尖来制成完全新的叶片。
附图说明
下面将通过参照附图中的示意性视图示出的本发明的各种实施例来对本发明进行更为详细地解释,其中:
图1示出了具有三个叶片的风力涡轮机;
图2示出了风力涡轮机的叶片;
图3示出了本发明第一实施例的两种不同类型的纤维的含量比的连续变化;
图4示出了本发明第二实施例的两种不同类型的纤维的含量比的连续变化;
图5示出了本发明第三实施例的两种不同类型的纤维的含量比的连续变化;以及
图6示出了显示在叶片的纵向方向上两种不同类型的纤维的含量比是怎样进行变化的示意图。
具体实施方式
图1示出了现代风力涡轮机,它包括带有轮毂13的塔12以及从轮毂处延伸的风力涡轮机叶片14。
图2示出了包括第一区17的风力涡轮机叶片,第一区包括叶尖,所述区基本上由碳纤维加强。叶片还包括基本上由玻璃纤维加强的第二区15。经过过渡区16或过渡区域该第一区17延伸到第二区15内,在过渡区16中,一种类型的纤维基本上逐渐由另一种类型的纤维来替代。
如图3所示的本发明的第一实施例为位于过渡区内的风力涡轮机叶片壳体的剖面图,在过渡区内,两种不同属性的纤维的含量比逐渐发生改变。第一种类型的纤维1,例如碳纤维,以不同长度的纤维束或单纤维的形式从剖面图的左手侧延伸。而另一种纤维2,例如玻璃纤维在图3中是不可见的,但是它是作为碳纤维的补充。这两种纤维之间的过渡区进行这样扩散,从而获得了从叶片的一部分到了叶片的另一部分的平稳过渡,而所述叶片的一部分基本上由碳纤维1加强,所述叶片的另一部分基本上由玻璃纤维2加强。由于玻璃纤维比碳纤维能够承受更大的挠曲,因此叶片的挠曲在碳纤维与两种纤维之间的边界层相接的部分造成了严重的应力集中。如图3所示的实施例中则避免了这种作用。
图4示出了第二实施例,在图4中在由非织造或针织纤维束制成的纤维毡上打孔,由此在它们的其中一端形成有锯齿。基于相同纤维层内的不同类型的纤维的两个毡具有形状类似的锯齿,且因此彼此相啮合。正如图4中所示,两个叠置在一起的纤维层的锯齿可以彼此相互转移,由此获得了在图4的左手侧所示的区域到右手侧所示的区域上的硬度的平稳过渡。图4为两个叠置在一起的碳纤维层3、4的示意图。在区域5上设有两个对应的玻璃纤维层。正如图4所示,两个碳纤维层3、4的锯齿11的顶端12在横向上相互转移,从而确保硬度平稳过渡。这样,有碳纤维的区域和有玻璃纤维的区域之间的过渡区就由锯齿的长度决定。因此,可以根据需要通过缩短或加长锯齿的长度使过渡区发生变化。
图5更为简单地示出了第一和第二区之间的过渡区。图5为四个叠置在一起的纤维层的示意图,其中纤维层6由例如碳纤维形成,而纤维层7由玻璃纤维形成。每层纤维都具有边界表面10,在边界表面处碳纤维由玻璃纤维所替代,由于每一边界表面10都相对于其它表面进行转移,因此就获得了具有一定长度的过渡区。当然,过渡区的长度可以根据需要通过将边界表面或多或少地相对于彼此进行转移和/或者通过采用更多的纤维层来改变。
图6为在叶片的长度方向上一种纤维与另一种纤维的含量比的示意图。第一过渡区I和第二过渡区III都包含具有恒定含量比的第一种纤维8和第二种纤维9。过渡区II位于这两个区之间,在所述区内的第二种纤维9的比例从第一区域I内的水平平稳地上升到第二区域III内的水平。为此,图6a示出了一个实施例,在这个实施例中,第一区I仅仅只由第一种纤维8形成,而第二区III仅仅由第二种纤维9形成。图6b示出了另一实施例,在这个实施例中,第一区I仅仅只由第一种纤维8形成,而第二区III包括定量的占少数的第一种纤维8和定量的占多数的第二种纤维9。图6c示出了又一实施例,在这个实施例中,第一区I包括定量的占多数的第一种纤维8和定量的占少数的第二种纤维9,而第二区III仅仅由第二种纤维9形成。图6d示出了再一实施例,在这个实施例中,第一区I包括定量的占多数的第一种纤维9,而第二区III包括定量的占少数的第一种纤维8和定量的占多数的第二纤维9。
这样,图6a示意性地示出了风力涡轮机叶片的优选实施例,其中第一区I为包括叶尖的叶片的外端部,且其中第二区III为包括叶根的叶片的内端部。因此,包括叶尖的那部分叶片可以仅仅只由碳纤维形成,而包括叶根的那部分叶片可以仅由玻璃纤维形成。因此,位于叶片的两端之间的部分可以为过渡区II,在过渡区内碳纤维和玻璃纤维逐渐地彼此替换。此过渡区II的长度可以限制在0.5-1米内。然而,叶片也可以根据如图6b-6d所示的含量比形成。叶片也可以仅仅只包括两个区,即第一区I和过渡区II或者过渡区II和第二区III。最后,叶片还可以仅仅只包含过渡区II,这样,一种纤维的含量例如可以在叶片的整个长度上逐渐上升。
过渡区可以在纤维层本身置于模具内的期间就形成于该叶片上。然而,也可以采用根据如图3、4和5所示的原则进行生产的、预制的过渡层叠件。这种预制的层叠件由于在制造中,纤维层叠过程的时间基本上与传统的风力涡轮机叶片的生产时间相同,而具有优越性,其中相同的材料被用于叶片的整个纵向长度上。
试验已表明在过渡区内具有高硬度的这种类型的纤维的最外面部分可能会在过渡区挠曲(或弯曲)时发生断裂,但是,这并不是完全不理想的效果,因为过渡区还起到了另外的硬度平稳过渡的作用。因此纤维断裂的频率可能会高但是这并不紧要,因为它们被更柔韧的纤维所包围。然而,断裂的纤维仍然会对减轻弯曲起作用,并且由此减少另外的纤维发生断裂。这样就通过两个因素获得了基于两种不同类型的纤维的合成材料的属性之间的逐渐的和平稳的过渡。第一个因素是为获得从硬到柔韧区域的平稳过渡的硬的和柔韧的纤维的分布。第二个因素是还对过渡起到平稳作用的非紧要的断裂。
本发明的风力涡轮机的另外的未示出的实施例可以通过所谓的喷涂过程来完成。在这个过程中,喷枪被用于喷射聚合物材料,且将两种被粉碎纤维的混合物喷射到树脂流中,并喷射到模具中。在喷洒过程中通过改变混合比例,从而获得所需要的过渡区。
本发明并不局限于上述实施例。除了玻璃和碳纤维,其它纤维也可以被用于制造本发明的风力涡轮机的叶片。可能的纤维的例子包括大麻纤维或其它例如芳族聚酰胺纤稚和其它塑料纤维的纤维素纤维。
因此,风力涡轮机可以在其叶根的一端主要由玻璃纤维加强聚合物形成,且其中叶片的中间部分由碳纤维加强聚合物形成,叶尖处由芳族聚酸胺纤维加强的聚合物形成,而芳族聚酸胺纤维的密度甚至小于碳纤维的密度。这样,过渡区可以设于玻璃纤维加强部分和碳纤维加强部分之间以及碳纤维加强部分和芳族聚酸胺纤维加强部分之间。
另外,就叶片壳体本身而言,风力涡轮机叶片中的加强粱和其它内部加强部分也可以由不同类型的纤维进行加强的聚合物制成,在叶片的纵向方向上一种纤维与另一种纤维的含量比连续变化。
本发明的所获得的优点特别是与负荷支承部件有关。负荷支承部件包括其它主要层叠件,该层叠件为延伸在叶片壳体的吸入侧和压力侧区域内而离横截面中心最远的纵向纤维加强聚合物带形式。在叶片的前缘和后缘处沿边缘方向对叶片进行支承的层叠件可具有含量比连续变化的两种类型纤维也是有益的。
由于闪电的原因,优选地使叶尖的最外部分全部由玻璃纤维形成,从而确保在闪电袭击时闪电击打在以此为目的配置的闪电接收器上,而不与碳纤维材料发生导电现象。
玻璃纤维在断裂处的延伸率通常大约为4.8%,而对于碳纤维来说它的延伸率通常在0.3%到1.4%之间变化。玻璃纤维的杨氏模量大约为73000Mpa,而碳纤维模量(表示模量)通常大约为245000Mpa。碳纤维通常比玻璃纤维硬3-4倍。玻璃的密度大约为2.45g/cm3,而碳的密度大约为1.75g/cm3

Claims (15)

1.一种由纤维加强的聚合物制成的风力涡轮机叶片,该聚合物包括具有第一硬度并且在断裂处具有第一延伸率的第一种类型的纤维(1,3,6),和具有不同硬度并且在断裂处具有不同延伸率的第二种类型的纤维(2,5,7),其特征在于,这两种类型的纤维分布在聚合物基体上,并且当从与叶片的纵向方向相垂直的剖面图中看去时,这两种类型的纤维的含量比在叶片的纵向方向上连续变化。
2.如权利要求1所述的风力涡轮机叶片,其特征在于,第一种类型的纤维为玻璃纤维(1),而第二种类型的纤维为碳纤维(2)。
3.如权利要求1或2所述的风力涡轮机叶片,其特征在于,所述含量比从第一水平增加或降低到第二水平。
4.如权利要求1-3中任一项所述的风力涡轮机叶片,其特征在于,所述含量比在小于叶片的长度的长度的过渡区内连续变化。
5.如权利要求4所述的风力涡轮机叶片,其特征在于,过渡区设于第一区(I)和第二区(III)之间,所述区在两种类型的纤维之间都具有基本均匀的含量比。
6.如权利要求5所述的风力涡轮机叶片,其特征在于,过渡区(II)的长度在0.5米到1米之间。
7.如权利要求4所述的风力涡轮机叶片,其特征在于,叶片被分割为包括叶根的过渡区(II)和包括叶片的其余部分的附加区。
8.如权利要求4所述的风力涡轮机叶片,其特征在于,叶片被分割为包括叶尖的过渡区(II)和包括叶片其余部分的附加区。
9.如权利要求4至8中任一项所述的风力涡轮机叶片,其特征在于,有不同长度的第一种类型(1)的纤维或纤维束从过渡区(II)的第一端延伸,而第二种类型(2)的纤维或纤维束从过渡区(II)的相对端延伸。
10.如权利要求4所述的风力涡轮机叶片,其特征在于,过渡区(II)由几个纤维层(6,7)构成的层叠件形成,其中,每个纤维层在纵向方向上的某一位置处都具有边界表面(10),该纤维层包括位于边界表面的一侧上的第一种类型(6)的纤维,以及位于边界表面的另一侧上的第二种类型(7)的纤维,每个纤维层的边界层(10)都设在叶片的纵向方向上相对于其它边界层转移。
11.如权利要求10所述的风力涡轮机叶片,其特征在于,当从与纤维层(3,4,5)相平行的剖面图中看去时,边界表面(11)为锯齿状。
12.如权利要求11所述的风力涡轮机叶片,其特征在于,锯齿状的边界表面(11)的顶部(12)在叶片的横向方向上彼此相互转移。
13.如前述权利要求中任一项所述的风力涡轮机叶片,其特征在于,两种类型的纤维(1,2,3,5,6,7)分布到在叶片纵向方向上延伸的加强带中,叶片横截面的其余部分具有恒定含量的第一种类型的纤维(1,3,6)和/或第二种类型的纤维(2,5,7)。
14.一种用于制造风力涡轮机叶片的壳体的预制的过渡壳体坯件,所述过渡壳体坯件由纤维加强的聚合物制成,该聚合物包括具有第一硬度和在断裂处具有第一延伸率的第一种类型的纤维(1,3,6)和具有不同的硬度和在断裂处具有不同延伸率的第二种类型的纤维(2,5,7),其特征在于,这两种类型的纤维分布到聚合物基体中,并且当从与叶片的纵向方向的相垂直的剖面图看去时,这两种类型纤维的含量比在叶片的长度方向上连续变化。
15.如权利要求14所述的预制过渡壳体坯件,其特征在于,预制的过渡壳体坯件成形为带状,用于对形成叶片的压力侧和吸入侧和与横截面中心间隔开最远的叶片壳体的区域进行加强。
CNB038064057A 2002-03-19 2003-03-19 风力涡轮机叶片上的过渡区 Expired - Lifetime CN1328500C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200200425 2002-03-19
DK200200425A DK175275B1 (da) 2002-03-19 2002-03-19 Overgangsområde i vindmöllevinge

Publications (2)

Publication Number Publication Date
CN1643249A true CN1643249A (zh) 2005-07-20
CN1328500C CN1328500C (zh) 2007-07-25

Family

ID=27837992

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038064057A Expired - Lifetime CN1328500C (zh) 2002-03-19 2003-03-19 风力涡轮机叶片上的过渡区

Country Status (10)

Country Link
US (1) US7364407B2 (zh)
EP (1) EP1485610B1 (zh)
CN (1) CN1328500C (zh)
AU (1) AU2003218631B2 (zh)
CA (1) CA2479604C (zh)
DK (2) DK175275B1 (zh)
ES (1) ES2401573T3 (zh)
NO (1) NO333535B1 (zh)
PL (1) PL206772B1 (zh)
WO (1) WO2003078832A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202964A (zh) * 2008-09-08 2011-09-28 弗洛设计风力涡轮机公司 用于在高风速条件下保护风力涡轮机的系统和方法
CN102666271A (zh) * 2009-12-21 2012-09-12 通用电气公司 流体涡轮机转子叶片
CN102817794A (zh) * 2012-08-24 2012-12-12 中国人民解放军国防科学技术大学 可加长大型复合材料风电叶片
CN103291537A (zh) * 2012-02-29 2013-09-11 通用电气公司 叶片嵌件及包括叶片嵌件的转子叶片组件
CN103703217A (zh) * 2011-04-11 2014-04-02 Lmwp专利控股有限公司 包括金属纤维和过渡区域的风力涡轮机叶片
CN103958835A (zh) * 2011-07-20 2014-07-30 Lmwp专利控股有限公司 具有过渡区域的风力涡轮机叶片
CN108656675A (zh) * 2017-03-27 2018-10-16 本田技研工业株式会社 纤维增强树脂制品
CN108700028A (zh) * 2015-12-23 2018-10-23 Lm Wp 专利控股有限公司 风力涡轮机叶片及相关制造方法
CN109760334A (zh) * 2019-01-22 2019-05-17 远景能源(江苏)有限公司 一种防褶皱预制件及其制造方法
CN113165281A (zh) * 2018-12-10 2021-07-23 维斯塔斯风力系统有限公司 关于风力涡轮机叶片制造的改进
CN114347503A (zh) * 2022-01-05 2022-04-15 泰山玻璃纤维有限公司 用于风电叶片主梁的碳-玻混拉板

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK175562B1 (da) * 2002-03-19 2004-12-06 Lm Glasfiber As Vindmöllevinge med kulfibertip
US7521105B2 (en) * 2003-03-06 2009-04-21 Vestas Wind System A/S Connection between composites with non-compatible properties and method for preparation
ES2427639T3 (es) * 2003-03-06 2013-10-31 Vestas Wind Systems A/S Procedimiento para preparar una preforma
EP1709416B1 (en) * 2004-01-23 2018-03-07 LM Wind Power International Technology II ApS Device including a system adapted for use in temperature compensation of strain measurements in fibre-reinforced structures
EP1761702B1 (en) * 2004-06-30 2011-11-23 Vestas Wind Systems A/S Wind turbine blades made of two separate sections
DK200401225A (da) 2004-08-13 2006-02-14 Lm Glasfiber As Metode til afskæring af laminatlag, eksempelvis et glasfiber- eller kulfiber-laminatlag i en vindmöllevinge
DK176418B1 (da) * 2004-12-22 2008-01-21 Lm Glasfiber As Fremgangsmåde til fremstilling af en fiberforstærket del til et vindenergianlæg
DE102005014884B3 (de) * 2005-04-01 2006-09-14 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage
US7690895B2 (en) * 2005-07-29 2010-04-06 General Electric Company Multi-piece passive load reducing blades and wind turbines using same
US7802968B2 (en) * 2005-07-29 2010-09-28 General Electric Company Methods and apparatus for reducing load in a rotor blade
US20090249779A1 (en) * 2006-06-12 2009-10-08 Daw Shien Scientific Research & Development, Inc. Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US20090211223A1 (en) * 2008-02-22 2009-08-27 James Shihfu Shiao High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures
US20080296906A1 (en) * 2006-06-12 2008-12-04 Daw Shien Scientific Research And Development, Inc. Power generation system using wind turbines
US20090044535A1 (en) * 2006-06-12 2009-02-19 Daw Shien Scientific Research And Development, Inc. Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US7766620B2 (en) * 2007-02-08 2010-08-03 General Electricc Company Rotor blade with a lightning protection unit, wind energy system having the same and a method for constructing a rotor blade
US8752293B2 (en) * 2007-12-07 2014-06-17 The Boeing Company Method of fabricating structures using composite modules and structures made thereby
GB2451192B (en) * 2008-07-18 2011-03-09 Vestas Wind Sys As Wind turbine blade
US20100045037A1 (en) * 2008-08-21 2010-02-25 Daw Shien Scientific Research And Development, Inc. Power generation system using wind turbines
WO2010048370A1 (en) * 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
GB2465770A (en) * 2008-11-28 2010-06-02 Vestas Wind Sys As Manufacturing wind turbine rotor blade by moulding
EP2194278A1 (de) 2008-12-05 2010-06-09 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit einem rotor
EP3276162B1 (en) * 2008-12-05 2020-04-08 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US20100143142A1 (en) * 2008-12-11 2010-06-10 Afroz Akhtar Sparcap system for wind turbine rotor blade and method of fabricating wind turbine rotor blade
US7942637B2 (en) * 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
ES2542869T3 (es) * 2009-01-27 2015-08-12 Vestas Wind Systems A/S Pala de turbina eólica dividida en secciones
US7942640B2 (en) * 2009-03-19 2011-05-17 General Electric Company Method and apparatus for use in protecting wind turbine blades from lightning damage
US8461713B2 (en) * 2009-06-22 2013-06-11 Johann Quincy Sammy Adaptive control ducted compound wind turbine
US20110052404A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades with enhanced twist response
CA2777001A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-tailored composite space-based structures
US8702397B2 (en) * 2009-12-01 2014-04-22 General Electric Company Systems and methods of assembling a rotor blade for use in a wind turbine
US8142164B2 (en) * 2009-12-31 2012-03-27 General Electric Company Rotor blade for use with a wind turbine and method for assembling rotor blade
CA2785803A1 (en) 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
US8172539B2 (en) 2010-06-17 2012-05-08 General Electric Company Wind turbine rotor blade joint
EP2407186A1 (de) 2010-07-15 2012-01-18 ECP Entwicklungsgesellschaft mbH Rotor für eine Pumpe, hergestellt mit einem ersten, elastischen Werkstoff
DE102010039705B4 (de) * 2010-08-24 2020-02-27 Airbus Operations Gmbh Strukturelement für ein Luft- und Raumfahrzeug und Verfahren zum Herstellen eines derartigen Strukturelementes
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN101956675B (zh) * 2010-10-28 2012-06-20 马可超 喷气式风力发电机
US9487290B2 (en) * 2010-11-12 2016-11-08 Textron Innovations Inc. Composite rotor blade having weighted material for mass balancing
US20110243736A1 (en) * 2010-12-08 2011-10-06 General Electric Company Joint sleeve for a rotor blade assembly of a wind turbine
DK2633302T3 (da) * 2011-01-11 2014-10-20 Siemens Ag Fremgangsmåde til bestemmelse af fiberretningen i en rotorvinge af en vindmølle med et antal fibre fordelt i et laminatmateriale
GB201109412D0 (en) * 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
EP2543874A1 (en) 2011-07-06 2013-01-09 LM Wind Power A/S A wind turbine blade
US10024301B2 (en) * 2011-10-24 2018-07-17 The Regents Of The University Of Michigan Textile composite wind turbine blade
EP2636897B1 (en) * 2011-12-09 2017-07-12 Mitsubishi Heavy Industries, Ltd. Wind turbine blade
EP2621715B8 (en) * 2011-12-09 2017-08-02 MITSUBISHI HEAVY INDUSTRIES, Ltd. Method of manufacturing a wind turbine blade and a wind turbine blade
FR2984418B1 (fr) * 2011-12-19 2014-01-24 Valeol Procede de degivrage de structures en materiaux composites, notamment de pales d'une eolienne, composition adaptee et dispositif adapte
US20130177433A1 (en) * 2012-01-11 2013-07-11 General Electric Company Multi-material retrofitted wind turbine rotor blade and methods for making the same
US8602700B2 (en) 2012-02-16 2013-12-10 General Electric Company Shipping fixture and method for transporting rotor blades
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
ES2605930T3 (es) 2013-06-18 2017-03-17 Nordex Energy Gmbh Procedimiento y herramienta de moldeo para fabricar un segmento de larguero de una pala de rotor de aerogenerador
WO2015003713A1 (en) * 2013-07-09 2015-01-15 Vestas Wind Systems A/S Wind turbine blade with sections that are joined together
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
US9868536B2 (en) * 2013-10-30 2018-01-16 Goodrich Corporation Electrical interconnects for ice protection systems
EP2902620A1 (en) * 2014-01-30 2015-08-05 Siemens Aktiengesellschaft Wind turbine blade with three parts each comprising a different material and method for manufacturing the same
CN106457719B (zh) * 2014-01-31 2021-09-07 Lm Wp 专利控股有限公司 具有改进的纤维过渡的风力涡轮机叶片
BR112016017533B1 (pt) 2014-01-31 2021-07-06 Lm Wp Patent Holding A/S parte de pá de turbina eólica fabricada em duas etapas
ES2676269T3 (es) * 2014-06-16 2018-07-18 Lm Wind Power International Technology Ii Aps Un método para producir una capa de refuerzo de fibra continua de esteras de fibra individuales
US10967583B2 (en) * 2015-04-03 2021-04-06 Bright Lite Structures Llc Apparatus for controllably cutting fibers and related methods
GB201508004D0 (en) 2015-05-11 2015-06-24 Blade Dynamics Ltd A wind turbine blade
MA43346A (fr) * 2015-12-23 2017-06-28 Lm Wp Patent Holding As Pales d'éolienne et systèmes d’équilibrage de tension
US10450870B2 (en) * 2016-02-09 2019-10-22 General Electric Company Frangible gas turbine engine airfoil
US10451030B2 (en) * 2016-05-27 2019-10-22 Blade Dynamics Limited Wind turbine blade and a method of assembling a wind turbine blade and a spar cap connection piece
JP7383476B2 (ja) 2016-10-25 2023-11-20 マジェンタ・メディカル・リミテッド 心室補助デバイス
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
FR3070425B1 (fr) * 2017-08-25 2019-08-16 Safran Aircraft Engines Element aubage profile d'un ensemble propulsif en composite stratifie
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
US10773464B2 (en) 2017-11-21 2020-09-15 General Electric Company Method for manufacturing composite airfoils
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US11668275B2 (en) * 2017-11-21 2023-06-06 General Electric Company Methods for manufacturing an outer skin of a rotor blade
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US10905808B2 (en) 2018-01-10 2021-02-02 Magenta Medical Ltd. Drive cable for use with a blood pump
EP4039321A1 (en) 2018-01-10 2022-08-10 Magenta Medical Ltd. Ventricular assist device
US10821696B2 (en) 2018-03-26 2020-11-03 General Electric Company Methods for manufacturing flatback airfoils for wind turbine rotor blades
US11035339B2 (en) 2018-03-26 2021-06-15 General Electric Company Shear web assembly interconnected with additive manufactured components
CA3098715A1 (en) * 2018-04-28 2019-10-31 The Research Foundation For The State University Of New York Flexible wind turbine blade with actively variable twist distribution
US10830207B2 (en) 2018-08-28 2020-11-10 General Electric Company Spar configuration for jointed wind turbine rotor blades
FR3087699B1 (fr) * 2018-10-30 2021-11-26 Safran Aircraft Engines Hybridation des fibres du renfort fibreux d'une aube
EP4140532A1 (en) 2019-01-24 2023-03-01 Magenta Medical Ltd. Ventricular assist device
DK3712424T3 (da) * 2019-03-21 2023-10-09 Siemens Gamesa Renewable Energy As Vindmøllevinge og vindmølle
US11131290B2 (en) * 2019-06-25 2021-09-28 General Electric Company Scarf connection for a wind turbine rotor blade
US11215054B2 (en) 2019-10-30 2022-01-04 Raytheon Technologies Corporation Airfoil with encapsulating sheath
US11466576B2 (en) 2019-11-04 2022-10-11 Raytheon Technologies Corporation Airfoil with continuous stiffness joint
CN114278493B (zh) * 2020-09-27 2023-10-27 上海电气风电集团股份有限公司 主梁结构、风机叶片及其加工方法、风力发电机组

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1262704A (en) * 1968-08-10 1972-02-02 Messerschmitt Boelkow Blohm Helicopter rotor blade
GB1526433A (en) * 1975-08-06 1978-09-27 Secr Defence Helicopter rotor blades
US4000956A (en) * 1975-12-22 1977-01-04 General Electric Company Impact resistant blade
GB2012698B (en) 1978-01-03 1982-02-10 Secr Defence Aerofoils
US4533297A (en) 1982-09-15 1985-08-06 Bassett David A Rotor system for horizontal axis wind turbines
GB2164309B (en) * 1984-09-11 1987-09-09 Secr Defence Helicopter rotor blades
US4976587A (en) * 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
US4979587A (en) * 1989-08-01 1990-12-25 The Boeing Company Jet engine noise suppressor
US5108262A (en) * 1990-03-23 1992-04-28 The United States Of America As Represented By The Secretary Of The Navy High damping flexible propeller/impleller
US5140856A (en) 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5520532A (en) 1994-08-01 1996-05-28 United Technologies Corporation Molding assembly for forming airfoil structures
FR2740380B1 (fr) 1995-10-30 1998-01-02 Eurocopter France Procede de fabrication d'une pale a pas variable en materiau composite pour rotor d'helicoptere
SG79227A1 (en) 1998-04-17 2001-03-20 Inst Materials Research & Eng Fiber-reinforced composite product with graded stiffness
DK173460B2 (da) * 1998-09-09 2004-08-30 Lm Glasfiber As Vindmöllevinge med lynafleder
NL1019957C2 (nl) 2002-02-13 2003-10-03 Stork Fokker Aesp Bv Gelamineerd paneel met discontinue inwendige laag.
DE20206942U1 (de) 2002-05-02 2002-08-08 Repower Systems Ag Rotorblatt für Windenergieanlagen
US7521105B2 (en) * 2003-03-06 2009-04-21 Vestas Wind System A/S Connection between composites with non-compatible properties and method for preparation
US7575417B2 (en) * 2003-09-05 2009-08-18 General Electric Company Reinforced fan blade
US7427189B2 (en) * 2006-02-13 2008-09-23 General Electric Company Wind turbine rotor blade

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202964A (zh) * 2008-09-08 2011-09-28 弗洛设计风力涡轮机公司 用于在高风速条件下保护风力涡轮机的系统和方法
CN102666271A (zh) * 2009-12-21 2012-09-12 通用电气公司 流体涡轮机转子叶片
CN103703217A (zh) * 2011-04-11 2014-04-02 Lmwp专利控股有限公司 包括金属纤维和过渡区域的风力涡轮机叶片
CN103703217B (zh) * 2011-04-11 2016-05-04 Lmwp专利控股有限公司 包括金属纤维和过渡区域的风力涡轮机叶片
CN103958835A (zh) * 2011-07-20 2014-07-30 Lmwp专利控股有限公司 具有过渡区域的风力涡轮机叶片
CN103958835B (zh) * 2011-07-20 2016-08-17 Lmwp专利控股有限公司 具有过渡区域的风力涡轮机叶片
CN103291537A (zh) * 2012-02-29 2013-09-11 通用电气公司 叶片嵌件及包括叶片嵌件的转子叶片组件
CN102817794A (zh) * 2012-08-24 2012-12-12 中国人民解放军国防科学技术大学 可加长大型复合材料风电叶片
CN108700028B (zh) * 2015-12-23 2021-08-24 Lm Wp 专利控股有限公司 风力涡轮机叶片及相关制造方法
CN108700028A (zh) * 2015-12-23 2018-10-23 Lm Wp 专利控股有限公司 风力涡轮机叶片及相关制造方法
CN108656675A (zh) * 2017-03-27 2018-10-16 本田技研工业株式会社 纤维增强树脂制品
CN113165281A (zh) * 2018-12-10 2021-07-23 维斯塔斯风力系统有限公司 关于风力涡轮机叶片制造的改进
US11761422B2 (en) 2018-12-10 2023-09-19 Vestas Wind Systems A/S Relating to wind turbine blade manufacture
CN109760334A (zh) * 2019-01-22 2019-05-17 远景能源(江苏)有限公司 一种防褶皱预制件及其制造方法
CN109760334B (zh) * 2019-01-22 2022-01-07 远景能源有限公司 一种防褶皱预制件及其制造方法
CN114347503A (zh) * 2022-01-05 2022-04-15 泰山玻璃纤维有限公司 用于风电叶片主梁的碳-玻混拉板

Also Published As

Publication number Publication date
EP1485610A1 (en) 2004-12-15
ES2401573T3 (es) 2013-04-22
WO2003078832A1 (en) 2003-09-25
NO333535B1 (no) 2013-07-01
DK200200425A (da) 2003-09-20
CA2479604C (en) 2010-06-29
DK175275B1 (da) 2004-08-02
AU2003218631A1 (en) 2003-09-29
PL371010A1 (en) 2005-06-13
US7364407B2 (en) 2008-04-29
US20050180854A1 (en) 2005-08-18
NO20044400L (no) 2004-10-18
CA2479604A1 (en) 2003-09-25
CN1328500C (zh) 2007-07-25
DK1485610T3 (da) 2013-03-11
EP1485610B1 (en) 2012-11-28
AU2003218631B2 (en) 2009-01-08
PL206772B1 (pl) 2010-09-30

Similar Documents

Publication Publication Date Title
CN1643249A (zh) 风力涡轮机叶片上的过渡区
CN100376790C (zh) 具有碳纤维尖部的风力涡轮机叶片
US9920630B2 (en) Wind turbine blade with transition region
CN103958835B (zh) 具有过渡区域的风力涡轮机叶片
CN103732383B (zh) 具有根部区带有提供有金属纤维的延长的紧固构件的风力涡轮机叶片
EP2318703A2 (en) Wind turbine blade
CN102465844A (zh) 一种风力发电机叶片
CN108016055A (zh) 一种使用拉挤预制件制造叶片根部的方法
WO2021245225A1 (en) Pultruded fibre-reinforced strip for a reinforced structure, such as a spar cap
CN108883588B (zh) 用于风轮机叶片的嵌入元件
WO2024012642A1 (en) A wind turbine blade spar cap and a method for manufacturing a wind turbine blade spar cap
CN1443881A (zh) 纤维强化树脂制纺丝用锅
CN102985683A (zh) 新型竹质叶片结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070725

CX01 Expiry of patent term