BR112016017533B1 - parte de pá de turbina eólica fabricada em duas etapas - Google Patents

parte de pá de turbina eólica fabricada em duas etapas Download PDF

Info

Publication number
BR112016017533B1
BR112016017533B1 BR112016017533-6A BR112016017533A BR112016017533B1 BR 112016017533 B1 BR112016017533 B1 BR 112016017533B1 BR 112016017533 A BR112016017533 A BR 112016017533A BR 112016017533 B1 BR112016017533 B1 BR 112016017533B1
Authority
BR
Brazil
Prior art keywords
fiber material
resin
wind turbine
primary
cured
Prior art date
Application number
BR112016017533-6A
Other languages
English (en)
Other versions
BR112016017533A2 (pt
Inventor
Rasmus C Østergaard
Lars Nielsen
Klavs JESPERSEN
Original Assignee
Lm Wp Patent Holding A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lm Wp Patent Holding A/S filed Critical Lm Wp Patent Holding A/S
Publication of BR112016017533A2 publication Critical patent/BR112016017533A2/pt
Publication of BR112016017533B1 publication Critical patent/BR112016017533B1/pt

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PARTE DE PÁ DE TURBINA EÓLICA FABRICADA EM DUAS ETAPAS A presente invenção refere-se a um método para fabricar uma parte de uma pá de turbina eólica (10). O método compreende as etapas de: laminar um material de fibras primário em um molde; infundir o referido material de fibras primário com uma resina primária; curar substancialmente a primeira resina primária no referido material de fibras primário para formar um elemento de pá curado; laminar um material de fibras secundário sobre ao menos parte do referido elemento de pá curado (60, 160); infundir o referido material de fibras secundário com uma resina secundária diferente da referida resina primária, em que a referida resina secundária possui um nível de resistência mais alto que a referida resina primária; e curar a referida resina secundária no referido material de fibras secundário para formar uma seção reforçada integrada (70, 170) sobre o referido elemento de pá curado (60, 160).

Description

CAMPO DA INVENÇÃO
[0001] A presente invenção refere-se a um método para fabricar uma pá de turbina eólica e produtos intermediários de uma pá de turbina eólica. A presente invenção refere-se ainda a uma pá de turbina eólica e produtos intermediários da pá de turbina eólica.
ANTECEDENTES DA INVENÇÃO
[0002] Pás de turbina eólica são geralmente fabricadas de acordo com um de dois designs estruturais, a saber, um design no qual uma carcaça aerodinâmica fina é colada em uma viga de longarina ou um design no qual mesas de longarina, também chamadas laminados principais, são integradas à carcaça aerodinâmica.
[0003] No primeiro design, a viga de longarina constitui a estrutura de mancal de carga da pá. A viga de longarina, bem como a carcaça aerodinâmica ou partes dela, são fabricadas separadamente. A carcaça aerodinâmica também é fabricada na forma de duas partes de carcaça, tipicamente na forma de uma parte de carcaça do lado de pressão e uma parte de carcaça do lado de sucção. As duas partes de carcaça são coladas ou conectadas de alguma outra forma à viga de longarina e adicionalmente coladas uma na outra ao longo de um bordo de ataque e bordo de fuga das partes de carcaça. Esse design tem a vantagem de que a crítica estrutura de suporte de carga pode ser fabricada à parte e, portanto, de uma maneira mais fácil de controlar. Além disso, esse design permite vários métodos de fabricação diferentes para produzir a viga, tais como moldagem e enrolamento de filamentos.
[0004] No segundo design, as mesas de longarina ou laminados principais são integrados à carcaça e moldados junto com a carcaça aerodinâmica. Os laminados principais geralmente compreendem alto número de camadas de fibras em comparação ao restante da pá e podem formar um engrossamento local na carcaça de turbina eólica, ao menos com relação às várias camadas de fibras. Sendo assim, o laminado pode formar uma inserção de fibras na pá. Nesse design, os laminados principais constituem a estrutura de suporte de carga. As carcaças de pá são tipicamente desenvolvidas com um primeiro laminado principal, integrado à parte de carcaça do lado de pressão, e um segundo laminado principal, integrado à parte de carcaça do lado de sucção. O primeiro laminado principal e o segundo laminado principal geralmente conectam-se por meio de uma ou mais redes de cisalhamento, que, por exemplo, podem ser em forma de C ou em forma de I. No caso de pás muito longas, as carcaças de pá adicionalmente, ao longo de ao menos parte da extensão longitudinal, compreendem um primeiro laminado principal adicional na carcaça do lado de pressão e um segundo laminado principal na carcaça do lado de sucção. Esses laminados principais adicionais também podem ser conectados por meio de uma ou mais redes de cisalhamento. Esse design tem a vantagem de permitir controlar com mais facilidade o formado aerodinâmico da pá por meio da moldagem da parte de carcaça de pá.
[0005] A infusão a vácuo ou VARTM (moldagem por transferência de resina assistida por vácuo) é um método tipicamente usado para fabricar estruturas compostas, tais como um material de matriz reforçado com fibras.
[0006] Durante o processo de preencher o molde, gera-se vácuo, nesse contexto entendido como uma sub-pressão ou pressão negativa, através de saídas de vácuo na cavidade do molde, o que faz com que polímero líquido seja forçado à cavidade de molde através dos canais de entrada para preencher a referida cavidade de molde. Saindo dos canais de entrada, o polímero espalha-se em todas as direções na cavidade de molde graças à pressão negativa à medida que uma frente de fluxo desloca-se rumo aos canais de vácuo. Sendo assim, é importante posicionar os canais de entrada e canais de vácuo da maneira ideal para obter o preenchimento completo da cavidade de molde. Garantir a distribuição total do polímero em toda a cavidade de molde, contudo, geralmente é difícil e, portanto, geralmente ocorrem os chamados pontos secos, isto é, áreas com material de fibras não impregnado suficientemente com resina. Sendo assim, pontos secos são áreas onde o material de fibras não é impregnado e onde pode haver bolsas de ar, as quais são difíceis ou impossíveis de remover controlando a pressão de vácuo e uma possível sobrepressão no lado de entrada. Nas técnicas de infusão de vácuo que utilizam uma parte de molde rígida e uma parte de molde resiliente na forma de uma bolsa de vácuo, os pontos secos podem ser reparados após o processo de preencher o molde puncionando a bolsa no respectivo local e extraindo o ar, por exemplo, por meio de uma agulha de seringa. O polímero líquido pode ser opcionalmente injetado no respectivo local, e isso pode ser feito, por exemplo, também por meio de uma agulha de seringa. Esse é um processo demorado e cansativo. No caso de partes de molde grandes, a equipe de profissionais precisa pisar sobre a bolsa de vácuo. Isso não é desejável, principalmente quando o polímero ainda não endureceu, uma vez que pode resultar em deformações no material de fibras inserido e, portanto, no enfraquecimento local da estrutura, o que pode causar, por exemplo, efeitos de empenamento.
[0007] Na maioria dos casos, o polímero ou resina aplicada inclui poliéster, viniléster ou epóxi, mas também pode ser PUR ou pDCPD, e o reforço de fibras é, na maioria das vezes, baseado em fibras de vidro ou fibras de carbono. Epóxis são vantajosos no que diz respeito a várias propriedades, tais como retração durante a cura (que, em algumas circunstâncias, pode levar a menos rugas no laminado), propriedades elétricas, resistência mecânica e resistência contra a fadiga. O poliéster e os vinilésteres têm a vantagem de proporcionar melhores propriedades de ligação a gelcoats.
[0008] Assim, um gelcoat pode ser aplicado à superfície externa da carcaça durante a fabricação desta aplicando o gelcoat ao molde antes de dispor o material de reforço de fibras nele. Dessa forma, várias operações pós- moldagem, tais como pintar a pá, podem ser evitadas. Além disso, os poliésteres e os vinilésteres são mais econômicos que os epóxis. Por conseguinte, o processo de fabricação pode ser simplificado e os custos reduzidos.
[0009] Geralmente, as estruturas compostas compreendem um material de núcleo revestido com um material reforçado com fibras, tal como uma ou mais camadas de polímeros reforçados com fibras. O material de núcleo pode ser usado como um espaçador entre as referidas camadas para formar uma estrutura tipo sanduíche e é tipicamente feito de um material rígido e leve para reduzir o peso da estrutura composta. Com o intuito de garantir uma distribuição eficiente da resina líquida durante o processo de impregnação, o material de núcleo pode ser munido de uma rede de distribuição de resina, por exemplo, formando canais ou ranhuras na superfície do material de núcleo.
[0010] À medida que, por exemplo, as pás de turbinas eólicas foram ficando cada vez maiores com o passar do tempo, podendo, hoje, chegar a mais de 70 metros de comprimento, o tempo de impregnação associado à fabricação dessas pás aumentou, uma vez que mais material de fibras precisa ser impregnado com polímero. Ademais, o processo de infusão tornou-se mais complicado, uma vez que a impregnação de membros de carcaça grandes, tais como pás, requer o controle das frentes de fluxo para evitar pontos secos, o referido controle podendo incluir, por exemplo, um controle relativo ao tempo dos canais de entrada e canais de vácuo. Isso aumenta o tempo necessário para inserir ou injetar polímero. Como resultado, o polímero deve permanecer líquido por mais tempo, o que geralmente também resulta em aumento no tempo de cura.
[0011] A moldagem por transferência de resina (RTM) é um método de fabricação semelhante à VARTM. Na RTM, a resina líquida não é inserida na cavidade de molde por meio de vácuo gerado na cavidade de molde. Em vez disso, a resina líquida é forçada à cavidade de molde por meio de sobrepressão no lado de entrada.
[0012] A moldagem com prepregs é um método em que fibras de reforço são pré-impregnadas com uma resina pré-catalisada. A resina é tipicamente sólida ou praticamente sólida à temperatura ambiente. Os prepregs são dispostos à mão ou à máquina em uma superfície de molde, ensacados a vácuo e, então, aquecidos a uma temperatura a qual a resina pode fluir novamente e, em última análise, curar. Esse método tem a principal vantagem de que o teor de resina no material de fibras é definido com precisão de antemão. É simples e limpo trabalhar com os prepregs, e eles ainda por cima viabilizam a automação e economizam labor. A desvantagem dos prepregs é que o custo do material é mais alto em comparação a fibras não impregnadas. Além disso, o material de núcleo precisa ser feito de um material que seja capaz de resistir às temperaturas processuais necessárias para levar a resina a fluir novamente. A moldagem com prepregs pode ser usada tanto em um processo RTM quanto em um processo VARTM.
[0013] Além disso, é possível produzir moldagens ocas em peça inteiriça usando partes de molde externas e um núcleo de molde. Esse método é descrito, por exemplo, no documento EP 1 310 351 e pode ser prontamente combinado a RTM, VARTM e moldagem com prepregs.
[0014] Além disso, é comum fabricar pás com dois ou mais tipos de material de fibras diferentes. O documento WO 2003/078832 revela uma pá de turbina eólica de polímero reforçado com fibras que inclui um primeiro tipo de fibras, tais como fibras de vidro, de uma primeira rigidez e um segundo tipo de fibras, tais como fibras de carbono, de uma rigidez diferente. Em uma região de transição entre os dois tipos de fibras, a razão quantitativa dos dois tipos de fibras varia continuamente na direção longitudinal da pá. Em uma concretização preferida descrita, o laminado compreende várias camadas, e os limites entre as camadas com o primeiro tipo de fibras e as camadas com o segundo tipo de fibras são mutuamente deslocados na direção longitudinal da pá de modo a obter uma transição afunilada gradual. No entanto, descobriu-se que essa transição não é forte mecanicamente. Para compensar concentrações de tensão ao utilizar fibras de reforço com módulos elásticos divergentes nos compósitos, é possível formar um engrossamento local na região de transição entre as duas fibras diferentes e, assim, limitar o risco de falhas devido a concentrações de tensão. Uma desvantagem dessa solução, contudo, é o maior peso devido ao maior uso de fibras, por exemplo, fibras de vidro, na região de transição entre as fibras de vidro e fibras de carbono.
[0015] O documento US 2012/0009070 revela um método para preparar um membro de carcaça para uma pá de turbina eólica usando material em folha reforçado com fibras pré-curadas. Em uma concretização, é descrito um processo de infusão em etapas no qual camadas individuais são infundidas em sequência.
[0016] O documento WO 2012/149939 revela um método para preparar um laminado composto híbrido com camadas de material reforçado com fibras de diferentes viscosidades de resina, em que as primeiras camadas são pré-impregnadas com uma primeira resina de uma primeira viscosidade e as segundas camadas são impregnadas com uma segunda resina de uma segunda viscosidade.
[0017] O documento WO 2013/010979 revela uma pá de turbina eólica com diferentes tipos de fibras e uma transição biselada entre os diferentes tipos de fibra.
[0018] O documento US 2012/0082558 revela uma pá de turbina eólica modular, cujas partes ligam-se entre si ao longo de linhas de ligação. Em uma concretização, as linhas de ligação são na forma de juntas biseladas duplas.
[0019] Além disso, é conhecido, com base no documento WO 2013/113817, um método para fabricar uma parte de carcaça de pá em um sistema de molde e transferir as partes de carcaça de pá curadas a uma estação pós-moldagem que compreende bases para carregar as partes de carcaça curadas para tratamento adicional, tal como colar as partes de carcaça juntas para formar a carcaça aerodinâmica de uma pá de turbina eólica acabada. O método garante que o tempo do ciclo de moldagem mantenha-se o mais curto possível, permitindo máxima eficiência no uso do molde. O método é particularmente adequado para pás com 40 a 50 metros de comprimento, uma vez que o processo de laminação para pás desse comprimento geralmente leva um terço do tempo de produção total, que compreende a laminação, a infusão e a montagem pós-moldagem, além de outras operações pós-moldagem. Isso possibilita um processo de fabricação contínuo, em que o sistema de molde e sistema pós-moldagem são utilizados o tempo todo. No entanto, no caso de pás mais longas, como pás com 60 a 80 metros de comprimento ou até mais, o tempo de laminação leva uma porcentagem muito maior do tempo de produção total, fazendo com que o sistema pós-moldagem tenha muito tempo ocioso.
[0020] Um dos objetivos da presente invenção consiste em obter parcialmente um novo modelo de pá e produtos intermediários desse modelo, bem como um novo método para fabricar as referidas pás de turbina eólica e produtos intermediários, que superem ou mitiguem ao menos uma das desvantagens da técnica anterior ou que ofereçam uma alternativa proveitosa.
SUMÁRIO DA INVENÇÃO
[0021] De acordo com um aspecto, a presente invenção propõe uma pá de turbina eólica com uma direção longitudinal entre uma extremidade de raiz e uma extremidade de ponta, em que a pá de turbina eólica compreende ao menos um componente de pá de turbina eólica feito de material composto fibroso e contendo um primeiro tipo de fibras de reforço com um primeiro módulo elástico e um segundo tipo de fibras de reforço com um segundo módulo elástico, em que o componente de pá de turbina eólica compreende uma espessura entre uma primeira superfície e uma segunda superfície, em que a proporção entre o primeiro tipo de fibras de reforço e o segundo tipo de fibras de reforço muda gradativamente em um primeiro sentido da pá de turbina eólica de tal modo que o módulo elástico mude gradativamente no referido primeiro sentido, em que a referida mudança gradual no primeiro sentido é obtida por: uma seção de primeira espessura, onde as fibras de reforço do primeiro tipo, ao longo de um primeiro limite em comum, afunilam rumo à primeira superfície do componente de pá de turbina eólica no primeiro sentido e as fibras de reforço do segundo tipo afunilam rumo à segunda superfície do componente de pá de turbina eólica em um sentido oposto ao primeiro, e uma seção de segunda espessura, onde as fibras de reforço do primeiro tipo, ao longo de um segundo limite em comum, afunilam rumo à segunda superfície do componente de turbina eólica no primeiro sentido e as fibras de reforço do segundo tipo afunilam rumo à primeira superfície do componente de turbina eólica em um sentido oposto ao primeiro, em que o primeiro tipo de fibras e o segundo tipo de fibras são embutidos em uma matriz polimérica em comum.
[0022] Portanto, percebe-se que a transição gradual é possibilitada por uma seção de espessura afunilada dupla combinada, a qual possui fibras de reforço do primeiro tipo dispostas entre fibras de reforço do segundo tipo ou vice-versa. Embora isso aumente a complexidade do procedimento de laminação das fibras, essa concretização oferece uma transição mais rígida do componente de turbina eólica entre os dois tipos de fibra e, além disso, a transição pode ser mais curta do que nos componentes de turbina eólica da técnica anterior com uma seção afunilada simples. Além disso, evidentemente o afunilamento duplo é obtido durante a laminação e o material de reforço é impregnado com uma resina polimérica e, então, curado ou enrijecido de modo que os dois tipos de fibras de reforço sejam embutidos em uma matriz polimérica em comum. Isso tem a vantagem de diminuir concentrações de tensão e, em especial, a taxa de liberação de energia no limite em comum entre os dois tipos de fibra, principalmente em comparação a partes unidas em uma linha de ligação.
[0023] Vantajosamente, o primeiro limite em comum e o segundo limite em comum convergem no primeiro sentido ou em um sentido oposto ao primeiro, mais vantajosamente no sentido oposto ao primeiro sentido.
[0024] De preferência, o primeiro sentido é na direção longitudinal da pá. Logo, percebe-se que a transição gradual da rigidez é obtida na direção longitudinal da pá. Tipicamente, o tipo de fibra com módulo elástico mais alto é disposto fora de bordo mais próximo da ponta, e o tipo de fibra com módulo elástico mais baixo é disposto a bordo mais próximo da raiz. No entanto, em concretizações que utilizam uma transição de fibras de vidro para fibras de carbono, a extremidade de ponta pode ser reforçada com fibras de vidro somente para fins de fotoproteção. Logo, a pá pode ter uma segunda transição de fibras de carbono para fibras de vidro próxima à extremidade de ponta.
[0025] De acordo com uma concretização vantajosa, a seção de primeira espessura e a segunda de segunda espessura têm um limite de superfície em comum entre a primeira superfície e a segunda superfície do componente de pá de turbina eólica. Sendo assim, percebe-se que as duas seções de espessura são dispostas em camada uma sobre a outra.
[0026] Vantajosamente, as seções de afunilamento da seção de primeira espessura e da seção de segunda espessura coincidem no limite de superfície em comum. Em outras palavras, as seções de afunilamento formadas por dois limites em comum convergem em um ponto de ápice em comum.
[0027] Em uma concretização, a seção de primeira espessura e/ou a seção de segunda espessura compreendem um afunilamento gradativo entre camadas contendo fibras de reforço do primeiro tipo e fibras de reforço do segundo tipo. Logo, perceber-se que a transição gradual através do procedimento de laminação é obtida na forma de uma transição como uma junta sobreposta dupla entre os dois tipos de fibra.
[0028] No entanto, em uma segunda concretização preferida, a seção de primeira espessura e/ou a seção de segunda espessura compreendem um afunilamento contínuo entre camadas contendo fibras de reforço do primeiro tipo e fibras de reforço do segundo tipo. Logo, perceber-se que a transição gradual através do procedimento de laminação é obtida na forma de uma transição como uma junta biselada dupla entre os dois tipos de fibra. Ademais, é evidente que as diferentes camadas contendo fibras precisam ser afuniladas em suas seções terminais.
[0029] De preferência, o componente de turbina eólica é uma estrutura de suporte de carga, tal como uma longarina ou mesa de longarina.
[0030] De acordo com uma concretização vantajosa, as fibras de reforço do primeiro tipo são fibras de vidro. As fibras de reforço do segundo tipo podem ser, por exemplo, fibras de carbono ou um híbrido de fibras de carbono e fibras de vidro.
[0031] Em uma concretização, o componente de pá de turbina eólica compreende uma primeira seção, cujo material composto fibroso é reforçado principalmente por fibras de reforço do primeiro tipo, e uma segunda seção, cujo material composto fibroso é reforçado principalmente por fibras de reforço do segundo tipo, em que uma mudança gradual é formada entre a primeira seção e a segunda seção.
[0032] As fibras de reforço do primeiro tipo e as fibras de reforço do segundo tipo são dispostas, de preferência, de tal modo que as fibras de reforço do primeiro tipo sejam mais próximas da extremidade de raiz da pá de turbina eólica e as fibras de reforço do segundo tipo sejam mais próximas da extremidade de ponta da pá e de tal modo que o módulo elástico aumente rumo à ponta.
[0033] Em outra concretização vantajosa, a pá de turbina eólica compreende ainda uma transição gradual que compreende uma seção afunilada entre as fibras de reforço do primeiro tipo e fibras de reforço de um terceiro tipo embutidas em uma matriz polimérica adicional, diferente da matriz polimérica em comum. As fibras de reforço do terceiro tipo podem ser, por exemplo, fibras de vidro.
[0034] A matriz polimérica em comum pode ser vantajosamente viniléster ou epóxi enrijecido ou curado. A matriz polimérica adicional pode ser poliéster enrijecido ou curado. Logo, é possível pré-fabricar uma primeira parte com menor resistência e rigidez usando material mais econômico e fabricar a parte de suporte de carga com fibras mais rígidas e matriz mais forte.
[0035] Vantajosamente, o componente que compreende as fibras de reforço do terceiro tipo embutidas na matriz polimérica adicional compreende um laminado terminal de raiz. Logo, a transição para as fibras do primeiro tipo pode ser estabelecida entre o laminado terminal de raiz e a mesa de longarina da pá de turbina eólica. O componente contendo as fibras do terceiro tipo pode compreender ainda uma parte de carcaça aerodinâmica da pá de turbina eólica. A mesa de longarina pode ser aderida, por exemplo, pela matriz polimérica em comum, à carcaça aerodinâmica.
[0036] No mesmo aspecto, a presente invenção também propõe um método para fabricar um componente de pá de turbina eólica de uma pá de turbina eólica com uma direção longitudinal entre uma extremidade de raiz e uma extremidade de ponta, em que o componente de pá de turbina eólica compreende uma espessura entre uma primeira superfície e uma segunda superfície, o método compreendendo as etapas de: a) construir uma seção de primeira espessura: i) dispondo um número de primeiras camadas de fibras contendo fibras de reforço de um primeiro tipo, e ii) dispondo um número de segundas camadas de fibras contendo fibras de reforço de um segundo tipo, em que iii) as primeiras camadas de fibras e segundas camadas de fibras são dispostas de tal modo que as primeiras camadas de fibras, ao longo de um primeiro limite em comum, afunilem rumo à primeira superfície do componente de pá de turbina eólica em um primeiro sentido e as segundas camadas de fibras afunilem rumo à segunda superfície do componente de pá de turbina eólica em um sentido oposto ao primeiro, e b) construir uma seção de segunda espessura: i) dispondo um número de primeiras camadas de fibras adicionais contendo fibras de reforço do primeiro tipo, e ii) dispondo um número de segundas camadas de fibras adicionais contendo fibras de reforço do segundo tipo, em que iii) as primeiras camadas de fibras adicionais e segundas camadas de fibras adicionais são dispostas de tal modo que as primeiras camadas de fibras adicionais, ao longo de um segundo limite em comum, afunilem rumo à segunda superfície do componente de pá de turbina eólica em um primeiro sentido e as segundas camadas de fibras adicionais afunilem rumo à primeira superfície do componente de pá de turbina eólica em um sentido oposto ao primeiro, e c) alimentar uma resina polimérica em comum à seção de primeira espessura e à seção de segunda espessura, e d) curar ou enrijecer a resina polimérica em comum para embutir as fibras de reforço do primeiro tipo e as fibras de reforço do segundo tipo em uma matriz polimérica em comum.
[0037] Assim, uma transição gradual é obtida graças ao duplo afunilamento com fibras de reforço do primeiro tipo dispostas entre fibras de reforço do segundo tipo ou vice-versa. Embora isso aumente a complexidade do procedimento de laminação de fibras, essa concretização possibilita uma transição mais rígida no componente de turbina eólica, uma vez que os dois tipos de fibras de reforço e o limite entre as fibras são embutidos na mesma matriz polimérica. Além disso, a transição pode ser mais curta do que nos componentes de turbina eólica da técnica anterior com uma seção afunilada simples.
[0038] A resina polimérica pode ser alimentada simultaneamente nas etapas (a) e (b), por exemplo, via prepregs. No entanto, vantajosamente, as primeiras fibras são dispostas em forma seca e uma resina líquida é alimentada em seguida. A resina pode ser injetada, por exemplo, por meio de um método VARTM.
[0039] De preferência, a seção de primeira espessura compreende várias camadas de fibras, em que o primeiro limite em comum é composto por limites entre as primeiras camadas de fibras e as segundas camadas de fibras mutuamente deslocados no primeiro sentido da pá de turbina eólica.
[0040] À semelhança, a seção de segunda espessura pode compreender várias camadas de fibras adicionais, em que o segundo limite em comum é composto por limites entre as primeiras camadas de fibras adicionais e as segundas camadas de fibras adicionais mutuamente deslocados no primeiro sentido da pá de turbina eólica.
[0041] Vantajosamente, as extremidades das várias camadas de fibras afunilam no limite em comum. Logo, o limite em comum é na forma de um afunilamento contínuo, que proporciona uma transição mais forte. Sendo assim, as primeiras camadas de fibras e as segundas camadas de fibras formam um limite em comum correspondente a uma junta biselada dupla. Em uma concretização alternativa, as extremidades das várias camadas não afunilam. Logo, as seções afuniladas formam juntas sobrepostas, de preferência uma junta sobreposta dupla.
[0042] De acordo com outro aspecto, a presente invenção propõe um método para fabricar uma parte de uma pá de turbina eólica, o método compreendendo as etapas de: laminar um material de fibras primário em um molde; infundir o referido material de fibras primário com uma resina primária; curar substancialmente a primeira resina primária no referido material de fibras primário para formar um elemento de pá curado; laminar um segundo material de fibras secundário sobre ao menos parte do referido elemento de pá curado; infundir o referido material de fibras secundário com uma resina secundária diferente da referida resina primária, em que a referida resina secundária possui um nível de resistência mais alto que a referida resina primária; e curar a referida resina secundária no referido material de fibras secundário para formar uma seção reforçada integrada sobre o referido elemento de pá curado.
[0043] Sendo assim, percebe-se que a parte de pá curada pode ser fabricada primeiramente com um material de fibras primário e um material de matriz de resistência relativamente baixa e, portanto, de acordo com o método de produção de custo relativamente baixo, ao passo que a seção de reforço integrada crítica é subsequentemente formada com material de fibras secundário e um material de matriz mais resistente. Além disso, a produção da parte de pá curada pode ser feita com um formato especial, por exemplo, com um recesso, de tal modo que o material de fibras secundário possa ser formado mais facilmente sem enrugar. O nível de resistência refere- se, de preferência, à resistência à tração.
[0044] Observe-se que os dois aspectos da presente invenção utilizam termos levemente diferentes. No entanto, de preferência, aplica-se o disposto a seguir:
Figure img0001
[0045] Vantajosamente, o elemento de pá curado compreende uma parte de carcaça aerodinâmica da pá. Além disso, o elemento de pá curado pode compreender vantajosamente um laminado terminal de raiz. Vantajosamente, a seção reforçada integrada forma ao menos parte de uma mesa de longarina ou viga de longarina da turbina eólica.
[0046] De preferência, a referida resina primária compreende uma resina de resistência relativamente baixa, por exemplo, poliéster.
[0047] De preferência, a referida resina secundária compreende uma resina de resistência reativamente alta, por exemplo, viniléster, epóxi, poliuretano ou uma resina híbrida.
[0048] De preferência, a referida resina primária e/ou a referida resina secundária compreendem resinas curadas a temperatura ambiente.
[0049] De preferência, o referido material de fibras primário é diferente do referido material de fibras secundário.
[0050] De preferência, o referido material de fibras secundário compreende fibras com nível de rigidez mais alto que as fibras do referido material de fibras primário.
[0051] De preferência, as referidas fibras do referido material de fibras secundário possuem um módulo elástico ou nível de rigidez ao menos 20% maior que as referidas fibras do referido material de fibras primário.
[0052] De preferência, as referidas fibras do referido material de fibras primário têm um módulo elástico menor que 50.000 MPa, ao passo que as referidas fibras do referido material de fibras secundário têm um módulo elástico maior que 53.000 MPa e, mais preferencialmente, maior que 60.000 MPa.
[0053] De preferência, o referido material de fibras primário é um material de fibras de vidro, por exemplo, vidro E ou vidro H.
[0054] De preferência, o referido material de fibras secundário é selecionado dentre um ou mais dos seguintes: vidro H, fibras de carbono ou fibras de aço.
[0055] Deve-se ter em mente que o material de fibras secundário pode ser na forma de um híbrido de qualquer combinação de materiais de rigidez relativamente alta. Um híbrido de fibras de vidro e carbono pode ser particularmente vantajoso.
[0056] De preferência, o método compreende a etapa de, depois de laminar o referido material de fibras primário, aplicar uma bolsa de vácuo primário sobre ele, em que a referida etapa de infundir o referido material de fibras primário com uma resina primária compreende um processo de infusão a vácuo. Sendo assim, a parte de pá curada pode ser pré-fabricada em uma primeira etapa usando, por exemplo, Moldagem por Transferência de Resina Assistida por Vácuo (VARTM).
[0057] De preferência, o método compreende a etapa de, depois de curar a referida resina primária, remover a referida bolsa de vácuo primária antes de laminar o referido material de fibras secundário.
[0058] De preferência, o método compreende a etapa de, depois de laminar o referido material de fibras secundário, aplicar uma bolsa de vácuo secundária sobre ele, em que a referida etapa de infundir o referido material de fibras secundário com uma resina primária compreende um processo de infusão a vácuo. Sendo assim, a seção reforçada integrada crítica é subsequentemente fabricada por um processo de moldagem correspondente.
[0059] De preferência, o método compreende a etapa de, depois de curar a referida resina secundária, remover a referida bolsa de vácuo secundária.
[0060] De preferência, o método compreende a etapa de, depois de curar a referida resina primária no referido material de fibras primário para formar um elemento de pá curado, remover o referido elemento de pá curado do referido molde e transferi-lo a um suporte secundário. Como o material de fibras secundário é disposto sobre a parte de pá curada, não é necessário que a parte de pá continue ocupando o molde. Em vez disso, é possível mover a parte de pá curada ao suporte e dar prosseguimento ao processo de laminação nele. Isso pode ser particularmente relevante se a parte de pá curada, por exemplo, constituir parte da carcaça aerodinâmica da pá. Assim, o tempo de moldagem pode ser reduzido, aumentando assim a produtividade da instalação de fabricação. Isso é particularmente relevante para pás relativamente longas, por exemplo, pás com ao menos 60 metros de comprimento, uma vez que o procedimento de laminação toma grande parte do tempo de fabricação total. Logo, é eficiente se alguma parte do procedimento de laminação e infusão subsequente puder ser deslocada para o suporte secundário.
[0061] O suporte secundário pode compreender um molde secundário, uma mesa de suporte, uma base de suporte, um quadro etc., por exemplo, um sistema pós-moldagem conforme descreve o documento WO 2013/113817.
[0062] De preferência, a referida etapa de laminar o referido material de fibras primário compreende dispô-lo no referido molde de modo a definir um recesso para receber uma seção de reforço, em que a referida etapa de laminar o referido material de fibras secundário compreende dispô-lo no referido recesso. Sendo assim, o material secundário pode ser disposto dentro do referido recesso, o que há de simplificar o procedimento de laminação e garantir que uma transição adequada da parte de pá curada para a seção de reforço formada integralmente seja obtida.
[0063] De preferência, as referidas etapas de laminar o material de fibras são realizadas de tal modo que o referido elemento de pá curado compreenda ao menos uma parte de uma carcaça de pá de turbina eólica e a referida seção reforçada no referido elemento de pá curado compreenda uma seção laminada principal da referida carcaça de pá de turbina eólica. Além disso, o elemento de pá curado pode compreender um laminado terminal de raiz.
[0064] De preferência, o método compreende a etapa de tratar uma superfície da referida ao menos uma parte do elemento de pá curado antes da referida etapa de laminar o referido material de fibras secundário, em que a referida etapa de tratar serve para aumentar a ligação entre a referida seção reforçada e o referido elemento de pá curado depois da referida etapa de curar a referida resina secundária. Isso pode melhorar a ligação entre as duas partes.
[0065] De preferência, a referida etapa de tratar compreende esmerilhação de superfície, aplicação de iniciadores, aplicação de uma lona de destaque durante a infusão (para deixar um padrão de superfície) e aplicação de uma camada de adesão (por exemplo, um tecido impregnado com uma solução prepreg).
[0066] Em aditamento, ou como alternativa, a referida etapa de laminar o referido material de fibras secundário compreende dispor o referido material de fibras secundário de modo a formar um flange estrutural do referido elemento de pá curado, por exemplo, um flange adesivo, em que a referida etapa de curar o referido material de fibras secundário forma um flange estrutural reforçado do referido elemento de pá curado.
[0067] De preferência, a referida etapa de laminar o referido material de fibras secundário de modo a formar um flange estrutural compreende dispor o referido material de fibras secundário de modo que um lado primário do referido material de fibras secundário seja aplicado sobre ao menos uma parte do referido elemento de pá curado e uma extremidade secundária do referido material de fibras secundário seja livre do referido elemento de pá curado.
[0068] De acordo com o referido outro aspecto, a presente invenção também propõe um método para fabricar uma pá de turbina eólica: obter um primeiro elemento de pá; e obter um segundo elemento de pá, em que ao menos um dos elementos de pá primeiro e segundo compreende um elemento de pá curado contendo uma seção reforçada fabricado de acordo com o método acima, e montar os referidos elementos de pá primeiro e segundo para formar uma pá de turbina eólica.
[0069] Além disso, a presente invenção também propõe uma parte de uma pá de turbina eólica, de preferência uma carcaça de pá de turbina eólica, fabricada de acordo com o método acima.
[0070] Por fim, a presente invenção propõe uma turbina eólica com ao menos uma pá de turbina eólica fabricada de acordo com o método acima.
[0071] Evidentemente, a presente invenção é particularmente adequado para grandes estruturas. Logo, a presente invenção refere-se, de preferência, a pás de turbina eólica, bem como estruturas intermediárias, com comprimento total de ao menos 30 metros, 40 metros, 45 metros, 50 metros, 55 metros ou 60 metros.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[0072] Doravante, explicar-se-á a presente invenção em detalhes com referência a uma concretização ilustrada nos desenhos, dentre os quais: a Fig. 1 ilustra uma turbina eólica, a Fig. 2 ilustra uma vista esquemática de uma pá de turbina eólica de acordo com a presente invenção; a Fig. 3 ilustra a laminação do material de fibras para formar um elemento de pá curado, a Fig. 4 ilustra a laminação do material de fibras para formar uma seção reforçada integrada no elemento de pá curado da Fig. 3, a Fig. 5 ilustra um corte transversal do elemento de pá curado e seção reforçada integrada, a Fig. 6 ilustra uma vista esquemática de uma parte de carcaça de pá que compreende o elemento de pá curado e a seção reforçada integrada, a Fig. 7 ilustra uma vista esquemática da laminação de fibras de uma seção de primeira espessura de um componente de pá, a Fig. 8 ilustra uma vista esquemática da laminação de fibras de uma seção de segunda espessura de um componente de pá, e as Figs. de 9a a 9d ilustram diferentes variações de concretizações de acordo com a presente invenção.
[0073] A Fig. 1 ilustra uma turbina eólica em frente à torre convencional e moderna de acordo com o chamado “conceito dinamarquês”, com uma torre 4, uma nacela 6 e um rotor com um eixo de rotor substancialmente horizontal. O rotor inclui um cubo 8 e três pás 10, as quais estendem-se radialmente a partir do cubo 8, cada uma com uma raiz de pá 16, mais próxima do cubo, e uma ponta de pá 14, mais distante do cubo 8. O raio do rotor é indicado por R.
[0074] A Fig. 2 ilustra uma vista esquemática de uma primeira concretização de uma pá de turbina eólica 10 de acordo com a presente invenção. A pá de turbina eólica 10 tem a forma de uma pá de turbina eólica convencional e compreende uma região de raiz 30, mais próxima do cubo, uma região de aerofólio 34, mais distante do cubo, e uma região de transição 32, entre as regiões de raiz 30 e aerofólio 34. A pá 10 compreende um bordo de ataque 18, voltado para o sentido de rotação da pá 10 quando instalada no cubo, e um bordo de fuga 20, voltado para o sentido oposto ao bordo de ataque 18.
[0075] A região de aerofólio 34 (também chamada de região perfilada) possui um formato de pá ideal ou quase ideal para gerar força de sustentação, ao passo que a região de raiz 30, devido a considerações estruturais, possui um corte transversal substancialmente circular ou elíptico, que, por exemplo, torna mais fácil e seguro montar a pá 10 no cubo. O diâmetro (ou a corda) da região de raiz 30 é constante ao longo dela toda. A região de transição 32 tem um perfil transicional que passa aos poucos do formato circular ou elíptico da região de raiz 30 para o perfil de aerofólio da região de aerofólio 34. O comprimento de corda da região de transição 32 tipicamente aumenta à medida que a distância r em relação ao cubo aumenta. A região de aerofólio 34 possui um perfil de aerofólio com uma corda que se estende entre o bordo de ataque 18 e o bordo de fuga 20 da pá 10. A largura da corda diminui à medida que a distância em relação ao cubo aumenta.
[0076] O ombro 40 da pá 10 é definido como a posição onde a pá 10 possui o maior comprimento de corda. O ombro 40 tipicamente é formado no limite entre a região de transição 32 e a região de aerofólio 34.
[0077] Deve-se ter em mente que as cordas de diferentes seções da pá normalmente não jazem em um plano em comum, uma vez que a pá pode ser torcida e/ou curvada (isto é, pré-arqueada), munindo assim o plano de corda de um curso correspondentemente torcido e/ou curvado, que é o caso na maioria das vezes para compensar o fato de a velocidade local da pá depender do raio em relação ao cubo.
[0078] A pá geralmente é feita de uma parte de carcaça do lado de pressão 36 e uma parte de carcaça do lado de sucção 38 que são coladas uma na outra ao longo de linhas de ligação no bordo de ataque 18 e no bordo de fuga da pá 20.
[0079] A seguir, explicar-se-á a presente invenção com relação à fabricação da parte de carcaça do lado de pressão 36 ou parte de carcaça do lado de sucção 38.
[0080] As Figs. 3 e 4 ilustram o processo de laminação envolvido em fabricar uma parte de carcaça de pá de uma pá de turbina eólica e ilustram uma parte com um corte transversal de um molde de pá.
[0081] O processo envolve as etapas de laminar um material de fibras primário em um molde 50. O material de fibras primário compreende um número de camadas de pele externas 52, as quais formam uma parte externa da parte de carcaça de pá. As camadas de pele externas 52 podem ser feitas, por exemplo, de fibras de vidro biaxialmente orientadas. Várias camadas de reforço 54, de preferência feitas de fibras de vidro, são dispostas sobre as camadas de pele externas 52. As camadas de reforço 54 são feitas, de preferência, de fibras de vidro dispostas unidirecionalmente que se estendem substancialmente na direção longitudinal da parte de carcaça de pá a fim de proporcionar rigidez na direção de envergadura da pá acabada. As extremidades das várias camadas de reforço são, de preferência, afuniladas e dispostas de modo a formar uma seção afunilada 56. Um número de camadas de pele internas 58 é disposto sobre as camadas de reforço. As camadas de pele internas também podem ser feitas de fibras de vidro biaxialmente orientadas. As camadas de pele internas 58 podem, conforme ilustra a Fig. 3, ser dispostas sobre as extremidades das camadas de reforço 54 de tal modo que as camadas de pele internas façam parte da seção afunilada 56.
[0082] Subsequentemente, um número de entradas de resina (não ilustradas) e saídas de vácuo (não ilustradas) é disposto sobre o material de fibras primário e, por fim, uma bolsa de vácuo (não ilustrada) é disposta acima. Em seguida, o material de fibras primário é infundido com uma resina primária, vantajosamente uma resina de poliéster, através de um processo VARTM, e a resina é curada para formar um elemento de pá curado 60. Na concretização ilustrada, as camadas de pele externas 56 formam parte da carcaça aerodinâmica da pá de turbina eólica acabada, ao passo que as camadas de reforço de fibras 54 formam parte de um laminado de raiz da pá de turbina eólica.
[0083] Em uma segunda etapa, o material de fibras que faz parte da estrutura de suporte de peso, por exemplo, uma mesa de longarina, é disposto sobre o elemento de pá curado 60, conforme ilustra a Fig. 4. A segunda etapa envolve inserir um segundo material de fibras secundário sobre ao menos parte do referido elemento de pá curado 60. O material de fibras secundário compreende um número de camadas de reforço de fibras 62. As camadas de reforço de fibras 62 podem ser vantajosamente feitas de fibras de carbono dispostas unidirecionalmente ou de lonas híbridas contendo fibras de vidro e fibras de carbono. Por fim, um número de camadas de pele internas adicionais 64 é disposto sobre as camadas de reforço de fibras 62. Subsequentemente, um número de entradas de resina (não ilustradas) e saídas de vácuo (não ilustradas) é disposto sobre o material de fibras secundário e, por fim, uma bolsa de vácuo (não ilustrada) é disposta acima. Em seguida, o material de fibras secundário é infundido com uma resina secundária, vantajosamente uma resina de viniléster, através de um processo VARTM, e a resina é curada para formar uma seção reforçada integrada 70 sobre o elemento de pá curado 60. A seção reforçada integrada pode vantajosamente fazer parte da longarina, mesa de longarina ou laminado principal da pá de turbina eólica acabada. A resina secundária possui um nível de resistência mais alto que a referida resina primária.
[0084] As extremidades das camadas de reforço de fibras 62 do material de fibras secundário também afunilam, formando assim uma transição gradual entre as fibras de reforço do material de fibras primário e as fibras de reforço do material de fibras secundário. Além disso, uma transição gradual é formada entre a resina primária e a resina secundária com nível de resistência mais alto.
[0085] O elemento de pá curado 60 pode, conforme ilustra a Fig. 4, permanecer no molde 50 durante a segunda etapa. No entanto, de acordo com uma concretização vantajosa, o elemento de pá curado 60 é removido do referido molde 50 e transferido a um suporte secundário, por exemplo, uma base de suporte, onde a segunda etapa é realizada.
[0086] A Fig. 5 ilustra um corte transversal através do molde em uma parte da região de aerofólio da pá acabada, e a Fig. 6 ilustra uma vista em perspectiva de uma parte de carcaça de pá, a qual composta pelo elemento de pá curado 60, que compreende uma parte de carcaça aerodinâmica e um laminado de raiz, e pela seção reforçada integrada 70, que forma uma mesa de longarina ou laminado principal da parte de carcaça de pá. Como se pode ver, o elemento de pá curado 60 também pode compreender vários materiais de núcleo interdispostos 66 dispostos nas laterais da seção reforçada integrada 70.
[0087] Pode-se ver também que um recesso pode ser formado no elemento de pá curado 60 e que o material de fibras secundário pode ser disposto no referido recesso. Esse método tem uma vantagem sobre os métodos da técnica anterior, uma vez que a etapa menos crítica de formar a carcaça aerodinâmica e a etapa mais crítica de formar a estrutura de suporte de carga podem ser separadas. Ao formar um recesso na carcaça aerodinâmica, o material de fibras secundário pode ser disposto com mais facilidade sem as camadas de fibras enrugarem nem formar áreas mecanicamente frágeis. Além disso, como mencionado acima, as duas etapas podem ser realizadas em estações de trabalho diferentes, o que significa que as duas etapas podem ser realizadas em sequência e a produtividade aumentada uma vez que é possível trabalhar em duas partes de pá diferentes ao mesmo tempo.
[0088] Embora o método de fabricação em duas etapas ofereça uma vantagem sobre os métodos de fabricação da técnica anterior, descobriu-se que a junta biselada como transição entre as fibras de vidro e fibras de carbono ou híbrido de fibras de carbono e fibras de vidro pode, em algumas circunstâncias, não proporcionar resistência suficiente. Logo, embora não ilustrado nas figuras, uma sobre-laminação ou engrossamento local é usualmente necessário. Além disso, não é necessariamente vantajoso ter uma transição entre ambos os tipos de fibras e tipos de resinas na mesma seção afunilada.
[0089] Logo, a presente invenção também propõe um método para fabricar um componente de pá de turbina eólica, em particular uma mesa de longarina ou laminado principal, de uma turbina eólica. O processo de laminação de fibras envolvido no método de fabricação é ilustrado nas Figs. 7 e 8.
[0090] A pá de turbina eólica possui uma direção longitudinal entre uma extremidade de raiz e uma extremidade de ponta da pá de turbina eólica. Tal como antes, uma mesa de longarina 170 é formada disposto material de fibras secundário em um recesso de um elemento de pá curado 160. O método envolve uma primeira etapa ilustrada na Fig. 7 de construir uma seção de primeira espessura 171 dispondo um número de primeiras camadas de fibras 173 contendo fibras de reforço do primeiro tipo, de preferência fibras de vidro, e dispondo um número de segundas camadas de fibras 174 contendo fibras de reforço de um segundo tipo, de preferência lonas híbridas de carbono-vidro ou fibras de vidro. As primeiras camadas de fibras 173 e segundas camadas de fibras 174 possuem extremidades afuniladas e são dispostas de modo que as primeiras camadas de fibras 173, ao longo de um primeiro limite em comum ou seção afunilada 175, afunilem rumo à primeira superfície 172 do componente de pá de turbina eólica na direção longitudinal da pá e as segundas camadas de fibras 174 afunilem rumo à segunda superfície 182 do componente de pá de turbina eólica 170 em um sentido oposto na direção longitudinal.
[0091] Em seguida, conforme ilustra a Fig. 8, uma seção de segunda espessura 181 é construída dispondo um número de primeiras camadas de fibras adicionais 183, contendo as fibras de reforço do primeiro tipo, e dispondo um número de segundas camadas de fibras adicionais 184, contendo as fibras de reforço do segundo tipo. As primeiras camadas de fibras adicionais 183 e as segundas camadas de fibras adicionais 184 possuem extremidades afuniladas e são dispostas de modo que as primeiras camadas de fibras adicionais 183, ao longo de um segundo limite em comum ou segunda seção afunilada 185, afunilem rumo à segunda superfície 182 do componente de pá de turbina eólica 170 na direção longitudinal da pá e as segundas camadas de fibras adicionais 184 afunilem rumo à primeira superfície 172 do componente de pá de turbina eólica 170 em um sentido oposto na direção longitudinal. A seção de primeira espessura 171 e a seção de segunda espessura afunilam ao longo de um limite em comum 186. Além disso, um número de camadas de pele internas 164 pode ser disposto sobre as camadas contendo fibras de reforço do primeiro tipo e fibras de reforço do segundo tipo.
[0092] Subsequentemente, um número de entradas de resina (não ilustradas) e saídas de vácuo (não ilustradas) é disposto sobre o material de fibras secundário e, por fim, uma bolsa de vácuo (não ilustrada) é disposta acima. Em seguida, o material de fibras secundário contendo a seção de primeira espessura 171 e a seção de segunda espessura 181 é infundido com uma resina secundária, vantajosamente uma resina de viniléster, através de um processo VARTM, e a resina é curada para formar o componente de pá de turbina eólica 170, que possui as fibras de reforço do primeiro tipo e as fibras de reforço do segundo tipo embutidas em uma matriz polimérica em comum.
[0093] Logo, percebe-se que a transição gradual é formada por uma seção afunilada de dupla espessura 171, 181 com fibras de reforço de um primeiro tipo dispostas entre fibras de reforço de um segundo tipo ou vice-versa. Embora isso aumente a complexidade do procedimento de laminação das fibras, essa concretização permite uma transição mais rígida no componente de turbina eólica entre os dois tipos de fibras e, além disso, a transição pode ser mais curta que nos componentes de turbina eólica da técnica anterior com uma seção afunilada simples. Além disso, é evidente que o afunilamento duplo é obtido durante a laminação e que o material de reforço é impregnado com uma resina polimérica e, então, curado ou enrijecido de tal modo que os dois tipos de fibras de reforço sejam embutidos em uma matriz polimérica em comum.
[0094] Tal como antes, as primeiras camadas de fibras e as segundas camadas de fibras vantajosamente compreendem fibras dispostas unidirecionalmente para proporcionar rigidez na direção de envergadura/longitudinal da pá. As camadas de pele internas podem compreender fibras de vidro biaxialmente orientadas.
[0095] Embora tenha-se ilustrado a concretização representada com uma junta sobreposta afunilada dupla com dois tipos de fibras embutidos em uma matriz em comum, uma forte transição também pode ser obtida por meio de uma junta sobreposta dupla como transição entre os dois tipos de fibras.
[0096] Como um todo, pode-se perceber que a presente invenção propõe um componente de pá de turbina eólica com três tipos diferentes de zonas de fibra-resina. A primeira zona compreende fibras de vidro embutidas em resina de poliéster, a segunda zona compreende fibras de vidro embutidas em resina de viniléster, e a terceira zona compreende material híbrido de fibras de vidro-carbono ou fibras de carbono embutidas em resina de viniléster.
[0097] Embora a concretização preferida seja ilustrada nas Figs. 7 e 8, é notório que a transição em três partes acima pode ser obtida de várias maneiras usando o método de fabricação em duas etapas supramencionado de acordo com a presente invenção. As transições podem ser obtidas, por exemplo, com duas seções afuniladas simples, conforme ilustram as Figs. 9a e 9b, dentre as quais a Fig. 9a ilustra uma transição “curta” e a Fig. 9b ilustra uma transição longa. A concretização preferida com duas seções de espessura afunilada também pode ser munida de uma transição "curta" conforme ilustra a Fig. 9c ou de uma transição "longa" conforme ilustra a fig. 9d.
[0098] As várias seções afuniladas podem ser vantajosamente afuniladas com uma razão espessura-comprimento de 1:5 a 1:50, vantajosamente em torno de 1:20.
[0099] A presente invenção foi descrita com referência a concretizações vantajosas. No entanto, o âmbito da presente invenção não se limita às concretizações ilustradas, sendo possível efetuar alterações e modificações sem divergir do âmbito da presente invenção. LISTA DE NÚMEROS DE REFERÊNCIA 2 turbina eólica 4 torre 6 nacela 8 cubo 10 pá 14 ponta da pá 16 raiz da pá 18 bordo de ataque 20 bordo de fuga 22 eixo de arfada 30 região de raiz 32 região de transição 34 região de aerofólio 36 carcaça do lado de pressão 38 carcaça do lado de sucção 40 ombro 50 molde 52 camadas de pele externas 54 camadas de reforço 56 seção afunilada 58 camadas de pele internas 60, 160 elemento de pá curado 62 camadas de reforço 64, 164 camadas de pele internas 66 material de núcleo interdisposto 70, 170 seção reforçada integrada / mesa de longarina / laminado principal 171 seção de primeira espessura 172 primeira superfície 173 primeiras camadas de fibras contendo fibras de reforço do primeiro tipo 174 segundas camadas de fibras contendo fibras de reforço do segundo tipo 175 primeiro limite em comum / primeira seção de afunilamento em comum 181 seção de primeira espessura 182 segunda superfície 183 primeiras camadas de fibras adicionais contendo fibras de reforço do primeiro tipo 184 segundas camadas de fibras adicionais contendo fibras de reforço do segundo tipo 185 segundo limite em comum / segunda seção de afunilamento em comum 186 limite de superfície em comum

Claims (14)

1. Método para fabricar uma parte de uma pá de turbina eólica (10), caracterizado por compreender as etapas de: laminar um material de fibras primário em um molde; infundir o referido material de fibras primário com uma resina primária; curar substancialmente a referida resina primária no referido material de fibras primário para formar um elemento de pá curado (60, 160) compreendendo pelo menos uma parte de um invólucro de pá de turbina eólica; laminar um material de fibras secundário sobre ao menos parte do referido elemento de pá curado; infundir o referido material de fibras secundário com uma resina secundária diferente da referida resina primária, em que a referida resina secundária possui um nível de resistência mais alto que a referida resina primária; e curar a referida resina secundária no referido material de fibras secundário para formar uma seção reforçada integrada (70, 170) sobre o referido elemento de pá curado (60, 160), a seção reforçada integrada (70, 170) compreendendo uma mesa de longarina do invólucro da pá da turbina eólica.
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que a seção reforçada integrada (70, 170) forma ao menos parte de uma mesa de longarina ou viga de longarina da turbina eólica.
3. Método, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que a referida resina primária compreende uma resina de resistência relativamente baixa, por exemplo, poliéster.
4. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de que a referida resina compreende uma resina de resistência reativamente alta, por exemplo, viniléster, epóxi, poliuretano ou uma resina híbrida.
5. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado por compreender a etapa de, depois de laminar o referido material de fibras primário, aplicar uma bolsa de vácuo primária sobre ele e pelo fato de que a referida etapa de infundir o referido material de fibras primário com uma resina primária compreende um processo de infusão a vácuo.
6. Método, de acordo com a reivindicação 5, caracterizado por compreender a etapa de, depois de curar a referida resina primária, remover a referida bolsa de vácuo primária antes de laminar o referido material de fibras secundário.
7. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado por compreender a etapa de, depois de laminar o referido material de fibras secundário, aplicar uma bolsa de vácuo secundária sobre ele e pelo fato de que a referida etapa de infundir o referido material de fibras secundário com uma resina secundária compreende um processo de infusão a vácuo.
8. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado por compreender a etapa de, depois de curar a referida resina primária no referido material de fibras primário para formar um elemento de pá curado, remover o referido elemento de pá curado do referido molde e transferi-lo a um suporte secundário.
9. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de que a referida etapa de laminar o referido material de fibras primário compreende dispô-lo no referido molde de modo a definir um recesso para receber uma seção de reforço e pelo fato de que a referida etapa de laminar o referido material de fibras secundário compreende dispô-lo no referido recesso.
10. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado por compreender a etapa de tratar uma superfície da referida ao menos uma parte do referido elemento de pá curado antes da referida etapa de laminar o referido material de fibras secundário, em que a referida etapa de tratar atua para aumentar a ligação entre a referida seção reforçada e o referido elemento de pá curado depois da referida etapa de curar a referida resina secundária.
11. Método, de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de que a referida etapa de laminar o referido material de fibras secundário compreende dispô-lo de modo a formar um flange estrutural do referido elemento de pá curado, por exemplo, um flange adesivo, em que a referida etapa de curar o referido material de fibras secundário forma um flange estrutural reforçado do referido elemento de pá curado.
12. Método para fabricar uma pá de turbina eólica, caracterizado por compreender: obter um primeiro elemento de pá; e obter um segundo elemento de pá, em que ao menos um dos referidos elementos de pá primeiro e segundo compreende um elemento de pá curado contendo uma seção reforçada fabricado conforme definido em qualquer um dos métodos das reivindicações de 1 a 11, e montar os referidos elementos de pá primeiro e segundo para formar uma pá de turbina eólica.
13. Parte de uma pá de turbina eólica, em particular uma carcaça de pá de turbina eólica, caracterizada por ser fabricada pelo método conforme definido em qualquer uma das reivindicações de 1 a 11.
14. Turbina eólica, caracterizada por compreender ao menos uma pá de turbina eólica fabricada pelo método conforme definido na reivindicação 12.
BR112016017533-6A 2014-01-31 2015-01-30 parte de pá de turbina eólica fabricada em duas etapas BR112016017533B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14153437 2014-01-31
EP14153437.0 2014-01-31
PCT/EP2015/051944 WO2015114098A1 (en) 2014-01-31 2015-01-30 Wind turbine blade part manufactured in two steps

Publications (2)

Publication Number Publication Date
BR112016017533A2 BR112016017533A2 (pt) 2017-08-08
BR112016017533B1 true BR112016017533B1 (pt) 2021-07-06

Family

ID=50028906

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112016017533-6A BR112016017533B1 (pt) 2014-01-31 2015-01-30 parte de pá de turbina eólica fabricada em duas etapas

Country Status (9)

Country Link
US (1) US10179439B2 (pt)
EP (1) EP3099471B1 (pt)
CN (1) CN106457696B (pt)
BR (1) BR112016017533B1 (pt)
DK (1) DK3099471T3 (pt)
ES (1) ES2853374T3 (pt)
MX (1) MX2016009454A (pt)
PL (1) PL3099471T3 (pt)
WO (1) WO2015114098A1 (pt)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160040651A1 (en) * 2014-08-07 2016-02-11 General Electric Company Methods of manufacturing rotor blades of a wind turbine
JP6110914B2 (ja) 2015-09-09 2017-04-05 富士重工業株式会社 複合材構造体及び複合材構造体の製造方法
DK3400133T3 (da) * 2016-01-05 2023-11-20 Lm Wind Power As Fremgangsmåde til formning af en skaldel til en vindmøllevinge
MA45359A (fr) * 2016-06-14 2019-04-17 Lm Wp Patent Holding As Procédé de fabrication de pale d'éolienne
BR112018076794B1 (pt) * 2016-06-22 2023-02-14 Lm Wind Power International Technology Ii Aps Parte de revestimento de pá, pá de turbina eólica e método de fabricação da mesma
CN108691728A (zh) * 2017-04-10 2018-10-23 远景能源(江苏)有限公司 具有翼梁帽的风力涡轮机叶片及其制备方法和用于该风力涡轮机叶片的翼梁帽单元
DE102017112721A1 (de) 2017-06-09 2018-12-13 Wobben Properties Gmbh Verfahren zum Herstellen eines Windenergieanlagen-Rotorblattes
EP3427931B1 (en) * 2017-07-13 2020-03-11 LM Wind Power International Technology II ApS A wind turbine blade and a method of manufacturing the wind turbine blade
US10071439B1 (en) * 2017-09-27 2018-09-11 Spirit Aerosystems, Inc. Method and system of joining thick sheets of non-weldable material using ultrasonic joining
US10413993B2 (en) * 2017-09-27 2019-09-17 Spirit Aerosystems, Inc. Method and system of joining thick sheets of non-weldable material using ultrasonic joining
EP3723972B1 (en) 2017-12-14 2023-03-22 LM Wind Power A/S A system and method for manufacturing a reinforced wind turbine blade
EP3693156A1 (en) * 2019-02-07 2020-08-12 LM Wind Power A/S A method of manufacturing a wind turbine blade
EP3930990B1 (en) * 2019-02-28 2023-04-19 LM Wind Power A/S A flexible preform mould for manufacturing a preform for a wind turbine blade
EP3747639A1 (en) * 2019-06-07 2020-12-09 Siemens Gamesa Renewable Energy A/S Method for manufacturing a wind turbine blade and wind turbine blade
US11131290B2 (en) * 2019-06-25 2021-09-28 General Electric Company Scarf connection for a wind turbine rotor blade
EP3885117A1 (en) * 2020-03-27 2021-09-29 Siemens Gamesa Renewable Energy A/S Method for manufacturing a wind turbine blade
US20230119338A1 (en) * 2020-04-22 2023-04-20 Blade Dynamics Limited Alternative primer application method
EP4019233A1 (en) * 2020-12-22 2022-06-29 Siemens Gamesa Renewable Energy A/S Method of manufacturing an adaptable carbon-fibre beam

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK176335B1 (da) 2001-11-13 2007-08-20 Siemens Wind Power As Fremgangsmåde til fremstilling af vindmöllevinger
DK175562B1 (da) * 2002-03-19 2004-12-06 Lm Glasfiber As Vindmöllevinge med kulfibertip
DK175275B1 (da) 2002-03-19 2004-08-02 Lm Glasfiber As Overgangsområde i vindmöllevinge
WO2006082479A1 (en) * 2005-02-03 2006-08-10 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade shell member
EP1880833A1 (en) * 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction
GB2447964B (en) * 2007-03-29 2012-07-18 Gurit Uk Ltd Moulding material
EP2033769A1 (en) * 2007-09-04 2009-03-11 Lm Glasfiber A/S A method of producing a composite structure via intermediate products and a composite structure obtainable by the method
CN102177012B (zh) * 2008-10-08 2014-03-05 维斯塔斯风力系统集团公司 通过使用两种或多种树脂制造聚合物复合材料元件的方法
BRPI0922749B1 (pt) 2008-12-05 2021-01-05 Modular Wind Energy, Inc. pá de turbina eólica
EP2255957B1 (en) * 2009-05-25 2013-07-10 LM WP Patent Holding A/S A method of manufacturing a composite structure with a prefabricated reinforcement element
CN101767458B (zh) * 2009-12-29 2012-09-05 无锡天奇竹风科技有限公司 可生产出样板的风力发电机叶片的真空灌输工艺
ES2692442T3 (es) * 2010-08-13 2018-12-03 Lm Wind Power International Technology Ii Aps Método de fabricación de una estructura compuesta alargada
WO2013010979A2 (en) 2011-07-20 2013-01-24 Lm Wind Power A/S Wind turbine blade with transition region
WO2012149939A2 (en) * 2011-05-04 2012-11-08 Vestas Wind Systems A/S Method of preparing a composite laminate
BR112014018325B1 (pt) 2012-02-02 2021-02-09 Lm Wp Patent Holding A/S estação de pós-moldagem, sistema de produção para a fabricação de pás de turbinas eólicas e método de fabricação de uma pá de turbina eólica

Also Published As

Publication number Publication date
WO2015114098A1 (en) 2015-08-06
US10179439B2 (en) 2019-01-15
MX2016009454A (es) 2017-01-18
CN106457696B (zh) 2021-08-17
CN106457696A (zh) 2017-02-22
US20170001387A1 (en) 2017-01-05
PL3099471T3 (pl) 2021-05-31
BR112016017533A2 (pt) 2017-08-08
EP3099471A1 (en) 2016-12-07
DK3099471T3 (da) 2021-03-22
EP3099471B1 (en) 2020-12-16
ES2853374T3 (es) 2021-09-15

Similar Documents

Publication Publication Date Title
BR112016017533B1 (pt) parte de pá de turbina eólica fabricada em duas etapas
BR112016017579B1 (pt) Pá de turbina eólica com transição de fibras aprimorada
US9599094B2 (en) Method of manufacturing an aerodynamic shell part for a wind turbine blade
US10179425B2 (en) Fibre preform for laying on a curved surface of a mould
EP2159039A1 (en) A method of manufacturing a composite structure comprising a magnetisable material
US9403335B2 (en) Wind turbine rotor blade with trailing edge comprising rovings
CA3026591C (en) Method of manufacturing a wind turbine blade
EP3394430B1 (en) Wind turbine blades and related methods of manufacturing
CN113665142A (zh) 包括可变模板的抗剪腹板模具系统
EP3548261B1 (en) Method and system for manufacturing a shear web for a wind turbine blade
US20240084779A1 (en) Fibre-reinforcement fabric for a wind turbine blade component

Legal Events

Date Code Title Description
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 30/01/2015, OBSERVADAS AS CONDICOES LEGAIS.