CN1639388A - 具有良好耐高温氧化性的Ni合金耐热材料 - Google Patents

具有良好耐高温氧化性的Ni合金耐热材料 Download PDF

Info

Publication number
CN1639388A
CN1639388A CNA038044277A CN03804427A CN1639388A CN 1639388 A CN1639388 A CN 1639388A CN A038044277 A CNA038044277 A CN A038044277A CN 03804427 A CN03804427 A CN 03804427A CN 1639388 A CN1639388 A CN 1639388A
Authority
CN
China
Prior art keywords
alloy
layer
heat
phase
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038044277A
Other languages
English (en)
Other versions
CN100342059C (zh
Inventor
成田敏夫
吉田大助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narita Toshio
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of CN1639388A publication Critical patent/CN1639388A/zh
Application granted granted Critical
Publication of CN100342059C publication Critical patent/CN100342059C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供了能抑制高温腐蚀和异常氧化,长期保持Ni合金所固有的优异的高温性能,适合用于燃气涡轮、喷气发动机、排气部件等高温用途的材料。本发明的材料是具有良好耐高温氧化性的Ni合金耐热材料,该材料是经过Al扩散处理的Ni合金基体材料,在该基体材料的表面上形成了具有由αCr相构成的内层以及由β相(Ni-Al-Cr)和γ’相(Ni3Al(Cr))构成的外层的多层结构的表面层,外层的Al浓度是20原子%以上。αCr相起到扩散阻挡层的作用。通过形成Al浓度高的外层,可以确保外层中具有自动修复在使用条件下受到损伤的Al2O3膜层的缺陷部位所需要的高Al浓度,可以长期保持Ni合金所固有的优异的高温性能。

Description

具有良好耐高温氧化性的Ni合金耐热材料
技术领域
本发明是关于在严酷的高温气氛环境中仍具有良好的耐氧化性,适合用作燃气涡轮、涡轮增压器、喷气发动机或排气系统部件等的Ni合金耐热材料。
背景技术
涡轮增压器、喷气发动机、燃气涡轮等暴露于高温气氛环境中的结构材料,通常使用TiAl金属间化合物、钛合金等耐热性钛合金,Ni基、Nb基、Ir基、Re基等高温合金、碳素材料以及各种金属间化合物。其中,Ni基合金以及主要含有Cr的Ni-Cr二元系合金和还含有其他元素的Ni-Cr多元系合金等Ni-Cr基合金,具有很高的高温强度和抗蠕变性能,因而被用于燃气涡轮、喷气发动机和化工设备中。
耐热材料暴露于高温气氛环境中,这些高温气氛有时会含有氧、水蒸气等氧化性和腐蚀性的成分。耐热材料暴露于腐蚀性的高温气氛环境中时,容易与气氛中的腐蚀性成分反应,发生氧化和高温腐蚀。还有的时候,由于从环境气氛中渗入耐热材料内的O、N、S、Cl、H、C等的作用,使耐热材料的表面发生内部腐蚀,导致材料的强度降低。
通过使用能很好地隔绝环境的保护涂层被覆耐热材料的表面,可以防止高温氧化和高温腐蚀(例如参见专利文献1-8)。有代表性的保护涂层是Al2O3,这种保护涂层可以采用在氧化性气氛中使Al从耐热材料的母材中扩散到表层的方法形成,或者采用CVD、喷镀、反应溅射等方法在耐热材料的表面上形成Al2O3层。Al2O3保护膜能抑制气氛中的氧化性成分与耐热材料的金属成分反应,从而保持耐热材料固有的优异的高温性能。
专利文献1日本第44484/1991号发明专利申请公开公报
专利文献2日本第195188/1993号发明专利申请公开公报
专利文献3日本第183373/1998号发明专利申请公开公报
专利文献4日本第2000-192258号发明专利申请公开公报
专利文献5日本第2001-81577号发明专利申请公开公报
专利文献6日本第2001-192887号发明专利申请公开公报
专利文献7日本第2001-295076号发明专利申请公开公报
专利文献8日本第2001-355081号发明专利申请公开公报
发明内容
Al由耐热材料的母材中扩散到表层,形成Al2O3保护膜时,耐热材料表面的Al被用来形成保护膜而消耗掉,因此,在紧靠Al2O3保护膜下面的耐热材料表层形成了Al浓度低下的层(Al欠缺层)。
Al欠缺层不能作为形成Al2O3被覆所需要的Al源,因此,当耐热材料表面的Al2O3保护膜发生龟裂、剥离等缺陷时,无法由母材中供给足够量的Al,以缺陷部位为起点,腐蚀和氧化快速发展,扩展到整个表层。
为了能够长期保持Al2O3保护膜的隔绝环境的作用,考虑到由于生成Al欠缺层而引起的耐热材料表层的Al浓度降低,应当预先将耐热材料的Al含量设定成比较高。
但是,随着Al含量的增加,耐热材料变脆,难以进行锻造和成形加工等。取决于耐热材料的种类,有时候,当Al含量增加时,高温强度降低。
还有人曾经探讨过,通过在Ni合金上设置由ZrO2表面涂层和MCrAlY涂层构成的多层绝热性保护膜,保护耐热材料免受高温腐蚀。但是,ZrO2保护膜具有容易透过氧的性质,致使底涂层的表面容易氧化。在表面涂层/底涂层的界面上形成的氧化物主要成分是Al2O3,当界面氧化物长成较厚时,ZrO2表面涂层剥离,绝热性保护膜的功能受到损害。另外,如果底涂层中的Al扩散到基体材料中,绝热性保护膜的隔绝环境的功能也会劣化。Al向基体材料中的扩散,容易破坏有利于高温强度的γ+γ’相,生成显著降低强度的TCP相(topological closed packed phase),因而是有害的。
本发明人发现,通过介存αCr相的内层作为扩散阻挡层并且形成Al浓度高的外层,可以确保外层中具有自动修复在使用条件下受到损伤的Al2O3保护膜的缺陷部位所需要的高Al浓度,长期保持Ni合金所固有的优异的高温性能。
即,本发明是具有良好的耐高温氧化性的Ni合金耐热材料,该合金是经过Al扩散处理的Ni合金基体材料,其特征在于,在该基体材料的表面上形成了具有由αCr相构成的内层和由β相(Ni-Al-Cr)和γ’相(Ni3Al(Cr))构成的外层的多层结构的表面层,外层的Al浓度是20原子%以上。
另外,本发明是上述的Ni合金耐热材料,其特征在于,Ni合金基体材料是由形成了含Cr层的Ni合金基体材料构成。
另外,本发明是上述的Ni合金耐热材料,其特征在于,含Cr层是由Cr含量在20原子%以上的Ni-Cr基合金构成。
另外,本发明是上述的Ni合金耐热材料,其特征在于,在含Cr层上形成了Ni层或Ni-Al层。
另外,本发明是上述的Ni合金耐热材料,其特征在于,Ni合金基体材料是由Ni基耐热合金、Ni基高温合金构成。
另外,本发明是上述的Ni合金耐热材料,其特征在于,Ni合金基体材料是由Cr含量在20原子%以上的Ni-Cr基合金构成。
本发明的Ni合金耐热材料,在由Ni合金构成的基体材料的表面上形成多层结构的表面层。所述的表面层,在制膜时外层是NiAl3(+Ni2Al3),内层由含有Cr、Ni及合金成分的高铝合金相构成(参见图3)。在高温下加热时,外层转变成β相(Ni-Al-Cr),再转变成γ’相(Ni3Al(Cr)),此时,作为内层形成了αCr相并保持住。另一方面,当外层进一步转变成γ相(Ni(Cr,Al))时,αCr相消失。这与图1的Ni-Cr-Al系相图是一致的。
多层结构的表面层,其内层由起到扩散阻挡层作用的αCr相构成。αCr相是通过对主要含有Cr的Ni-Cr二元系合金及还含有其他元素的Ni-Cr多元系合金等含Cr的Ni-Cr基合金基体材料或形成含Cr层的Ni合金基体材料或者在含Cr层进一步形成Ni层或Ni-Cr层的基体材料进行Al扩散处理,在形成Al浓度高的外层的同时形成的。
Al扩散处理最好是按以下所述分二个阶段进行。首先,在750~800℃的较低温度下进行高活度的Al扩散处理。在处理过程中,外层形成NiAl3(+Ni2Al3),外层与基体材料之间形成由Cr、Ni、Al构成的中间层。有的时候,中间层中也含有基体材料中所含的元素。接下来,在850℃以上的高温下进行热处理。经过这一热处理,内层形成αCr相,外层形成β相(Ni-Al-Cr)。由αCr相构成的内层和由β相构成的外层的形成,是在高温下自然进行的,因而,在高温下使用的场合,可以省略加热处理。
本发明的Ni合金耐热材料的多层结构,在此后的热处理或在高温下工作的过程中,NiAl3(+Ni2Al3)转变成β相,中间层是不稳定的,转变成由αCr相构成的内层。由该αCr相构成的层起到扩散阻挡层的作用。αCr相的Al固溶度比较低,扩散系数小。
在高温下与液相Al共存的化合物,对于Ni-Al系合金是NiAl3,对于Cr-Al系合金是Cr5Al8,这可以由Ni-Cr-Al三元相图(图1)看出。也有的时候,由于扩散的原因而变成以Ni2Al3为主体。
因此,使Al扩散到Ni层(镀层)中时,从Ni层的表面按照γNi(Al)→γ’Ni3Al→βNiAl→Ni2Al3→NiAl3的顺序变化。
将经过Al扩散处理的Ni合金加热至750℃以上的高温。加热气氛可以是惰性气体或大气等任一种。加热至750℃以上的温度时,Al向基体材料一侧扩散,Ni向外层一侧扩散。Cr也有一部分向外层一侧扩散。一般地说,Cr的扩散比Al和Ni的扩散要慢,因而发生了Ni向外层一侧的扩散和Al向内层一侧的扩散。即,外层由NiAl3(+Ni2Al3)相转变成固溶Cr的β相(Ni-Al-Cr)。另一方面,Al从基体材料的表面扩散渗入内部,基体材料表面的Al浓度达到γ-Ni(Cr)相的Al的饱和浓度。
当β相(Ni-Al-Cr)的Cr浓度达到饱和浓度(约10原子%)以上时,Cr形成α-Cr相析出。即,在Ni-Cr-Al系相图中,β相(Ni-Al-Cr)将α-Cr相和连线(tie line)连接起来,另外,αCr将γ相(Ni(Cr,Al))和连线连接起来。即,在β相与γ相之间必定存在αCr相。
在形成了内层和外层的Ni合金耐热材料中,沿着表层部的厚度方向各元素具有图2中所示的浓度分布。在基体材料一侧中,检测出生成内层以前的Al扩散,内层的Al浓度极低。将Ni合金耐热材料在高温的氧化性气氛中长时间保持时,Ni从基体材料中向外层扩散,因而在基体材料的表面Cr的浓度增加,由αCr相构成的内层的厚度增大。
因此,内层保持较低的Al浓度,外层保持25原子%以上的Al浓度。图2的浓度分布,是内层的αCr相成为扩散阻挡层、抑制基体材料成分向外层扩散和抑制Al由外层向基体材料中扩散的结果。随着时间的延长,外层由β相转变成γ’相,进而转变成γ相。根据推断,在由γ’相转变成γ相的过程中,αCr相消失。
由于内层起到扩散阻挡层作用,外层的基体材料成分不会稀释,保持高的Al浓度。因此,对于具有保护作用的Al2O3保护膜起到Al供给源的作用,即使在使用条件下Al2O3保护膜受到损伤,也可以生成Al2O3,自动修复保护膜的缺陷部位。顺便说一下,自动修复具有保护作用的Al2O3膜层所必需的基体材料表层的临界Al浓度,根据基体材料合金的种类而改变,对于Ni-Al合金是大约20原子%,对于Ni-Cr-Al合金是大约10原子%,利用起到扩散阻挡层作用的内层,使外层的Al浓度充分保持在临界Al浓度以上。
这样,形成了表面层的Ni合金耐热材料高温腐蚀和异常氧化受到抑制,保持了Ni基耐热合金和Ni基高温合金固有的优异的高温性能。另外,充分满足了为了高的输出功率而提高工作温度的燃气涡轮、喷气发动机等的高温用部件所要求的性能。
附图说明
图1是Ni-Cr-Al三元相图。图2是表示在实施例1中刚进行了Al扩散处理后的Ni合金耐热材料的表层的各元素沿厚度方向的浓度分布的曲线图。图3是表示在实施例1中、在大气中1100℃下加热16小时后的Ni合金耐热材料的表层中的各元素沿厚度方向的浓度分布的曲线图。图4是在实施例1中形成了αCr相的内层的表层部的断面的附图代用显微镜组织照片。图5是表示在实施例1中,在大气中1100℃下加热169小时后的Ni合金耐热材料的表层中的各元素沿厚度方向的浓度分布的曲线图。图6是在实施例1中,在大气中1100℃下加热169小时后的Ni合金耐热材料的表层部断面上观察αCr相内层的附图代用显微镜组织照片。
优选实施方式
用于基体材料的Ni合金耐热材料有Ni基耐热合金、Ni基高温合金、电热丝材料等使用的Ni-20原子%Cr合金以及其他的Ni-Cr基合金等。优选的是,形成可以有效阻挡扩散的内层,并且至少将基体材料表层部的Cr含量提高到20原子%以上。但是,αCr相的寿命依赖于温度和时间,Cr含量越高的合金,越能够在高温下长时间地形成和保持αCr相,因此,在1000℃以上的高温下使用的部件,最好是Cr含量在35原子%以上。
作为基体材料,使用Cr含量20原子%以上的Ni-Cr基合金,或者预先在Ni合金的表面上形成含Cr层,将基体材料表层的Cr浓度保持在20原子%以上,优选的是保持在35原子%以上。含Cr层的形成可以采用固体渗(pack cementation)、电镀、喷镀、PVD、CVD、溅射等方法。
另外,根据含有Cr以外的合金元素的多元系Ni-Cr基合金,例如Ni-4Cr-1W合金的结果,其保护膜的结构与Ni-40Cr合金是相同的,W固溶于αCr相中(在1100℃下加热固溶量为3原子%)。据推断,这是由于固溶于αCr相中的Al浓度从Ni-40Cr合金的0.3原子%降低到Ni-4Cr-1W合金的0.1原子%,进一步降低了铝的扩散能力。
在固体渗时,基体材料上形成了渗透Cr的含Cr层。优选的是采用电镀、喷镀、PVD、CVD、溅射等方法形成含Cr层,在随后的热处理中,使Cr由含Cr层中扩散到基体材料中。
在提高了表层部的Cr浓度的场合,最好是采用电镀、喷镀、PVD、CVD、溅射等方法在其上面形成Ni层。如果代替Ni层形成Ni-Cr层,则可以省略在基体材料表面上设置含Cr层的工序。另外,如果形成Ni-Al层,还可以省略后续的Al扩散处理中的Al层形成。为了形成必要厚度的外层,Ni层、Ni-Cr层、Ni-Al层等中的Ni附着量应设置为100-200g/m2的比例。
随后,采用将基体材料埋置在Al粉末、NH4Cl粉末和Al2O3粉末按15∶2∶83(重量比)形成的粉末混合物中的方法,或者采用形成Al或Ni-Al镀膜后热处理的方法,在Al活度高的条件下进行Al扩散处理。Al扩散处理采用固体渗Al或者对使用熔融盐浴或非水镀液的电镀以及PVD、CVD、溅射等形成的Al层进行热处理的方法进行。
固体渗Al时,将Ni合金基体材料埋置在Al、NH4Cl和Al2O3的粉末混合物中,在真空、惰性气体或氢气等非氧化性气氛中于800-1000℃下加热1-10小时,使Al渗入Ni层或Ni-Cr层中。在同样的条件下对使用熔融盐浴或非水镀液的电镀或者通过PVD、CVD、溅射等形成的Al层进行热处理时,Al由Al层中扩散到Ni层或Ni-Cr层内。
将经过Al扩散处理的Ni合金在850℃以上的高温氧化性气氛中保持时,Al向基体材料一侧扩散,与此同时,Ni由基体材料向外层扩散,外层的NiAl3(+Ni2Al3)相转变成β相(Ni-Al-Cr)。同时,作为内层形成了αCr相。形成内层后,Al由外层向基体材料中的扩散受到抑制,外层中的Al浓度保持在20原子%以上。αCr相内层与外层之间没有形成均质层,保持了作为扩散阻挡层的作用。
对于内层的厚度没有特别的限制,不过,由于阻挡扩散的能力与该层的厚度的二次方成正比,因此内层的厚度厚一些为好。另外,为了使由αCr相构成的内层形成连续层,必须达到3μm以上的厚度。为了具有保护作用,外层的Al浓度应在25原子%以上,其厚度越厚越好,优选的是20μm以上。Al浓度和厚度可以通过Al扩散处理进行调整。
实施例1
使用含有40原子%Cr的Ni-Cr合金作为基体材料,将该Ni-Cr合金放入含有NiSO41.25mol/l、NiCl20.19mol/l和HBO30.65mol/l的镀Ni水溶液中浸渍,在5.5mA/cm2的电流密度下电镀3.5小时,使Ni-Cr合金的表面上形成膜厚18~20μm的Ni层。然后,将Ni-Cr合金基板埋置在Al∶NH4Cl∶Al2O3=15∶2∶83(质量比)的粉末混合物中,在惰性气体(氩)气氛中于800℃下加热2小时,进行扩散处理。
测定经过Al扩散处理的基体材料表层中所含的元素在厚度方向上的浓度分布。如同图2的测定结果所示,Cr的浓度由基体材料的表面向表层部的表面逐渐降低,Ni的浓度从基体材料一侧到Al扩散层的中间逐渐增高,然后一直到表层部的表面保持恒定的浓度。与Al扩散层的表面一侧相比,在内部一侧Al的浓度升高。
将经过Al扩散处理的Ni-Cr合金在大气中1100℃下加热16小时,从基体材料一侧起各元素的浓度分布变成图3中所示的样子。将图3与图2对比可以看出,在高温加热处理后,Al在厚度方向上的浓度分布出现不连续的部分,在Cr浓度高的区域中基本上不含有Al。
通过显微镜观察经过Al扩散处理的Ni-Cr合金的表层断面,可以了解在厚度方向上不连续的Al浓度分布。即,在放大300倍的视野内观察到的组织照片(图4)中,基体材料2与外层1之间形成了内层3,基体材料2/内层3/外层1的边界清晰可见。内层3的平均厚度是20μm,根据EPMA的分析结果,内层3是由αCr相组成。外层1的平均厚度是80μm,Al浓度是大约37原子%,由β相(Ni-Al-Cr)构成。
形成了αCr相的内层3的Ni-Cr合金,即使在高温下长时间加热,各元素在厚度方向上的浓度分布也不会发生实质性的变化。例如,观察在同样的条件下加热169小时后的厚度方向上的浓度分布时,Al在厚度方向上的浓度分布(图5)依然存在不连续的部分,在不连续的部分中观察到αCr相的内层3(图6)。外层1的Al浓度是大约30原子%,作为形成具有保护作用的Al2O3保护膜的Al源,确保足够的浓度。
产业上的应用
如上所述,本发明的Ni合金耐热材料,在Ni合金的表面上形成了具有αCr相的内层以及β相(Ni-Al-Cr)和γ’相(Ni3Al(Cr))的外层的多层结构的表面层。内层起到扩散阻挡层的作用,防止基体材料成分从基体材料向外层扩散,并且防止Al从外层向基体材料扩散,因此,不会由于基体材料成分的扩散使外层被稀释,确保外层中具有形成保护作用的Al2O3保护膜所需要的Al浓度。因此,在使用条件下Al2O3保护膜受到损伤的情况下,也可以利用由外层补给的Al自动修复保护膜的缺陷部位。
因此,高温腐蚀和异常氧化受到抑制,可以长时间保持Ni合金所固有的优异的高温性能,提供适合用于燃气涡轮、喷气发动机、排气部件等高温用途的材料。

Claims (6)

1.具有良好的耐高温氧化性的Ni合金耐热材料,其特征在于,该合金是经过Al扩散处理的Ni合金基体材料,在该基体材料的表面上形成了具有由αCr相构成的内层以及由β相(Ni-Al-Cr)和γ’相(Ni3Al(Cr))构成的外层的多层结构的表面层,外层的Al浓度是20原子%以上。
2.如权利要求1所述的Ni合金耐热材料,其特征在于,所述的Ni合金基体材料是由形成了含Cr层的Ni合金基体材料构成。
3.如权利要求2所述的Ni合金耐热材料,其特征在于,所述的含Cr层是由Cr含量为20原子%以上的Ni-Cr基合金构成。
4.如权利要求2或3所述的Ni合金耐热材料,其特征在于,在含Cr层上形成了Ni层或Ni-Al层。
5.如权利要求1所述的Ni合金耐热材料,其特征在于,所述的Ni合金基体材料是由Ni基耐热合金、Ni基高温合金构成。
6.如权利要求1所述的Ni合金耐热材料,其特征在于,所述的Ni合金基体材料是由Cr含量为20原子%以上的Ni-Cr基合金构成。
CNB038044277A 2002-03-05 2003-03-05 具有良好耐高温氧化性的Ni合金耐热材料 Expired - Fee Related CN100342059C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59547/2002 2002-03-05
JP2002059547A JP3916484B2 (ja) 2002-03-05 2002-03-05 耐高温酸化性に優れたNi合金耐熱材料およびその製造方法

Publications (2)

Publication Number Publication Date
CN1639388A true CN1639388A (zh) 2005-07-13
CN100342059C CN100342059C (zh) 2007-10-10

Family

ID=27784754

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038044277A Expired - Fee Related CN100342059C (zh) 2002-03-05 2003-03-05 具有良好耐高温氧化性的Ni合金耐热材料

Country Status (6)

Country Link
US (1) US7285337B2 (zh)
EP (1) EP1493844A4 (zh)
JP (1) JP3916484B2 (zh)
KR (1) KR100603058B1 (zh)
CN (1) CN100342059C (zh)
WO (1) WO2003074763A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519842C (zh) * 2006-06-23 2009-07-29 中国科学院金属研究所 一种γ'-Ni3Al/γ-Ni涂层的制备方法
CN101688313B (zh) * 2007-06-14 2013-06-19 Mtu飞机发动机有限公司 耐磨损涂层和具有耐磨损涂层的部件
TWI473892B (zh) * 2011-12-02 2015-02-21
CN106350766A (zh) * 2016-08-27 2017-01-25 江苏金达电热电器有限公司 一种渗铝Ni‑Cr合金电阻丝及其制作方法
CN110295383A (zh) * 2019-07-19 2019-10-01 中国科学院金属研究所 一种Cr改性铝化物涂层及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876263B1 (en) * 2005-03-28 2014-05-14 National Institute for Materials Science Heat-resistant member
DE102005060243A1 (de) * 2005-12-14 2007-06-21 Man Turbo Ag Verfahren zum Beschichten einer Schaufel und Schaufel einer Gasturbine
US20100170593A1 (en) * 2007-01-15 2010-07-08 Toshio Narita Oxidation resistant alloy coating film, method of producing an oxidation resistant alloy coating film, and heat resistant metal member
DE102007008278A1 (de) * 2007-02-20 2008-08-21 Mtu Aero Engines Gmbh Beschichtung für Gasturbinenbauteile sowie Verfahren und Vorrichtung zur Bereitstellung einer Beschichtung
EP1978129A3 (en) * 2007-03-29 2014-12-17 Ebara Corporation Method for forming corrosion-resistant film and high-temperature apparatus member
EP2206805A1 (de) * 2009-01-08 2010-07-14 Siemens Aktiengesellschaft MCrAIX-Schicht mit unterschiedlichen Chrom- und Aluminiumgehalten
US9234295B2 (en) 2010-03-25 2016-01-12 Ihi Corporation Method for forming oxidation resistant coating layer
JP2012219369A (ja) * 2011-04-14 2012-11-12 Mmc Superalloy Corp 皮膜形成処理装置用部材
JP5794537B2 (ja) * 2012-05-11 2015-10-14 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに合金皮膜およびその製造方法
JP6226231B2 (ja) 2013-09-18 2017-11-08 株式会社Ihi 熱遮蔽コーティングしたNi合金部品及びその製造方法
WO2015088859A2 (en) 2013-12-10 2015-06-18 Lei Chen Electrodeposited nickel-chromium alloy
EP3080338B1 (en) 2013-12-10 2018-10-03 Lei Chen Nickel-chromium-aluminum composite by electrodeposition
US10378118B2 (en) 2013-12-11 2019-08-13 United Technologies Corporation Electroformed nickel-chromium alloy
US10557388B2 (en) 2015-01-26 2020-02-11 Daido Steel Co., Ltd. Engine exhaust valve for large ship and method for manufacturing the same
JP6638308B2 (ja) * 2015-01-26 2020-01-29 大同特殊鋼株式会社 大型船舶用エンジン排気バルブ及びその製造方法
US10174408B2 (en) 2015-06-22 2019-01-08 Ut-Battelle, Llc Alumina-forming, high temperature creep resistant Ni-based alloys
CN105039977B (zh) * 2015-08-05 2017-10-27 南京航空航天大学 磁控溅射镀铝+加弧辉光渗铌+反冲离子注入制备Fe‑Al‑Nb合金层
CN105039978B (zh) * 2015-08-05 2017-05-31 南京航空航天大学 磁控溅射镀铝+加弧辉光渗铬+反冲离子注入制备Fe‑Al‑Cr合金层
CN106515128A (zh) * 2016-11-24 2017-03-22 苏州华意铭铄激光科技有限公司 一种耐高温高压抗蚀复合金属制品
CN106739269A (zh) * 2016-11-24 2017-05-31 苏州华意铭铄激光科技有限公司 一种防护耐蚀复合金属制品
CN106739267A (zh) * 2016-11-24 2017-05-31 苏州华意铭铄激光科技有限公司 一种高性能耐腐蚀复合金属制品
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JP7138339B2 (ja) * 2018-08-29 2022-09-16 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
DE102021124859A1 (de) * 2021-09-27 2023-03-30 MTU Aero Engines AG Verfahren zur herstellung und entsprechend hergestelltes bauteil aus einer nickelbasissuperlegierung für den heissgaskanal einer strömungsmaschine
JP7417333B1 (ja) 2023-05-23 2024-01-18 株式会社ディ・ビー・シー・システム研究所 リチウム含有複合酸化物製造用部材およびその製造方法ならびにリチウム含有複合酸化物製造用焼成炉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998603A (en) * 1973-08-29 1976-12-21 General Electric Company Protective coatings for superalloys
GB2152082A (en) 1983-12-27 1985-07-31 United Technologies Corp Enhancement of superalloy resistance to environmental degradation
CN87100246B (zh) * 1987-03-13 1988-11-02 中国科学院上海冶金研究所 抗渗碳耐热合金
CN1030578C (zh) * 1992-06-11 1995-12-27 冶金工业部钢铁研究总院 镍基铸造高温合金
CN1044622C (zh) * 1996-07-16 1999-08-11 冶金工业部钢铁研究总院 高强度镍基铸造高温合金
CN1100890C (zh) * 1999-12-17 2003-02-05 黄进峰 高温高强度奥氏体抗氧化腐蚀高温合金

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519842C (zh) * 2006-06-23 2009-07-29 中国科学院金属研究所 一种γ'-Ni3Al/γ-Ni涂层的制备方法
CN101688313B (zh) * 2007-06-14 2013-06-19 Mtu飞机发动机有限公司 耐磨损涂层和具有耐磨损涂层的部件
TWI473892B (zh) * 2011-12-02 2015-02-21
CN106350766A (zh) * 2016-08-27 2017-01-25 江苏金达电热电器有限公司 一种渗铝Ni‑Cr合金电阻丝及其制作方法
CN110295383A (zh) * 2019-07-19 2019-10-01 中国科学院金属研究所 一种Cr改性铝化物涂层及其制备方法

Also Published As

Publication number Publication date
US20050153161A1 (en) 2005-07-14
EP1493844A4 (en) 2007-08-15
KR100603058B1 (ko) 2006-07-24
KR20040094428A (ko) 2004-11-09
US7285337B2 (en) 2007-10-23
EP1493844A1 (en) 2005-01-05
JP3916484B2 (ja) 2007-05-16
WO2003074763A1 (fr) 2003-09-12
JP2003253472A (ja) 2003-09-10
CN100342059C (zh) 2007-10-10

Similar Documents

Publication Publication Date Title
CN100342059C (zh) 具有良好耐高温氧化性的Ni合金耐热材料
JP2003253472A5 (zh)
JPS61501637A (ja) 高温材料の製造方法
EP1463846A2 (en) Mcraly bond coating and method of depositing said mcraly bond coating
FR2660938A1 (fr) Systemes de revetement pour la protection du titane envers l'oxydation.
AU2004242104A1 (en) High-temperature coatings with Pt metal modifed gamma-Ni+gamma'-Ni3Al alloy compositions
EP1784517A2 (en) HIGH-TEMPERATURE COATINGS AND BULK ALLOYS WITH PT METAL MODIFIED -Ni+ '-Ni3Al ALLOYS HAVING HOT-CORROSION RESISTANCE
KR100611723B1 (ko) 내고온 부식성, 내산화성이 우수한 내열성 티타늄합금재료 및 그 제조방법
Kim et al. Effect of yttrium on the stability of aluminide-yttrium composite coatings in a cyclic high-temperature hot-corrosion environment
JPWO2002027067A1 (ja) ニオブ基合金の耐熱材料
Alam et al. Microstructure and oxidation performance of a γ-γ′ Pt-aluminide bond coat on directionally solidified superalloy CM-247LC
JP2922346B2 (ja) 耐熱性Ti系合金
Das et al. The cyclic oxidation performance of aluminide and Pt-aluminide coatings on cast Ni-based superalloy CM-247
US3764279A (en) Protective alloy coating and method
WO1996034128A1 (en) Metal substrate with an oxide layer and an anchoring layer
US8142854B2 (en) Method for forming corrosion-resistant film and high-temperature apparatus member
JPS6035992B2 (ja) Ni合金のAlコ−テイング方法
JPH08311633A (ja) 耐熱性材料およびその製造方法
CN118241152A (zh) 一种在TiAl合金表面制备Si-Hf-Yb共渗涂层的方法
JPH01111858A (ja) チタン−アルミニウム系合金
Alam et al. Aluminide coatings on titanium-based alloy IMI-834 for high temperature oxidation protection
JP5224720B2 (ja) 耐酸化性イリジウム合金及びその製造方法
JPH08311632A (ja) 耐熱性材料およびその製造方法
JPH0754603A (ja) ガスタービン翼、ガスタービン用高温材料、およびその製造方法
FR2999611A1 (fr) Procede de fabrication d'un revetement et piece thermomecanique en superalliage comprenant un revetement obtenu selon ce procede

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: TOSHIO NARITA

Free format text: FORMER OWNER: INDEPENDENT ADMINISTRATIVE LEGAL PERSON S SCIENCE AND TECHNOLOGY DEVELOPMENT ORGANIZATION

Effective date: 20080711

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080711

Address after: Japan Hokkaido

Patentee after: Narita Toshio

Address before: Japan's Saitama Prefecture

Patentee before: Independent Administrative Corporation Japan Science & Tech Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071010

Termination date: 20140305