CN1596221A - 硅铝磷酸盐分子筛的生产方法 - Google Patents

硅铝磷酸盐分子筛的生产方法 Download PDF

Info

Publication number
CN1596221A
CN1596221A CNA028236793A CN02823679A CN1596221A CN 1596221 A CN1596221 A CN 1596221A CN A028236793 A CNA028236793 A CN A028236793A CN 02823679 A CN02823679 A CN 02823679A CN 1596221 A CN1596221 A CN 1596221A
Authority
CN
China
Prior art keywords
molecular sieve
sapo
synthetic mixture
source
arbitrary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028236793A
Other languages
English (en)
Other versions
CN100400418C (zh
Inventor
M·默滕斯
K·G·斯托梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1596221A publication Critical patent/CN1596221A/zh
Application granted granted Critical
Publication of CN100400418C publication Critical patent/CN100400418C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/30Alpo and sapo

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

通过用原硅酸四乙酯作硅源获得小粒度SAPO-34。

Description

硅铝磷酸盐分子筛的生产方法
本发明涉及分子筛及其生产方法。更具体地涉及合成混合物的制备以控制产品特性。本发明尤其涉及硅铝磷酸盐分子筛、特别是SAPO-34的生产。
US4440871中描述了多种含磷分子筛的制备。
该专利特别描述了利用硅源(例如硅溶胶)、铝源(例如水合氧化铝)、磷源(例如正磷酸)、和有机模板剂例如氢氧化四乙铵(TEAOH)、异丙胺(iPrNH2)或二正丙胺(DPA)生产多种结晶微孔硅铝磷酸盐(SAPO)包括SAPO-34的方法。该专利(其公开内容引入本文供参考)给出所述SAPO的X-射线衍射数据并描述了其在催化和吸收作用中的应用。
WO00/06493描述通过搅动作用例如搅拌或翻滚获得粒度较小而且粒度分布较窄的含磷分子筛。
EP-A-541915涉及利用铝磷酸盐结晶分子筛催化剂使甲醇转化成烯烃(MTO)、尤其是轻(C2-C4)烯烃。该说明书描述了小粒度催化剂在MTO过程中的优点,并提供了通过搅拌所述合成混合物促使产生小粒度材料的方法,产生中值粒径(用质量分布表示)在约0.6至1.4μm范围内的SAPO-34。
EP-A-185525描述一种方法,其中用两相合成混合物生产SAPO-37。实施例中使用含磷酸、氧化铝、和作为有机模板剂的氢氧化四乙和四丙铵的水相,和在己醇(与水不混溶的溶剂)中包含原硅酸四乙酯的有机相。
WO01/36328描述一种方法,其中用包含模板剂、分子筛结构必要元素源和与水混溶的有机溶剂、和作为形态调节剂的表面活性剂的含水合成混合物生产0.5至30μm直径同向结晶(isocrystalline)球形颗粒形式的SAPO-34分子筛,所述溶剂的用途是使硅源溶于所述含水的合成混合物。所述硅源是原硅酸四烷基酯。
据说所述SAPO-34球形颗粒有微晶形成的纹理表面,其宽度(最大尺寸)为约0.05至2.5μm,通过扫描电子显微镜法测定。虽然据说降低合成混合物中硅的浓度使所述球体的直径减小,但所述SAPO-34实施例的产品总是球状的。
但仍需要可生产极小的SAPO-34的单个微晶的方法,与WO01/36328中所述方法得到的簇相对。
现已发现省去所述表面活性剂可获得粒度小得多的单个微晶形式的SAPO-34产品。
因此,本发明提供一种SAPO-34结晶分子筛的生产方法,包括:形成包含适合形成SAPO-34的比例的硅源、铝源、和磷源、和结构导向剂的不含表面活性剂的合成混合物,所述硅源是原硅酸四烷基酯;和使所述合成混合物经水热处理。
有利地,硅与铝之摩尔比(用SiO2∶Al2O3表示)为至多0.5∶1,因为据信摩尔比高于0.5∶1有助于形成WO01/36328所述球形颗粒。
本发明还提供一种SAPO-34,其平均粒度为至多400nm、有利的是至多200nm、优选至多100nm、最优选至多50nm。所述SAPO-34有利的是可通过本发明方法获得的,优选通过本发明方法获得。所述平均粒度通过检测扫描电子显微照片(SEM)测量,取每个粒子的最大尺寸。也可如后面一些实施例中所述通过XRD峰宽度分析进行粒度测量。
本发明所用合成混合物的组分通常是本领域已知或文献中描述适用于生产SAPO-34的那些,水热处理的情况也一样除必需用原硅酸四烷基酯作为硅原、不存在表面活性剂和/或所要求的Al2O3∶SiO2比以外。(应注意虽然US4440871提及可用硅酸四烷基酯作为硅源,但其许多实施例都未这样做。)
虽然所述合成混合物不含表面活性剂,但掺入水混溶性有机溶剂(非表面活性剂)促使所述原硅酸四烷基酯溶于所述含水的合成混合物也在本发明范围内。作为有机溶剂可提及亚砜和C2-C1含氧烃,后者利于为酸、醛、酮或单或多元醇。作为例子可提及乙二醇、1,2-或1,3-丙二醇、丙酮、甲醇、正和异丙醇、丁醇和优选乙醇。
一般来说,处理合成混合物产生所要结晶分子筛的处理(通常称为水热处理)利于在自生压力下例如在高压釜例如需要时可用聚四氟乙烯衬里的不锈钢高压釜中进行。例如可在50(利于在90、尤其是120)至250℃范围内的温度下进行处理,取决于要制的分子筛。例如,所述处理可进行1至200小时、优选最多100小时,也取决于要制的分子筛。所述工序可包括老化期,在室温下老化或优选在更高温度下水热处理之前在适度升温下老化。后者可包括温度逐渐变化或阶梯式变化期。
作为合成混合物中的磷源,可提及磷酸、有机磷酸酯例如磷酸三乙酯、和铝磷酸盐。
作为合成混合物中的铝源,可提及水合氧化铝、氧化铝、铝酸钠、假勃姆石、磷酸铝、有机铝源如醇盐例如异丙醇铝。
作为硅源,可提及(如前面所述)原硅酸四烷基酯。可使用例如原硅酸四甲酯、原硅酸四乙酯、原硅酸四丙酯、和原硅酸四丁酯。优选原硅酸四乙酯(TEOS)。
此外,所述合成混合物将包含有机结构导向剂(模板剂)。一般地,如前面所述,这些化合物一般是有机碱、尤其是胺和季铵化合物,可单独或混合使用。
作为模板剂可提及例如氢氧化四乙铵(TEAOH)和盐如磷酸盐、氟化物、氯化物、溴化物和乙酸盐、二丙胺(DPA)、三乙胺、环己胺、1-methylamidazole、吗啉、吡啶、哌啶、和二乙基乙醇胺(DEA)。
所述处理可用静态容器或优选在搅拌下或使容器绕水平轴旋转(翻滚)的情况下进行。需要时在加热步骤的初始部分例如从室温至升温(例如最终处理温度)期间搅拌或翻滚所述合成混合物,其余处于静态。搅动作用一般产生比静态水热处理粒度更小而且粒度分布更窄的产品。
根据本发明用于生产SAPO-34的合成混合物利于有以下范围内的摩尔组成:
      P2O5∶Al2O3   0.6~1.2∶1
          优选          约1∶1
      SiO2∶Al2O3    0.01~0.5∶1
          优选      0.1~0.5∶1
      H2O∶Al2O3 10~100∶1以及适当比例的有机模板剂、利于为氢氧化四乙铵(TEAOH)、二丙胺(DPA)、异丙胺或吗啉、或两或多种此类模板剂的混合物以产生SAPO-34。
本发明还提供通过包含硅源、铝源和磷源的合成混合物的水热处理生产SAPO-34中用原硅酸四烷基酯作硅源控制产品粒度的用途。
本发明还提供本发明前几方面所述方法和应用的产品。所述产品(需要时在阳离子交换和/或焙烧后)有作为催化剂前体、催化剂、及分离和吸收介质的功用。
本发明分子筛可在生产分子筛中用作种子。通过本发明方法制备的分子筛可用于接种形成相同结构类型或不同结构类型的分子筛。可用于接种形成沸石或含磷分子筛。含磷合成混合物的接种描述在上述WO00/06493中,引入本文供参考。
本说明书中所用术语“结构类型”采用Structure Type Atlas,Zeolites 17,1996中所述意义。
因此,本发明还涉及一种分子筛的生产方法,包括:(i)由本发明结晶硅铝磷酸盐分子筛、铝源和硅源、非必需的磷源和非必需的一或几种结构导向剂(模板剂)和形成所述分子筛所需任何其它材料形成合成混合物;和(ii)在适于生产所述分子筛的温度和时间长短下处理所述合成混合物。
用本发明硅铝磷酸盐分子筛作种子的实施方案中,所述种子一般以基于合成混合物之总重最多10000ppm、利于至多3000ppm、更利于至多1500ppm、优选至多1000ppm、更优选至多500ppm、最优选至多350ppm的浓度存在于合成混合物中。最低种子含量基于合成混合物之总重一般为1ppb(0.001ppm)、有利的是至少0.1ppm、更有利的是至少1ppm、优选至少10ppm。有利的比例范围是1至2000ppm、优选100至1500ppm、最优选100至250ppm。
所述种子利于以悬浮体形式掺入合成混合物中,优选胶态悬浮体、利于悬浮在含水介质优选水或所述合成混合物的另一液体组分中。本文所用术语“胶态”用于悬浮体时意指包含分散在连续液相中的离散微细粒子的悬浮体,优选意指在环境温度(23℃)下在足以用于计划应用的时间长短内、利于至少10小时、更利于至少20小时、优选至少100小时、更优选至少500小时内在不出现可见的分离或形成沉积物的意义上是稳定的悬浮体。
用本发明硅铝磷酸盐分子筛作种子时,其平均粒度为至多400nm、有利的是至多200nm、优选至多100nm、最优选至多50nm。
另一实施方案中,本发明硅铝磷酸盐分子筛尤其适用于各种烃类转化、分离和吸收。它们可单独使用或与其它分子筛混合使用,可以负载或非负载型颗粒形式、或以负载层的形式例如膜的形式(例如WO94/25151中所述)使用。烃类转化包括例如裂化、重整、加氢精制、芳构化、低聚、异构化、脱蜡、和加氢裂化(例如石脑油至轻烯烃、更高或更低分子量的烃,芳烃的烷基化、烷基转移、歧化或异构化)。其它转化包括醇与烯烃的反应和含氧化合物至烃的转化、尤其是甲醇至烯烃特别是轻烯烃的转化。通过本发明方法生产的SAPO-34尤其适用于此转化。
含氧化合物的转化可用含氧化合物例如甲醇在液相或优选气相中以间歇或优选连续方式进行。以连续方式进行时,基于含氧化合物可能便于使用1至1000、优选1至100hr-1的重时空速(WHSV)。为获得经济的转化速率一般需要高温,例如在300和600℃之间、优选400至500℃、更优选约450℃。所述催化剂可在固定床或动态例如流化或移动床中。
可使含氧化合物原料与在反应条件下惰性的稀释剂例如氩气、氮气、二氧化碳、氢气、或水蒸汽混合。原料流中甲醇的浓度可在宽范围内改变,例如为原料的5至90%(摩尔)。压力可在宽范围例如常压至500kPa内改变。
以下实施例举例说明本发明,其中除非另有说明,所述份数均基于重量。除非另有说明,原料的来源和纯度都是最先给出的那些。
实施例1
该实施例说明用本发明方法生产SAPO-34。
如下制备合成混合物:
使9.75份H3PO4(85%)、9.70份去离子水、和5.84份水合氧化铝(Catapal,Vista,74%Al2O3,26%H2O)混合在一起。然后加入并混入35.6份TEAOH(在水中35%)。最后混入15.6份乙醇和3.5份TEOS,得到以下摩尔组成的合成混合物:
Al2O3∶P2O5∶0.4SiO2∶2TEAOH∶50H2O∶8C2H5OH
将所述合成混合物放在聚四氟乙烯衬里的不锈钢高压釜内,置于烘箱内的架上,所述架旋转使所述高压釜翻滚,并在200℃保持24小时。冷却后,通过离心分离、水洗、和在烘箱内干燥回收产品。粉末X-射线衍射(XRD)图表明所述产品是有一些较小SAPO-18共生物的SAPO-34。衍射峰较宽表示晶粒小。
元素分析:Si,3.72%;Al,17.67%;P,16.85%,表示产品的化学计量为Si0.100Al0.492P0.409
分析XRD图的峰宽并用Scherrer等式校正因仪器和共生物所致峰增宽得到平均晶粒大小为约50nm。
实施例2
按类似实施例1的步骤制备有以下摩尔组成的合成混合物:
Al2O3∶P2O5∶0.3SiO2∶2TEAOH∶40H2O∶8C2H5OH
将所述合成混合物放在聚四氟乙烯衬里的不锈钢高压釜内,置于烘箱内的架上,使所述架旋转,并在200℃保持24.5小时。如实施例1中所述进行回收。产品是有一些较小SAPO-18共生物的SAPO-34。SEM分析显示晶粒大小小于0.1μm。分析XRD图的峰宽并用Scherrer等式得到平均晶粒大小为约36nm。
元素分析:Si,3.40%;Al,17.4%;P,16.4%
化学计量为Si0.093Al0.498P0.409
实施例3
按实施例1的步骤制备有以下摩尔组成的合成混合物:Al2O3∶P2O5∶0.3SiO2∶1.52TEAOH∶30H2O∶16C2H5OH
如实施例2中所述进行水热处理(200℃,24.5小时)和回收。产品是有一些较小SAPO-18共生物的SAPO-34。XRD图峰的宽度较大表示晶粒小,SEM分析表明平均粒度为约0.1μm。
元素分析:Si,3.51%;Al,17.4%;P,16.5%
化学计量为Si0.096Al0.495P0.416
实施例4
使148.9份Al2O3(Condea Pural SB)与590.9份水混合,然后将252.4份H3PO4(85%,Acros)与69.8份TEOS一起加入。然后将460.5份TEAOH(在水中35%,Eastern Chemical)与177.3份DPA(Fluka)一起加入,连续搅拌得到以下摩尔组成的合成混合物:
Al2O3∶P2O5∶0.3SiO2∶TEAOH∶1.6DPA∶52H2O
将所述合成混合物放在不锈钢高压釜内,经8小时加热至175℃,以170rpm(端速0.89m/s)搅拌下在该温度下保持48小时。回收和分析后,发现该产品是纯SAPO-34。50%(数量)的晶体粒度小于280nm;10%粒度大于400nm。相比之下,在相同摩尔组成和相同反应条件的合成混合物中用Ludox AS40(40%胶态氧化硅溶液)代替TEOS作硅源得到粒度约1μm的纯SAPO-34产品。
实施例5
使19.8份H3PO4(85%)、30份水、5.4份TEOS、11.9份水合氧化铝(Catapal)、72.3份TEAOH(35%)、和20.7份水以所述顺序混合得到以下分子比例的合成混合物:
Al2O3∶P2O5∶0.3SiO2∶2TEAOH∶70H2O
在混合器中均化后,将所述合成混合物放在聚四氟乙烯衬里的不锈钢高压釜内,置于烘箱内翻滚,并在200℃保持24小时。冷却后,通过离心分离、水洗、和在115℃下干燥回收产品。XRD图表明所述产品是纯SAPO-34,SEM显示尺寸在50和200nm范围内的立方形和厚的片晶。

Claims (20)

1.一种SAPO-34结晶分子筛的生产方法,包括:(a)形成包含适合形成SAPO-34的比例的硅源、铝源、和磷源、和结构导向剂的不含表面活性剂的合成混合物,所述硅源是原硅酸四烷基酯;和(b)使所述合成混合物经水热处理。
2.权利要求1的方法,其中硅与铝之摩尔比用SiO2∶Al2O3表示为至多0.5∶1。
3.权利要求1或2的方法,其中所述原硅酸四烷基酯为原硅酸四乙酯。
4.权利要求1或2的方法,其中所述原硅酸四烷基酯为原硅酸四甲酯、原硅酸四丙酯、原硅酸四丁酯、或其混合物。
5.权利要求1至4之任一的方法,其中所述结构导向剂为TEAOH或TEAOH与DPA的混合物。
6.权利要求1至5之任一的方法,其中所述水热处理步骤的至少一部分在搅动下进行。
7.权利要求1至6之任一的方法,其中所述合成混合物有以下范围内的摩尔组成
      P2O5∶Al2O3    0.6∶1至1.2∶1
      SiO2∶Al2O3     0.01∶1至0.5∶1
      H2O∶Al2O3      10∶1至100∶1
以及结构导向剂。
8.通过权利要求1至7之任一方法生产的SAPO-34结晶分子筛。
9.一种SAPO-34结晶分子筛,其平均粒度为至多400nm。
10.一种SAPO-34结晶分子筛,其平均粒度为至多200nm。
11.一种SAPO-34结晶分子筛,其平均粒度为至多100nm。
12.一种SAPO-34结晶分子筛,其平均粒度为至多50nm。
13.在通过包含硅源、铝源和磷源的合成混合物的水热处理生产SAPO-34中用原硅酸四烷基酯作硅源控制产品粒度的用途。
14.权利要求13的用途,其中所述合成混合物不含表面活性剂。
15.权利要求13或14的用途,其中SiO2∶Al2O3之摩尔比为至多0.5∶1。
16.一种使含氧化合物转化成烯烃的方法,包括使所述含氧化合物在催化转化条件下与权利要求8至12之任一中所述分子筛接触。
17.权利要求8至12之任一中所述分子筛需要时在洗涤、阳离子交换、或焙烧后用于烃类转化、吸附或分离的用途。
18.权利要求8至12之任一中所述分子筛需要时在洗涤、阳离子交换、或焙烧后用于使含氧化合物转化成烯烃的用途。
19.一种分子筛的生产方法,包括:(i)由权利要求8至12之任一中所述SAPO-34结晶分子筛、铝源和硅源、非必需的磷源和非必需的一或几种结构导向剂(模板剂)和形成所述分子筛所需任何其它材料形成合成混合物;和(ii)在适于生产所述分子筛的温度和时间长短下处理所述合成混合物。
20.在通过包含硅源和铝源、和非必需的磷源的合成混合物的水热处理生产结晶分子筛中用权利要求8至12之任一中所述SAPO-34结晶分子筛作为种子以助于形成所述结晶分子筛的用途。
CNB028236793A 2001-11-29 2002-08-19 硅铝磷酸盐分子筛的生产方法 Expired - Lifetime CN100400418C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/997,779 2001-11-29
US09/997,779 US6696032B2 (en) 2001-11-29 2001-11-29 Process for manufacturing a silicoaluminophosphate molecular sieve

Publications (2)

Publication Number Publication Date
CN1596221A true CN1596221A (zh) 2005-03-16
CN100400418C CN100400418C (zh) 2008-07-09

Family

ID=25544385

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028236793A Expired - Lifetime CN100400418C (zh) 2001-11-29 2002-08-19 硅铝磷酸盐分子筛的生产方法

Country Status (9)

Country Link
US (2) US6696032B2 (zh)
EP (1) EP1451105B1 (zh)
CN (1) CN100400418C (zh)
AT (1) ATE356084T1 (zh)
AU (1) AU2002323219A1 (zh)
DE (1) DE60218727T2 (zh)
ES (1) ES2282445T3 (zh)
WO (1) WO2003048042A1 (zh)
ZA (1) ZA200403276B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008019584A1 (fr) * 2006-08-08 2008-02-21 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure si(4ai) dans le squelette
CN101559956B (zh) * 2009-05-22 2011-02-09 中国科学院过程工程研究所 一种Lewis酸型SAPO-34分子筛的制备方法
CN102655934A (zh) * 2009-12-18 2012-09-05 埃克森美孚化学专利公司 分子筛的制备方法及其在含氧化合物至烯烃转化中的应用
CN102099117B (zh) * 2008-07-25 2013-03-27 埃克森美孚化学专利公司 含菱沸石的分子筛的合成和它们在含氧物至烯烃的转化中的应用
CN109704365A (zh) * 2019-02-22 2019-05-03 山东齐鲁华信高科有限公司 一种小晶粒分子筛的快速合成方法及应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US6773688B2 (en) * 2001-11-29 2004-08-10 Exxonmobil Chemical Patents Inc. Process for manufacture of molecular sieves
US7316727B2 (en) 2004-03-19 2008-01-08 The Regents Of The University Of Colorado High-selectivity supported SAPO membranes
US7528201B2 (en) 2004-12-22 2009-05-05 Exxonmobil Chemical Patents Inc. Synthesis of silicoaluminophosphate molecular sieves
US7459136B2 (en) * 2005-06-24 2008-12-02 Exxonmobile Chemical Patents Inc. Process for manufacture of silicoaluminophosphate molecular sieves
US7807122B2 (en) * 2005-11-02 2010-10-05 Exxonmobil Chemical Patents Inc. Metalloaluminophosphate molecular sieves, their synthesis and use
AU2007249452B2 (en) * 2006-05-15 2011-12-22 The Regents Of The University Of Colorado, A Body Corporate High flux and selectivity SAPO-34 membranes for CO2/CH4 separations
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
JP5683111B2 (ja) * 2007-02-27 2015-03-11 ビーエーエスエフ コーポレーション 銅chaゼオライト触媒
US8302782B2 (en) * 2007-03-09 2012-11-06 The Regents of the University of Colorado, a body corporated Synthesis of zeolites and zeolite membranes using multiple structure directing agents
CA2939726C (en) 2007-04-26 2019-06-18 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
WO2010011420A1 (en) * 2008-07-25 2010-01-28 Exxonmobil Chemical Patents Inc. Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins
US8268277B2 (en) * 2008-07-25 2012-09-18 Exxonmobil Chemical Patents Inc. Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
WO2010138692A1 (en) * 2009-05-29 2010-12-02 Shell Oil Company Method of making a gas separation molecular sieve membrane
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
US8293199B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
AU2011245307B2 (en) 2010-04-29 2014-10-09 The Regents Of The University Of Colorado, A Body Corporate High flux SAPO-34 membranes for CO2/CH4 separation and template removal method
RU2700590C2 (ru) * 2013-10-24 2019-09-18 В.Р.Грейс Энд Ко.-Конн. Способ синтеза молекулярных сит кремнийалюмофосфат-34
US10822244B2 (en) 2016-08-02 2020-11-03 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for synthesizing nano SAPO-34 molecular sieve, and SAPO-34 molecular sieve catalyst and application thereof
JP2019166418A (ja) 2016-08-08 2019-10-03 富士フイルム株式会社 ガス分離膜、ガス分離膜モジュールおよびガス分離装置
WO2018106397A1 (en) * 2016-12-07 2018-06-14 Exxonmobil Research And Engineering Company Combined olefin and oxygenate conversion for aromatics production
WO2019030322A1 (en) 2017-08-10 2019-02-14 Total Research & Technology Feluy MEAPO-18 MEMBRANES WITH LAMELLAR CRYSTALLINE MORPHOLOGY AND THEIR PREPARATION
CN107601527B (zh) * 2017-11-17 2020-06-30 陕西延长石油(集团)有限责任公司 一种纳米sapo-34分子筛的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4898722A (en) 1984-12-19 1990-02-06 Mobil Oil Corp. Synthesis of crystalline SAPO-37
US5279810A (en) * 1990-12-20 1994-01-18 Mobil Oil Corporation Method of preparing silicoaluminophosphate compositions using a reagent containing both phosphorus and silicon reactive sites in the same molecule
US5126308A (en) * 1991-11-13 1992-06-30 Uop Metal aluminophosphate catalyst for converting methanol to light olefins
NO174341B1 (no) * 1991-12-23 1994-04-21 Polymers Holding As Fremg for fremst av krystallinske mikroporose SiAl-fosfater med kontrollert Si-innh, krystallinske mikroporose SiAl-fosfater med forbedret stabilitet mot deaktivering og en anv av disse ved fremstilling av olefiner fra metanol
US5912393A (en) * 1997-12-09 1999-06-15 Uop Llc Metallo aluminophosphate molecular sieve with novel crystal morphology and methanol to olefin process using the sieve
US6207872B1 (en) * 1997-12-09 2001-03-27 Uop Llc Metallo aluminophosphate molecular sieve with cubic crystal morphology and methanol to olefin process using the sieve
EP1105348B1 (en) 1998-07-29 2003-04-02 ExxonMobil Chemical Patents Inc. Crystalline molecular sieves
WO2001036328A1 (en) 1999-11-18 2001-05-25 Exxon Chemical Patents Inc. Method for the synthesis of molecular sieves
CN1131845C (zh) * 1999-12-15 2003-12-24 中国科学院大连化学物理研究所 一种多模板剂合成磷酸硅铝分子筛的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008019584A1 (fr) * 2006-08-08 2008-02-21 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure si(4ai) dans le squelette
CN102099117B (zh) * 2008-07-25 2013-03-27 埃克森美孚化学专利公司 含菱沸石的分子筛的合成和它们在含氧物至烯烃的转化中的应用
CN101559956B (zh) * 2009-05-22 2011-02-09 中国科学院过程工程研究所 一种Lewis酸型SAPO-34分子筛的制备方法
CN102655934A (zh) * 2009-12-18 2012-09-05 埃克森美孚化学专利公司 分子筛的制备方法及其在含氧化合物至烯烃转化中的应用
CN105836757A (zh) * 2009-12-18 2016-08-10 埃克森美孚化学专利公司 分子筛的制备方法及其在含氧化合物至烯烃转化中的应用
CN109704365A (zh) * 2019-02-22 2019-05-03 山东齐鲁华信高科有限公司 一种小晶粒分子筛的快速合成方法及应用
CN109704365B (zh) * 2019-02-22 2022-09-20 山东齐鲁华信高科有限公司 一种小晶粒分子筛的快速合成方法及应用

Also Published As

Publication number Publication date
CN100400418C (zh) 2008-07-09
US20040147793A1 (en) 2004-07-29
US6903240B2 (en) 2005-06-07
ATE356084T1 (de) 2007-03-15
DE60218727D1 (de) 2007-04-19
US6696032B2 (en) 2004-02-24
ZA200403276B (en) 2005-01-18
EP1451105B1 (en) 2007-03-07
DE60218727T2 (de) 2007-11-15
EP1451105A1 (en) 2004-09-01
AU2002323219A1 (en) 2003-06-17
ES2282445T3 (es) 2007-10-16
US20030104931A1 (en) 2003-06-05
WO2003048042A1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
CN100400418C (zh) 硅铝磷酸盐分子筛的生产方法
CN1056590C (zh) 非沸石分子筛的制备
US6410473B1 (en) Quasi crystalline inorganic oxide compositions prepared by neutral templating route
EP1105348B1 (en) Crystalline molecular sieves
CN101679053B (zh) 具有层状晶体形态的金属磷酸铝分子筛及其制备
US6334994B1 (en) Microporous crystalline silico-alumino-phosphate composition, catalytic material comprising said composition and use of these for production of olefins from methanol
EP0674600B1 (en) Preparation of aluminosilicate zeolites
CN1890178B (zh) 菱沸石型分子筛、其合成及其在含氧化合物转化成烯烃中的应用
CN101679054B (zh) 制备金属磷酸铝(meapo)分子筛的方法
CN1596222A (zh) 分子筛的生产方法
EP2236461B1 (en) Method for synthesizing all-silica zeolite beta with small crystal size
EP1797005A2 (en) Uzm-12 and uzm-12hs: crystalline aluminosilicate zeolitic compositions and processes for preparing and using the compositions
JP3322115B2 (ja) シリカ多孔体の製造方法
CN1850606A (zh) 一种AlPO4或SAPO分子筛的制备方法
CN101618333B (zh) Y分子筛/纯硅分子筛复合分子筛及其制备方法
JP2021165226A (ja) プロピレン及び直鎖ブテンの製造方法
JP6798282B2 (ja) Aei型ゼオライトの製造方法
US7622417B2 (en) Synthesis and use of AEI structure-type molecular sieves
EP1610895A1 (en) A zeolite catalyst for skeletal isomerisation of olefins
JP6977251B2 (ja) Aei型メタロケイ酸塩、その製造方法、及びそれを用いたプロピレン及び直鎖ブテンの製造方法
CN108928832B (zh) 无锗iwr沸石分子筛的制备方法
CN109694086B (zh) 纳米zsm-5沸石分子筛聚集体的制备方法
KR101262549B1 (ko) 중형기공성 zsm-5 촉매 제조방법 및 그 촉매를 이용한 경질 올레핀 제조방법
WO2012141833A1 (en) Process for producing molecular sieve materials
CN113104860A (zh) 一种仿生孔道结构sapo-34分子筛的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080709

CX01 Expiry of patent term