CN1577892A - 高压组件及其制造方法 - Google Patents

高压组件及其制造方法 Download PDF

Info

Publication number
CN1577892A
CN1577892A CNA2004100624389A CN200410062438A CN1577892A CN 1577892 A CN1577892 A CN 1577892A CN A2004100624389 A CNA2004100624389 A CN A2004100624389A CN 200410062438 A CN200410062438 A CN 200410062438A CN 1577892 A CN1577892 A CN 1577892A
Authority
CN
China
Prior art keywords
type
doped region
grid
substrate
wellblock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004100624389A
Other languages
English (en)
Inventor
宋自强
徐振富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN1577892A publication Critical patent/CN1577892A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种高压组件,包括一基底、第一及第二井区、栅极、以及第一、第二及第三掺杂区。基底具有一第一型导电性;第一及第二井区形成于基底中,分别具有第一及第二型导电性;栅极形成于基底上;第一及第二掺杂区均具有第二型导电性,分别形成于第一及第二井区中,以与栅极的两侧;第三掺杂区具有第一型导电性,形成于第一井区中且与第一掺杂区连接。

Description

高压组件及其制造方法
技术领域
本发明是有关于一种高压组件,特别有关于一种高压N型及P型金氧半导体组件,具有可提供一高崩溃电压的漏极结构。
背景技术
高压金氧半导体(HVMOS)晶体管被广泛地应用于许多电子装置中,如中央处理器的电压供应器、电源管理系统、交直流转换器等等。
高压金氧半导体晶体管通常是操作于高操作电压之下,因此会造成一高电场而导致沟道与漏极的接合面附近产生极多的热电子。这些热电子会将漏极附近的电子提升至导通带中而形成电子-电洞对,对漏极附近的共价电子造成影响。大部分因热电子而被离子化后的电子会移动至漏极并增大漏极电流Id,而另一少部分的离子化电子会注入且困于栅极氧化层中,导致栅极临限电压的改变。相反地,因热电子而产生的电洞会流向基底而产生一基底电流Isub。当操作电压上升时,电子-电洞对的数量也会跟着增加而造成所谓的“载子倍增”(carrier multiplication)现象。
图1显示了一传统具有侧边扩散漏极区的高压金氧半导体晶体管的剖面图。如图1所示,高压金氧半导体晶体管130是形成于一半导体芯片110上。半导体芯片110具有一P型硅基底111以及一形成于P型基底111表面上的P型取向附生(epitaxial)层112。高压金氧半导体晶体管130具有一P型井区121、一形成于P型井区121中的N型源极区122、一形成于P型取向附生层112中的N型漏极区124、以及一栅极114。
当上述的基底电流Isub流经硅基底111时,硅基底111本身的电阻Rsub会产生一个感应电压Vb。如果感应电压Vb够大时,硅基底111与源极122间便会发生顺向偏压且同时形成所谓的寄生双载子接面晶体管140。当寄生晶体管140被导通时,由漏极124流向源极122的电流会大增,而产生跳回(snap-back)现象,导致高压金氧半导体组件130故障。能够造成跳回现象的最低漏极电压被称为跳回电压。此外,传统高压金氧半导体组件130的沟道传导性亦不足,使得不良的电流变化发生而极容易引发跳回现象。
然而,在某些高压金氧半导体组件中,为了提供一更高的崩溃电压,其源/漏极都使用了一种称为双扩散漏极(Double Diffuse Drain)的结构。图2显示了在美国第5770880号所揭露的具有双扩散漏极的高压金氧半导体晶体管。一基底210具有N型的基体212。在栅极氧化层222上的栅极220形成于一源极230及漏极240之间。源极与漏极实质上是相同而可互换的,因此以下将仅对漏极进行说明。每一个漏极具有一双重扩散区,包括了了一第一重的浓掺杂接触区214以及一淡掺杂区216。这些扩散掺杂区是经由在氧化层218上形成开口219后对基底210露出的表面进行P型离子(如硼离子)植入、再进行回火步骤使离子扩散进入基底210而形成P型掺杂区214及216。接触区214通常是被局限于表面而没有深入N型基体212中。第二重的淡掺杂区216则是深入了基体212中且有部分位于栅极220下方。掺杂区216与N型基体212间形成一接合面,此接合面即提供了组件210的崩溃电压值。扩散掺杂区216具有一低掺杂浓度梯度,可降低在基体-漏极接合面附近造成反向偏压的电场大小。如此可使得组件在崩溃电压达到之前,可操作于一高电压之下。
高表面浓度、低电阻值的P型掺杂区214经常被应用于源极与漏极中,以降低电流会流经的沟道与金属接触点形成的串联电阻值。这种高浓度的掺杂区亦会降低金属接触点与掺杂区之间的电阻值。定义掺杂区214的光罩可以与用以定义形成双重扩散结构的源极及漏极的光罩相同。掺杂区214亦可以使用额外不同的光罩来制作。使用不同的光罩时,可以在浓掺杂区214边缘与淡掺杂区216边缘间之间距设定上有更大的弹性。
双重扩散结构亦可以压制由金氧半导体晶体管的短沟道效应所引发的热电子效应,而进一步防止在高压操作下源/漏极的电性崩溃。然而,前述因基底电流造成的跳回现象仍然未获得完全解决。因此,跳回现象的解决与接合面崩溃电压的提高同样成为重要的课题。
再参阅图3,其显示了美国第5770880号专利中主要发明的高压P型金氧半导体组件。组件3100包括一具有N型基体312的半导体基底310。浓掺杂区314与一连接至其它组件或外部电路的电容接触。在源极及漏极区316中,是使用一组非自我对准的光罩来形成浓掺杂区314及淡掺杂区316。在淡掺杂区316预定区域的氧化层318中形成一开口319,再进行离子植入及扩散后便可形成掺杂区316。然后再重新制作开口319(如需要时,必需进行重新进行对准及大小调整),并植入高浓度的离子再进行扩散后便可形成浓掺杂区314。具有浓度梯度的淡掺杂区316部分延伸至栅极320外缘的下方。沟道区313则是位于源/漏极区及N型基体312所围成的区域中。在基底310接近源/漏极区316与基体312交界处,具有一P型中度掺杂区350。其掺杂浓度高于源/漏极区316但低于掺杂区314。掺杂区350会补偿栅极320的空乏效应而降低P型金氧半导体组件3100的导通电阻值。然而,掺杂区350的深度相当浅且面积小,因而无法有效提高P型掺杂区316与N型基体12接合面的崩溃电压值。因此,组件3100仍然保持其崩溃电压落于40~100的范围间,而且甚至在栅极320遭受照射之后仍然保持于导通状态。
目前,并没有适于操作在20至40伏特电压下的高压金氧半导体组件。具有双重扩散漏极结构的高压金氧半导体组件可操作在低于20伏特电压之下,而具有侧边扩散漏极结构的高压金氧半导体组件可操作在高于40伏特电压下。在某些必需使用20至40伏特电压的场合下,使用双重扩散漏极结构无法承受如此高的电压;而侧边扩散漏极结构虽可使用,但其占据了过大的电路面积。
发明内容
为了解决上述问题,本发明提供一种高压组件,结合了双重扩散及侧边扩散漏极结构的优点,适于操作于20至40伏特的电压下,且没有占据过大电路面积的问题。
本发明的第一目的在于提供一种高压组件,包括:一基底,具有一第一型导电性;一第一及第二井区,形成于该基底中,分别具有该第一及一第二型导电性;一栅极,形成于该基底上;一第一及第二掺杂区,均具有该第二型导电性,分别形成于该第一及第二井区中,以及该栅极的两侧;以及一第三掺杂区,具有该第一型导电性,形成于该第一井区中且与该第一掺杂区连接。
本发明的第二目的在于提供一种高压组件,形成于一P型基底上,包括一高压N型及P型金氧半导体组件。其中,高压N型金氧半导体组件包括:一第一P型及N型井区,位于该P型基底中;一第一栅极,形成于该P型基底上;两个第一N型浓掺杂区,分别形成于该第一P型及N型井区中以及该第一栅极的两侧;以及一第一P型浓掺杂区,位于该第一P型井区中且与位于该第一P型井区中的该第一N型浓掺杂区连接。而高压P型金氧半导体组件包括:一N+埋入层,位于该P型基底中;一第二N型及P型井区,位于该P型基底中及该N+埋入层之上;一第二栅极,形成于该P型基底上;两个第二P型浓掺杂区,分别形成于该第二N型及P型井区中以及该第二栅极的两侧;以及一第二N型浓掺杂区,位于该第二N型井区中且与位于该第二N型井区中的该第二P型浓掺杂区连接。
本发明的第三目的在于提供一种高压组件制造方法,包括以下步骤:提供一基底,具有一第一型导电性;于该基底中形成一第一及第二井区,分别具有该第一及一第二型导电性;于该基底上形成一栅极;分别于该第一及第二井区中以及该栅极的两侧形成具有该第二型导电性的一第一及第二掺杂区;以及于该第一井区中形成一第三掺杂区,具有该第一型导电性且与该第一掺杂区连接。
本发明的第四目的在于提供一种高压组件制造方法,包括以下步骤:提供一P型基底;经由以下步骤形成一高压N型金氧半导体组件:于该P型基底中形成一第一P型及N型井区;于该P型基底上形成一第一栅极;分别于该第一P型及N型井区中以及该第一栅极的两侧形成两个第一N型浓掺杂区;以及于该第一P型井区中形成一第一P型浓掺杂区,与位于该第一P型井区中的该第一N型浓掺杂区连接;经由以下步骤形成一高压P型金氧半导体组件:于该P型基底中形成一N+埋入层;于该P型基底中及该N+埋入层之上形成一第二N型及P型井区;于该P型基底上形成一第二栅极;分别于该第二N型及P型井区中以及该第二栅极的两侧形成两个第二P型浓掺杂区;以及于该第二N型井区中形成一第二N型浓掺杂区,与位于该第二N型井区中的该第二P型浓掺杂区连接。
附图说明
图1显示了一传统具有侧边扩散漏极区的高压金氧半导体晶体管的剖面图;
图2显示了在美国第5770880号所揭露的具有双扩散漏极的高压金氧半导体晶体管;
图3显示了美国第5770880号专利中主要发明的高压P型金氧半导体组件;
图4是本发明一实施例中形成于一P型基底400上的高压N型金氧半导体晶体管的剖面图;
图5是本发明一实施例中形成于一P型基底500上的高压P型金氧半导体晶体管的剖面图;
图6A~图6F显示了本发明一实施例中高压组件的制造流程。
符号说明:
110~半导体芯片;
130~高压金氧半导体晶体管;
111、210、310、400、500、600~硅基底;
112、570、620~P型取向附生层;
121、411、512、631、642~P型井区;
412、511、632、641~N型井区;
122、230~源极区;
124、240~漏极区;
140~寄生双载子接面晶体管;
212、312~基体;
222、421、521、661~栅极氧化层;
114、220、320、420、520、660~栅极;
214、314~浓掺杂区;
216、316、433、533、671、672~淡掺杂区;
218、318、450、550、650~氧化层;
219、319~开口;
3100~组件;
313~沟道;
350~中度掺杂区
422、522、662~导电层;
423、523、663~分离子;
431、432、540、681、682、693~N型掺杂区;
440、531、532、683、691、692~P型掺杂区;
610~N+埋入层。
具体实施方式
以下,就图式说明本发明的一种高压组件及其制造方法的实施例。
图4是本发明一实施例中形成于一P型基底400上的高压N型金氧半导体晶体管的剖面图。如图4所示,一P型井区411及N型井区412形成于P型基底400中。一栅极结构420形成于P型基底400上,包括了位于P型基底400上的栅极氧化层421、一位于栅极氧化层421上的导电层(多晶硅层)422以及位于栅极氧化层421及导电层422两侧的分离子(spacer)423。一第一与第二N型掺杂区431及432分别形成于P型井区411及N型井区412中、以与栅极结构420的两侧。一N型淡掺杂区433与第一N型掺杂区431连接且位于一分离子423的下方。一P型掺杂区440形成于P型井区411中且与第一N型掺杂区431连接。场氧化层450将高压N型金氧半导体晶体管与其它位于P型基底400上的组件相互绝缘。掺杂区440及431形成高压N型金氧半导体晶体管的源极,而掺杂区432形成其漏极。第二N型掺杂区432至栅极结构420边缘的间距必需适当选择,以使高压N型金氧半导体晶体管能够承受一高崩溃电压。栅极结构420与N型井区412间的重迭定义为零。
图5是本发明一实施例中形成于一P型基底500上的高压P型金氧半导体晶体管的剖面图。如图5所示,一N型井区511及P型井区512形成于P型基底500中。一栅极结构520形成于P型基底500上,包括了位于P型基底500上的栅极氧化层521、一位于栅极氧化层521上的导电层(多晶硅层)522以及位于栅极氧化层521及导电层522两侧的分离子(spacer)523。一第一与第二P型掺杂区531及532分别形成于N型井区511及P型井区512中、以与栅极结构520的两侧。一P型淡掺杂区533与第一P型掺杂区531连接且位于一分离子523的下方。一N型掺杂区540形成于N型井区511中且与第一P型掺杂区531连接。场氧化层550将高压P型金氧半导体晶体管与其它位于P型基底500上的组件相互绝缘。掺杂区540及531形成高压P型金氧半导体晶体管的源极,而掺杂区532形成其漏极。第二P型掺杂区532至栅极结构520边缘的间距必需适当选择,以使高压P型金氧半导体晶体管能够承受一高崩溃电压。栅极结构520与P型井区512间的重迭定义为零。
必需注意的是,在N型井区511及P型井区512的下方形成有一N+埋入层560,以使P型井区512与P型基底500绝缘。此外,由于N+埋入层的形成,一P型取向附生层570亦形成于基底500之中。一般来说,高压N型及P型金氧半导体组件是经由同样的制程步骤而形成于同一芯片上。P型取向附生层570亦可形成于高压N型金氧半导体组件的一侧,如图4所示。
图6A~图6F显示了本发明一实施例中高压组件的制造流程。
如图6A所示,高压组件是形成于一P型基底600上,包括了分别位于P型基底600上不同区域中的高压N型及P型金氧半导体组件。高压N型金氧半导体晶体管将会形成于左侧,而高压P型金氧半导体晶体管将会形成于右侧。为了使高压P型金氧半导体晶体管所使用的P型井区642与P型基底600相互绝缘,N+埋入层610的形成是必需的。熟知此技艺的人应了解,N+埋入层610的形成将同时造成一P型取向附生层620形成于P型基底600中。由于P型取向附生层620是全面性地形成于P型基底600中,尽管其对高压N型金氧半导体组件来说是不必要的,但其亦会出现于高压N型金氧半导体组件的一侧。
如图6B所示,一P型井区631及N型井区632形成于高压N型金氧半导体组件侧的P型基底600中,而一N型井区641及P型井区642形成于高压P型金氧半导体组件侧的P型基底600中。这些井区的样态与具有侧边扩散漏极结构的高压金氧半导体组件中的井区相同,且其功能与具有双重扩散漏极结构的高压金氧半导体组件使用的N型及P型掺杂区功能相同。
如图6C所示,进行一局部氧化制程步骤而形成场氧化层650。场氧化层650定义了高压N型及P型金氧半导体晶体管所使用的主动区,并将其与其它位于P型基底600上的组件相互绝缘。
如图6D所示,在对芯片进行了一连串的清洗及干燥步骤后,经由热氧化法在P型基底600及场氧化层650上形成一厚约100~250的栅极氧化层。栅极氧化层是做为接下来的离子植入步骤中的牺牲氧化层之用,以保护基底表面的结构在进行高能量离子植入时不被损害。之后,一多晶硅层形成于栅极氧化层661之上并覆盖了场氧化层650。再经由微影步骤,使用一光阻层来定义栅极图案。多晶硅层未被光阻层所覆盖的部分便经由一蚀刻步骤移除,而形成栅极662。必需注意的是,在高压N型金氧半导体组件一侧的栅极662与N型井区632间的重迭、以及在高压P型金氧半导体组件一侧的栅极662与P型井区642间的重迭均被定义为零。接着,进行两个离子植入步骤以形成淡掺杂区671及672。对高压N型金氧半导体晶体管来说,第一个离子植入步骤使用了磷做为掺杂离子,其浓度约为1013/cm2,以形成掺杂区671。对高压P型金氧半导体晶体管来说,第二个离子植入步骤使用了硼做为掺杂离子,以形成掺杂区672。
如图6E所示,在栅极氧化层661及多晶硅栅极662的两侧形成分离子663。分离子663是经由化学气相沉积法(CVD)形成一二氧化硅层,再经由非等向性蚀刻而形成。
如图6F所示,N型浓掺杂区681、682及693、P型浓掺杂区683、691及692经由两个离子植入步骤形成于P型基底600中。对N型浓掺杂区681、682及693来说,第一个离子植入步骤使用了磷为掺杂离子。第二个离子植入步骤则使用了硼为掺杂离子形成掺杂区683、691及692。必需注意的是,N型浓掺杂区682至栅极660边缘的间距、以及P型浓掺杂区692至栅极660边缘的间距必需适当地选择。若N型浓掺杂区682及P型浓掺杂区692太过接近栅极660的边缘,高压N型及P型金氧半导体晶体管的漏极侧崩溃电压将不高。
因此,与传统具有双重扩散漏极结构的高压金氧半导体晶体管比较下,本发明的高压N型或P型金氧半导体晶体管具有较高的崩溃电压(超过30伏特),且其制程亦较简单。此外,与传统具有侧边扩散漏极结构的高压金氧半导体晶体管比较下,本发明的高压N型或P型金氧半导体晶体管使用了较小的电路面积及具有较低的导通电阻值。
综合上述,本发明提供一种高压组件,结合了双重及侧边扩散漏极结构的优点。在侧边扩散漏极结构中用以释放电场的场氧化层被移除,而在双重扩散漏极结构中的N型或P型掺杂区被以井区来取代。如此可使得高压金氧半导体晶体管能够操作于20至40伏特的电压下,且不会占据过大的电路面积。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视所附的权利要求范围所界定者为准。

Claims (13)

1、一种高压组件,包括:
一基底,具有一第一型导电性;
一第一及第二井区,形成于该基底中,分别具有该第一及一第二型导电性;
一栅极,形成于该基底上;
一第一及第二掺杂区,均具有该第二型导电性,分别形成于该第一及第二井区中,以及该栅极的两侧;以及
一第三掺杂区,具有该第一型导电性,形成于该第一井区中且与该第一掺杂区连接。
2、根据权利要求1所述的高压组件,其中更包括多个场氧化层,将该高压组件与其它位于该基底上的组件相互绝缘。
3、一种高压组件,形成于一P型基底上,包括:
一高压N型金氧半导体组件,包括:
一第一P型及N型井区,位于该P型基底中;
一第一栅极,形成于该P型基底上;
两个第一N型浓掺杂区,分别形成于该第一P型及N型井区中以及该第一栅极的两侧;以及
一第一P型浓掺杂区,位于该第一P型井区中且与位于该第一P型井区中的该第一N型浓掺杂区连接;
一高压P型金氧半导体组件,包括:
一N+埋入层,位于该P型基底中;
一第二N型及P型井区,位于该P型基底中及该N+埋入层之上;
一第二栅极,形成于该P型基底上;
两个第二P型浓掺杂区,分别形成于该第二N型及P型井区中以及该第二栅极的两侧;以及
一第二N型浓掺杂区,位于该第二N型井区中且与位于该第二N型井区中的该第二P型浓掺杂区连接。
4、根据权利要求3所述的高压组件,其中更包括多个场氧化层,将该高压组件与其它位于该基底上的组件相互绝缘。
5、根据权利要求3所述的高压组件,其中每一该第一及第二栅极包括一位于该基底上的栅极氧化层、一位于该栅极氧化层上的导电层以及位于该栅极氧化层及导电层两侧的分离子。
6、根据权利要求5所述的高压组件,其中该高压N型金氧半导体组件更包括一N型淡掺杂区,与该第一N型浓掺杂区连接且位于该第一栅极的分离子下方,该高压P型金氧半导体组件更包括一P型淡掺杂区,与该第二P型浓掺杂区连接且位于该第二栅极的分离子下方。
7、根据权利要求3所述的高压组件,其中该第一N型浓掺杂区与该第一栅极间、该第二P型浓掺杂区与该第二栅极间均具有一间隔。
8、根据权利要求3所述的高压组件,其中该第一栅极与该第一P型井区、该第二栅极与该第二N型井区的重迭是定义为零。
9、一种高压组件制造方法,包括以下步骤:
提供一基底,具有一第一型导电性;
于该基底中形成一第一及第二井区,分别具有该第一及一第二型导电性;
于该基底上形成一栅极;
分别于该第一及第二井区中以及该栅极的两侧形成具有该第二型导电性的一第一及第二掺杂区;以及
于该第一井区中形成一第三掺杂区,具有该第一型导电性且与该第一掺杂区连接。
10、根据权利要求9所述的高压组件制造方法,其中更包括以下步骤:
形成多个场氧化层,将该高压组件与其它位于该基底上的组件相互绝缘。
11、一种高压组件制造方法,包括以下步骤:
提供一P型基底;
经由以下步骤形成一高压N型金氧半导体组件:
于该P型基底中形成一第一P型及N型井区;
于该P型基底上形成一第一栅极;
分别于该第一P型及N型井区中以及该第一栅极的两侧形成两个第一N型浓掺杂区;以及
于该第一P型井区中形成一第一P型浓掺杂区,与位于该第一P型井区中的该第一N型浓掺杂区连接;以及
经由以下步骤形成一高压P型金氧半导体组件:
于该P型基底中形成一N+埋入层;
于该P型基底中及该N+埋入层之上形成一第二N型及P型井区;
于该P型基底上形成一第二栅极;
分别于该第二N型及P型井区中以及该第二栅极的两侧形成两个第二P型浓掺杂区;以及
于该第二N型井区中形成一第二N型浓掺杂区,与位于该第二N型井区中的该第二P型浓掺杂区连接。
12、根据权利要求11所述的高压组件制造方法,其中每一该第一及第二栅极包括一位于该基底上的栅极氧化层、一位于该栅极氧化层上的导电层以及位于该栅极氧化层及导电层两侧的分离子。
13、根据权利要求12所述的高压组件制造方法,其中更包括以下步骤:
于该第一栅极的分离子下方形成一N型淡掺杂区,与该第一N型浓掺杂区连接;以及
于该第二栅极的分离子下方形成一P型淡掺杂区,与该第二P型浓掺杂区连接。
CNA2004100624389A 2003-07-07 2004-07-07 高压组件及其制造方法 Pending CN1577892A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/614,462 2003-07-07
US10/614,462 US20050006701A1 (en) 2003-07-07 2003-07-07 High voltage metal-oxide semiconductor device

Publications (1)

Publication Number Publication Date
CN1577892A true CN1577892A (zh) 2005-02-09

Family

ID=33564377

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004100624389A Pending CN1577892A (zh) 2003-07-07 2004-07-07 高压组件及其制造方法
CN2004200775219U Expired - Lifetime CN2720641Y (zh) 2003-07-07 2004-07-07 高压组件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2004200775219U Expired - Lifetime CN2720641Y (zh) 2003-07-07 2004-07-07 高压组件

Country Status (3)

Country Link
US (1) US20050006701A1 (zh)
CN (2) CN1577892A (zh)
TW (1) TWI229941B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562195B (zh) * 2008-04-15 2010-12-08 台湾积体电路制造股份有限公司 半导体结构
CN107293543A (zh) * 2016-04-01 2017-10-24 立锜科技股份有限公司 具有双阱的金属氧化物半导体元件及其制造方法
CN108074928A (zh) * 2016-11-11 2018-05-25 立锜科技股份有限公司 具有双阱的金属氧化物半导体元件及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7074659B2 (en) * 2003-11-13 2006-07-11 Volterra Semiconductor Corporation Method of fabricating a lateral double-diffused MOSFET (LDMOS) transistor
US7220633B2 (en) 2003-11-13 2007-05-22 Volterra Semiconductor Corporation Method of fabricating a lateral double-diffused MOSFET
US7163856B2 (en) 2003-11-13 2007-01-16 Volterra Semiconductor Corporation Method of fabricating a lateral double-diffused mosfet (LDMOS) transistor and a conventional CMOS transistor
US7405443B1 (en) 2005-01-07 2008-07-29 Volterra Semiconductor Corporation Dual gate lateral double-diffused MOSFET (LDMOS) transistor
CN101034671B (zh) 2006-03-02 2010-12-08 沃特拉半导体公司 横向双扩散金属氧化物半导体场效应晶体管及其制造方法
JP4775288B2 (ja) 2006-04-27 2011-09-21 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法
JP4356756B2 (ja) 2006-04-27 2009-11-04 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US7602037B2 (en) 2007-03-28 2009-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage semiconductor devices and methods for fabricating the same
US7999318B2 (en) 2007-12-28 2011-08-16 Volterra Semiconductor Corporation Heavily doped region in double-diffused source MOSFET (LDMOS) transistor and a method of fabricating the same
US9184097B2 (en) * 2009-03-12 2015-11-10 System General Corporation Semiconductor devices and formation methods thereof
KR101610829B1 (ko) * 2009-12-15 2016-04-11 삼성전자주식회사 트리플 웰 구조를 가지는 플래시 메모리 소자
CN104701372B (zh) * 2013-12-06 2017-10-27 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN105226094B (zh) * 2014-06-19 2018-10-02 旺宏电子股份有限公司 半导体结构
CN107026199A (zh) * 2016-02-02 2017-08-08 立锜科技股份有限公司 具有双阱的金属氧化物半导体元件及其制造方法
US9634139B1 (en) * 2016-02-02 2017-04-25 Richtek Technology Corporation Dual-well metal oxide semiconductor (MOS) device and manufacturing method thereof
US9543303B1 (en) * 2016-02-02 2017-01-10 Richtek Technology Corporation Complementary metal oxide semiconductor device with dual-well and manufacturing method thereof
US10276679B2 (en) * 2017-05-30 2019-04-30 Vanguard International Semiconductor Corporation Semiconductor device and method for manufacturing the same
CN111613533B (zh) * 2019-02-26 2024-04-30 上海积塔半导体有限公司 制作非对称低中压器件的方法及非对称低中压器件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055896A (en) * 1988-12-15 1991-10-08 Siliconix Incorporated Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability
EP0487022B1 (en) * 1990-11-23 1997-04-23 Texas Instruments Incorporated A method of simultaneously fabricating an insulated gate-field-effect transistor and a bipolar transistor
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5856695A (en) * 1991-10-30 1999-01-05 Harris Corporation BiCMOS devices
JP3374099B2 (ja) * 1999-03-12 2003-02-04 三洋電機株式会社 半導体装置の製造方法
JP2000332247A (ja) * 1999-03-15 2000-11-30 Toshiba Corp 半導体装置
KR100282426B1 (ko) * 1999-03-17 2001-02-15 김영환 스마트 파워 소자 및 그의 제조 방법
US6265752B1 (en) * 1999-05-25 2001-07-24 Taiwan Semiconductor Manufacturing, Co., Inc. Method of forming a HVNMOS with an N+ buried layer combined with N well and a structure of the same
US20020117714A1 (en) * 2001-02-28 2002-08-29 Linear Technology Corporation High voltage MOS transistor
US6403992B1 (en) * 2001-06-05 2002-06-11 Integrated Technology Express Inc. Complementary metal-oxide semiconductor device
US6740944B1 (en) * 2001-07-05 2004-05-25 Altera Corporation Dual-oxide transistors for the improvement of reliability and off-state leakage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562195B (zh) * 2008-04-15 2010-12-08 台湾积体电路制造股份有限公司 半导体结构
CN107293543A (zh) * 2016-04-01 2017-10-24 立锜科技股份有限公司 具有双阱的金属氧化物半导体元件及其制造方法
CN108074928A (zh) * 2016-11-11 2018-05-25 立锜科技股份有限公司 具有双阱的金属氧化物半导体元件及其制造方法
CN108074928B (zh) * 2016-11-11 2020-03-06 立锜科技股份有限公司 具有双阱的金属氧化物半导体元件及其制造方法

Also Published As

Publication number Publication date
US20050006701A1 (en) 2005-01-13
TW200503268A (en) 2005-01-16
CN2720641Y (zh) 2005-08-24
TWI229941B (en) 2005-03-21

Similar Documents

Publication Publication Date Title
CN2720641Y (zh) 高压组件
CN1211843C (zh) 形成沟槽金属氧化物半导体器件和端子结构的方法
CN1040814C (zh) 一种用于半导体器件的表面耐压区
US7033892B2 (en) Trench power MOSFET in silicon carbide and method of making the same
JP5985624B2 (ja) 絶縁ゲート型トランジスタおよびその製造方法
CN1379479A (zh) 电力半导体器件
US20020053695A1 (en) Split buried layer for high voltage LDMOS transistor
CN1290203C (zh) 半导体器件的结构及其制造方法
CN1967871A (zh) 半导体装置及其制造方法
TWI415173B (zh) 低米勒電容之超級接面功率電晶體製造方法
CN1825551A (zh) 横向双扩散金氧半导体元件及其制造方法
CN1757118A (zh) 具有改进的ldmos设计的集成电路结构
CN1681107A (zh) 集成电路晶体管与其形成方法
CN101043053A (zh) 具有改善性能的功率半导体器件和方法
CN1677664A (zh) 静电放电保护器件及其制造方法
CN1711643A (zh) 半导体器件及其制造方法
CN103872097B (zh) 功率半导体设备及其制造方法
CN1132238C (zh) 半导体元件及其制造方法
CN110212026B (zh) 超结mos器件结构及其制备方法
CN111129133B (zh) 一种逆导型沟槽绝缘栅双极型晶体管及其制作方法
KR102406116B1 (ko) 반도체 소자 및 그 제조 방법
CN1591800A (zh) 改善高压元件结构的制造方法
CN1711634A (zh) 半导体器件沟道终止
CN106384718B (zh) 一种中高压沟槽型mosfet器件的制作方法及结构
CN1355934A (zh) 半导体及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication