CN1547654A - 冷冻装置 - Google Patents

冷冻装置 Download PDF

Info

Publication number
CN1547654A
CN1547654A CNA038009080A CN03800908A CN1547654A CN 1547654 A CN1547654 A CN 1547654A CN A038009080 A CNA038009080 A CN A038009080A CN 03800908 A CN03800908 A CN 03800908A CN 1547654 A CN1547654 A CN 1547654A
Authority
CN
China
Prior art keywords
compressor
refrigeration
frequency
refrigerant
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038009080A
Other languages
English (en)
Other versions
CN100565038C (zh
Inventor
竹上雅章
谷本宪治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN1547654A publication Critical patent/CN1547654A/zh
Application granted granted Critical
Publication of CN100565038C publication Critical patent/CN100565038C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • F25B2400/061Several compression cycles arranged in parallel the capacity of the first system being different from the second
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

本发明涉及一种在膨涨机构中使用感温式膨涨阀(46)的冷冻装置,其中在蒸发器(45)的上游一侧设置开关阀(7a),将该开关阀(7a)一时关闭而强制使蒸发器(45)的出口一侧达到过热状态,使膨涨阀(46的开口度变大,之后打开上述开关阀(7a)让液体冷媒流入蒸发器(45)而在潮湿的环境下进行运转,由此可将囤积在蒸发器(45)的冷冻润滑油回收至压缩机构(2D)。

Description

冷冻装置
技术领域
本发明涉及一种蒸气压缩式冷冻循环的冷冻装置,特别是涉及一种具备将囤积在蒸发器的冷冻润滑油回收至压缩机的润滑油回收机构的冷冻装置。
背景技术
以往,已有进行蒸气压缩式冷冻循环的冷冻装置。该冷冻装置广泛地应用于调节室内冷暖用的空调机、储藏食品等的冰箱或冷冻库等的冷却机。该冷冻装置中,自压缩机吐出的冷媒依序流经冷媒回路的冷凝器、膨涨机构及蒸发器,进行蒸气压缩式冷冻循环。
在该冷媒回路中,不仅冷媒自压缩机被吐出,同时润滑压缩机内的冷冻润滑油亦随之被吐出。由于自压缩机所吐出的冷冻润滑油再次回到压缩机,故例如特开2001-280719号公报中所记载,在压缩机的吐出侧设置润滑油分离器,并通过回收润滑油通路将该润滑油分离器连接至压缩机的吸入管。回收润滑油通路上通常会设置有开关阀。在此构成中,通过打开上述开关阀,可将在油分离器与吐出气体冷媒分离的冷冻润滑油,通过回收润滑油通路及吸入管而返回到压缩机。
另一方面,包含在所吐出气体冷媒中的冷冻润滑油,并非都应由油分离器全部回收到压缩机,其中一部分会随着冷媒在冷媒回路中循环。并且,随着冷媒在冷媒回路中循环的时间增加,冷冻润滑油会一点一滴地囤积在蒸发器中。因此,在以往的冷冻装置中,在对膨涨机构使用如电动膨涨阀的可调整开口度的膨涨机构时等,通过倾向打开该膨涨阀使液体冷媒大量流至蒸发器进行较潮湿环境下的运转,进行将囤积的冷冻润滑油回收至压缩机的操作。
但是,在使用感温式膨涨阀于膨涨机构的情况下,困难的是以强制性地调整开口度而进行较潮湿的运转,故也很难将蒸发器的冷冻润滑油回收至压缩机。
发明内容
本发明鉴于如此问题而创作,其目的在于对在膨涨机构使用感温式膨涨阀的冷冻装置,可将囤积在蒸发器的冷冻润滑油回收到压缩机中。
本发明是在蒸发器(45)的上游一侧设置开关阀(7a),而进行控制以一时关闭该开关阀(7a)而强制性地使蒸发器(45)的出口一侧处达到过热状态后,打开该开关阀(7a)。
具体而言,技术方案1的发明,其前提是一种冷冻装置,其具备依序连接压缩机构(2D)、冷凝器(4)、膨涨机构(46)及蒸发器(45)的冷媒回路(1E),及将囤积在蒸发器(45)的冷冻润滑油回收至压缩机构(2D)的润滑油回收机构(7a、80)。
该冷冻装置的特征为,膨涨机构(46)是由根据蒸发器(45)出口一侧的冷媒状态而调整开口度的感温式膨涨阀所构成,且润滑油回收机构(7a、80)具备连接至蒸发器(45)上游一侧的开关阀(7a)、及控制该开关阀(7a)的控制机构(80),此外,控制机构(80)是构成为:在润滑油回收动作的时候,通过在将上述该开关阀(7a)关闭预定时间的状态下进行运转,在使蒸发器(45)的出口一侧的过热度上升之后,打开该开关阀(7a)进行运转。
在该技术方案1的发明中,在进行蒸气压缩式冷冻循环的运转动作中,若冷冻润滑油逐渐囤积在蒸发器(45),则由润滑油回收机构(7a、80)的控制机构(80),一时关闭蒸发器(45)上游一侧的开关阀(7a)。在此状态下由于预定时间内继续运转动作,会使得蒸发器(45)出口一侧的冷媒流量降低,而其过热度则变大。如此若蒸发器(45)出口一侧的过热度上升,则感温式膨涨阀(46)会为弥补冷媒流量的不足而使开口度变大。之后,因开关阀(7a)被打开,故蒸发器(45)中会流入较大量的冷凝后的液体冷媒。因此,由于该液体冷媒而使得囤积在蒸发器(45)内的冷冻润滑油被冲掉,被回收至压缩机构(2D)。
该回收润滑油的动作中,蒸发器(45)中会流入大量的液体冷媒,该液体冷媒在蒸发器(45)大致蒸发掉。又,冷媒流量若过多,则可能造成液体回流,故冷媒的流量可设定在不会因液体回流而产生液体压缩的程度。
另外,技术方案2的发明,是根据技术方案1所述的冷冻装置,其特征为,其构成为:当压缩机构(2D)的运转时间连续或累计达到预定时间后,控制机构(80)会开始进行润滑油回收动作。
在该技术方案2的发明中,当压缩机构(2D)的运转时间连续或累计达到预定时间后,冷冻润滑油可能囤积在蒸发器(45),故一时地将开关阀(7a)关闭一预定时间后再打开进行回收润滑油。在每次压缩机构(2D)的运转时间达到预定时间时重复此一操作,即可抑制冷冻润滑油囤积在蒸发器(45)内。
另外,技术方案3的发明,是根据技术方案1所述的冷冻装置,其特征为,其构成为:在进行润滑油回收时,控制机构(80)将开关阀(7a)关闭后,若在经过预定时间之前时压缩机构(2D)吸入一侧的冷媒压力较预定值为低,则打开开关阀(7a)。
在该技术方案3的发明中,在关闭开关阀(7a)后,若即使在经过预定时间之前时吸入一侧的冷媒压力过份下降,则强制打开开关阀(7a)而进行流通液体冷媒的操作。此是因低压压力降的太低、则冷媒几乎不会流通在蒸发器(45)中而无法获得冷却能力的故。由此,可确保蒸发器(45)的冷媒流量,冷却能力不会降低。
另外,技术方案4的发明,是根据技术方案1所述的冷冻装置,其特征为,压缩机构(2D)构成为可变容量,控制机构(80)构成为:在回收润滑油动作中打开开关阀(7a)时,将压缩机构(2D)的运转容量设定为可由冷媒来回收蒸发器(45)内的冷冻润滑油的容量。
该技术方案4的发明中,在回收润滑油动作中,在一时关闭开关阀(7a)使蒸发器(45)出口一侧的过热度上升后,在打开开关阀(7a)时,通过将压缩机构(2D)的运转容量控制在预定值内,即可将囤积在蒸发器(45)内的冷冻润滑油可靠地回收到压缩机构(2D)。此外,当设定压缩机构(2D)的运转容量并经过预定时间后,即可解除该设定而结束回收润滑油动作。
另外,技术方案5的发明,是根据技术方案1所述的冷冻装置,其特征为,其构成为:在润滑油回收动作中,控制机构(80)禁止非制冷/热(thermo off)运转。
该技术方案5的发明中,在润滑油回收动作中禁止非制冷/热运转。由于非制冷/热运转是停止蒸发器(45)中冷媒的流通而仅进行送风的停止运转,故若在润滑油回收动作中时进行,则液体冷媒不会流入蒸发器(45)中,而若禁止非制冷/热运转,则润滑油回收会优先进行。
另外,技术方案6的发明,是根据技术方案1所述的冷冻装置,其特征为,多个蒸发器(45)并排连接,在各蒸发器(45)的上游一侧设置开关阀(7a)。
该技术方案6的发明是,在并排连接多个蒸发器(45)的所谓多台型冷冻装置中,能可靠回收囤积在蒸发器(45)的润滑油。亦即在多台型冷冻装置中,冷媒自多个蒸发器(45)而被吸入1个压缩机构(2D)中,较一对一地连接蒸发器(45)与压缩机构(2D)的冷冻装置更容易将冷冻润滑油囤积在蒸发器(45)内。但在本发明的构成中,用上述开关阀(7a)的操作而进行强制性的潮湿运转,能可靠地回收润滑油。
(效果)
根据技术方案1的发明,由于在蒸发器(45)的上游一侧设置开关阀(7a),一时将该开关阀(7a)关闭而强制性地使蒸发器(45)出口一侧处在过热状态并打开感温式膨涨阀(46)后,打开该开关阀(7a)使液体冷媒一口气地在蒸发器(45)流通,故可回收囤积在蒸发器(45)内的冷冻润滑油至压缩机构(2D)。此外,若将流通在蒸发器(45)的液体冷媒流量设定得不变得太多,则不会因液体回流动作而产生不良问题。
另外,根据技术方案2的发明,由于在每当压缩机构(2D)的运转时间连续或累计达到预定时间时,操作开关阀(7a),进行润滑油回收动作,故可防止冷冻润滑油积蓄在蒸发器(45)内而使得压缩机构(2D)内润滑油不足的情况。
根据技术领域3的发明,由于在关闭开关阀(7a)后,若在经过预定时间之前压缩机构(2D)吸入一侧的冷媒压力较预定值为低,则强制打开开关阀(7a),故可防止吸入一侧冷媒压力过度降低成为无法获得冷却能力的状态,而能可靠地进行润滑油回收动作。
根据技术方案4的发明,通过在润滑油回收动作时将压缩机构(2D)的运转容量控制在预定值,而能可靠地回收蒸发器(45)内的冷冻润滑油。
此外,根据技术方案5的发明,因在润滑油回收动作中禁止非制冷/热运转,故可优先进行润滑油回收动作,防止润滑油回收动作时的问题。此外,为了禁止非制冷/热运转时冷媒流入蒸发器(45),一般在蒸发器(45)的上游一侧设置开关阀(7a),若在润滑油回收动作时也使用该开关阀(7a),则可防止冷冻装置的构成变得复杂。
此外,根据技术方案6的发明,来自多个蒸发器(45)的冷媒合流而被吸入1个关闭阀(2D)中的多台型冷冻装置,其比起一对一地连接蒸发器(45)与压缩机构(2D)的构成的冷冻装置,冷冻润滑油更容易囤积在蒸发器(45)内,对此,用开关阀(7a)的操作而强制地进行潮湿运转,能可靠地进行润滑油回收。因此,若将本发明适用在多台型冷冻装置,可获得极高的润滑油回收效果。
附图说明
图1是本发明实施型态的冷冻装置的冷媒回路图。
图2是表示制冷运转动作的冷媒回路图。
图3是表示冷冻运转动作的冷媒回路图。
图4是表示第1制冷冷冻运转动作的冷媒回路图。
图5是表示第2制冷冷冻运转动作的冷媒回路图。
图6是表示制热运转动作的冷媒回路图。
图7是表示第1制热冷冻运转动作的冷媒回路图。
图8是表示第2制热冷冻运转动作的冷媒回路图。
图9是表示第3制热冷冻运转动作的冷媒回路图。
图10是配合压缩机运转状态而设定润滑油回收动作时的流程图。
图11是表示润滑油回收1的动作的流程图。
图12是表示润滑油回收2的动作的流程图。
图13是表示润滑油回收3的动作的流程图。
图14是表示润滑油回收4的动作的流程图。
图15是具备多台冷藏单元的冷冻装置的全体构成图。
(符号说明)
(1)冷冻装置
(1A)室外单元
(1B)室内单元
(1C)冷藏单元
(1D)冷冻单元
(1E)冷媒回路
(2D)压缩机构(压缩机)
(2E)压缩机构
(4)室外热交换器
(7a)电磁阀(开关阀、润滑油回收机构)
(41)室内热交换器
(45)冷藏热交换器(蒸发器)
(46)感温式膨涨阀(膨涨机构)
(51)冷冻热交换器
(80)控制器(控制机构、润滑油回收机构)
具体实施方式
实施发明的最佳方式。
以下,根据附图详细说明本发明的具体实施方式。
本实施方式的冷冻装置1是一种设置在便利商店内、对冷藏展示柜及冷冻展示柜进行冷却及店内进行制冷制热的装置。
如图1所示,上述冷冻装置1具有室外单元1A、室内单元1B、冷藏单元1C及冷冻单元1D,并具备进行蒸气压缩式冷冻循环的冷媒回路1E。该冷媒回路1E具备冷藏/冷冻用第1系统一侧回路及空调用第2系统一侧回路。上述冷媒回路1E的构成是可切换为制冷循环及制热循环。
上述室内单元1B的构成是可切换制冷运转及制热运转,例如可设置在卖场等。此外,上述冷藏单元1C设置在冷藏用展示柜,以冷却展示柜内的空气。上述冷冻单元1D设置在冷冻用展示柜内,以冷却该展示柜内的空气。室内单元1B、冷藏单元1C及冷冻单元1D在图1中虽仅各表示1台,但本实施方式中室内单元1B为1台,冷藏单元1C为3台左右,而冷冻单元1D为1台(参照图15。
<室外单元>
上述室外单元1A具备作为第1压缩机的变频压缩机2A、作为第2压缩机的第1非变频压缩机2B、及作为第3压缩机的第2非变频压缩机2C,且具备第1四通切换阀3A、第2四通切换阀3B、第3四通切换阀3C及为热源一侧热交换器的室外热交换器4。
上述各压缩机2A、2B、2C是例如由密闭型高压圆顶型涡卷式压缩机所构成。上述变频压缩机2A的电动机为变频器所控制,其容量可阶段性或连续性变化的可变容量压缩机。上述第1非变频压缩机2B及第2非变频压缩机2C的电动机始终以一定旋转速驱动的定容量压缩机。
上述变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C构成该冷冻装置1的压缩机构2D、2E,该压缩机构2D、2E是由第1系统的压缩机构2D及第2系统的压缩机构2E所构成。具体而言,压缩机构2D、2E在运转时,上述变频压缩机2A与第1非变频压缩机2B构成第1系统的压缩机构2D,第2非变频压缩机2C构成第2系统的压缩机构2E,及上述变频压缩机2A构成压缩机构2D,第1非变频压缩机2B及第2非变频压缩机2C构成压缩机构2E。亦即,变频压缩机2A使用在冷藏/冷冻用的第1系统一侧电路,而第2非变频压缩机2C使用在空调用的第2系统一侧电路,而另一方面,第1非变频压缩机2B可切换成第1系统一侧电路及第2系统一侧电路而使用。
上述变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C的各吐出管5a、5b、5c是与一根高压气体管(吐出管8,该高压气体管8是连接在第1四通切换阀3A的一出口。上述变频压缩机2A的吐出管5a、第1非变频压缩机2B的吐出管5b及第2非变频压缩机2C的吐出管5c上分别设有单向阀7。
上述室外热交换器4的气体一侧端部由室外气体管9而连接在第1四通切换阀3A的一出口。上述室外热交换器4的液体一侧端部连接有液体线路的液体管10的一端。该液体管10的中途设有接收部14,液体管10的另一端分歧成为第1连络管11及第2连络管12。
此外,上述室外热交换器4是例如交叉鳍式的鳍管型热交换器,接近热源的室外风扇4F而配置。
上述第1四通切换阀3A的一出口处连接有连络气体管17。上述第1四通切换阀3A的一出口由连接管18而连接在第2四通切换阀3B的一出口。该第2四通切换阀3B的一出口由辅助气体管19而连接在第2非变频压缩机2C的吐出管5c。另外,第2四通切换阀3B的一出口是连接第2非变频压缩机2C的吸入管6c。此外,第2四通切换阀3B的一出口是构成为封闭的关闭出口。即上述第2四通切换阀3B也可为三通切换阀。
上述第1四通切换阀3A是构成为:可切换成高压气体管8与室外气体管9连通且连接管18与连络气体管17连通的第1状态(参照图1的虚线)、及高压气体管8与连络气体管17连通且连接管18与室外气体管9连通的第2状态(参照图1的破线)。
此外,上述第2四通切换阀3B是构成为:可切换成辅助气体管19与关闭出口连通且连接管18与第2非变频压缩机2C的吸入管6c连通的第1状态(参照图1的实线)、及辅助气体管19与连接管18连通且吸入管6c与关闭出口连通的第2状态(参照图1的破线)。
上述变频压缩机2A的吸入管6a是连接在第1系统一侧回路的低压气体管15。第2非变频压缩机2C的吸入管6c是通过第1、第2四通切换阀3A、3B而连接在第2系统一侧回路的低压气体管(连络气体管17或室外气体管9。此外,第1非变频压缩机2B的吸入管6b是通过后述的第3四通切换阀3C而连接在变频压缩机2A的吸入管6a及第2非变频压缩机2C的吸入管6c。
具体而言,变频压缩机2A的吸入管6a上连接有分歧管6d,第2非变频压缩机2C的吸入管6c上连接有分歧管6e。而变频压缩机2A的吸入管6a及分歧管6d是通过单向阀7而连接在第3四通切换阀3C的第1出口P1,第1非变频压缩机2B的吸入管6b是连接在第3四通切换阀3C的第2出P2,而第2非变频压缩机2C的吸入管6c的分歧管6e则通过单向阀7连接在第3四通切换阀3C的第3出P3。此外,第3四通切换阀3C的第4出P4上连接有连接有来自后述的接收部14的放气管28的分歧管28a。设在上述分歧管6d、6e的单向阀仅容许朝向第3四通切换阀3C的冷媒流。
上述第3四通切换阀3C是构成为:可切换成第1出口P1与第2出P2连通且第3出口P3与第4出P4连通的第1状态(参照图1的实线)、及第1出P1与第4出P4连通且第2出口P2与第3出P3连通的第2状态(参照图1的虚线)。
上述的各吐出管5a、5b、5c、高压气体管8及室外气体管9构成制冷运转时的高压气体管1L。另一方面,上述低压气体管15及第1系统的压缩机构2D的各吐出管6a、6b则构成第1低压气体管1M。此外,上述连络气体管17及第2系统的压缩机构2E的吸入管6c构成制冷运转时的第2低压气体管1N。
上述第1连络管11、第2连络管12、连络气体管17及低压气体管15自室外单元1A起延长至外部,室外单元1A中设有与它们对应的关闭阀20。此外,上述第2连络管12构成为:自液体管10起的分歧侧端部处设有单向阀7,冷媒自接收部14流向关闭阀20。
上述液体管10上连接有对接收部14进行旁通的辅助液体管25。该辅助液体管25主要是在制热运转时有冷媒流通,并设有作为膨涨机构的室外膨涨阀26。上述液体管10的室外热交换器4与接收部14间设有仅容许冷媒向接收部14流动的单向阀7。该单向阀7是位于液体管10的辅助液体管25的连接部与接收部14间的位置。
上述液体管10是在该单向阀7与接收部14之间分歧称为分歧液体管36,该分歧液体管36连接在第2连络管12的关闭阀20与单向阀7之间。该分歧液体管36上设有容许冷媒自第2连络管12向接收部14流动的单向阀7。
上述辅助液体管25与低压气体管15之间连接有液体喷射管27。该液体喷射管27上设有电磁阀SV6。此外,上述接收部14的上部与变频压缩机2A的吐出管5a间连接有放气管28。该放气管28上设有仅容许冷媒自接收部14向吐出管5a流动的单向阀7。此外,如上所述,该放气管28的分歧管28a连接在上述第3四通切换阀3C的第4出口P4。
上述高压气体管8上设有润滑油分离器30。该润滑油分离器30上连接有回收润滑油管31的一端。该回收润滑油管31的另一端则分歧为第1回收润滑油管31a与第2回收润滑油管31b。该第1回收润滑油管31a设有电磁阀SV0,并连接在变频压缩机2A的吸入管6a。此外,第2回收润滑油管31b设有电磁阀SV4,并连接在第2非变频压缩机2C的吸入管6c的分歧管6e。
上述变频压缩机2A的圆顶部(囤积油)与第1非变频压缩机2B的吸入管6b间,连接有第1均油管32。上述第1非变频压缩机2B的圆顶部与第2非变频压缩机2C的吸入管6c间,连接有第2均油管33。上述第2非变频压缩机2C的圆顶部与变频压缩机2A的吸入管6a间,连接有第3均油管34。第1均油管32、第2均油管33及第3均油管34上分别设有作为关闭机构的电磁阀SV1、SV2、SV3。
<室内单元>
上述室内单元1B具备作为利用一侧热交换器的室内热交换器空调热交换器41、及作为膨涨机构的室内膨涨阀42。上述室内热交换器41的气体一侧连接有连络气体管17。另一方面,上述室内热交换器41的液体一侧通过室内膨涨阀42连接在第2连络管12。此外,上述室内热交换器41是例如交叉鳍式的鳍管型热交换器,接近利用一侧风扇的室内风扇43而配置。此外,室内膨涨阀42是由电动膨涨阀所构成。
<冷藏单元>
上述冷藏单元1C,如图15的该冷冻装置1的全体构成图回路构成已简化所示,在室外单元1A处三台并列而连接。各冷藏单元1C具备作为冷却热交换器蒸发器的冷藏热交换器45、及作为膨涨机构的冷藏膨涨阀46。此外,如图1所示,上述冷藏热交换器45的液体一侧通过电磁阀7a及冷藏膨涨阀46而连接有第1连络管11。即,冷藏热交换器45的上游一侧设有冷藏膨涨阀46、以及作为开关阀的电磁阀7a。该电磁阀7a使用在非制冷/热运转,用以回收冷藏热交换器45内的冷冻润滑油。另一方面,上述冷藏热交换器45的气体一侧连接有低压气体管15。
上述冷藏热交换器45与第1系统的压缩机构2D吸入一侧连通,而上述室内热交换器41在制冷运转时与第2非变频压缩机2C的吸入一侧连通。上述冷藏热交换器45的冷媒压力蒸发压力较室内热交换器41的冷媒压力(蒸发压力为低。结果,上述冷藏热交换器45的冷媒蒸发温度会成为例如-10℃,上述室内热交换器41的冷媒蒸发温度则成为例如+5℃,冷媒回路1E构成异温蒸发的回路。
此外,上述冷藏膨涨阀46是感温式膨涨阀,感温筒安装在冷藏热交换器45的气体一侧。因此,冷藏膨涨阀46的开口度是根据冷藏热交换器45出口一侧的冷媒温度而被调整。上述冷藏热交换器45是例如交叉鳍式的鳍管型热交换器,接近利用一侧风扇的冷藏风扇47而配置。
本实施方式中,由上述电磁阀7a与后述的控制机构的控制机构80构成了将囤积在冷藏热交换器45的冷冻润滑油回收至压缩机构2D的润滑油回收机构7a、80。此外,对在润滑油回收机构7a、80的具体控制则留待后叙。
<冷冻单元>
上述冷冻单元1D具备作为冷却热交换器的冷冻热交换器51、作为膨涨机构的冷冻膨涨阀52及作为冷冻压缩机的增压压缩机53。上述冷冻热交换器51的液体一侧通过电磁阀7b及冷冻膨涨阀52连接有自第1连络管11分歧的分歧液体管13。
上述冷冻热交换器51的气体一侧与增压压缩机53的吸入一侧是由连接气体管54所连接。该增压压缩机53的吐出侧上连接有自低压气体管15分歧的分歧气体管16。该分歧气体管16上设有单向阀7及润滑油分离器55。该润滑油分离器55与连接气体管54间连接有具有毛细管56的回油管57。
上述增压压缩机53是,在与第1系统的压缩机构2D间二级压缩冷媒,而使冷冻热交换器51的冷媒蒸发温度低于冷藏热交换器45的冷媒蒸发温度。上述冷冻热交换器51的冷媒蒸发温度是例如设定为-40℃。
此外,上述冷冻膨涨阀52是感温式膨涨阀,其感温筒安装在冷冻热交换器51的气体一侧。上述冷冻热交换器51是例如交叉鳍式的鳍管型热交换器,接近冷却风扇的冷冻风扇58而配置。
此外,在上述增压压缩机53吸入一侧的连接气体管54与增压压缩机53吐出侧的分歧气体管16的单向阀7下游一侧之间,连接有具有单向阀7的旁通管59。该旁通管59构成为:在增压压缩机53的故障等停止时,使该增压压缩机53旁通而使冷媒流通。
<控制系统>
上述冷媒回路1E设有各种传感器及各种开关。上述室外单元1A的高压气体管8上设有对高压冷媒压力进行的检测压力检测机构的高压压力传感器61、及对高压冷媒温度进行检测的作为温度检测机构的吐出温度传感器62。上述第2非变频压缩机2C的吐出管5c上设有对高压冷媒温度进行检测的作为温度检测机构的吐出温度传感器63。此外,上述变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C的各吐出管5a、5b、5c上分别设有在高压冷媒压力达到预定值时会打开的压力开关64。
上述变频压缩机2A、第2非变频压缩机2C的各吸入管6a、6c上,设有对低压冷媒压力进行检测的作为压力检测机构的低压压力传感器65、66、及对低压冷媒温度进行检测的作为温度检测机构的吸入温度传感器67、68。
上述室外热交换器4上设有对室外热交换器4冷媒温度即蒸发温度或冷凝温度进行检测的作为温度检测机构的室外热交换传感器69。此外,上述室外单元1A上设有对室外空气温度进行检测的作为温度检测机构的外气温度传感器70。
上述室内热交换器41上,设有对室内热交换器41中冷媒温度即蒸发温度或冷凝温度进行检测的作为温度检测机构的室内热交换传感器71/以及检测出气体一侧的气体冷媒温度的温度检测机构的气体温度传感器72。此外,上述室内单元1B上设有对室内空气温度进行检测的作为温度检测机构的室温传感器73。
上述冷藏单元1C上设有对冷藏用展示柜内温度检测的作为温度检测机构的冷藏温度传感器74。上述冷冻单元1D上设有对冷冻用展示柜内温度进行检测的作为温度检测机构的冷冻温度传感器75。此外,增压压缩机53的吐出侧上设有在吐出冷媒压力达到预定值时会打开的压力开关64。
上述第2连络管12的关闭阀20与单向阀7之间,设有对该第2连络管12的冷媒温度进行检测的作为温度检测机构的液体温度传感器76。
上述各种传感器及各种开关的输出信号被输入控制机构80。该控制机构80是构成为可控制冷媒回路1E的运转,并控制切换后述八种类型的运转模式。而该控制机构80处理,对运转时变频压缩机2A的起动停止及容量控制、第1非变频压缩机2B及第2非变频压缩机2C的起动停止、以及室外膨涨阀26及室内膨涨阀42的开口度调节等进行控制外,也对各四通切换阀3A、3B、3C的切换、回收润滑油管31a、31b、均由管32、33、34及液体喷射管27的电磁阀SV0、SV1、SV2、SV3、SV4、SV6进行开关操作。此外,控制机构80也控制非制冷/热时冷藏单元1C的电磁阀7a与冷冻单元1D的电磁阀7b的关闭。
此外,该控制机构80也在回收运转中囤积在冷藏热交换器45的冷冻润滑油时开关电磁阀7a、以及此时调整压缩机构2D的容量进行控制。具体而言,控制机构80由于在润滑油回收动作时一时地将上述电磁阀7a关闭的状态下运转,而使冷藏热交换器45的出口过热度上升,强制地打开冷藏膨涨阀46后,打开该电磁阀7a并将液体冷媒一口气地流入冷藏热交换器45,因而将该冷藏热交换器45内的冷冻润滑油回收至第1系统的压缩机构2D。此外,有关润滑油回收动作的详细则留待后述。
运转动作
其次,对每一运转说明上述冷冻装置1所进行的运转动作。本实施方式中是可设定例如八种类型的运转模式。具体而言为,可构成为:1)仅进行室内单元1B制冷的制冷运转,2)仅进行冷藏单元1C与冷冻单元1D冷却的冷冻运转,3)同时进行室内单元1B的制冷、及冷藏单元1C与冷冻单元1D冷却的第1制冷冷冻运转,4)第1制冷冷冻运转时室内单元1B制冷能力不足时运转的第2制冷冷冻运转,5)仅进行室内单元1B制热的制热运转,6)不使用室外热交换器4而以热回收运转进行室内单元1B的制热、及冷藏单元1C与冷冻单元1D冷却的第1制热冷冻运转,7)在第1制热冷冻运转时室内单元1B的制热能力多余的作为制热能力过剩运转的第2冷冻运转,8)在第1制热冷冻运转时室内单元1B的制热能力不足的作为制热能力不足运转的第3制热冷冻运转。
以下,具体说明各运转动作。
<制冷运转>
该制冷运转是仅进行室内单元1B制冷的运转。该制冷运转时,如图2所示,变频压缩机2A构成第1系统的压缩机构2D,第1非变频压缩机2B与第2非变频压缩机2C构成第2系统的压缩机构2E。并仅驱动上述第2系统的压缩机构2E,即第1非变频压缩机2B及第2非变频压缩机2C。
此外,如图2的实线所示,第1四通切换阀3A及第2四通切换阀3B各自切换至第1状态,第3四通切换阀3C切换至第2状态。此外,室外膨涨阀26、冷藏单元1C的电磁阀7a及冷冻单元1D的电磁阀7b则为关闭。
在该状态中,自第1非变频压缩机2B及第2非变频压缩机2C所吐出的冷媒,自第1四通切换阀3A流经室外气体管9再流入室外热交换器4而冷凝。冷凝后的冷媒流经液体管10、接收部14及第2连络管12,之后流经室内膨涨阀42再流入室内热交换器41而蒸发。蒸发的气体冷媒自连络气体管17流经第1四通切换阀3A及第2四通切换阀3B而流入第2非变频压缩机2C的吸入管6c。该低压的气体冷媒的一部份回到第2非变频压缩机2C,气体冷媒的另一部份则自第2非变频压缩机2C的吸入管6c起分流至分岐管6e,通过第3四通切换阀3C而回到第1非变频压缩机2B。冷媒重复进行以上的循环,进行店内的制冷。
此外,在该运转状态中,是配合室内的制冷负荷,控制第1非变频压缩机2B及第2非变频压缩机2C的起动停止,及室内膨涨阀42的开口度等。压缩机2B、2C亦可仅运转一台。
<冷冻运转>
冷冻运转是仅进行冷藏单元1C及冷冻单元1D的冷却的运转。如图3所示,该冷冻运转时,变频压缩机2A与第1非变频压缩机2B构成第1系统的压缩机构2D,第2非变频压缩机2C构成压缩机构2E。驱动上述第1系统的压缩机机构2D,即变频压缩机2A及第1非变频压缩机2B,并驱动增压压缩机53,另一方面,第2非变频压缩机2C停止。
此外,如图3的实线所示,第1四通切换阀3A及第2四通切换阀3B各自切换至第1状态,第3四通切换阀3C亦切换至第1状态。此外,冷藏单元1C的电磁阀7a及冷冻单元1D的电磁阀7b打开,室外膨涨阀26及室内膨涨阀42关闭。
在该状态中,自第1非变频压缩机2A及第2非变频压缩机2B所吐出的冷媒,自第1四通切换阀3A流经室外气体管9再流入室外热交换器4而被冷凝。冷凝的冷媒流经液体管10、接收部14及第1连络管11,一部分流经冷藏膨涨阀46再流入冷藏热交换器45内而蒸发。
另一方面,流通在第1连络管11的其它液体冷媒是流经分歧液体管13及冷冻膨涨阀52后,再流入冷冻热交换器51内蒸发。在该冷冻热交换器51蒸发的气体冷媒被吸引至增压压缩机53而被压缩,并自分歧气体管16吐出。
在上述冷藏热交换器45蒸发的气体冷媒及自增压压缩机53所吐出的气体冷媒是在低压气体管15合流,再回到变频压缩机2A及第1非变频压缩机2B。冷媒由重复以上的循环,即可冷却冷藏用展示柜及冷冻用展示柜。
上述冷冻热交换器51的冷媒压力是在增压压缩机53被吸引,故其压力较冷藏热交换器45的冷媒压力为低。结果,例如冷冻热交换器51的冷媒温度蒸发温度成为-40℃,而冷藏热交换器45的冷媒温度蒸发温度成为-10℃。
在该冷冻运转时,根据例如低压压力传感器65所检测出的低压冷媒压力而进行第1非变频压缩机2B的起动停止,及变频压缩机2A的起动停止或容量控制,进行对应冷冻负荷的运转。
例如,增大压缩机构2D的容量的控制,是首先在第1非变频压缩机2B停止的状态下驱动变频压缩机2A。若在变频压缩机2A上升的最大容量后负荷再度增大,则驱动第1非变频压缩机2B并同时将变频压缩机2A的容量减至最低。之后,若负荷再度增大,则在起动第1非变频压缩机2B的状态下使变频压缩机2A的容量上升。在压缩机容量的减少控制中,进行与该增大控制相反的动作。
此外,上述冷藏膨涨阀46及冷冻膨涨阀52的开口度是以感温筒进行过热度控制。此点在以下的各运转中也相同。
<第1制冷冷冻运转>
该第1制冷冷冻运转是同时进行室内单元1B的制冷,及冷藏单元1C与冷冻单元1D的冷却的运转。该第1制冷冷冻运转时,如图4所示,变频压缩机2A与第1非变频压缩机2B构成第1系统的压缩机构2D,第2非变频压缩机2C构成压缩机构2E。驱动上述变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C,并驱动增压压缩机53。
此外,如图4实线所示,第1四通切换阀3A,第2四通切换阀3B及第3四通切换阀3C各自切换至第1状态。而冷藏单元1C的电磁阀7a及冷冻单元1D的电磁阀7b打开,室外膨涨阀26关闭。
在该状态中,自变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C吐出的冷媒在高压气体管8合流,由第1四通切换阀3A流出经由室外气体管9而流至室外热交换器4冷凝。冷凝的液体冷媒流经液体管10、接收部14而分开在第1连络管11及第2连络管12流通。
在上述第2连络管12流通的液体冷媒经由室内膨涨阀42而流至室内热交换器41蒸发。蒸发后的气体冷媒自连络气体管17流经第1四通切换阀3A、第2四通切换阀3B及吸入管6c而回到第2非变频压缩机2C。
另一方面,在上述第1连络管11流通的液体冷媒的一部分经由冷藏膨涨阀46而流至冷藏热交换器45蒸发。此外,流通在上述第1连络管11的其它液体冷媒则流经分歧液体管13、冷冻膨涨阀52后流至冷冻热交换器51蒸发。在该冷冻热交换器51蒸发的气体冷媒被吸引至增压压缩机53而被压缩,并自分歧气体管16吐出。
在上述冷藏热交换器45蒸发的气体冷媒及自增压压缩机53吐出的气体冷媒在低压气体管15合流后,回到变频压缩机2A及第1非变频压缩机2B。
冷媒由重复以上的循环,使店内充满冷气,同时并冷却冷藏用展示柜及冷冻用展示柜。
<第2制冷冷冻运转>
第2制冷冷冻运转是上述第1制冷冷冻运转时室内单元1B的制冷能力不足时的运转,是将第1非变频压缩机2B切换至空调侧的运转。如图5所示,该第2制冷冷冻运转时的设定基本上与第1制冷冷冻运转相同,但第3四通切换阀3C切换至第2状态这一点与第1制冷冷冻运转不同。
因此,该第2制冷冷冻运转中,与第1制冷冷冻运转同样地,自变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C吐出的冷媒在室外热交换器4冷凝,在室内热交换器41、冷藏热交换器45及冷冻热交换器51蒸发。
并且,在该室内热交换器41蒸发的冷媒回到第1非变频压缩机2B及第2非变频压缩机2C,在冷藏热交换器45及冷冻热交换器51蒸发的冷媒则回到变频压缩机2A。由此在空调侧使用二台压缩机2B、2C,可弥补制冷能力的不足。
此外,对在第1制冷冷冻运转及第2制冷冷冻运转的具体的切换控制,则加以省略。
<制热运转>
该制热运转是仅进行室内单元1B的制热的运转。该制热运转时,如图6所示,变频压缩机2A构成第1系统的压缩机构2D,第1非变频压缩机2B及第2非变频压缩机2C构成第2系统的压缩机构2E。仅驱动上述第2系统的压缩机构2E,即第1非变频压缩机2B及第2非变频压缩机2C。
此外,如图6的实线所示,第1四通切换阀3A切换至第2状态,第2四通切换阀3B切换至第1状态,第3四通切换阀3C切换至第2状态。另一方面,冷藏单元1C的电磁阀7a及冷冻单元1D的电磁阀7b关闭。
此外,上述室外膨涨阀26的开口度是由根据低压压力传感器66的压力相当饱和温度及吸入温度传感器68的测出温度而受到过热度控制。上述室内膨涨阀42的开口度是依照室内热交换传感器71及液体温度传感器76的测出温度而受到过热度控制。该室外膨涨阀26及室内膨涨阀42的开口度控制在以下的制热模式也相同。
在此状态中,自第1非变频压缩机2B及第2非变频压缩机2C吐出的冷媒,是由第1四通切换阀3A经由连络气体管17流入室内热交换器41而冷凝。冷凝后的液体冷媒流经第2连络管12而自分歧液体管36流入接收部14。之后,上述液体冷媒经由辅助液体管25的室外膨涨阀26而流入室外热交换器4蒸发。蒸发的气体冷媒自室外气体管9流经第1四通切换阀3A、第2四通切换阀3B及第2非变频压缩机2C的吸入管6c,而回到第1非变频压缩机2B及第2非变频压缩机2C。重复此循环,室内即可充满暖气。
此外,与制冷运转相同,压缩机第1非变频压缩机2B、第2非变频压缩机2C边可以一台运转。
<第1制热冷冻运转>
本第1制热冷冻运转是不使用室外热交换器4,而进行室内单元1B的制热、以及冷藏单元1C与冷冻单元1D的冷却的热回收运转。如图7所示,本第1制热冷冻运转是由变频压缩机2A及第1非变频压缩机2B构成第1系统的压缩机构2D,第2非变频压缩机2C构成第2系统的压缩机构2E。驱动上述变频压缩机2A及第1非变频压缩机2B,并驱动增压压缩机53。上述第2非变频压缩机2C停止。
此外,如图7的实线所示,第1四通切换阀3A切换至第2状态,第2四通切换阀3B及第3四通切换阀3C亦切换至第1状态。此外,冷藏单元1C的电磁阀7a及冷冻单元1D的电磁阀7b打开,室外膨涨阀26关闭。
在该状态中,自变频压缩机2A及第1非变频压缩机2B所吐出的冷媒自第1四通切换阀3A流经连络气体管17再流入室内热交换器41而被冷凝。冷凝后的冷媒自第2连络管12流经接收部14再流入第1连络管11。
流通在上述第1连络管11的液体冷媒的一部分是流经冷藏膨涨阀46后,再流入冷藏热交换器45内蒸发。此外,流通在上述第1连络管11的其它液体冷媒的一部分则流经分歧液体管13、冷冻膨涨阀52后,再流入冷冻热交换器51内蒸发。在该冷冻热交换器51蒸发的气体冷媒被吸引至增压压缩机53而被压缩,并自分歧气体管16吐出。
在上述冷藏热交换器45蒸发的气体冷媒及自增压压缩机53所吐出的气体冷媒在低压气体管15合流,再回到变频压缩机2A及第1非变频压缩机2B。冷媒由重复以上的循环,店内即可温暖,同时冷却冷藏用展示柜及冷冻用展示柜。即,冷藏单元1C及冷冻单元1D的冷却能力(蒸发热量,与室内单元1B的制热能力冷凝热量可均衡,而进行液体管100%的热回收。
<第2制热冷冻运转>
本第2制热冷冻运转是在上述第1制热冷冻运转时室内单元1B的制热能力多余的暖气能力过剩运转。如图8所示,本第2制热冷冻运转是由变频压缩机2A及第1非变频压缩机2B构成第1系统的压缩机构2D,第2非变频压缩机2C构成第2系统的压缩机构2E。驱动上述变频压缩机2A及第1非变频压缩机2B,并驱动增压压缩机53。上述第2非变频压缩机2C停止。
本第2制热冷冻运转是在上述本第1制热冷冻运转中制热能力多余时的运转,第2四通切换阀3B如图8的实线所示,切换至第2状态,其它与上述第1制热冷冻运转相同。
因此,自变频压缩机2A及第1非变频压缩机2B所吐出的冷媒的一部分,与上述第1制热冷冻运转同样地流入室内热交换器41而被冷凝。被冷凝的液体冷媒自第2连络管12流经分歧液体管36及接收部14再流入第1连络管11。
另一方面,自变频压缩机2A及第1非变频压缩机2B所吐出的其它冷媒自辅助气体管19流经第2四通切换阀3B及第1四通切换阀3A并流通在室外气体管9,而在室外热交换器4冷凝。该冷凝的液体冷媒会流通在液体管10与来自第2连络管12的液体冷媒合流后,流入接收部14及第1连络管11。
之后,在上述第1连络管11中流通的液体冷媒的一部份流至冷藏热交换器45而蒸发。此外,流通在上述第1连络管11的其它液体冷媒在流入冷冻热交换器51后蒸发,并被吸入增压压缩机53。在上述冷藏热交换器45蒸发的气体冷媒及自增压压缩机53所吐出的气体冷媒在低压气体管15合流,再回到变频压缩机2A及第1非变频压缩机2B。冷媒由重复以上的循环,店内即可温暖,同时冷却冷藏用展示柜及冷冻用展示柜。即,冷藏单元1C及冷冻单元1D的冷却能力(蒸发热量),与室内单元1B的制热能力(冷凝热量)不会均衡,而将多余的冷凝热通过室外热交换器4释放到室外。
<第3制热冷冻运转>
本第3制热冷冻运转是在上述第1制热冷冻运转时室内单元1B的制热能力不足的制热能力不足运转。如图9所示,本第3制热冷冻运转是由变频压缩机2A及第1非变频压缩机2B构成第1系统的压缩机构2D,第2非变频压缩机2C构成第2系统的压缩机构2E。驱动上述变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C,并驱动增压压缩机53。
本第3制热冷冻运转是在上述本第1制热冷冻运转中制热能力不足时的运转,室外膨涨阀26的开口度受到控制,而第2非变频压缩机2C被驱动,其它则与上述第1制热冷冻运转相同。
因此,自变频压缩机2A、第1非变频压缩机2B及第2非变频压缩机2C所吐出的冷媒,与上述第1制热冷冻运转同样地流经连络气体管17后再流入室内热交换器41而被冷凝。被冷凝的液体冷媒自第2连络管12流经分歧液体管36后流入接收部14。
之后,来自接收部14的液体冷媒的一部份流入第1连络管11,在上述第1连络管11中流通的液体冷媒的一部份流至冷藏热交换器45而蒸发。此外,流通在上述第1连络管11的其它液体冷媒在流入冷冻热交换器51后蒸发,并被吸入增压压缩机53。在上述冷藏热交换器45蒸发的气体冷媒及自增压压缩机53所吐出的气体冷媒在低压气体管15合流,再回到变频压缩机2A及第1非变频压缩机2B。
另一方面,来自接收部14的其它液体冷媒则经由液体管10而流入室外热交换器4蒸发。蒸发的气体冷媒流经室外气体管9、第1四通切换阀3A、第2四通切换阀3B及第2非变频压缩机2C的吸入管6c,最后回到第2非变频压缩机2C。
重复以上的循环,店内即可温暖,同时冷却冷藏用展示柜及冷冻用展示柜。即,冷藏单元1C及冷冻单元1D的冷却(能力蒸发热量,与室内单元1B的制热能力(冷凝热量)不会均衡,而从室外热交换器4获得不足的蒸发热。
<润滑油回收动作>
在以上各运转模式中,包含在自压缩机所吐出的冷媒中的冷冻润滑油在润滑油分离器30自冷媒分离。而通过配合运转状态适当地开关电磁阀SV0~SV4,可进行将冷冻润滑油由润滑油分离器30送回压缩机2A、2B、2C的动作。
另一方面,在制冷运转中时,作为蒸发器的室内热交换器41中若囤积乐冷冻润滑油,则将室内膨涨阀42设定在靠近打开而进行将液体冷媒大量流入室内热交换器41内的操作,由此,可将室内热交换器41内的润滑油与冷媒一起回收至压缩机2B、2C。
此外,冷冻热交换器51的气体一侧上直接连接有增压压缩机53,冷媒以相当快的流速被吸入增压压缩机53。因此,冷冻润滑油几乎不会囤积在冷冻热交换器51。因此,本实施方式中,对在冷冻热交换器51并未特别进行任何的润滑油回收。
对此,本实施方式中是将三台左右的冷藏单元1C连接在一台室外单元1A,而以一压缩机构2D自这些冷藏热交换器45吸引冷媒,因此各冷藏热交换器45内容易囤积冷冻润滑油。所以,以控制机构80操作电磁阀7a而进行润滑油回收的动作。该润滑油回收动作是对所有的冷藏展示柜同时进行。
润滑油回收动作是依照图10至图14的流程图进行。此外,在这些流程图中,以「DC」或「DC压缩机」表示变频压缩机2A,而以「NON」或「NON压缩机」表示第1非变频压缩机2B。
润滑油回收动作是对应压缩机的运转状态而有四种型式,在图10中是首先选择适合其运转状态的润滑油回收动作。
该流程的步骤ST1及ST2中,首先针对第1系统的压缩机构2D的压缩机2A、2B判别运转时间。具体而言,在步骤ST1中,从计时器TL1的值判别上述压缩机2A、2B的其中一台或者两台的运转时间是否连续40分钟以上,在步骤ST2中,从计时器TL2的值判别上述压缩机2A、2B中至少变频压缩机2A其以高频率运转的状态是否累计20分钟以上。接着,有一方的判别结果为「YES」的情形时则前进至步骤ST3,在双方皆为「NO」时则不进行润滑油回收动作而回到步骤ST1,重复上述判别动作。由此,在对于压缩机构2D运转时间的条件被满足时,实行冷藏热交换器45的润滑油回收,另一方面,在该条件尚未满足时则尚不实行润滑油回收动作。
在步骤ST3中,根据压缩机2A、2B的运转状态,从四个润滑油回收动作中选择一种。首先,双方的压缩机2A、2B皆正常且仅有变频压缩机2A起动时,前进至步骤ST4,选择图11的流程图中所示的「润滑油回收1」。在双方的压缩机2A、2B皆正常且双方的压缩机2A、2B皆起动时,前进至步骤ST5,选择图12的流程图中所示的「润滑油回收2」。另一方面,在第1非变频压缩机2B异常而仅变频压缩机2A起动时,前进至步骤ST6,选择图13的流程图中所示的「润滑油回收3」,而在变频压缩机2A异常而仅第1非变频压缩机2B起动时,前进至步骤ST7,选择图14的流程图中所示的「润滑油回收4」。
并且,在实行对应压缩机构2D运转状态的润滑油回收动作之后,前进至步骤ST8,对上述计时器TL1、TL2复位,回到该流程图之前头。
此外,在上述步骤ST1及步骤ST2中,是将作为计时器TL1、TL2判断基准的设定值分别设为40分钟及20分钟,但这些设定值因冷冻装置1的安装条件使得润滑油囤积在冷藏热交换器45的程度相异,故可配合安装条件而设定。例如,在室外单元1A设置在冷藏单元1C的上方而其高低差大时,润滑油容易囤积在冷藏热交换器45,故可将计时器TL1、TL2判断基准从40分钟改设为30分钟,及从20分钟改设为15分钟等较短时间。
其次,参照图11说明「润滑油回收动作1」的具体内容。在实行该流程图的动作时,双方的压缩机2A、2B皆正常且仅有变频压缩机2A起动。
首先,在步骤ST11中,即使冷媒回路1E的低压压力(LP变得较预定值为低时,采取不进行冷藏展示柜的非制冷/热的设定。亦即在通常的控制中,由于若冷藏柜相当冷时低压压力LP会下降,故根据该低压压力LP的值使该展示柜非制冷/热,而使冷媒不会流入冷藏热交换器45,但由于此会在润滑油回收动作中实行非制冷/热时造成动作上的问题,故禁止非制冷/热而优先进行润滑油回收动作。
其次,在步骤ST12中,将起动中的变频压缩机2A的运转频率锁定在现在的频率。此外,在步骤ST13中,将操作冷藏单元1C的电磁阀7a用的R1信号设定为OFF,一时地关闭该电磁阀7a,可减少冷藏热交换器45的冷媒流量,强制使其出口一侧的冷媒过热度上升。
并在步骤ST14及步骤ST15中,若低压压力LP低在1.0Kg/cm2(98Kpa),或经过了1分钟,则将上述R1信号设定为ON,打开电磁阀7a。即例如冷冻展示柜为非制冷/热时,三台展示柜全将其电磁阀7a一次关闭,则压力下降。若该压力过在降低,则冷藏热交换器45处在冷媒几乎不流通的状态,而造成冷藏展示柜内不会冷却,故设定低压压力LP的下限值,希望保持至少有冷媒流动的状态。此外,之所以将关闭电磁阀7a的时间最大设定为一分钟,是因为只要有如此的时间,冷藏热交换器45出口一侧的冷媒过热度即会变得相当大的缘故。
在实行至步骤ST15为止的动作阶段,因冷藏热交换器45出口处的冷媒过热度过大,使冷藏膨涨阀46较为打开,且电磁阀7a也打开。在此状态中,在步骤ST16及步骤ST17中,将变频压缩机2A设定在低频且起动第1非变频压缩机2B,进行较仅起动变频压缩机2A的状态时更增加冷媒的操作。如此,液体冷媒一口气流入冷藏热交换器45,囤积在冷藏热交换器45的冷冻润滑油与液体冷媒一起流通在低压气体管15。之所以进行增加冷媒的操作,乃是因低压气体管15的配管直径大、流速不足的话、冷冻润滑油难以回到压缩机2A、2B的缘故。此外,由于冷媒在冷藏热交换器45几乎蒸发而流失,且液体回流,故在压缩机2A、2B中不会有液体压缩。
在步骤ST18中,检测出因一口气流通冷媒使得冷藏膨涨阀46紧缩、低压压力低在0.5Kg/cm2(49Kpa)或经过了2分钟。若满足此条件时,可判断冷冻润滑油大致上已回收,故前进至步骤ST19进行停止第1非变频压缩机2B、减少流量的操作。
此外,在步骤ST20中,由于在流程动作终了时不会立即成为非制冷/热,故等待低压压力高在1.5Kg/cm2(147Kpa)或1分钟经过。若满足此条件时,在步骤ST21解除变频压缩机2A的频率锁定,在步骤ST22亦解除非制冷/热的禁止。由此,完成「润滑油回收1」动作,恢复通常的运转动作。
此外,以上的润滑油回收动作,是为了使动作不产生问题而使用低压压力LP的值,基本上是进行根据预先设定的时间的控制。
其次,参照图12说明「润滑油回收2」的动作。实行该流程图的动作时,两压缩机2A、2B为正常,起动变频压缩机2A与第1非变频压缩机2B双方。
首先,在步骤ST31中,与「润滑油回收1」的步骤11相同,优先进行润滑油回收,故设定为即使冷媒回路1E的低压压力LP较预定值为低,也不进行冷藏展示柜的非制冷/热。
其次,在步骤ST32中,使变频压缩机2A为低频率,且在起动第1非变频压缩机2B的状态下所定运转容量。此外,在步骤ST33中,将操作冷藏单元1C的电磁阀7a用的R1信号设定为OFF,关闭该电磁阀7a,以减少冷藏热交换器45的冷媒流量,强制使其出口一侧的冷媒过热度上升。
而在步骤ST34及步骤ST35中,若低压压力LP低于1.0Kg/cm2(98Kpa),或经过了1分钟,则将上述R1信号设定为ON,打开电磁阀7a。由此,与「润滑油回收1」的步骤ST14及步骤ST15相同,希望保持至少有冷媒在冷藏热交换器45中流动的状态,最大在一分钟内使其出口一侧的冷媒过热度变得相当大。
在实行至步骤ST35为止的动作的阶段,因冷藏热交换器45出口处的冷媒过热度上升,使冷藏膨涨阀46较为打开,且电磁阀7a也打开。此外,变频压缩机2A以低频回转,而第1非变频压缩机2B也起动的故,流动着充分流量的冷媒回收润滑油。因此,冷藏热交换器45中有充分的冷媒流入,囤积在冷藏热交换器45的冷冻润滑油与液体冷媒一起流通在低压气体管15。
在步骤ST36中,由于在流程动作终了时不会立即成为非制冷/热,故等待低压压力高于2.0Kg/cm2(196Kpa)、或1分钟经过。若满足此条件时,在步骤ST37解除变频压缩机2A的频率锁定,在步骤ST38也解除非制冷/热的禁止。由此,完成「润滑油回收2」动作。
其次,参照图13说明「润滑油回收3」的动作。实行该流程图的动作时,两第1非变频压缩机2B发生异常,仅起动变频压缩机2A。
首先,在步骤ST41中,与「润滑油回收1」及「润滑油回收2」动作相同,优先进行润滑油回收,故设定为即使冷媒回路1E的低压压力LP较预定值低,也不进行冷藏展示柜的非制冷/热。
其次,在步骤ST42中固定变频压缩机2A的频率,锁定运转容量。此外,在步骤ST43中,将操作冷藏单元1C的电磁阀7a用的R1信号设定为OFF,关闭该电磁阀7a,以减少冷藏热交换器45的冷媒流量,强制使其出口一侧的冷媒过热度上升。
并在步骤ST44及步骤ST45中,若低压压力LP低于1.0Kg/cm2(98Kpa),或经过了1分钟,则将上述R1信号设定为ON,打开电磁阀7a。由此,与「润滑油回收1」及「润滑油回收2」动作相同,保持至少有冷媒在冷藏热交换器45中流动的状态,最大在一分钟内使其出口一侧的冷媒过热度变得相当大。
在实行至步骤ST45为止的动作的阶段,因冷藏热交换器45出口处的冷媒过热度上升,使冷藏膨涨阀46较为打开,且电磁阀7a也打开。因此,冷媒流入冷藏热交换器45中,囤积在冷藏热交换器45的冷冻润滑油与液体冷媒一起流通在低压气体管15。
在步骤ST46中,由于在流程动作终了时不立即成为非制冷/热,故等待低压压力高于1.5Kg/cm2(147Kpa)、或1分钟经过。若满足此条件时,在步骤ST47解除变频压缩机2A的频率锁定,在步骤ST48也解除非制冷/热的禁止。由此,完成「润滑油回收3」动作。
其次,参照图14说明「润滑油回收4」的动作。实行该流程图的动作时,两变频压缩机2A发生异常,仅起动第1非变频压缩机2B。
首先,在步骤ST51中,与「润滑油回收1」至「润滑油回收3」动作相同,优先进行润滑油回收,故设定为即使冷媒回路1E的低压压力LP较预定值低,也不进行冷藏展示柜的非制冷/热。
其次,在步骤ST52中,在仅有第1非变频压缩机2B回转的状态下,将操作冷藏单元1C的电磁阀7a用的R1信号设定为OFF,关闭该电磁阀7a。由此,以减少冷藏热交换器45的冷媒流量,强制使其出口一侧的冷媒过热度上升。
并在步骤ST53及步骤ST54中,若低压压力LP低于1.0Kg/cm2(98Kpa)、或经过了1分钟,则将上述R1信号设定为ON,打开电磁阀7a。由此,与「润滑油回收1」至「润滑油回收3」动作相同,保持至少有冷媒在冷藏热交换器45流动的状态,最大在一分钟内使其出口一侧的冷媒过热度变得相当大。
在实行至步骤ST54为止的动作的阶段,因冷藏热交换器45出口处的冷媒过热度上升,使冷藏膨涨阀46较为打开,且电磁阀7a也打开。因此,冷媒流入冷藏热交换器45中,囤积在冷藏热交换器45的冷冻润滑油与液体冷媒一起流通在低压气体管15。
在步骤ST55中,由于在流程动作终了时不立即成为非制冷/热,故等待低压压力高于2.0Kg/cm2(196Kpa)、或1分钟经过。若满足此条件时,在步骤ST56解除非制冷/热的禁止。由此,完成「润滑油回收4」动作。
如以上所说明,根据本实施方式,若压缩机构2D的运转时间达到预定时间,则一时关闭设在冷藏热交换器45上游一侧的电磁阀7a,强制使冷藏热交换器45出口一侧为过热状态而打开冷藏膨涨阀46后,接着打开电磁阀7a将液体冷媒一口气流入冷藏热交换器45,由此可将囤积在冷藏热交换器45的冷冻润滑油回收至压缩机构2D。此外,由于每一预定时间重复此步骤,可防止因冷冻润滑油蓄积在冷藏热交换器45内而造成压缩机构2D内的润滑油不足。
此外,在润滑油回收动作时,因在关闭电磁阀7a后,若在经过预定时间之前,压缩机构2D吸入一侧的冷媒压力较预定值为低,则强制打开电磁阀7a,所以可防止吸入一侧的冷媒压力降得太低而导致无法获得冷却能力。
此外,由于只要压缩机没有异常,即可控制润滑油回收动作时的压缩机构2D运转容量,故能可靠地回收冷藏热交换器45内的冷冻润滑油。
此外,由于禁止润滑油回收动作中的非制冷/热,故可优先进行润滑油回收动作,防止润滑油回收动作的问题。此外,由于润滑油回收动作时也使用非制冷/热用的电磁阀7a,故可防止冷冻装置的构造变得复杂。
此外,在室内热交换器41中可由操作室内膨涨阀42而回收润滑油,在冷冻热交换器51中则因润滑油不易囤积而不需进行润滑油回收动作,相对于此,能可靠地从使用感温式膨涨阀作为冷藏膨涨阀46通常难以回收润滑油,且构成为多台型,润滑油容易囤积的冷藏热交换器45,可靠而容易地回收冷冻润滑油。
(其它实施方式)
对在上述实施方式,本发明也可为以下的构成。
例如,在上述实施方式中使用一台变频压缩机及二台非变频压缩机,但也可变更压缩机的台数,或改变变频压缩机与非变频压缩机的组合。
此外,在上述实施方式中是说明进行空调、冷藏与冷冻的冷冻装置,但也可为仅进行冷藏或冷冻的冷却专用的装置。即只要是使用感温式膨涨阀在膨涨机构的冷冻装置,就可适用本发明。

Claims (6)

1.一种冷冻装置,包括:按顺序连接的压缩机构(2D)、冷凝器(4)、膨涨机构(46)及蒸发器(45)的冷媒回路(1E);及将囤积在蒸发器(45)的冷冻润滑油回收至压缩机构(2D)的润滑油回收机构(7a、80),其特征为,
膨涨机构(46)是由根据蒸发器(45)出口一侧的冷媒状态而调整其开口度的感温式膨涨阀所构成,且润滑油回收机构(7a、80)具备连接至蒸发器(45)上游一侧的开关阀(7a)、及控制该开关阀(7a)的控制机构(80),
控制机构(80)构成为:在润滑油回收动作的时候,通过在将上述开关阀(7a)关闭所设定时间的状态进行运转,使得蒸发器(45)出口的过热度上升后,再打开该开关阀(7a)而进行运转。
2.根据权利要求第1项所述的冷冻装置,其特征为,
构成为:当压缩机构(2D)的运转时间连续或累计达到预定时间后,控制机构(80)开始进行润滑油回收动作。
3.根据权利要求第1项所述的冷冻装置,其特征为,
构成为:在进行润滑油回收时,控制机构(80)将开关阀(7a)关闭后,若在还没有达到预定时间之前压缩机构(2D)吸入一侧的冷媒压力较预定值低时,则打开开关阀(7a)。
4.根据权利要求第1项所述的冷冻装置,其特征为,
压缩机构(2D)构成为可变容量,
控制机构(80)构成为:在回收润滑油动作中打开开关阀(7a)时,将压缩机构(2D)的运转容量设定为可由冷媒回收蒸发器(45)内的冷冻润滑油的容量。
5.根据权利要求第1项所述的冷冻装置,其特征为,
控制机构(80)构成为:在润滑油回收动作中禁止非制冷/热运转。
6.根据权利要求第1项所述的冷冻装置,其特征为,
多个蒸发器(45)并排连接,在各蒸发器(45)的上游一侧设有开关阀(7a)。
CNB038009080A 2002-04-08 2003-03-25 冷冻装置 Expired - Fee Related CN100565038C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP105636/2002 2002-04-08
JP2002105636 2002-04-08

Publications (2)

Publication Number Publication Date
CN1547654A true CN1547654A (zh) 2004-11-17
CN100565038C CN100565038C (zh) 2009-12-02

Family

ID=28786390

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038009080A Expired - Fee Related CN100565038C (zh) 2002-04-08 2003-03-25 冷冻装置

Country Status (10)

Country Link
US (1) US6986259B2 (zh)
EP (1) EP1493978B1 (zh)
JP (2) JP4378176B2 (zh)
KR (1) KR20040010740A (zh)
CN (1) CN100565038C (zh)
AT (1) ATE470114T1 (zh)
AU (1) AU2003221148B2 (zh)
DE (1) DE60332823D1 (zh)
TW (1) TWI235227B (zh)
WO (1) WO2003085332A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849475A (zh) * 2014-02-20 2016-08-10 三菱重工业株式会社 复合式空气调节器
CN108027175A (zh) * 2015-03-17 2018-05-11 洋马株式会社 热泵

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050042953A (ko) 2003-11-04 2005-05-11 엘지전자 주식회사 인버터 압축기 및 정속 압축기를 구비한 공조시스템의운전제어방법
JP3946191B2 (ja) * 2003-12-24 2007-07-18 三星電子株式会社 冷凍装置及び冷凍装置の制御方法
JP3939314B2 (ja) * 2004-06-10 2007-07-04 三星電子株式会社 空気調和装置及びその均油運転方法
KR20060055154A (ko) * 2004-11-18 2006-05-23 엘지전자 주식회사 멀티형 공기조화기의 압축기 오일 회수장치
KR100775821B1 (ko) * 2004-12-15 2007-11-13 엘지전자 주식회사 공기조화기 및 그 제어 방법
EP1693634A1 (en) * 2005-02-22 2006-08-23 Lg Electronics Inc. Method for controlling the operation of an air-conditioner
KR20080019251A (ko) * 2005-06-15 2008-03-03 다이킨 고교 가부시키가이샤 냉동 장치
WO2007029180A2 (en) * 2005-09-05 2007-03-15 Arcelik Anonim Sirketi A cooling device
JP4046136B2 (ja) * 2006-02-20 2008-02-13 ダイキン工業株式会社 冷凍装置
JP4069947B2 (ja) * 2006-05-26 2008-04-02 ダイキン工業株式会社 冷凍装置
JP4811167B2 (ja) * 2006-07-24 2011-11-09 ダイキン工業株式会社 空気調和システム
JP2008070086A (ja) * 2006-09-15 2008-03-27 Tlv Co Ltd 空気加熱装置
WO2009028450A1 (ja) * 2007-08-28 2009-03-05 Canon Anelva Technix Corporation クライオポンプシステム
US9541312B2 (en) * 2008-05-07 2017-01-10 United Technologies Corporation Passive oil level limiter
JP5484930B2 (ja) * 2010-01-25 2014-05-07 三菱重工業株式会社 空気調和機
KR101452767B1 (ko) 2010-04-01 2014-10-21 엘지전자 주식회사 압축기의 오일 레벨 감지수단
KR101495186B1 (ko) * 2010-04-01 2015-02-24 엘지전자 주식회사 복수 개의 압축기를 구비한 공기조화기 및 그의 운전방법
EP2634498B1 (en) * 2010-10-27 2017-07-05 Technomirai Co., Ltd Air conditioning control system and program
US9664424B2 (en) 2010-11-17 2017-05-30 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9657977B2 (en) 2010-11-17 2017-05-23 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9541311B2 (en) * 2010-11-17 2017-01-10 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
JP5903595B2 (ja) * 2011-05-27 2016-04-13 パナソニックIpマネジメント株式会社 超低温冷凍装置
EP2778567B1 (en) * 2011-11-07 2021-01-20 Mitsubishi Electric Corporation Air-conditioning apparatus
CN102901189B (zh) * 2012-09-29 2014-12-24 四川长虹电器股份有限公司 一种空调系统、控制系统及空调控制方法
CN104180563B (zh) * 2013-05-27 2017-06-20 珠海格力电器股份有限公司 多联机系统制热时的回油方法
KR101676947B1 (ko) * 2015-03-05 2016-11-16 권오영 농산물 저장고의 상대 습도 조절 장치 및 방법
WO2017006452A1 (ja) * 2015-07-08 2017-01-12 三菱電機株式会社 空気調和装置
KR102472479B1 (ko) * 2016-03-23 2022-12-01 한온시스템 주식회사 차량용 공조장치
EP3505920B1 (en) * 2016-08-29 2021-03-03 Mitsubishi Electric Corporation Capacitance detection device
KR102032283B1 (ko) * 2016-09-19 2019-10-15 엘지전자 주식회사 공기조화기
JP6540666B2 (ja) * 2016-11-24 2019-07-10 ダイキン工業株式会社 冷凍装置
EP3361192B1 (en) * 2017-02-10 2019-09-04 Daikin Europe N.V. Heat source unit and air conditioner having the heat source unit
CN109297151B (zh) * 2018-10-22 2020-12-15 广东美的暖通设备有限公司 空调系统的回油控制方法、装置、存储介质及空调系统
US11384969B2 (en) * 2020-02-27 2022-07-12 Heatcraft Refrigeration Products Llc Cooling system with oil return to oil reservoir
US11371756B2 (en) 2020-02-27 2022-06-28 Heatcraft Refrigeration Products Llc Cooling system with oil return to accumulator
DE102020115267A1 (de) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Regeln einer Kompressionskälteanlage und Kompressionskälteanlage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654186B2 (ja) * 1985-11-18 1994-07-20 ダイキン工業株式会社 冷凍装置
JPS6438557A (en) 1987-07-30 1989-02-08 Toshiba Corp Air conditioner
JPH0213760A (ja) 1988-06-30 1990-01-18 Toshiba Corp マルチエアコンシステムの制御装置
JPH0293257A (ja) * 1988-09-30 1990-04-04 Aisin Seiki Co Ltd 空調装置
JPH07101129B2 (ja) * 1989-01-09 1995-11-01 ダイキン工業株式会社 冷凍装置
JP2922002B2 (ja) * 1991-02-20 1999-07-19 株式会社東芝 空気調和機
JPH05187380A (ja) * 1992-01-14 1993-07-27 Mitsubishi Heavy Ind Ltd 電動機一体型ポンプ
JP3418287B2 (ja) * 1995-12-20 2003-06-16 東芝キヤリア株式会社 マルチ式空気調和機の油回収制御装置
JPH1047800A (ja) 1996-08-02 1998-02-20 Matsushita Refrig Co Ltd 冷却装置
JP3317222B2 (ja) * 1997-12-19 2002-08-26 ダイキン工業株式会社 冷凍装置
JP2001280719A (ja) 2000-03-31 2001-10-10 Daikin Ind Ltd 冷凍装置
JP4079564B2 (ja) 1999-12-14 2008-04-23 三洋電機株式会社 冷凍装置
JP2001194035A (ja) * 2000-01-07 2001-07-17 Kubota Corp 圧縮式ヒートポンプ
JP2002240545A (ja) * 2001-02-20 2002-08-28 Toyota Industries Corp 車両用空調装置およびその運転方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849475A (zh) * 2014-02-20 2016-08-10 三菱重工业株式会社 复合式空气调节器
CN105849475B (zh) * 2014-02-20 2017-12-08 三菱重工制冷空调系统株式会社 复合式空气调节器
CN108027175A (zh) * 2015-03-17 2018-05-11 洋马株式会社 热泵
CN108027175B (zh) * 2015-03-17 2020-04-28 洋马株式会社 热泵

Also Published As

Publication number Publication date
AU2003221148A1 (en) 2003-10-20
EP1493978A4 (en) 2007-08-29
US6986259B2 (en) 2006-01-17
JP2009257759A (ja) 2009-11-05
JP4378176B2 (ja) 2009-12-02
EP1493978B1 (en) 2010-06-02
AU2003221148B2 (en) 2004-12-23
DE60332823D1 (de) 2010-07-15
ATE470114T1 (de) 2010-06-15
US20040159111A1 (en) 2004-08-19
KR20040010740A (ko) 2004-01-31
JPWO2003085332A1 (ja) 2005-08-11
WO2003085332A1 (fr) 2003-10-16
CN100565038C (zh) 2009-12-02
TWI235227B (en) 2005-07-01
EP1493978A1 (en) 2005-01-05
TW200401094A (en) 2004-01-16

Similar Documents

Publication Publication Date Title
CN1547654A (zh) 冷冻装置
CN1281906C (zh) 冷冻装置
CN1215300C (zh) 多方式燃气热泵式空调装置
CN1498331A (zh) 冷冻装置
CN1146766C (zh) 电冰箱除霜装置及其控制方法
CN1162670C (zh) 电冰箱
CN1226573C (zh) 空调装置
CN1084866C (zh) 蓄热式空调机及除霜方法
CN1464962A (zh) 冷冻装置
CN1125292C (zh) 冷冻装置
CN1532472A (zh) 致冷剂循环设备
CN1154818C (zh) 空调器
CN101059259A (zh) 蓄热空调器
CN1158505C (zh) 冰箱及其控制方法
CN1517514A (zh) 具有制冷循环和兰金循环的蒸汽压缩制冷剂循环系统
CN1113203C (zh) 致冷剂循环装置与致冷剂回路装配方法
CN1910409A (zh) 空调装置
CN1606681A (zh) 冷冻装置
CN1677017A (zh) 冷冻循环装置及其控制方法
CN1610809A (zh) 制冷循环装置
CN1920421A (zh) 储热式空调机
CN1842680A (zh) 过冷却装置
CN1906452A (zh) 空调裝置
CN1144976C (zh) 空气调节装置
CN1343297A (zh) 蒸气压缩系统及其方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202

Termination date: 20140325