CN1484612A - 燃料重整系统 - Google Patents
燃料重整系统 Download PDFInfo
- Publication number
- CN1484612A CN1484612A CNA028022343A CN02802234A CN1484612A CN 1484612 A CN1484612 A CN 1484612A CN A028022343 A CNA028022343 A CN A028022343A CN 02802234 A CN02802234 A CN 02802234A CN 1484612 A CN1484612 A CN 1484612A
- Authority
- CN
- China
- Prior art keywords
- combustion gas
- catalyst section
- fuel
- passage
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2475—Membrane reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/323—Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0687—Reactant purification by the use of membranes or filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00004—Scale aspects
- B01J2219/00006—Large-scale industrial plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00058—Temperature measurement
- B01J2219/00063—Temperature measurement of the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00186—Controlling or regulating processes controlling the composition of the reactive mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00193—Sensing a parameter
- B01J2219/00195—Sensing a parameter of the reaction system
- B01J2219/002—Sensing a parameter of the reaction system inside the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00222—Control algorithm taking actions
- B01J2219/00227—Control algorithm taking actions modifying the operating conditions
- B01J2219/00229—Control algorithm taking actions modifying the operating conditions of the reaction system
- B01J2219/00231—Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0405—Purification by membrane separation
- C01B2203/041—In-situ membrane purification during hydrogen production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0822—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1217—Alcohols
- C01B2203/1223—Methanol
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1247—Higher hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
- C01B2203/1294—Evaporation by heat exchange with hot process stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1604—Starting up the process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1619—Measuring the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1623—Adjusting the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1628—Controlling the pressure
- C01B2203/1633—Measuring the pressure
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/169—Controlling the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1695—Adjusting the feed of the combustion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/82—Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
提供燃料重整系统,包括重整催化剂部件(4),用来执行所提供燃料气体的重整反应,膜氢分离器(5),用来从重整气体中提取氢,供给设备(14,8-12),用来提供加热膜反应器(2)的燃烧气体,传感器(16),用来检测膜氢分离器(5)的温度,和控制器。在膜反应器(2)的开始阶段,在重整催化剂部件启动重整反应之前,供给设备提供燃烧气体至膜反应器(2)。另外,当膜氢分离器(5)的温度大于或等于目标温度时,供给设备停止提供燃烧气体至膜反应器(2)。其后燃料供给设备提供燃料至燃料重整催化剂部件(4)。通过这种方法,可以避免膜氢分离器中的氢脆。
Description
技术领域
本发明涉及燃料重整系统(fuel reforming system)。
背景技术
从现有技术已知一种燃料重整系统,包括膜型氢气发生器,它使用可渗透氢性膜(膜氢分离器)从重整气体中分离氢。日本专利局2001年发布的Tokkai 2001-135336号专利公开了使用这种膜型氢气发生器的燃料重整系统。
氢可渗透膜的强度,更具体地说,氢可渗透金属膜的强度在氢渗透的过程中被降低。这种现象称为氢脆。因此,燃料重整系统必须在考虑这种氢脆现象的基础上,施加氢至氢可渗透膜。在金属膜氢分离器中氢脆现象趋向于在低温T,例如钯膜或钯合金膜中发生。
发明内容
但是,上述现有技术的那种燃料重整系统不包含解决氢脆问题的充分方案。特别地,当启动燃料重整系统时,在膜氢分离器的温度处于低水平时,重整器产生的氢被提供给膜氢分离器。因此当氢提供给处于低温的膜氢分离器时,在膜氢分离器中产生氢脆,这降低膜氢分离器的渗透性。
因此,本发明的一个目标是提供可以避免低温氢脆的燃料重整系统。
为了实现上述目标,本发明提供燃料重整系统,本系统含有膜反应器,膜反应器具有重整催化剂部件,它用来把所提供燃料气体重整为重整气体,膜氢分离器,它用来从重整气体中分离氢,氢通道,用来把通过膜氢分离器分离的氢传送至燃料电池,和燃烧催化剂部件,用来加热重整催化剂部件;第一供给设备,用来提供燃烧气体至膜反应器,第一供给设备具有用来产生燃烧气体的燃烧器;第二供给设备,用来提供燃料气体至重整催化剂部件;传感器,用来检测膜氢分离器的温度;和控制器。
控制器的功能是在重整催化剂部件启动燃料气体的重整反应之前,判定膜氢分离器的温度是否大于或等于目标温度;当膜氢分离器的温度低于目标温度时,命令第一供给设备提供燃烧气体至重整催化剂部件和氢通道至少其中之一;当膜氢分离器中重整催化剂部件的温度达到目标温度时,命令第一供给设备停止提供燃烧气体,并命令第二供给设备开始提供燃料气体至膜反应器。
本发明的上述和其它的特征和优点,在本说明书的剩余部分中加以描述,并显示在附图中。
附图说明
图1表示按照本发明第一实施方式的燃料重整系统。
图2表示施加膜氢分离器的压力与膜氢分离器的目标温度之间的关系。
图3表示描述按照第一实施方式的控制例程的流程图。
图4表示按照本发明第二实施方式的燃料重整系统。
图5表示描述按照第二实施方式的控制例程的流程图。
具体实施方式
图1是按照本发明第一实施方式的燃料重整系统的示意图。
按照本实施方式的燃料重整系统包括汽化器1,用来产生燃料气体,膜反应器2,用来产生纯氢,即膜型氢发生器,燃料电池7,用来通过电化学反应发电,和燃烧器14,用来产生热量以加热系统。
膜反应器2包括燃烧催化剂部件3,用来施加重整反应所需的热量,重整催化剂部件4,用来执行重整反应,氢通道6,使通过膜氢分离器5从重整催化剂部件4中渗透分离的氢,从膜反应器2中排出。
燃烧催化剂部件3包括催化剂,例如铂(Pt),钯(Pd),或铑(Rh),它燃烧从燃料电池7的阳极排出物中的氢。重整催化剂部件4包括催化剂,例如镍(Ni),铜锌(Cu-Zn),或钌(Ru)。膜氢分离器5分离膜反应器2中的重整催化剂部件4和氢供给通道6。膜氢分离器5是由金属制成的,例如钯(Pd),钯合金,钒(V),钽(Ta),或铌(Nb)。这种金属具有在其中存储氢的性质,这导致对氢的渗透性,并在低温下比高温下更易于产生氢脆。在膜氢分离器5上提供温度传感器16和压力传感器17。
汽化器1为热交换器,提供水和液烃燃料作为原材料,以生产燃料气体。在汽化器1中,由燃烧催化剂部件3或氢通道6施加的燃烧气体的热量通过热交换生成燃料气体,燃料气体包含来自水和液烃燃料的蒸汽和烃燃料的气态混合物。燃料气体通过燃料气体通道33被施加至膜反应器2中的重整催化剂部件4。通过燃烧催化剂部件3和重整催化剂部件4之间的热交换执行燃料气体的重整反应。膜氢分离器5允许所产生的重整气体中的氢选择性渗透。氢通过氢通道6被施加至燃料电池7。燃料电池7通过电化学反应产生电能。过量氢,即阳极排出物,从燃料电池7中排出,并施加至膜反应器2中的燃烧催化剂部件3,以把过量氢与空气燃烧。空气通过空气压缩机(未显示)施加,通过由控制器15操作的阀31控制空气数量。
膜反应器2中的重整催化剂部件4执行烃燃料上的重整反应。烃燃料可包括甲醇,汽油或天然气。下面将以甲醇重整反应为例描述重整反应。当甲醇进行汽化反应时,如化学方程式(1)所示的甲醇分解反应和化学方程式(2)所示的CO转化反应同时发生。总反应如化学方程式(3)所示。化学方程式(2)所示的反应称为转移反应。
燃料电池7包括一对电极,它们之间夹有电解层。其中一个电极,称作阳极,被施加含氢气体。另一电极,称作阴极,被施加含氧的气体。通过在在两个电极发生的电化学反应,产生电动势。
燃料电池7中发生的电化学反应如下所示。
方程式(4)代表发生在阳极的反应,而方程式(5)代表发生在阴极的反应。方程式(6)表示燃料电池7中发生的总反应。
按照本实施方式的燃料电池7为质子交换膜燃料电池(PEMFC),它的电极具有包含铂的催化剂。如果施加至燃料电池的重整气体中含有较大浓度的一氧化碳(CO),作为CO被铂催化剂吸收的结果,阳极中催化剂的功能被逆向影响。因此,膜氢分离器5把施加至燃料电池7的重整气体中的CO浓度降低为几十ppm的水平。
一般地,在燃料重整系统的开始阶段,膜氢分离器5的温度较低。如果重整催化剂部件4中氢在这种条件下通过重整反应产生,膜氢分离器5的氢脆可能是由于在低温下施加氢至膜氢分离器5而引起的。氢脆降低膜氢分离器5的渗透性能。
当启动燃料重整系统以防止膜氢分离器5的氢脆时,按照本发明的燃料重整系统快速增加膜氢分离器5的温度至目标温度。控制器15根据应用于膜氢分离器5的压力,即重整催化剂部件4上的压力,设定目标温度。低于目标温度,当氢通过重整催化剂部件4中的重整反应产生时,膜氢分离器5产生氢脆。燃料重整系统分别施加由燃烧器14产生的燃烧气体至膜反应器2的燃烧催化剂部件3、重整催化剂部件4和氢通道6。这种燃料重整系统具有主通道,以从燃烧器14提供燃烧气体至膜反应器2。主通道沿主通道分为三路通道。这三路通道包括连接至重整催化剂部件4的第一燃烧气体通道10,它含有第一流量控制阀11,连接至氢通道6的第二燃烧气体通道12,它含有第二流量控制阀13,和连接至燃烧催化剂部件3的第三燃烧气体通道8,它含有第三流量控制阀9。
燃料重整系统含有燃烧气体排出通道18,它把来自燃烧催化剂部件3的废气施加至汽化器1,以施加水和燃料汽化所需的热能。燃料重整系统还含有重整气体通道22,它把来自重整催化剂部件4的废气施加至燃烧催化剂部件3。燃料重整系统还含有燃烧气体排出通道20,它通过沿氢供给通道19的开关阀21,把来自氢通道6的氢施加至燃料电池。燃烧气体排出通道20为用来在开始阶段增加膜氢分离器5温度的燃烧气体的排出通道。
来自温度传感器16的信号、来自压力传感器17的信号和来自系统外部的系统启动命令信号被输入控制器15。控制器15根据这些信号控制流量控制阀9,11,13的关/开。
控制器15包括含有中央处理器(CPU)的微型计算机,只读存储器(ROM),随机存取存储器(RAM)和输入/输出接口(I/O接口)。控制器15可能包含多个微型计算机。
在燃料重整系统启动之后和燃料气体施加至重整催化剂部件4之前,控制器15打开流量控制阀9,11,13,以使燃烧器14产生的燃烧气体被施加至氢通道6、重整催化剂部件4,和膜反应器2中的燃烧催化剂部件3,通过燃烧气体通道8至燃烧催化剂部件3,通过燃烧气体通道10至重整催化剂部件4,通过燃烧气体通道12至氢通道6。
另外,控制器15通过使用安装在重整气体通道22上的压力控制阀34,控制重整催化剂部件4上的压力,以使重整催化剂部件4上的压力在重整系统的启动操作和正常操作期间保持固定值。因此,在膜氢分离器5上,燃烧气体的压力实质上等于重整气体的压力。
本实施方式中施加的燃烧气体包括不含燃料的贫燃烧气体,以实质上避免通过重整催化剂部件4产生氢。虽然燃料气体的施加可能导致氢脆,贫燃烧气体的施加不会导致膜氢分离器5中的氢脆。
通过在上述方式中提供燃烧气体,膜氢分离器5的温度被快速增加至目标温度,因此在燃料气体施加至重整催化剂部件4时有可能避免膜氢分离器5中的氢脆。
控制器15还控制汽化器1的喷射阀27,它把燃料从燃料箱25中导入汽化器1,汽化器1的喷射阀28,它把水从水箱26中导入汽化器1,和燃烧器15大喷射阀29,它把燃料导入燃烧器14。控制器15还控制阀30,它把空气从空气压缩机(未显示)施加至燃料电池7。
控制器15利用温度传感器16和压力传感器17,监控应用于膜氢分离器5的压力和膜氢分离器5的温度。换句话说,控制器15监控重整催化剂部件4上的压力。当膜氢分离器5的温度达到取决于压力的目标温度时,控制器15控制流量控制阀9,11,13的打开取零值,以停止提供燃烧气体至膜反应器2。目标温度达到之后,汽化器1立即通过施加水和燃料气体生产燃料气体,并施加此燃料气体至重整催化剂部件4,以启动重整反应。
为了避免膜氢分离器5的氢脆,在膜氢分离器5的温度达到目标温度之前不执行重整反应。当氢在低温和高压下施加时,膜氢分离器5中的氢脆易于发生。图2表示应用至膜氢分离器5的压力与膜氢分离器5的目标温度之间的关系。此图存储在控制器15的ROM中。
参照图2,氢脆产生区域位于图中目标温度-压力曲线的低温端。由于膜氢分离器不能用于此区域,它被称为“非可用区”。此图近是简单示例,与钯膜氢分离器的使用相对应。对金属膜氢分离器而言,目标温度通常随压力增加而增加。再参照图2,当氢施加至膜氢分离器时,即使自高温下高压也导致氢脆。在钯膜氢分离器的情况下,即使在200℃下,氢分压为5大气时也导致氢脆。
由于控制器15控制重整催化剂部件4的压力控制阀34顺流,以把燃烧气体的压力或重整气体的压力控制为固定值,控制器15在开始阶段根据应用于膜氢分离器5上的燃烧气体的压力,而不是应用于膜氢分离器5上的重整气体的压力,设定膜氢分离器5的目标温度。
尽管氢脆直接受重整气体中的氢分压影响,而不是重整气体的压力,燃烧气体的压力被用来设定目标温度,在本实施方式中燃烧气体的压力实质上等于重整气体的压力。由于重整气体的压力大于重整气体中的氢分压,目标温度被设定为足够高,以防止由重整气体中的氢引起的膜氢分离器5的氢脆。
在大约100℃的相对低温下,通过重整反应产生氢。因此,重整反应通常在温度达到目标温度后立即开始,此温度是通过装置在膜氢分离器5上的温度传感器16测量的。此外,膜氢分离器5的目标温度,在此温度下重整反应开始,随装置在膜氢分离器5上的压力传感器17测量的压力增加而增加。通过这种方法,可以避免重整反应开始时的氢脆。
尽管通过提供燃烧气体至重整催化剂部件4和氢通道6,膜氢分离器5的温度可以有效地增加,但增加膜反应器2的整体温度,是通过提供燃烧气体至燃烧催化剂部件3,以及重整催化剂部件4和氢通道6实现的。因此通过抑制由膜反应器2中的温度分布引起的热应变,改善膜反应器2的耐用性。
另外,当燃烧器14中产生的燃烧气体被施加至膜反应器2的重整催化剂部件4、氢通道6和燃烧催化剂部件3时,控制器15通过重整催化剂部件4的第一流量控制阀11,氢通道6的第二流量控制阀13,燃烧催化剂部件3的第三流量控制阀9,控制施加至每个部件的燃烧气体的流量达到相等的流量。燃烧催化剂部件3和重整催化剂部件4的压力损失要大于氢通道6的压力损失,因为催化剂支撑在燃烧催化剂部件3和重整催化剂部件4中,诸如毛刺之类的残留体被插入催化剂部件3,4中。因此控制器15设定流量控制阀9,11的开口大于流量控制阀13的开口,以使每个部件的流量相等,并优化温度增加的效力。
可以通过调整燃烧气体通道8,10,12的截面积(它垂直于流动方向),以使每个部件的流量相等。换句话说,第一燃烧气体通道10和第三燃烧气体通道8的截面积可以设定为大于第二燃烧气体通道10的截面积。
现在参照图3所示的流程图,将描述启动燃料重整系统的控制程序例。此程序通过控制器15执行。
首先在S301步,通过控制器15,使用压力传感器17和温度传感器16,读应用于膜氢分离器5的压力和膜氢分离器5的温度。接着程序前进至第S302步,其中基于检测到的压力,通过查看图2所示的温度-压力图,设定目标温度。此后程序前进至第S303步,其中确定检测到的温度是否低于第S302步设定的目标温度。在第S302步和第S303步执行的程序确定检测到的温度和压力是否处于非可用区,在非可用区可能产生氢脆。
当在第S303步检测到的温度低于目标温度时,程序前进至第S304步,其中命令开关阀21把气体的流动方向从朝燃料电池7的方向,切换至朝燃烧气体排出通道20的方向。因此,通过停止为燃料电池7施加包括微量CO的燃烧气体,防止燃料电池7中的铂催化剂的恶化。
接下来程序前进至第S305步,其中空气和燃料被施加至燃烧器14。为了保证燃料的完全燃烧,空气-燃料比率被设定为贫值(leanvalue),在燃烧器14中执行贫燃烧。其后程序前进至第S306步,其中流量控制阀9,11,13被打开,不含燃料的贫燃烧气体被施加至膜反应器2。
在上述方法中,为膜反应器2提供燃烧气体使膜氢分离器5的温度增加。其后程序返回至第S301步,执行第S301至S303步的程序。当在第S303步膜氢分离器5的温度不低于目标温度时,也就是说,当膜氢分离器5可用时,程序前进至第S307步。在第S307步,第一流量控制阀11,第二流量控制阀13和第三流量控制阀9被关闭。另外,停止施加燃料和空气至燃烧器14,因而停止生产燃烧气体。其后在第S308步,燃料和水被施加至汽化器1,因而包含蒸汽和汽态燃料的燃料气体被施加至膜反应器2的重整催化剂部件4,以启动重整催化剂部件4中的重整反应。另外,阀31被打开,以施加空气至膜反应器2的燃烧催化剂部件3。其后在第S309步,通过开关至燃料电池7的开关阀21,施加由膜反应器2生产并分离的氢至燃料电池7。同时,施加空气至燃料电池7,因而作为施加空气和氢的结果,燃料电池7产生电能。
此方法中,在燃料重整系统的开始阶段,通过使用不含燃料的燃烧气体加热膜反应器2,防止膜反应器2中的氢脆。
下面参照图4,将描述本发明的第二实施例。
图4中,与图1相同的元件以同样的标号表示,并将省略附加描述。相对第一实施方式的不同点是,在第二实施方式中,从燃烧器14至膜反应器2的燃烧气体通道没有分支,仅由通向燃烧催化剂部件3的燃烧气体通道8组成。从燃烧催化剂部件3伸出的燃烧气体通道分为通向重整催化剂部件4的第一燃烧气体通道10和通向氢通道6的第二燃烧气体通道12。
下面将描述第二实施方式的效果。在此实施方式中,在燃料重整系统的开始阶段,通过第三燃烧气体通道8,仅把由燃烧器14产生的燃烧气体施加至膜反应器2的燃烧催化剂部件3。以这种方法施加的燃烧气体为富燃烧气体,它包含在燃烧催化剂部件3中燃烧的燃料。通过根据施加至燃烧器14的空气和燃料,富化空气-燃料比率,生产含有残余未燃烧燃料的富燃烧气体。在添加复燃烧气体的同时,通过施加足够量的空气至燃烧催化剂部件3,在燃烧催化剂部件3中执行贫气燃烧,以燃烧富燃烧气体中的未燃烧燃料。接着,由燃烧催化剂部件3产生的贫燃烧气体,通过连接至重整催化剂部件4的第一燃烧气体通道10和连接至氢通道6的第二燃烧气体通道12,被施加至膜反应器的氢通道6和重整催化剂部件4。
由于此时施加的贫燃烧气体不含燃料,在重整催化剂部件4中不产生由重整反应导致的氢。在此方法中,提供燃烧气体至膜反应器2的每个元件,导致膜氢分离器5的温度迅速增加,这使系统的启动性能得到改善。控制器15监控应用于膜氢分离器5的压力和膜氢分离器5的温度,并当膜氢分离器5的温度达到目标温度时,进一步执行启动重整反应的控制。目标温度根据应用于膜氢分离器5的压力设定。当压力变高时,膜氢分离器5启动重整反应的目标温度随之增加。通过这种方法,使确保避免氢脆发生成为可能。
参照图5所示的流程图,将描述启动燃料重整系统的控制程序例,此程序通过控制器15执行。
在S501步,以与第一实施例相同的方法,通过控制器15,使用压力传感器17和温度传感器16,读应用于膜氢分离器5的压力和膜氢分离器5的温度。接着程序前进至第S502步,通过查看图2所示的温度-压力图,基于检测到的压力,设定目标温度。在第S503步,确定检测到的温度是否低于目标温度。当在第S503步确定的结果为肯定时,程序前进至第S504步,其中开关阀21切换至燃烧气体排出通道20的方向。然后在第S505步,开始施加空气和燃料至燃烧器14,并产生富燃烧气体。
在第S506步,至燃烧催化剂部件3的第三流量控制阀9被打开,从而使富燃烧气体被施加燃烧催化剂部件3。在第S507步,施加空气至燃烧催化剂部件3,并通过燃烧催化剂部件3产生高温贫燃烧气体。接下来,在第S508步,至重整催化剂部件4的第一流量控制阀11和至氢通道6的第二流量控制阀13被打开,从而施加贫燃烧气体至重整催化剂部件4和氢通道6。为膜反应器2提供燃烧气体使膜氢分离器5的温度增加。其后程序返回至第S501步,执行第S501至S503步的程序。当在第S503步检测到的温度不低于目标温度时,程序前进至第S509步,其中所有的流量控制阀9,11,13被关闭。接着,在第S510步停止施加燃料和空气至燃烧器14,因而停止提供燃烧气体至膜反应器2。其后在第S511步,燃料和水被施加至汽化器1,因而汽化燃料气体被施加至膜反应器2的重整催化剂部件4。另外,在第S511步,开始施加空气至膜反应器2的燃烧催化剂部件3和燃料电池7。通过这种方法,氢被传送至燃料电池7。通过被施加空气和氢,燃料电池7产生电能。
如上述控制程序所示,通过燃烧器14产生的富燃烧气体被施加至燃烧催化剂部件3,并在燃烧催化剂部件3中执行贫气燃烧。所产生的不含燃料的高温燃烧气体被施加至重整催化剂部件4和氢通道6。通过这种方法,氢催化剂分离器5的温度被有效地增加,而启动燃料重整系统所需的时间被缩短。
尽管上文已经参照本发明的特定实施例描述了本发明,本发明并不限于上述具体实施方式。
在上述两种实施方式中,提供如图2所示的图,以确定重整反应开始的目标温度与重整催化剂部件4上的压力之间的关系。控制器15基于重整催化剂部件上的压力,设定目标温度。但是可选地,可以设定表示目标温度与氢通道6和重整催化剂部件4之间的氢分压关系的图。在这种情况下,燃料重整系统可以包含传感器,以检测重整催化剂部件4和氢通道6中气体成分和压力。因此,可以通过传感器的检测结果计算氢分压,并基于氢分压设定目标温度。
启动按照本发明的燃料重整系统的控制方法,适用于使用膜氢分离器5的其它燃料重整系统。例如,按照本发明的控制方法可以应用于这种系统,其中提供独立于膜氢分离器5的重整催化剂部件4。
在上述实施方式中,燃烧气体被直接施加至重整催化剂部件4,以加热膜氢分离器5。但是膜氢分离器5可以通过热交换被加热。
另外,在上述实施方式中,在开始阶段,重整系统保持重整催化剂部件4上压力为固定值,从而燃烧气体的压力等于重整气体。但是,如果在开始阶段重整系统不保持重整催化剂部件4上压力为固定值,控制器15也可以不根据燃烧气体的压力,而根据重整气体中的预计氢分压或重整气体的预计压力,设定膜氢分离器5的目标温度。
这里以引用形式包含日本专利申请P2001-284350(2001年9月19日提交)的全部内容。
对本领域技术人员而言,可以根据上述说明,对上述具体实施方式做出改变和修改。本发明领域按照下面的权利要求书限定。
Claims (12)
1.一种燃料重整系统,包括:
膜反应器(2),具有重整催化剂部件(4),用来把所提供燃料气体重整为重整气体;膜氢分离器(5),用来从重整气体中分离氢;氢通道(6),用来把膜氢分离器分离的氢传送至燃料电池(7);和燃烧催化剂部件(3),用来加热重整催化剂部件;
第一供给设备(8,9,10,11,12,13,14,25,29),用来提供燃烧气体至膜反应器,第一供给设备具有用来产生燃烧气体的燃烧器(14);
第二供给设备(1,25,26,27,28,33),用来提供燃料气体至重整催化剂部件;
传感器(16),用来检测膜氢分离器的温度;和
控制器(15),功能为:
在重整催化剂部件启动燃料气体的重整反应之前,判定膜氢分离器(5)的温度是否大于或等于目标温度;
当膜氢分离器的温度低于目标温度时,命令第一供给设备提供燃烧气体至重整催化剂部件和氢通道至少其中之一;
当膜氢分离器的温度达到目标温度时,命令第一供给设备停止提供燃烧气体,并命令第二供给设备开始提供燃料气体至膜反应器的重整催化剂部件。
2.按照权利要求1所述的燃料重整系统,其中第一供给设备包含第一通道(10),用来把燃烧气体从燃烧器传送至重整催化剂部件,和装备在第一通道中的第一控制阀(11),以根据控制器(15)发出的命令调整燃烧气体的流量;其中当膜氢分离器的温度小于目标温度时,控制器(15)还起到命令第一控制阀(11)允许燃烧气体流动的作用。
3.按照权利要求1所述的燃料重整系统,其中第一供给设备包含第二通道(12),用来把燃烧气体从燃烧器传送至氢通道,和装备在第二通道中的第二控制阀(13),以根据控制器(15)发出的命令调整燃烧气体的流量;其中当膜氢分离器的温度小于目标温度时,控制器(15)还起到命令第二控制阀允许燃烧气体流动的作用。
4.按照权利要求1所述的燃料重整系统,其中第一供给设备包含第三通道(8),用来把燃烧气体从燃烧器传送至燃烧催化剂部件,和装备在第三通道中的第三控制阀(9),以根据控制器(15)发出的命令调整燃烧气体的流量;其中当膜氢分离器的温度小于目标温度时,控制器(15)还起到命令第三控制阀允许燃烧气体流动的作用。
5.按照权利要求1至权利要求4中任一项所述的燃料重整系统,其中第一供给设备中的燃烧器(14)产生不含燃料的贫燃烧气体。
6.按照权利要求1所述的燃料重整系统,其中燃烧器(14)产生的燃烧气体含燃料;
并且其中第一供给设备包含第一通道(10),用来把燃烧气体从燃烧催化剂部件(3)传送至重整催化剂部件(4),第一通道装备有第一控制阀,用来根据控制器(15)发出的命令调整燃烧气体的流量,和第三通道(8),用来把燃烧气体从燃烧器(14)传送至燃烧催化剂部件(3),第三通道装备有第三控制阀,用来根据控制器(15)发出的命令调整燃烧气体的流量;其中燃烧催化剂部件(3)燃烧包含在燃烧气体的燃料;
其中当膜氢分离器(5)的温度小于目标温度时,控制器(15)还起到命令第一和第三控制阀(9,11)允许燃烧气体流动的作用。
7.按照权利要求1所述的燃料重整系统,其中燃烧器产生的燃烧气体含燃料;
并且其中第一供给设备包含第二通道(12),用来把燃烧气体从燃烧催化剂部件(3)传送至氢通道(6),第二通道装备有第二控制阀(13),用来根据控制器(15)发出的命令调整燃烧气体的流量,和第三通道(8),用来把燃烧气体从燃烧器(14)传送至燃烧催化剂部件(3),第三通道装备有第三控制阀(9),用来根据控制器(15)发出的命令调整燃烧气体的流量;其中燃烧催化剂部件(3)燃烧包含在燃烧气体的燃料;
其中当膜氢分离器(5)的温度小于目标温度时,控制器(15)还起到命令第二和第三控制阀允许燃烧气体流动的作用。
8.按照权利要求1所述的燃料重整系统,其中第一供给设备提供燃烧气体至氢通道(6),重整催化剂部件(4)和燃烧催化剂部件(3),因此至氢通道、重整催化剂部件和燃烧催化剂部件的流量实质上相等。
9.按照权利要求8所述的燃料重整系统,其中第一供给设备包含第一控制阀(11),用来根据控制器(15)发出的命令调整燃烧气体至重整催化剂部件(4)的流量,第二控制阀(13),用来根据控制器(15)发出的命令调整燃烧气体至氢通道(6)的流量,第三控制阀(9),用来根据控制器(15)发出的命令调整燃烧气体至燃烧催化剂部件(3)的流量;
其中控制器(15)控制第一,第二和第三控制阀,以使至氢通道、重整催化剂部件和燃烧催化剂部件的流量实质上相等。
10.按照权利要求8所述的燃料重整系统,其中用来传送燃烧气体至氢通道(6)的通道(12)的截面积,小于用来传送燃烧气体至重整催化剂部件(4)的通道(10)的截面积,也小于用来传送燃烧气体至燃烧催化剂部件(3)的通道(8)的截面积。
11.按照权利要求1所述的燃料重整系统,还包括传感器(17),用来检测施加到膜氢分离器(5)的压力;
其中控制器(15)还根据施加到膜氢分离器的压力,设定膜氢分离器的目标温度,以使目标温度随压力增加而升高。
12.一种用于燃料重整系统的启动控制方法;燃料重整系统包括:膜反应器(2),具有重整催化剂部件(4),用来把所提供燃料气体重整为重整气体,膜氢分离器(5),用来从重整气体中分离氢,氢通道(6),用来把膜氢分离器分离的氢传送至燃料电池(7),和燃烧催化剂部件(3), 用来加热重整催化剂部件; 第一供给设备(8,9,10,11,12,13,14,25,29),用来提供燃烧气体至膜反应器,第一供给设备具有用来产生燃烧气体的燃烧器(14);第二供给设备(1,25,26,27,28,33),用来提供燃料气体至重整催化剂部件;传感器(16),用来检测膜氢分离器的温度;
该方法包括:
在重整催化剂部件启动燃料气体的重整反应之前,判定膜氢分离器(5)的温度是否大于或等于目标温度;
当膜氢分离器的温度低于目标温度时,命令第一供给设备提供燃烧气体至重整催化剂部件和氢通道至少其中之一;
当膜氢分离器的温度达到目标温度时,命令第一供给设备停止提供燃烧气体,并命令第二供给设备开始提供燃料气体至膜反应器的重整催化剂部件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP284350/2001 | 2001-09-19 | ||
JP2001284350A JP3778038B2 (ja) | 2001-09-19 | 2001-09-19 | 燃料改質システム |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1484612A true CN1484612A (zh) | 2004-03-24 |
CN1223509C CN1223509C (zh) | 2005-10-19 |
Family
ID=19107686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB028022343A Expired - Fee Related CN1223509C (zh) | 2001-09-19 | 2002-08-21 | 燃料重整系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7056480B2 (zh) |
EP (1) | EP1427667B1 (zh) |
JP (1) | JP3778038B2 (zh) |
KR (1) | KR100472332B1 (zh) |
CN (1) | CN1223509C (zh) |
WO (1) | WO2003027006A2 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102365779A (zh) * | 2009-04-08 | 2012-02-29 | 吉坤日矿日石能源株式会社 | 间接内部重整型固体氧化物型燃料电池的停止方法 |
CN101370733B (zh) * | 2006-01-13 | 2012-09-26 | 松下电器产业株式会社 | 氢生成装置、燃料电池系统及其运转方法 |
CN109205559A (zh) * | 2017-06-29 | 2019-01-15 | 气体产品与化学公司 | 操作炉的方法 |
CN109399561A (zh) * | 2018-12-19 | 2019-03-01 | 天津工业大学 | 一种在线制氢系统及方法 |
CN110606467A (zh) * | 2019-10-11 | 2019-12-24 | 上海齐耀动力技术有限公司 | 一种甲醇重整制氢工艺及系统 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7922781B2 (en) * | 2001-03-02 | 2011-04-12 | Chellappa Anand S | Hydrogen generation apparatus and method for using same |
JP4923371B2 (ja) * | 2001-09-21 | 2012-04-25 | トヨタ自動車株式会社 | 水素分離膜を備える水素生成装置の起動方法 |
CN1610790A (zh) * | 2001-12-03 | 2005-04-27 | 能量催化系统公司 | 用于改进的内燃机排放控制的系统和方法 |
US7082753B2 (en) * | 2001-12-03 | 2006-08-01 | Catalytica Energy Systems, Inc. | System and methods for improved emission control of internal combustion engines using pulsed fuel flow |
US7527661B2 (en) * | 2005-04-18 | 2009-05-05 | Intelligent Energy, Inc. | Compact devices for generating pure hydrogen |
KR100533298B1 (ko) * | 2002-09-30 | 2005-12-05 | 가부시끼가이샤 도시바 | 연료 전지 시스템 |
JP2006506581A (ja) * | 2002-11-15 | 2006-02-23 | カタリティカ エナジー システムズ, インコーポレイテッド | 希薄燃焼エンジンからのNOx排出を低減するための装置および方法 |
US7763217B2 (en) | 2003-05-16 | 2010-07-27 | Battelle Memorial Institute | Rapid start fuel reforming systems and techniques |
JP2005243416A (ja) * | 2004-02-26 | 2005-09-08 | Toyota Motor Corp | 燃料電池システム |
JP4312632B2 (ja) * | 2004-03-03 | 2009-08-12 | 中外炉工業株式会社 | バイオマスガス化システムおよびその運転方法 |
US7670587B2 (en) * | 2006-03-10 | 2010-03-02 | Intelligent Energy, Inc. | Fuel steam reformer system and reformer startup process |
FR2899022A1 (fr) * | 2006-03-24 | 2007-09-28 | Renault Sas | Dispositif et procede de mise en temperature lors du demarrage d'un systeme de pile a combustible embarque sur un vehicule automobile |
US7938893B2 (en) * | 2006-04-18 | 2011-05-10 | Gas Technology Institute | Membrane reactor for H2S, CO2 and H2 separation |
TW200806392A (en) * | 2006-06-20 | 2008-02-01 | Lynntech Inc | Microcartridge hydrogen generator |
KR101022734B1 (ko) * | 2006-12-29 | 2011-03-22 | 건국대학교 산학협력단 | 농후연소 가스 산출방법 |
US8163046B2 (en) | 2008-03-28 | 2012-04-24 | IFP Energies Nouvelles | Start-up process for a unit for producing highly thermally-integrated hydrogen by reforming a hydrocarbon feedstock |
US8894967B2 (en) * | 2008-03-28 | 2014-11-25 | IFP Energies Nouvelles | Process for the production of highly thermally-integrated hydrogen by reforming a hydrocarbon feedstock |
JP5002025B2 (ja) * | 2010-01-13 | 2012-08-15 | トヨタ自動車株式会社 | 燃料改質システムおよび燃料改質システムの制御方法 |
US20150118145A1 (en) * | 2013-10-28 | 2015-04-30 | Amazonica, Corp. Dba Euro American Hydrogen Corp | Ultra-pure hydrogen generating method and device |
KR101913809B1 (ko) * | 2016-03-24 | 2018-11-02 | 에스퓨얼셀(주) | 연료 전지 시스템 및 그 구동 방법 |
US10189763B2 (en) | 2016-07-01 | 2019-01-29 | Res Usa, Llc | Reduction of greenhouse gas emission |
US9981896B2 (en) | 2016-07-01 | 2018-05-29 | Res Usa, Llc | Conversion of methane to dimethyl ether |
WO2018004994A1 (en) | 2016-07-01 | 2018-01-04 | Res Usa, Llc | Fluidized bed membrane reactor |
EP3538746A1 (en) | 2016-11-09 | 2019-09-18 | 8 Rivers Capital, LLC | Systems and methods for power production with integrated production of hydrogen |
KR102651575B1 (ko) | 2017-11-09 | 2024-03-27 | 8 리버스 캐피탈, 엘엘씨 | 수소 및 이산화탄소의 생산 및 분리를 위한 시스템들 및 방법들 |
KR20220020842A (ko) | 2019-06-13 | 2022-02-21 | 8 리버스 캐피탈, 엘엘씨 | 추가 생성물들의 공동 발생을 구비하는 동력 생산 |
JP2024531116A (ja) | 2021-08-13 | 2024-08-29 | ビーエーエスエフ ソシエタス・ヨーロピア | 燃料電池作動のために、メタノールまたはアンモニアから高純度水素を取得するための方法および装置 |
CA3238610A1 (en) | 2021-11-18 | 2023-05-25 | Rodney John Allam | Apparatus for hydrogen production |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07315801A (ja) * | 1994-05-23 | 1995-12-05 | Ngk Insulators Ltd | 高純度水素製造システム、高純度水素の製造方法及び燃料電池システム |
DE19755813C2 (de) * | 1997-12-16 | 2000-09-14 | Dbb Fuel Cell Engines Gmbh | Verfahren zum Betrieb einer Wasserdampfreformierungsanlage, damit betreibbare Reformierungsanlage und Brennstoffzellensystem-Betriebsverfahren |
EP0924162A3 (de) * | 1997-12-16 | 1999-10-20 | dbb fuel cell engines GmbH | Wasserstoffabtrennmembran, damit ausgerüstete Methanolreformierungsanlage und Betriebsverfahren hierfür |
DE19757506C2 (de) * | 1997-12-23 | 2001-08-02 | Xcellsis Gmbh | Wasserstoffabtrennmembran, damit ausgerüstete Methanolreformierungsanlage und Betriebsverfahren hierfür |
DE19902926C2 (de) | 1999-01-26 | 2001-01-04 | Daimler Chrysler Ag | Reaktoranlage und Betriebsverfahren hierfür |
JP4631115B2 (ja) | 1999-11-02 | 2011-02-16 | ダイキン工業株式会社 | 燃料電池システム |
-
2001
- 2001-09-19 JP JP2001284350A patent/JP3778038B2/ja not_active Expired - Fee Related
-
2002
- 2002-08-21 KR KR10-2003-7003860A patent/KR100472332B1/ko active IP Right Grant
- 2002-08-21 EP EP02762815A patent/EP1427667B1/en not_active Expired - Lifetime
- 2002-08-21 CN CNB028022343A patent/CN1223509C/zh not_active Expired - Fee Related
- 2002-08-21 WO PCT/JP2002/008405 patent/WO2003027006A2/en active IP Right Grant
- 2002-08-21 US US10/332,278 patent/US7056480B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101370733B (zh) * | 2006-01-13 | 2012-09-26 | 松下电器产业株式会社 | 氢生成装置、燃料电池系统及其运转方法 |
CN102365779A (zh) * | 2009-04-08 | 2012-02-29 | 吉坤日矿日石能源株式会社 | 间接内部重整型固体氧化物型燃料电池的停止方法 |
CN102365779B (zh) * | 2009-04-08 | 2013-04-17 | 吉坤日矿日石能源株式会社 | 间接内部重整型固体氧化物型燃料电池的停止方法 |
CN109205559A (zh) * | 2017-06-29 | 2019-01-15 | 气体产品与化学公司 | 操作炉的方法 |
CN109205559B (zh) * | 2017-06-29 | 2022-06-17 | 气体产品与化学公司 | 操作炉的方法 |
CN109399561A (zh) * | 2018-12-19 | 2019-03-01 | 天津工业大学 | 一种在线制氢系统及方法 |
CN109399561B (zh) * | 2018-12-19 | 2022-08-30 | 天津工业大学 | 一种在线制氢系统及方法 |
CN110606467A (zh) * | 2019-10-11 | 2019-12-24 | 上海齐耀动力技术有限公司 | 一种甲醇重整制氢工艺及系统 |
CN110606467B (zh) * | 2019-10-11 | 2022-12-09 | 上海齐耀动力技术有限公司 | 一种甲醇重整制氢工艺及系统 |
Also Published As
Publication number | Publication date |
---|---|
US20040101720A1 (en) | 2004-05-27 |
JP2003095606A (ja) | 2003-04-03 |
WO2003027006A2 (en) | 2003-04-03 |
CN1223509C (zh) | 2005-10-19 |
KR100472332B1 (ko) | 2005-03-14 |
EP1427667A2 (en) | 2004-06-16 |
US7056480B2 (en) | 2006-06-06 |
WO2003027006A3 (en) | 2003-11-20 |
KR20030051655A (ko) | 2003-06-25 |
EP1427667B1 (en) | 2011-10-19 |
JP3778038B2 (ja) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1484612A (zh) | 燃料重整系统 | |
EP2237354B1 (en) | Fuel cell system | |
US7132184B2 (en) | Fuel cell system | |
EP1708300A1 (en) | Fuel cell system | |
JP5081542B2 (ja) | 燃料電池システム及びその運転方法 | |
US20030228504A1 (en) | Method for operating fuel cell system having at least one discontinuously operated fuel cell | |
EP2186154B1 (en) | Fuel cell system and method of operating the fuel cell system | |
JP5128072B2 (ja) | 燃料電池発電システム | |
JP4463846B2 (ja) | 水素製造発電システム | |
US7645532B2 (en) | Solid-oxide fuel cell system having an upstream reformate combustor | |
JP4523298B2 (ja) | 燃料電池システム及びその発電方法 | |
JP4531800B2 (ja) | 水素製造発電システム及びその停止方法 | |
US7666537B2 (en) | Fuel cell system for preventing hydrogen permeable metal layer degradation | |
EP2203950B1 (en) | Operation method at the time of load reduction of fuel cell system | |
US7374591B2 (en) | Method for starting a gas generating system | |
US7527884B2 (en) | Fuel processing system and its shutdown procedure | |
JPH08293312A (ja) | 燃料電池システム | |
JP2009117120A (ja) | 水素製造発電システムの運転方法 | |
JPH0757758A (ja) | 燃料電池システム | |
JP2009081112A (ja) | 燃料電池発電装置の運転方法及び燃料電池発電装置 | |
EP3588649B1 (en) | Fuel cell system and control method thereof | |
JP2006152901A (ja) | ハイブリッドシステム | |
US20080118794A1 (en) | Fuel processor having improved structure for rapid heating up of carbon monoxide removing unit and method of operating the fuel processor | |
JP2005166305A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20051019 Termination date: 20180821 |