CN1473280A - 反射液晶显示装置、显示设备、投影光学系统和投影显示系统 - Google Patents

反射液晶显示装置、显示设备、投影光学系统和投影显示系统 Download PDF

Info

Publication number
CN1473280A
CN1473280A CNA028028228A CN02802822A CN1473280A CN 1473280 A CN1473280 A CN 1473280A CN A028028228 A CNA028028228 A CN A028028228A CN 02802822 A CN02802822 A CN 02802822A CN 1473280 A CN1473280 A CN 1473280A
Authority
CN
China
Prior art keywords
lcd device
light
reflection lcd
liquid crystal
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028028228A
Other languages
English (en)
Other versions
CN1267777C (zh
Inventor
桥本俊一
矶崎忠昭
奈子
杉浦美奈子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1473280A publication Critical patent/CN1473280A/zh
Application granted granted Critical
Publication of CN1267777C publication Critical patent/CN1267777C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

在电压升至5到6V时,尽管垂面(homeotropic)液晶层的厚度为2μm或更小,通过将垂面液晶材料的Δn值调节到0.1或者更大,液晶的透射性仍然容易饱和,由此允许在实际可用的低电压驱动并且显著地改善自身的透射性。由此,可实现具有充分的透射性、低电压驱动特性和极佳的高的响应速度的反射型垂面液晶装置,并且可实现采用该装置的显示单元、投影光学和显示系统。

Description

反射液晶显示装置、显示设备、投影光学系统和投影显示系统
技术领域
本发明涉及一种适用于投影显示系统等的反射液晶(光电(electro-optical))显示装置,并且也涉及一种与该显示装置相结合的显示设备、投影光学系统和投影显示系统。
背景技术
随着最近对具有高清晰度、小尺寸和高亮度的投影显示改进的实现,存在突出的和实际使用的反射显示装置,该装置适用于在提高清晰度的条件下获得空间的减小,并且能够获得高的光学效率。
在各种这样的显示装置中,报道了一种有源反射液晶显示装置,其中在硅衬底上提供驱动元件,将该硅衬底置于玻璃衬底的对面,在该玻璃衬底中形成透明的电极,并且该硅衬底由例如,CMOS(互补金属氧化物半导体)电路构成,并且将具有铝光学反射电极的驱动电路衬底置于该硅衬底之上,并且在这样的衬底对之间注入垂直排列(vertically-aligned)的液晶材料。(论文(1):H.Kurogane等,Digests of SID1998,p.33-36(1998);论文(2):S.Uchiyaa等,Proceedings of IDW2000,p.1183-1184(2000))。该种类型的装置已经由一些厂商实际投入了市场。
这里,垂直排列的液晶材料是一种具有负介电常数各向异性(negativepermittivity anisotropy)的材料(即,对于液晶分子的主轴(major axis)来说,Δε=ε(‖)-ε(⊥)是平行介电常数(parallel permittivty)ε(‖)和垂直介电常数(vertical permittivity)ε(⊥)之差,Δε是负值)。当施加在它的透明电极和光反射电极之间的电压为零时,液晶分子随后被定向到与衬底平面垂直,并且由此以正常黑模式显示。
具上述论文报道,在传统的反射装置中的垂直排列的液晶层的厚度(单元间隙(cellgap))是3到4μm,并且液晶透射系数相对于施加到液晶上的电压的曲线(这里称为V-T曲线,相当于在反射装置中实际测量的该装置的反射率;这里假设:例如,通过该装置将入射光线,例如s-偏振光线,调制为p-偏振反射光线,这将在下面说明)具有如下特性,在大约2V的阈值电压处该曲线升高,并且在所施加的电压为4或6V时该曲线达到最大值。通过改变在电极之间的电压来模拟地改变液晶的透射率,由此实现灰度的表示。作为范例,图14用图表表示从上面所引用的论文(1)摘取的数据。根据报告的数据,液晶层具有3μm的厚度,驱动电压大约±4V,并且响应速度(上升时间+下降时间)大约为17msec。
通常驱动液晶的同时按照每帧或者场将电压反向为正或者负,以便最大程度地以±4到6V的电压来实际驱动上述的装置。(因为在原理上正和负V-T曲线相互对称,所以通常V-T曲线仅表示为正)。也限定如下:液晶驱动电压±4到6V需要高于作为驱动晶体管的有效耐压值±8到12V。
因为该电压明显地高于在一般MOS工艺中的耐压值,所以对液晶驱动晶体管施加对于LDD(轻掺杂浓度源/漏极)结构等的高耐压处理,该液晶驱动晶体管在位于硅驱动电路衬底上的每个像素中形成。考虑到生产成本、功耗等,耐压值通常在8到12V范围内。这就是将已知装置设计为最大具有±4到6V的V-T曲线的原因。
在已知装置中所使用的垂直排列的液晶材料中,折射率各向异性Δn(=n(‖)-n(⊥),其为在沿液晶分子的主轴的折射率n(‖)和与其垂直的折射率n(⊥)之差)具有小于0.1的值(典型0.08左右),并且典型的像素间距是13.5μm(像素尺寸13μm)。
目前,与其低响应速度相关的液晶显示器的一个缺点作为问题得到关注,并且提高响应速度是一个迫切的需要。通常,液晶的响应速度(上升时间和下降时间)与液晶层的厚度d的平方成比例,如下面的等式(1)和等式(2)所示。所以,减小液晶层的厚度可有效地获得较高的响应速度。
上升时间: τon = r · d 2 ϵ ( 0 ) Δ ( V 2 - Vc 2 ) · · · ( 1 )
下降时间: τoff = r · d 2 K · π 2 · · · ( 2 )
(其中γ:液晶粘度,d:液晶层厚度,Δε:液晶介电常数各向异性,ε(0):空间介电常数,K:液晶弹性常数,V:施加到液晶上的电压(液晶驱动电压),Vc:阈值)
然而,在此前所知的垂直排列的液晶显示装置中,尽管根据等式(1)和(2)在减小液晶层的条件下其响应速度获得提高,仍然存在另外的问题:使透射系数饱和所需的驱动电压变得较高。图15图示了在采用液晶材料(其中Δn=0.082)系统中,该液晶材料应用在传统的装置中,通过减小液晶层的厚度所获得的V-T曲线,并且图16图示了液晶层的厚度d引起的饱和电压的变化。
如图15和16所示,在液晶层厚度d减到小于2.5μm之后,装置的饱和电压在6V以上急剧变高,并且当厚度d小于2μm时,饱和电压达到约10V。即,驱动晶体管所需的耐压值需要大于20V。而且,当厚度d小于1.5μm时,透射系数的绝对值达到100%。当厚度d等于1μm时,可达到的透射系数仅为约30%,同时阈值被提升的较高。
这种现象的原因被认为是:随着在垂直排列液晶中的厚度d(单元间隙)的减小,施加到在液晶分子和定向薄膜(orientation film)之间的界面上的相互作用比所施加电压在液晶分子的导向器(dirctor)中所引起的方向变化强。相反,当液晶层具有足够的厚度时,由于厚度大的特性使得导向器的移动性变得更强,由此在界面上的相互作用显著地降低。
如上所述,假如在液晶显示装置中驱动电压变得较高,则在一般的驱动装置硅衬底中不能执行适当的驱动。理所当然可通过提高像素驱动晶体管的耐压值来解决该问题,但是由于其它的不利条件(增加生产成本和功耗)该处理一般会变得复杂。而且由于耐压值的上升,晶体管的尺寸不可避免地要加大。由此,特别是,在小像素尺寸(或节距(pitch))小于约10μm的条件下,制造高耐压值的晶体管变得十分地困难。
由于上述原因,实际上在任何已知的采用传统的垂直排列液晶的反射显示装置中,将液晶层的厚度减少到小于2.5μm是困难的。
所述的液晶层的厚度的减小将相对于所施加的电压减小上升时间(响应速度),并且降低该装置的成品率。
此外,在任何装备有该已知显示装置的投影光学系统中,光学单元的焦距比数(Fnumber)需要等于或者大于3.5,以保持如下所述的高对比度,由此带来另外一个问题:不能得到高亮度。
在任何带有反射液晶显示装置的投影系统中,如图17所示,需要一种光学单元,其中将从灯光源发射出的光通量通过偏振光分裂器2R、2G、2B分别照射到反射液晶显示装置3R、3G、3B(每个采用垂直排列液晶)上,该偏振光分裂器2R、2G、2B作为对红(R)、绿(G)和蓝(B)来说的偏振光分裂装置,并且棱镜(X-棱棱镜)4采集由该装置所调制的反射光束,该棱镜(X-棱棱镜)4合成各个颜色的光束,然后将合成的光束作为投影光10(p)通过投影透镜5投影到未示出的屏幕上。
这里,在用于照射反射液晶装置3R、3G、3B照明光学单元中,将来自白灯光源1的白光(10(p,s),由p偏振成分和s偏振成分)通过蝇眼透镜6、偏振器/转换器7、聚光镜8等处理为s偏振光10(s)。随后,s偏振光10(s)被引入二向色分裂滤光器(dichroic color separation filter)9,并且将通过该二向色分裂滤光器9分裂的光发送到全反射镜11、12和二向色镜13,以便随后形成单色光10R(s)、10G(s)和10B(s)。随后,通过偏振光束分裂器2R、2G、2B光分别入射到反射液晶显示装置3R、3G、3B,并且根据施加到反射液晶显示装置3R、3G、3B上的电压对该反射光进行偏振和调制。在再次入射到偏振光束分裂器2R、2G、2B之后,仅传播该光的p偏振成分10R(p)、10G(p)和10B(p),然后由棱镜4合成该p偏振成分10R(p)、10G(p)和10B(p)。随后,当在反射液晶显示装置中所施加的电压是零时,入射光线直接作为s偏振光反射,而不通过偏振光束分裂器,并且由此该系统进入正常黑模式,其中在施加电压上升的条件下,对光进行偏振和调制,以便增加p偏振反射光来最终提高透射系数(参照图14)。
在论文(1)和(2)中报道的用于已知垂直排列液晶显示装置的光学单元中,焦距比数等于或者大于3.5(例如,在论文(1)中为3.8到4.8,或者在论文(2)中为3.5)。光学单元的焦距比数是光入射在装置上的入射角(反射光的出射角)θ的函数,并且如下表示。
F=1/(2×sinθ)    …(3)
F=3.5的表达指出装置表面被光照射,该光相对于该装置表面的垂线具有角度θ=±8.2°,并且从此处获得反射光。
从等式(3)可以看出,焦距比数越小,则光的入射和出射角θ越大,由此增加了总光通量,结果提高了亮度。然而,在反射液晶装置中,通常随着入射角的增加,黑色电平值(在黑色状态中的透射系数)变大,并且偏振光束分裂器的偏振光束分裂特性依赖于角θ,由此随着角θ的增加该特性变坏是不可避免的,并且当该角度分量大时,分裂成p偏振光成分和s偏振光成分的程度降低。由于上述原因,存在一种现象:黑色电平上升的同时对比度显著地下降。
所以,在实际应用中,存在在亮度和对比度之间折中(协调很难)的问题。因为该问题,在带有该已知装置的任何传统的投影系统中,采用光学单元,其中焦距比数大于3.5(更具体地说,投影透镜5的焦距比数或者照明光学单元的焦距比数)。即,在任何具有已知装置的投影光学系统中,不可将焦距比数设为小于3.5,其原因是实际上需要使高的对比度达到一定的程度,而由此引起不能提高亮度的失败。
因此,本发明的第一目的是提供垂直排列液晶显示装置中的改进,该垂直排列液晶显示装置由本发明的具有高响应速度的反射液晶显示装置表示,其中液晶透射系数在低电压时达到饱和,而不管液晶层厚度如何。并且该装置能够借助于可通过普通耐压工艺制造的驱动电路衬底而被驱动,即使在小像素尺寸也如此。上述改进还涉及使用本发明的反射液晶显示装置的显示设备、投影光学系统和投影显示系统。
本发明的第二目的在于提供投影光学系统和投影显示系统,其中即使在具有小焦距比数的高亮度光学单元中,除了上述实现外,还能够保持足够低的黑色电平。因此获得实际高的对比度(即,与任何传统的系统相比,能够满足更高的亮度和更高的对比度)。
发明内容
更具体地说,本发明的反射液晶显示装置是这样的装置:将具有光透射电极的第一衬底和具有光反射电极的第二衬底彼此相对地以一种状态放置,在该种状态中所述光透射电极和所述光反射电极彼此相对,同时将垂直排列液晶材料层置于其间。在该显示装置中,所述垂直排列液晶层厚度小于2μm,并且所述垂直排列液晶材料的折射率各向异性Δn大于0.1。这里,“光反射电极”的定义表示其自身对于光具有反射性的电极,其上具有光反射层的电极,并且也表示自身对于光来讲具有透射性的电极,却具有底涂层薄膜(undercoat film),其先决条件是在电极和底涂层薄膜之间分界面中实现光反射性。
本发明也涉及一种具有本发明的反射液晶显示装置的显示设备,也涉及一种在其光径中放置有反射液晶显示装置的投影光学系统,和采用该光学系统的投影显示系统。
根据本发明,尽管垂直排列液晶层的厚度小于2μm,但是将垂直排列液晶材料的Δn值调节为大于0.1,这与传统的技术不同,以便通过借助于低于5到6V的电压来使液晶的透射系数饱和,由此在实际可用的低电压的条件下达到满意的驱动,同时改进透射系数本身。因此,在反射垂直排列液晶显示装置中获得改进成为可能,在该反射垂直排列液晶显示装置中具有充分的透射系数、极佳的低电压驱动特性(所需的耐压值是低的)以及保持快的向应,并且在采用该改进的显示装置的显示设备、投影光学系统和投影显示系统中也可实现改进。
具体地说,由于选择性地使用具有Δn值大于0.1的垂直排列液晶材料,可获得上述显著有利的功能和效果。当液晶层厚度被减小到小于2μm以获得高的响应速度时,因为Δn大于0.1,所以假如由在定向薄膜和液晶分子之间的相互作用而影响导向器使之方向改变,则在液晶中根据所施加的电压易于使入射光偏振和调制该入射光,最终实现偏振光的分裂,由此在低电压时可获得期望的透射系数。
本发明也提供一种投影光学系统,其中将本发明的反射液晶显示装置和具有焦距比数小于3的光学单元置于其光径之中,并且也提供采用该光学系统的投影显示系统。
根据上述系统,尽管将垂直排列液晶层的厚度设为小于2μm,仍可将黑色电平的值控制为低,假设该黑色电平与液晶层的厚度的平方成比例,由此即使光学单元的焦距比数小于3,则仍获得高对比度,并且在该低的焦距比数的情况下也可获得高的亮度。所以,具有本发明的反射液晶装置和焦距比数小于3的光学单元的投影光学和显示系统中的每一个,相对于那些采用已知装置和光学单元的传统系统,满足对较高对比度和较高亮度的需要。按照其中所使用的透镜的焦距等,光学单元的焦距比数是可控的。
附图说明
图1示出(在液晶层厚度d是2μm的条件下)通过改变在反射液晶显示装置中的垂直排列液晶材料的折射率各向异性Δn而获得的V-T曲线;
图2示出(在液晶层厚度d是1.5μm的条件下)通过改变在反射液晶显示装置中的垂直排列液晶材料的折射率各向异性Δn而获得的V-T曲线;
图3示出(在液晶层厚度d是1μm的条件下)通过改变在反射液晶显示装置中的垂直排列液晶材料的折射率各向异性Δn而获得的V-T曲线;
图4示出反射垂直排列液晶显示装置的响应速度(其中3μm和3.5μm厚的样本表示已知装置的值);
图5是表示所获得的每个样本的饱和电压、透射系数和响应时间与在反射液晶显示装置中的垂直排列液晶材料的厚度d、折射率各向异性Δn和介电常数各向异性Δε之间的关系的表。
图6示出根据液晶层厚度d,相对于相同的液晶的折射率各向异性Δn的饱和电压的相对改变。
图7示出当相同的液晶层厚度为3.5μm并且液晶的折射率各向异性Δn是0.13时,所获得的V-T曲线。
图8示出黑色状态透射系数依赖于相同的液晶层的厚度(与黑色状态值比较,该黑色状态值以在已知装置中的层厚度为3.5μm的液晶层作为100%);
图9示出相对于在已知装置中的与测量光学单元焦距比数相关的黑色电平的变化,在本发明的反射垂直排列液晶装置中所引起的黑色电平的改变;
图10示出在与焦距比数相关的相同液晶装置中所引起的亮度改变;
图11示出本发明的反射垂直排列液晶显示装置的结构截面图;
图12是在本发明显示装置的硅驱动电路衬底上的主要部分的截面图;
图13示出本发明的显示装置布局的等效电路图;
图14示出(在液晶层厚度大约是3μm的条件下)已知装置的V-T曲线;
图15示出(在Δn=0.082的条件下)在已知装置中,当液晶层的厚度减小时所获得的V-T曲线;
图16示出根据相同的液晶层的厚度,在饱和电压中所引起的变化;和
图17是采用已知反射液晶显示装置的投影光学系统的示意图。
具体实施方式
在本发明的反射液晶显示装置中,垂直排列液晶层的厚度需要等于或者小于2μm,以达到上述的功效。最好,该厚度在0.8到2μm的范围内,并且也在1到2μm的范围内。尽管随着层厚度的降低响应时间上升,但是厚度的下限最好是0.8μm,并且为了抑制至定向薄膜的相互作用,以及也为了层厚度的可控性,该下限最好为1μm。尽管液晶层厚度可以小,Δn需要比0.1大,以便提高偏振光分裂,但是过度的提高Δn对于提高效率来讲不是十分有效,或者也不实用。所以,Δn最好小于0.25。
在优选结构中,在ITO(铟锡氧化物)等的透明电极的对面以及也在铝等的光反射电极的对面,形成液晶定向薄膜,作为前面所述的光透射电极,并且将光反射电极连接到单晶硅半导体驱动电路等上,该半导体驱动电路设在前面所述的第二衬底上,由此构成有源驱动类型。假如采用硅的驱动电路衬底作为第二衬底,则该衬底本身是不透明的并且适用于反射类型。而且,作为驱动元件的MOS(金属-氧化物半导体)晶体管和用于提供电源的辅助电容适于通过半导体处理技术的小模式所获得的高度集成,以便使实现高的孔径比(aperture rate)、由于像素密度的提高而带来的高分辨率、单元尺寸的减小以及载波传输率的提高成为可能。
实际上,驱动电路包括驱动晶体管,该驱动晶体管如在硅衬底上为每个像素所提供的MOSFET(金属氧化物半导体场效应晶体管),并且光反射电极连接到驱动晶体管的输出端。由于采用低耐压值的晶体管,该晶体管可由低电压驱动,像素尺寸可以减小为等于或者小于10μm。并且,液晶显示装置在对角尺寸上也可以减小到等于或者小于2英寸。
对垂直定向液晶材料的定向控制最好可采用由硅氧化薄膜所构成的液晶定向薄膜的方式来执行。该定向薄膜可通过具有方向性的真空蒸发等方式来形成(即,能够容易地控制液晶分子的预倾角)。
在带有本发明的反射液晶显示装置的显示设备中,并且也在将该液晶显示装置置于其光径中的投影光学显示系统中(也带有具有焦距比数小于3的光学单元),光源和能够使来自光源的光入射到反射液晶显示装置上的光学单元与反射液晶显示装置和其它光学单元一同最好被置于该光径中,以便将来自反射液晶显示装置的反射光引入。
在这种情况下,从光源发出的光最好通过偏振器/转换器和偏振光束分裂器入射到反射液晶显示装置上,并且将从反射液晶显示装置反射的光再次通过偏振光束分裂器或者也通过投影透镜向屏幕引入。
最好,反射液晶显示装置和偏振光束分裂器为每种颜色配置(dispose),并且对来自各个反射液晶显示装置的反射光成分进行合成或者进一步引入到投影透镜。更具体地说,从白光源所发出的白光通过偏振器/转换器被引入二向色分裂滤光器,然后该二向色分裂滤光器将光分裂为各个单色光成分。随后,将该光成分通过偏振光束分裂器分别入射到反射液晶显示装置,并且从该处采用棱镜合成反射的光成分。
这里,与本发明的反射液晶显示装置一同使用的光学单元的焦距比数是小于3的较小的值,用于获得高对比度和高亮度的协调。然而,焦距比数最好期望为不大于3.0并且不小于1.5(也不小于2.0),以便增强效果。
现在,在下面将参照附图详细地说明本发明的优选实施例。
首先,图11示出构成显示设备的液晶光电装置的基本配置,该显示设备由优选实施例表明。
作为反射液晶显示装置23工作的该装置包括:硅驱动电路衬底3 1和透明衬底33,该硅驱动电路衬底31包括单晶硅等并且具有像素结构的光反射电极30,该由玻璃等构成的透明衬底33具有透明电极32并且被放置在硅驱动电路衬底31的对面,其中垂直排列液晶36被密封在两个衬底之间(实际上在液晶定向薄膜34和35之间)。如图12所示,作为驱动电路衬底工作的反射电极衬底是这样的驱动电路,该驱动电路包括CMOS,并且n沟道MOS晶体管Tr和电容C在单晶硅衬底37上形成,并且在其上形成具有铝、银等金属薄膜的像素结构的光反射电极30。在光反射电极由如铝一样的金属构成的光反射电极的情况下,该光反射电极即可以作为光反射薄膜和也可以作为电极工作,来将电压施加到液晶上。也为了提高光反射性的目的,也可在铝电极上形成具有如介质镜一样的多层薄膜的光反射层。
在图12中,晶体管Tr包括,例如,n型源区域38,漏区域39,门极绝缘薄膜40和门极41,其中电极42和43从有源区域分别引出。在该结构中,电极43通过内层绝缘薄膜47连接到电容电极46,该电容电极46与在n型区域44上的绝缘薄膜(介电薄膜)45连接,并构成电容C。电极43也通过内层绝缘薄膜48、49连接到金属丝50并且进一步连接到光反射电极30。在该装置中,在垂直排列液晶36的层中根据施加的电压转换图17所示的s偏振入射光10(s),由此获得包括p偏置光的反射光10(p),然后将光10(p)引入上述偏振光束分裂器2中。
在本发明的反射液晶显示装置中,将垂直排列液晶36的层厚度d(单元间隙)设为等于或者小于2μm,并且这里采用的垂直排列液晶36的折射率各向异性Δn大于0.1。
图13示出显示装置的基本布局和其像素部分的等效电路。硅驱动电路衬底31包括在每个像素中所形成的像素驱动电路,和置入显示区域外围的逻辑驱动电路(数据驱动器,扫描驱动器等)。在每个光反射(像素)电极30之下形成的像素驱动电路包括开关晶体管Tr和辅助电容C,用于向垂直排列液晶36提供电压。晶体管Tr需要承受与垂直排列液晶的驱动电压相对应的预定电压,并且相对于逻辑,这通常可以通过具有较高的耐压值工艺而获得。因为晶体管的大小随着耐压值的增大而增大,所以考虑到生产成本和功耗,通常采用具有大约8到12V的耐压值的晶体管。所以,期望将液晶驱动电压设计在±6V之内。根据本发明,该需求获得满足。
在该显示装置所采用的垂直排列液晶36中,为每个分子定向,以便当没有加电压时使得其主轴基本上与衬底垂直,并且当加电压时,主轴向内平面(in-plane)倾斜,由此改变透射系数。假如当驱动液晶时液晶分子不是以相同方向倾斜,则发生明暗不均。为了防止这样的缺点,需要通过事先以固定方向给出微小的预倾角度(通常在装置的对角方向上),来垂直定向液晶,如图11所示。
假如预倾角度过大,则随着黑色电平的上升,垂直定向特性变坏,以至于最终降低对比度并且同时影响V-T曲线。所以,通常将预倾角控制在1°到7°的范围之内。每个被提供了该预倾角的液晶定向薄膜34和35由用SiO2来表示的二氧化硅薄膜构成,诸如:斜向蒸发薄膜,或者聚酰亚胺薄膜。在前者中,斜向蒸发时的蒸发角在45°到55°的范围之内;同时,在后者中,通过改变摩擦条件,将预倾角控制在1°到7°的范围之内。
在已知的装置中,在图11的装置结构中的垂直排列液晶层的厚度d大约为3到4μm,并且采用所选的液晶材料,其中折射率各向异性Δn小于0.1(一般大约0.08)。然而,假如将已知装置中的液晶层的厚度d减小到小于2.5μm,则使得如上所述响应速度得以提高而且驱动电压得以提高,这使得不能满足实际使用所需的要求。该现象的机制,即驱动电压随着液晶层厚度的降低而提高不是十分精确的,该现象被认为是从如下所述中推出:虽然液晶的厚层性质(bulk property)主要随着层的厚度的增加而出现,但是在定向薄膜和液晶之间的分界面上的相互作用的影响不可忽略(即,认为施加该相互作用,却不使液晶分子倾斜)。
作为重复许多试验以便克服上述提到的问题的结果,发明人已经发现该问题能够通过选择性地控制垂直排列液晶材料的折射率各向异性Δn以使之大于0.1获得解决。图1和2示出在液晶层厚度d分别是2μm和1.5μm的条件下,通过改变液晶各向异性Δn而获得的V-T曲线。从这些曲线图中可以看出,尽管特别地将液晶层厚度d减小到小于2μm,假如将各向异性Δn保持在0.1值之上,在低电压4到6V或者更小时透射率仍然容易饱和,由此可获得实际可行的驱动。
如图3所示,根据本发明,尽管在该显示装置中该液晶层厚度d非常地小到1μm,假如将各向异性Δn保持在0.1值之上,在大约6V的低驱动电压时,透射率仍然饱和。也可以看出相对于任何传统的装置,其中通过使用已知材料组成所获得透射率仅为大约30%,可以获得显著的改进。具体地说,由于使用所选择的具有Δn=0.13的高值的液晶材料,尽管具有厚度1μm,仍然可以实现良好的反射显示装置,该反射显示装置使用硅垂直排列液晶并且表现出具有卓越驱动特性的充分的透射系数。
图4示出根据本发明的反射液晶显示装置的响应速度(上升时间+下降时间)。如图所示,该响应相对于在任何传统的装置中更快,诸如当d=2μm时为7到9msec,或者当d=1.5μm或更小时在若干msec以下。(然而,当d=2.5μm时,响应速度降至13-14msec)。在具有d=1.5μm或更少的装置中,尽管在半色调中(halftone),仍然将该快速的响应保持在8msec以下。尽管在电影或者电视画面的移动画面中,其中伴随许多移动图像频繁地采用半色调显示,该装置仍可以实现满意的图象质量。
图5是显示本发明的显示装置特性(样本No.7-15)和比较例子的显示装置特性(样本No.1-6,16-19)的表。图6示出根据液晶层厚度d的饱和电压的改变。就驱动特性而言,实际使用的透射系数和响应时间的适当值如下。液晶层厚度d最好小于2μm,并且具体地说1到2μm;在d=2μm的条件下的液晶的Δn最好为Δn≥0.1(更好的是Δn≥0.103,最好Δn≥0.114);在d=1.5μm的条件下,Δn≥0.106(更好的是Δn≥0.11,最好Δn≥0.114);并且在d=1μm的条件下,Δn≥0.1 04(更好的是Δn≥0.114,最好Δn≥0.12)。
曲线图7示出当通过使用垂直排列液晶材料在已知的装置中的液晶层厚度为3.5μm时,获得V-T曲线,该垂直排列液晶具大于0.1的高的折射率各向异性Δn,即,例如在Δn=0.13的情况下。从该曲线图中可以看出,将阈值显著地降低,并且在驱动电压大约为2V处获得饱和。然而,从前面的等式(1)中可以看出,响应速度与驱动电压的平方成反比,同时根据液晶层厚度d而改变,由此低的驱动电压极度地使响应速度变坏。根据实际的测量值的结果,该装置的黑-和-白响应速度是46msec(大约50msec),并且在半色调中,由于驱动电压进一步地下降,将响应速度降低为大约100msec,由此引起实际使用中的明显的困难。这样,在已知装置中,考虑到响应速度,有必要将Δn的值减小到0.1之下。
如上所述,通过重新找到所需的液晶材料的Δn值,完成本发明,以便实现改进的反射垂直排列液晶装置,其中该液晶层厚度d小于2μm。因此,尽管液晶层厚度d小于2μm,通过选择性地将折射率各向异性调整为Δn大于0.1,能够降低饱和电压,由此也提高响应速度。
下面示出的表给出垂直排列液晶材料的Δn的值(也给出Δε)(由Merch Ltd.,给出)。
                垂直排列液晶材料
    样本A     样本B     样本C     样本D
    Δn     +0.082     +0.103     +0.114     +0.13
    n(‖)     1.557     1.584     1.598     1.62
    n(⊥)     1.475     1.481     1.484     1.49
    Δε     -4.1     -0.5     -5.3     -4.3
    n(‖)     3.5     4.0     3.9     3.8
    n(⊥)     7.6     9.0     9.2     8.1
下面,将给出对于其优点的说明:与任何已知的装置相比,本发明的垂直排列液晶显示装置就较小的焦距比数的光学单元来说更加有效。
首先,如下被发现:可将在本发明的具有较薄液晶层的装置中的黑色电平降低到在已知装置中(其中液晶层具有3到4μm的厚度)所获得黑色电平以下。在图8中,将在本发明的垂直排列液晶显示装置中的每个黑色电平值(在零电压时的黑色状态透射系数)作为液晶层厚度的函数以曲线的形式示出。在各个材料中,将使用3.5μm层厚度所获得的数值表示为100%(其中横坐标表示液晶层厚度)。
当所施加的电压为零时,液晶分子被定位为与衬底平面大致垂直,以便在原则上在偏振状态没有任何改变的情况下反射入射光,然后通过偏振光束分裂器将其返回到入射侧。然而,在实际装置中,液晶分子以预倾角倾斜,并且因此使得该液晶分子略微椭圆,并且偏振光束分裂器的光分裂特性依赖于上述的入射角,由此提高黑色状态透射系数,进而对比度变坏。
同时,在本发明的显示装置中,已经发现:随着液晶层厚度的降低黑色状态透射系数也降低,如图8所示,相对于已知装置的值,使用层厚度2μm所获得的黑色电平值为20-30%,或者使用层厚度1.5μm所获得的黑色电平值为10-20%,或者使用层厚度1.0μm所获得的黑色电平值为5-15%。(但是,当层厚度为2.5μm时,黑色电平值达到40-50%那样高)。关于由白色和黑色电平的比率所表示的对比度,因为保持白色电平基本不变,所以图8中所示的结果说明在具有例如1.5μm层厚度的本发明的装置中所获得的对比度变高5到10倍或者更多。
主要基于如下原因,考虑随着液晶层厚度的降低而带来的上述黑色电平值的降低。通过等式(4)表达在本发明的装置中的液晶的透射系数T。
T∝sin2(2d·Δn(eff)·π/λ)    …(4)
在上式中,λ表示光的波长,并且Δn(eff)表示相应于偏离液晶分子垂直方向的倾角θ的有效折射率各向异性。该各向异性表示为等式(5)。 Δn ( eff ) = n ( | | ) n ( ⊥ ) [ n ( | | ) 2 · co s 2 ( θ ) + n ( ⊥ ) 2 · si n 2 ( θ ) ] - n ( ⊥ ) · · · ( 5 )
液晶分子的倾斜角θ随着液晶驱动电压的升高而变大,并且Δn(eff)随之相应的增加,所以提高透射系数。可以看出,原则上当θ=90°时,Δn(eff)变得与液晶材料的Δn的值相同。根据等式(4),当满足条件2d·Δn(eff)·π/λ=π/2时,透射系数T为100%。
假如将液晶分子定向为完全垂直(θ=0),则黑色电平值,即在黑色状态中的透射系数,变为零,由此Δn(eff)=0。然而,实际上采用如上所述的预倾角度1到7°将液晶分子定位,由此使得Δn(eff)的值为有限的,以便提供黑色状态透射系数。随着该预倾角度的增加,黑色状态透射系数增加,最好可将该预倾角度控制为小于5°。因为当黑色电平时2d·Δn(eff)·π/λ具有小的值,所以等式(4)可大致重写为T∝ sin2(2d·Δn(eff)·π/λ)≈(2d·Δn(eff)·π/λ)2。所以,T原理上可认为与液晶层厚度d的平方成比例。根据上述关系,可以对从实测值所获得的图8的数据作出解释。
这样,设计在该装置中的液晶层厚度d使之小于2μm,由此相对于层厚度为3到4μm的已知装置,可将黑色电平抑制为低,由此实现高的对比度。
假如在已知装置中光学单元的焦距比数被降低,则黑色电平被提高,最终导致不能保证所期望的对比度,因此如上所述,不可避免地要将焦距比数强制地设定为高于3.5。然而,在本发明的装置中,在将该装置自身中的黑色电平如上面解释的那样保持非常的低,由此即便在具有小的焦距比数的光学单元中可保证足够高的对比度。
曲线图9示出在黑色状态透射系数中,通过改变由图17中的投影透镜5的焦距比数以及相应于照明光学单元的测量光学单元的焦距比数所引起的变化。黑色电平随着焦距比数的降低而升高,但是,在本发明的装置中,在任何的焦距比数处,将黑色电平保持为比已知装置中的低,由此尽管在具有小于3的焦距比数的光学单元中,仍然可得到足够高的对比度。此外,在焦距比数小于3的条件下,仍然可以获得令人满意的亮度,如图10所示。(然而,在焦距比数小于2的条件下,亮度发生饱和)。并且,假如焦距比数大于3,则亮度显著地变低。
关于亮度,经试验发现:例如,在实际的具有光学单元的投影系统中,该光学单元使用在对角为0.7英寸的装置中的、120W照明器,当焦距比数从3.85变到2时,则亮度大致增强60%。
如上所述,由于本发明的显示装置的原因,也因为采用具有低于3的焦距比数的光学单元的投影光学系统和投影显示系统的原因,可提供高级投影系统,相对于任何已知的采用传统装置和光学单元的系统,该系统能够满足较高对比度和较高亮度的需要。
下面,根据一些对比例子,将更加详细地说明本发明的优选实施例。
[对比例子1]
如下制造每个传统的已知装置。首先,带有透明电极的玻璃衬底和带有铝电极的驱动电路硅衬底被侵蚀(wash),然后被置入蒸发器(evaporator)中,其中通过以范围为45到55°的角度斜向蒸发来形成二氧化硅的液晶定向薄膜。将液晶定向薄膜的厚度设为50nm,并且将液晶的预倾角度控制为大约2.5°。
由此,将足够数目的直径为1到3.5μm的玻璃珠散布在形成液晶定向薄膜的两层衬底之间,并且将两层衬底相连接。随后,将具有负介电常数各向异性Δε和值为0.082的折射率各向异性Δn的垂直排列液晶材料(由MerchLtd.,制造)注入两层衬底之间,由此产生六种反射液晶显示装置(图5中样本No.1-6),其中液晶层厚度(单元间隙)分别是3.5μm、2.9μm、2.5μm、2μm、1.5μm和1μm。
在由此生成的每个装置中,测量在透明电极和铝电极之间所施加的电压以及通过改变所施加的电压而引起的液晶的透射系数的改变。(因为该装置属于反射类型,所以实际测量的是其反射率。然而,测量反射率等同于测量液晶的透射系数,这将在下面说明。)在室温下进行测量。
曲线图15示出该装置的液晶驱动特性。如图15和16所示,当液晶层厚度小于2.5μm时,饱和驱动电压快速升至6V以上。
[实施例1]
在与上述对比例子1中所采用的方法相同的方法中,二氧化硅液晶定向薄膜形成于具有透明电极的衬底和具有铝电极的驱动电路硅衬底的每个之上,并且将具有负介电常数各向异性Δε和值为0.103、0.114和0.13的折射率各向异性Δn的三种垂直排列液晶材料(由Merch Ltd.,制造)注入两层衬底之间,由此产生九种反射液晶显示装置(图5中样本No.7-15),其中液晶层厚度(单元间隙)分别是2μm、1.5μm和1μm。由此,将液晶的预倾角度控制为大约2.5°。
与对比例子1相似,由此制造的装置的液晶驱动特性在室温下测量。曲线图1、2和3示出在三种情况下(液晶层厚度分别是2μm、1.5μm和1μm)所获得的驱动特性。图5是示出当透明度基本饱和时单个装置的驱动电压的表,并且也示出透射系数的各个值。
从该结果可以看出,由于将Δn控制为大于0.1,尽管将液晶层厚度d降为低于2,在低电压4到6V时的透射系数仍然容易饱和,由此不能完成实际的驱动。此外,因为相对于任何传统的装置,透射系数获得大的改进,所以可能实现改进的具有足够透射系数和极佳的驱动特性的硅反射型垂直排列液晶显示装置。
也通过将聚酰亚胺而非二氧化硅薄膜形成液晶定型薄膜并且通过摩擦来控制定向,来制造其它装置。其结果与上述相同。
[实施例2]
在实施例1中所制造的每一个反射液晶显示装置中,测量关于上升时间(从黑色变为白色)和下降时间(从白色变为黑色)的响应时间。将其总和视为每个装置的响应速度,并且结果在图5中示出。在室温下执行测量。作为例子(在图5中,在d=2.5μm的条件下,样本No.9,12,15),图4用图表示液晶层厚度d作为具有Δn=0.13的装置的函数。为了比较,图4也示出已知样本No.1和在d=3μm(在每个样本中Δn=0.082)的条件下的样本的响应速度。
根据等式(1)和(2),响应速度的改变基本上与液晶层厚度成比例。在本发明的装置中,其中液晶层厚度d小于2μm并且Δn大于0.1,实现快于9msec的高速响应获得了证明。
[对比例子2]
在与实施例1中所采用的相同方法的方法中,通过使用具有层厚度3.5μm的Δn=0.13的液晶材料,制造反射液晶装置(样本No.16),并且测量液晶驱动特性。
曲线图7示出与在Δn=0.082条件下的样本No.1的特性比较结果。如图所示,在装置(样本No.16)中的驱动电压非常低。使用与实施例2相同的方式,在室温下测得的响应速度为46msec。因为在半色调中的驱动电压低到大约1V,所以使得响应速度降低,并且在灰度等级为25%中,响应速度更加低到100msec附近。
[实施例3]
在实施例1中制造的反射液晶显示装置中,测量在施加零电压(黑色状态)时的透射系数(黑色电平)。为了系统地检验由于液晶层的厚度引起的黑色电平的改变,在前面所述样本Δn的条件下,制造具有层厚度3.5μm的装置(样本No.17-19),并且也相似地制造具有层厚度2.5μm的装置,并且每个装置的黑色电平透射系数与实施例1的样本(No.7-15)一同测量。在图8中使用图表示各个黑色电平值,其中将在具有层厚度3.5μm的装置中所获得的数值相对于Δn的各个样本表示为100%。
如图8所示,在任何Δn的样本中,当液晶层变得比2μm薄时,黑色电平是极低的。例如,在层厚度为1.5μm的装置中,表示出的黑色电平比在层厚度为3.5μm的任何装置中所获得的值低10到20%。即,该装置的对比度变高5到10倍。在具有焦距比数3.85的图7所示的测量光学单元中,尽管焦距比数有变化,该趋势仍然基本上保持相同。
[实施例4]
实施例1中,将具有Δn=0.13并且液晶层厚度为1.5μm和2.0μm的装置(样本No.12,9)结合到具有焦距比数3.85、3和2的光学单元中,并且将每个装置的黑色电平(黑色状态透射系数)与已知装置(样本No.1)的黑色电平比较。
图9用图示出该比较结果。黑色电平随着焦距比数的降低而升高。然而,在本发明的装置中,尽管焦距比数发生变化,仍然相对于传统装置中保持较低的黑色电平。每个装置中的白色电平透射系数在大约0.6处基本保持不变。因此,黑色电平比率直接给出装置的对比率。根据本发明的装置,可见在任何具有小于3的焦距比数的光学单元中,相对于已知装置可实现相同或者更高的对比度。焦距比数的下限最好可设为1.5,更好为2.0。
根据上述说明,制造对角长为0.7英寸硅反射型垂直排列液晶,并且将通过使用120W的照明器作为光源所获得的照明与实际使用的具有焦距比数3.85、3.5、3、2.5和2的投影光学单元作比较。在图10中使用图示出结果,与在焦距比数3.85的光学单元中所获得的亮度作比较,相对于在焦距比数=2时的值,在焦距比数=3时亮度大约提高32%,在焦距比数=2.5时大约44%,在焦距比数=2时大约60%,并且在焦距比数≤3时明显地提高。然而,在焦距比数=3.5时亮度大约仅提高15%,或者在焦距比数=1.5时改变不显著。关于上述对比,如上所述,尽管在焦距比数≤3的光学单元中,所获得的对比度仍然比在已知装置中的值高。即,实现极佳的投影系统以便满足相对于已知装置具有更高的亮度和更高的对比度的需求。
应当清楚的是:基于本发明的技术概念,可以对上述的本发明的实施例和例子进行不同的改进。
例如,反射液晶显示装置或者带有该显示装置的光学或投影系统的元件的结构、材料等不仅仅局限于上面所述的结构、材料等,并且可以根据不同的改进而改变。
这样,根据本发明,其中将垂直排列液晶材料的Δn控制为大于0.1,尽管将垂直排列液晶层的厚度减到小于2μm,仍然通过借助于低于5到6V的低电压来使液晶材料的透射系数饱和,由此在实际可用的低电压的条件下达到满意的驱动,同时在透射系数本身中获得显著进步,该显著进步是另一个优势。因此,实现极佳的反射型垂直排列液晶显示装置成为可能,该装置显示充分的透射系数、极佳的低电压驱动特性(所需的阀值电压的值是低的)以及快的响应。通过使用该显示装置,在显示设备、投影光学系统和投影显示系统中可进一步实现改进。
在该系统中,其中将垂直排列液晶层的厚度减到小于2μm,可将黑色电平的值控制为低由此尽管当光学单元的焦距比数小于3时仍获得高对比度,该黑色电平与液晶层的厚度的平方成比例,并且在低的焦距比数的情况下也可获得高的亮度。所以,可以提供极佳的系统,该系统满足对高亮度和高对比度的需求。

Claims (30)

1.一种反射液晶显示装置,包括:具有光透射电极的第一衬底,具有光反射电极的第二衬底,和垂直排列液晶材料层,该垂直排列液晶材料层以一种状态被插入在彼此相对放置的所述第一和第二衬底之间,在该种状态中所述光透射电极和所述光反射电极彼此相对,其中所述垂直排列液晶层厚度小于2μm,并且所述液晶材料的折射率各向异性Δn大于0.1。
2.如权利要求1所述的反射液晶显示装置,其中在透明的所述光透射电极和所述光反射电极的彼此相对的每个面上,形成液晶定向薄膜,并且将所述光反射电极连接到单晶硅半导体驱动电路等上,该半导体驱动电路形成在所述第二衬底上,由此构成有源驱动类型反射液晶显示装置。
3.如权利要求2所述的反射液晶显示装置,其中所述单晶硅半导体驱动电路包括在作为所述第二衬底的硅衬底上为每个像素所提供的驱动晶体管,并且所述光反射电极连接到所述驱动晶体管的输出端。
4.如权利要求1所述的反射液晶显示装置,其中像素尺寸小于10μm。
5.如权利要求2所述的反射液晶显示装置,其中硅氧化薄膜形作为所述液晶定向薄膜形成。
6.一种具有如权利要求1到5中任何一个所述的反射液晶显示装置的显示设备。
7.如权利要求6所述的显示设备,包括光源、用于使从光源所发射的光入射到反射液晶显示装置上的光学单元、所述反射液晶显示装置和用于将来自所述反射液晶显示装置的反射光引入的光学单元,其中全部所述部件被置于所述设备的光径中。
8.如权利要求7所述的显示设备,其中从所述光源发出的光通过偏振器/转换器和偏振光束分裂器入射到所述反射液晶显示装置上,并且将从所述反射液晶显示装置反射的光再次通过所述偏振光束分裂器引入。
9.如权利要求8所述的显示设备,其中所述反射液晶显示装置和所述偏振光束分裂器分别为每种颜色配置,并且对来自各个反射液晶显示装置的反射光束进行合成。
10.如权利要求9所述的显示设备,其中从白光源所发出的白光通过所述偏振器/转换器被引入二向色分裂滤光器,然后该经分裂的该光束进一步分裂为各个单色光束,随后将该单色光束通过所述偏振光束分裂器分别入射到所述反射液晶显示装置,并且采用棱镜合成所反射的光束。
11.一种投影光学系统,其中将如权利要求1到5中任何一个所述的反射液晶显示装置置于其光径之中。
12.如权利要求11所述的投影光学系统,包括光源、用于使从光源所发射的光入射到反射液晶显示装置上的光学单元、所述反射液晶显示装置和用于将来自所述反射液晶显示装置的反射光引入的光学单元,其中全部所述部件被置于所述系统的光径中。
13.如权利要求12所述的投影光学系统,其中从所述光源发出的光通过偏振器/转换器和偏振光束分裂器入射到所述反射液晶显示装置上,并且将从所述反射液晶显示装置反射的光再次通过所述偏振光束分裂器引入到投影透镜。
14.如权利要求13所述的投影光学系统,其中所述反射液晶显示装置和所述偏振光束分裂器分别为每种颜色配置,并且对来自各个反射液晶显示装置的反射光束进行合成并且引入所述投影透镜。
15.如权利要求14所述的投影光学系统,其中从白光源所发出的白光通过所述偏振器/转换器被引入二向色分裂滤光器,然后该经分裂的该光束进一步分裂为各个单色光束,随后将该单色光束通过所述偏振光束分裂器分别入射到所述反射液晶显示装置,并且采用棱镜合成所反射的光束。
16.一种投影显示系统,其中将如权利要求1到5中任何一个所述的反射液晶显示装置置于其光径之中。
17.如权利要求16所述的投影显示系统,包括光源、用于使从光源所发射的光入射到反射液晶显示装置上的光学单元、所述反射液晶显示装置和用于将来自所述反射液晶显示装置的反射光引入的光学单元,其中全部所述部件被置于所述系统的光径中。
18.如权利要求17所述的投影显示系统,其中从所述光源发出的光通过偏振器/转换器和偏振光束分裂器入射到所述反射液晶显示装置上,并且将从所述反射液晶显示装置反射的光再次通过所述偏振光束分裂器引入到投影透镜,并且也引入到屏幕上。
19.如权利要求18所述的投影显示系统,其中所述反射液晶显示装置和所述偏振光束分裂器分别为每种颜色配置,并且对来自各个反射液晶显示装置的反射光束进行合成并且引入到所述投影透镜。
20.如权利要求19所述的投影显示系统,其中从白光源所发出的白光通过所述偏振器/转换器被引入二向色分裂滤光器,然后该经分裂的该光束进一步分裂为各个单色光束,随后将该单色光束通过所述偏振光束分裂器分别入射到所述反射液晶显示装置,并且采用棱镜合成所反射的光束。
21.一种投影光学系统,其中将如权利要求1到5中任何一个所述的反射液晶显示装置和具有焦距比数小于3的光学单元置于其光径之中。
22.如权利要求21所述的投影光学系统,包括光源、用于使从光源所发射的光入射到反射液晶显示装置上的光学单元、所述反射液晶显示装置和用于将来自所述反射液晶显示装置的反射光引入的光学单元,其中全部所述部件被置于所述系统的光径中。
23.如权利要求22所述的投影光学系统,其中从所述光源发出的光通过偏振器/转换器和偏振光束分裂器入射到所述反射液晶显示装置上,并且将从所述反射液晶显示装置反射的光再次通过所述偏振光束分裂器引入到投影透镜。
24.如权利要求23所述的投影光学系统,其中所述反射液晶显示装置和所述偏振光束分裂器分别为每种颜色配置,并且对来自各个反射液晶显示装置的反射光束进行合成并且引入所述投影透镜。
25.如权利要求24所述的投影光学系统,其中从白光源所发出的白光通过所述偏振器/转换器被引入二向色分裂滤光器,然后该经分裂的该光束进一步分裂为各个单色光束,随后将该单色光束通过所述偏振光束分裂器分别入射到所述反射液晶显示装置,并且采用棱镜合成所反射的光束。
26.一种投影显示系统,其中将如权利要求1到5中任何一个所述的反射液晶显示装置和具有焦距比数小于3的光学单元置于其光径之中。
27.如权利要求26所述的投影显示系统,包括光源、用于使从光源所发射的光入射到反射液晶显示装置上的光学单元、所述反射液晶显示装置和用于将来自所述反射液晶显示装置的反射光引入的光学单元,其中全部所述部件被置于所述系统的光径中。
28.如权利要求27所述的投影显示系统,其中从所述光源发出的光通过偏振器/转换器和偏振光束分裂器入射到所述反射液晶显示装置上,并且将从所述反射液晶显示装置反射的光再次通过所述偏振光束分裂器引入到投影透镜,并且进一步引入屏幕。
29.如权利要求28所述的投影显示系统,其中所述反射液晶显示装置和所述偏振光束分裂器分别为每种颜色配置,并且对来自各个反射液晶显示装置的反射光束进行合成并且引入所述投影透镜。
30.如权利要求29所述的投影显示系统,其中从白光源所发出的白光通过所述偏振器/转换器被引入二向色分裂滤光器,然后该经分裂的该光束进一步分裂为各个单色光束,随后将该单色光束通过所述偏振光束分裂器分别入射到所述反射液晶显示装置,并且采用棱镜合成所反射的光束。
CNB028028228A 2001-06-26 2002-06-26 反射液晶显示装置、显示设备、投影光学系统和投影显示系统 Expired - Fee Related CN1267777C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP192203/01 2001-06-26
JP2001192203 2001-06-26
JP192203/2001 2001-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100878774A Division CN1862326A (zh) 2001-06-26 2002-06-26 反射液晶显示装置、显示设备、投影光学系统和投影显示系统

Publications (2)

Publication Number Publication Date
CN1473280A true CN1473280A (zh) 2004-02-04
CN1267777C CN1267777C (zh) 2006-08-02

Family

ID=19030691

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB028028228A Expired - Fee Related CN1267777C (zh) 2001-06-26 2002-06-26 反射液晶显示装置、显示设备、投影光学系统和投影显示系统
CNA2006100878774A Pending CN1862326A (zh) 2001-06-26 2002-06-26 反射液晶显示装置、显示设备、投影光学系统和投影显示系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2006100878774A Pending CN1862326A (zh) 2001-06-26 2002-06-26 反射液晶显示装置、显示设备、投影光学系统和投影显示系统

Country Status (5)

Country Link
US (2) US7330230B2 (zh)
EP (2) EP1400837A4 (zh)
KR (1) KR100915311B1 (zh)
CN (2) CN1267777C (zh)
WO (1) WO2003001285A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664660B (zh) * 2004-03-05 2010-06-16 索尼株式会社 反射型液晶显示装置、显示设备及投影系统
CN105647253A (zh) * 2014-12-01 2016-06-08 三星电子株式会社 用于光学膜的组合物、光学膜、补偿膜、抗反射膜和显示器件

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754165B1 (ko) * 2003-11-06 2007-09-03 삼성전자주식회사 반사형 액정표시소자 및 이를 이용한 프로젝터
US8885139B2 (en) * 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
JP2006337791A (ja) * 2005-06-03 2006-12-14 Hitachi Ltd 投射型映像表示装置、それに用いる光学ユニット及び偏光分離用部材
DE102005050322B4 (de) * 2005-10-20 2009-11-26 Cinetron Technology Inc. Modulares Lichtstrahl-Rekombinierungssystem und zugehöriges Lichtstrahl-Rekombinierungsverfahren
JP2009540392A (ja) * 2006-06-12 2009-11-19 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 電気光学レンズのパワー消費を低減する方法
EP2057502A2 (en) * 2006-09-01 2009-05-13 Johnson & Johnson Vision Care, Inc. Electro-optic lenses employing resistive electrodes
KR20110078788A (ko) * 2009-12-31 2011-07-07 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
JP2011227404A (ja) * 2010-04-22 2011-11-10 Sony Corp 光学装置及び投影装置
CN102650790B (zh) * 2011-07-25 2015-01-07 京东方科技集团股份有限公司 应用液晶透镜结构的液晶显示器
TWI452396B (zh) * 2011-10-06 2014-09-11 Univ Nat Chiao Tung 可電壓控制之光學元件及其製備方法
DE102012205373A1 (de) * 2012-04-02 2013-10-02 Kyocera Display Europe Gmbh Senkrecht orientierendes Flüssigkristalldisplay mit multiplen "Pretilt"-Winkeln und Herstellungsverfahren hierfür
US9323403B2 (en) * 2012-06-29 2016-04-26 Shanghai Tianma Micro-electronics Co., Ltd. Capacitive touch LCD panel
KR101593757B1 (ko) * 2012-12-14 2016-02-18 주식회사 엘지화학 액정 소자의 제조 방법
KR20150049630A (ko) 2013-10-30 2015-05-08 삼성디스플레이 주식회사 표시 장치
CN205942207U (zh) * 2016-05-17 2017-02-08 京东方科技集团股份有限公司 一种显示面板及显示装置
US11361215B2 (en) 2017-11-29 2022-06-14 Anaflash Inc. Neural network circuits having non-volatile synapse arrays
JP2019124775A (ja) * 2018-01-15 2019-07-25 セイコーエプソン株式会社 液晶装置および電子機器

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8701347A (nl) * 1987-06-10 1989-01-02 Philips Nv Vloeibaar kristal weergeefinrichting en werkwijze ter vervaardiging van een dergelijke weergeefinrichting.
US5329387A (en) * 1990-11-27 1994-07-12 Casio Computer Co., Ltd. Liquid crystal display device with display and compensation cells separated by distance larger than depth of focus of optical enlarger
JP3132193B2 (ja) * 1991-11-08 2001-02-05 日本ビクター株式会社 液晶表示デバイス及び液晶表示デバイスの製造方法
US5309264A (en) * 1992-04-30 1994-05-03 International Business Machines Corporation Liquid crystal displays having multi-domain cells
JP3313142B2 (ja) 1992-07-03 2002-08-12 松下電器産業株式会社 液晶パネルおよびそれを用いた投写型表示装置
US5532854A (en) * 1994-01-25 1996-07-02 Fergason; James L. Folded variable birefringerence zeroth order hybrid aligned liquid crystal apparatus
TW294714B (zh) * 1995-03-02 1997-01-01 Merck Patent Gmbh
JP3143591B2 (ja) 1995-09-14 2001-03-07 キヤノン株式会社 表示装置
WO1997045768A1 (fr) 1996-05-29 1997-12-04 Seiko Epson Corporation Dispositif d'affichage par projection
US6155685A (en) * 1996-10-31 2000-12-05 Minolta Co., Ltd. Projector
DE29705133U1 (de) 1997-03-20 1997-07-24 Trw Repa Gmbh Gassack für ein Fahrzeuginsassen-Schutzsystem
US5919606A (en) * 1997-05-09 1999-07-06 University Technology Corporation Liquid crystal cell and method for assembly thereof
JPH1164852A (ja) * 1997-08-21 1999-03-05 Hitachi Ltd 投射型液晶表示装置
JPH1184419A (ja) 1997-09-09 1999-03-26 Hitachi Ltd 液晶ライトバルブおよび投射型表示装置
JPH11153814A (ja) 1997-09-17 1999-06-08 Matsushita Electric Ind Co Ltd 液晶表示素子
JPH11149096A (ja) * 1997-11-18 1999-06-02 Sanyo Electric Co Ltd 反射型液晶表示装置
JP3501963B2 (ja) 1997-12-22 2004-03-02 シャープ株式会社 投影型画像表示装置
JP3296771B2 (ja) 1998-01-26 2002-07-02 株式会社日立製作所 液晶表示装置およびその駆動方法、および液晶プロジェクタ
JP4073533B2 (ja) 1998-02-09 2008-04-09 株式会社半導体エネルギー研究所 情報処理装置
JP3490886B2 (ja) 1998-03-03 2004-01-26 シャープ株式会社 投影型画像表示装置
JPH11259018A (ja) * 1998-03-10 1999-09-24 Sony Corp 拡散反射板の製造方法及び反射型表示装置
US6273567B1 (en) * 1998-09-14 2001-08-14 Arlie R. Conner Compact multi-path LCD projector
US6082861A (en) * 1998-09-16 2000-07-04 International Business Machines Corporation Optical system and method for high contrast projection display
JP2000171770A (ja) 1998-09-30 2000-06-23 Sony Corp 投射型表示装置
US6300929B1 (en) * 1998-12-28 2001-10-09 Kabushiki Kaisha Toshiba Flat panel display device
JP2000214421A (ja) 1999-01-22 2000-08-04 Seiko Epson Corp 液晶装置及び電子機器
JP3887980B2 (ja) 1999-01-22 2007-02-28 セイコーエプソン株式会社 液晶装置及び電子機器
US6067142A (en) * 1999-01-27 2000-05-23 International Business Machines Corporation Vertically aligned pi-cell LCD having on-state with mid-plane molecules perpendicular to the substrates
GB9902402D0 (en) 1999-02-03 1999-03-24 Rolic Ag Method of imparting preferred alignment, and liquid crystal device elements incorporating a preferred alignment
US6498635B1 (en) * 1999-03-05 2002-12-24 Chartered Semiconductor Manufacturing Ltd. Method of forming insulating material alignment posts associated with active device structures
JP2000281664A (ja) 1999-03-30 2000-10-10 Otsuka Pharmaceut Co Ltd チアゾール誘導体
JP2000292815A (ja) * 1999-04-12 2000-10-20 Stanley Electric Co Ltd 垂直配向型ecbモード液晶表示素子
JP3554520B2 (ja) 1999-07-08 2004-08-18 シャープ株式会社 画像表示装置
KR100294822B1 (ko) * 1999-06-05 2001-07-12 구본준, 론 위라하디락사 반사형 액정표시소자.
JP4085526B2 (ja) 1999-07-16 2008-05-14 松下電器産業株式会社 反射型ライトバルブを用いた投写型画像表示装置
US6234634B1 (en) * 1999-07-28 2001-05-22 Moxtek Image projection system with a polarizing beam splitter
JP2001117090A (ja) 1999-10-20 2001-04-27 Seiko Epson Corp 反射型液晶装置及び反射型プロジェクタ
JP2001134652A (ja) 1999-11-05 2001-05-18 Aplix Corp 在庫確認・予約システム
US6724449B1 (en) * 2000-03-27 2004-04-20 International Business Machines Corporation Vertical aligned liquid crystal display and method using dry deposited alignment layer films
JP2001281664A (ja) * 2000-03-30 2001-10-10 Fujitsu Ltd 液晶表示装置
JP2001343652A (ja) * 2000-05-30 2001-12-14 Sharp Corp 液晶表示素子
AU2002233193A1 (en) * 2000-11-23 2002-06-11 Merck Patent G.M.B.H Homeotropic alignment layer
US20030058385A1 (en) 2001-05-24 2003-03-27 Mcknight Douglas J. Liquid crystal display device
JP3758612B2 (ja) 2001-06-26 2006-03-22 ソニー株式会社 反射型液晶表示素子、表示装置、プロジェクション光学システム、及びプロジェクションディスプレイシステム
JP3758654B2 (ja) 2001-06-26 2006-03-22 ソニー株式会社 プロジェクション光学システム及びプロジェクションディスプレイシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1664660B (zh) * 2004-03-05 2010-06-16 索尼株式会社 反射型液晶显示装置、显示设备及投影系统
CN105647253A (zh) * 2014-12-01 2016-06-08 三星电子株式会社 用于光学膜的组合物、光学膜、补偿膜、抗反射膜和显示器件
CN105647253B (zh) * 2014-12-01 2020-11-03 三星电子株式会社 用于光学膜的组合物、光学膜、补偿膜、抗反射膜和显示器件

Also Published As

Publication number Publication date
EP1400837A1 (en) 2004-03-24
CN1862326A (zh) 2006-11-15
KR100915311B1 (ko) 2009-09-03
EP1783541A3 (en) 2007-05-23
CN1267777C (zh) 2006-08-02
EP1400837A4 (en) 2005-05-18
US20040105038A1 (en) 2004-06-03
US7330230B2 (en) 2008-02-12
EP1783541A2 (en) 2007-05-09
US7903212B2 (en) 2011-03-08
KR20030027090A (ko) 2003-04-03
WO2003001285A1 (fr) 2003-01-03
US20080259258A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
CN1267777C (zh) 反射液晶显示装置、显示设备、投影光学系统和投影显示系统
US7053880B2 (en) Method of color image display for a field sequential liquid crystal display device
CN1282010C (zh) 液晶显示装置及电子设备
CN1862328A (zh) 半透过型边缘场开关模式液晶显示装置
JP2001210122A (ja) 照明装置、映像表示装置、映像表示装置の駆動方法、液晶表示パネル、液晶表示パネルの製造方法、液晶表示パネルの駆動方法、アレイ基板、表示装置、ビューファインダおよびビデオカメラ
CN1619362A (zh) 液晶显示元件及液晶显示设备
CN1182425C (zh) 液晶显示元件和利用该元件的显示器件
CN1688917A (zh) 透射像素上使用斜面反射器的单盒间隙半透反射式液晶显示器
CN1916705A (zh) 液晶显示装置及其视角控制方法
WO2019218856A1 (zh) 显示装置及其显示方法
CN1831591A (zh) 图像显示装置以及投影机
CN1607440A (zh) 反射式液晶显示装置及其制造方法以及液晶显示单元
CN1343902A (zh) 液晶装置及配备该液晶装置的电子装置
CN1664660A (zh) 反射型液晶显示装置、显示设备及投影系统
CN1892285A (zh) 光源模块与光学投影系统
CN1196014C (zh) 液晶显示元件及使用它的投影型液晶显示装置
TWI309315B (zh)
JP2008020725A (ja) 液晶表示装置及び映像表示装置
CN1729505A (zh) 在待机模式中具有减小的功率消耗的液晶显示器件
CN1320225A (zh) 反射型液晶显示元件
JP3758612B2 (ja) 反射型液晶表示素子、表示装置、プロジェクション光学システム、及びプロジェクションディスプレイシステム
CN1777835A (zh) 液晶显示装置、及具备该装置的显示装置
US7106401B2 (en) Reflex liquid crystal display device, display apparatus, projection optical system, and projection display system
JP3758654B2 (ja) プロジェクション光学システム及びプロジェクションディスプレイシステム
CN1698004A (zh) 反射型液晶显示装置和液晶显示单元

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060802

Termination date: 20150626

EXPY Termination of patent right or utility model