CN1463250A - 球形氧化铝颗粒及其生产方法 - Google Patents

球形氧化铝颗粒及其生产方法 Download PDF

Info

Publication number
CN1463250A
CN1463250A CN02801973.3A CN02801973A CN1463250A CN 1463250 A CN1463250 A CN 1463250A CN 02801973 A CN02801973 A CN 02801973A CN 1463250 A CN1463250 A CN 1463250A
Authority
CN
China
Prior art keywords
alumina
microns
round
sintered
median size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02801973.3A
Other languages
English (en)
Other versions
CN100467380C (zh
Inventor
神原英二
山田登美晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of CN1463250A publication Critical patent/CN1463250A/zh
Application granted granted Critical
Publication of CN100467380C publication Critical patent/CN100467380C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/44Alpha, beta or gamma radiation related properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种生产圆形氧化铝颗粒的方法,包括在1,000到1,600℃下加热含有至少一种平均粒径大于35微米的电熔氧化铝和烧结氧化铝,和选自卤素化合物、硼化合物和氧化铝水合物的至少一种物质的组合物,以及粉碎该组合物。

Description

球形氧化铝颗粒及其生产方法
相关申请的交叉引用:
本申请是根据35 U.S.C.§111(a)提交的申请,其依据35 U.S.C.§119(e)(1)要求2001年6月6日提交的申请号为60/295,617的临时申请(依据35 U.S.C.§111(b)提交的)的申请日。
技术领域:
本发明涉及圆形氧化铝颗粒和制备氧化铝颗粒的工业上的经济方法,该颗粒特别适用于例如电子零件的密封材料;填料;精研材料和掺入耐火材料、玻璃、陶瓷或其复合材料中的集料,而且其基本上不产生磨损并具有良好的流动特性。本发明也涉及由该方法制备的圆形氧化铝颗粒和含有该氧化铝颗粒的高热导橡胶/塑料组合物。
相关的背景技术:
近年来,对电子零件的高集成化和高密度的需要增加了每块芯片的耗电量。因此,为了抑制电子元件的温度上升,有效地除去产生的热是一个关键性问题。考虑到上述因素,具有优良导热性的氧化铝,特别是金刚砂(α-氧化铝)已经成为散热垫片,固定半导体和半导体装置部件的绝缘密封材料的基底材料等的侯选填料;改进的氧化铝已经应用于许多领域中。
在这种金刚砂颗粒中,JP-A HEI 5-294613公开了一种没有碎裂的且平均粒径为35微米或以下的非空心的球状金刚砂颗粒,该颗粒是这样制备的:在磨碎的氧化铝产品如电熔氧化铝或烧结氧化铝中同时加入氢氧化铝和任意的已知用于结晶的促进剂,然后烧制该混合物。
然而,上述文献没有对使用平均粒径大于35微米的电熔氧化铝或烧结氧化铝制备的金刚砂颗粒的粒度、形状等作出清楚地说明。
也已经知道一种热喷制方法,其中将由拜耳法制备的氧化铝雾化进入高温等离子体或氧-氢火焰中以便熔融和淬冷,由此制备圆形颗粒。虽然热喷制方法提供粒径大于35μm的氧化铝粗颗粒,但是单位热能需要量大,因此成本高。此外,虽然由此制备的氧化铝主要含有α-氧化铝,但是其包含副产品例如δ-氧化铝。这种氧化铝产品不是优选的,因为该产品不具有氧化铝需要的性能,例如热导率低。
磨碎的电熔氧化铝或烧结氧化铝产品也被称为粒径大于35微米的金刚砂颗粒。然而,这些金刚砂颗粒具有锐利断面的不确定的形状,在掺入橡胶/塑料的过程中对捏和机、模具等产生显著的磨损。因此,从实际使用的观点来说,这些金刚砂颗粒不是优选的。
已经知道若干生产具有高热导率的橡胶/塑料组合物的方法,例如:一种掺入高热导率填料例如氮化铝、氮化硼或碳化硅的方法,以及一种加入数量尽可能多的填料的方法。然而,前一个方法在经济上是不利的,因为与掺入α-氧化铝比较,掺入高热导率填料导致成本非常高。当使用后一个掺入方法时,掺入大量填料确实会提高所得到的复合物(组合物)的导热性。然而,该复合物的塑性流动性差,使其成型困难。因此,填料的数量有局限性。
已经研究出另一种方法,其中为了增强该复合物的塑性流动性而掺入各种粒径范围的填料并增加填料的数量,以扩大粒径分布。然而,因为微粒组分的自聚集力随着粒度减少而增加,所以当其掺入橡胶/塑料中时流动性降低,所得到的橡胶/塑料组合物中组分形成聚合颗粒,可能降低导热性。因此,微粒的使用在粒度上也受到限制。对于粗颗粒组分来说,为了达到高流动性,合乎要求的粗颗粒形状应该呈接近圆形。然而,如JP-A HEI5-294613公开的那样,很难生产平均粒径通常大于35微米且没有碎裂面的颗粒。
考虑到上述情况,本发明人进行了广泛的研究,而且本发明的目的是通过改进生产圆形金刚砂颗粒的方法来提供一种由氧化铝制成的填料,其颗粒导致进行较少的研磨和抛光,而且掺量大。
本发明的公开:
本发明人提供一种可用于解决上述问题的生产圆形氧化铝颗粒的方法;通过该方法生产的氧化铝颗粒;以及掺入该氧化铝颗粒的高热导率的橡胶/塑料组合物。
具体地说,本发明提供一种生产圆形氧化铝颗粒的方法,包括在1,000到1,600℃下加热含有至少一种平均粒径大于35微米的电熔氧化铝和烧结氧化铝,和至少一种选自卤素化合物、硼化合物和氧化铝水合物的物质的组合物;然后粉碎该组合物。
在该方法中,电熔氧化铝和烧结氧化铝的平均粒径至少为50微米。
在该方法中,电熔氧化铝和烧结氧化铝的平均粒径大于35微米且小于或等于120微米。
在以上任何一种方法中,加入至少一种卤素化合物和硼化合物,加入量为氧化铝总量的5到20质量%。
在以上任何一种方法中,卤素化合物为至少一种选自AlF3、NaF、CaF2、MgF2和Na3AlF6中的物质。
在以上任何一种方法中,硼化合物是至少一种选自B2O3、H3BO3、mNa2O·nB2O3(其中每个m和n是整数)和氟硼酸盐化合物的物质。
在以上任何一种方法中,氧化铝水合物为至少一种选自氢氧化铝、氧化铝凝胶、无定形氢氧化铝和铝化合物的部分水合物的物质。
在以上任何一种方法中,每种电熔氧化铝、烧结氧化铝和氧化铝水合物的α射线指标为0.01c/cm2·小时或以下。
本发明还提供通过以上任何一种方法生产的圆形氧化铝颗粒。
本发明还提供一种含有由该方法生产的圆形氧化铝颗粒的高热导率橡胶组合物。
本发明还提供一种含有由该方法生产的圆形氧化铝颗粒的高热导率塑料组合物。
实施本发明的最佳方式
以下详细描述本发明。
本发明提供一种生产圆形氧化铝颗粒的方法,包括在1,000到1,600℃下加热含有至少一种平均粒径大于35微米的电熔氧化铝和烧结氧化铝,和至少一种选自卤素化合物、硼化合物和氧化铝水合物的物质的组合物,以及粉碎该组合物。
在本发明中用作原料的氧化铝粗颗粒可以是电熔氧化铝的磨碎产品或烧结氧化铝的磨碎产品。在任一种情况下,该磨碎产品是通过任何已知的方法生产的。电熔氧化铝或烧结氧化铝的磨碎产品的平均粒径大于35微米,优选大于50微米或以上,更优选大于35微米且小于或等于120微米,特别优选50到120微米。平均粒径为35微米或以下不是优选的,因为由该原料生产的圆形氧化铝颗粒的平均粒径不超过35微米。
为了增强粗颗粒的圆度,根据需要事先在电熔氧化铝和/或烧结氧化铝中加入用作圆度增强剂的氧化铝水合物,接着加热。用于本发明的氧化铝水合物的例子包括:氢氧化铝如三水铝石、三羟铝石、勃姆石和一水硬铝石;无定形氢氧化铝如氧化铝凝胶和拟-勃姆石;以及铝化合物部分水合物如表面部分水合的氧化铝(氧化铝)。这些当中,特别优选具有高热反应性的氢氧化铝、氧化铝凝胶和氧化铝微粒。从经济的观点来看,优选拜耳法生产的氢氧化铝(三水铝石),最优选平均粒径10微米或以下的氢氧化铝(三水铝石)。
本发明人已经观察到一个十分惊讶的现象:圆度增强剂与下面提到的其它添加剂(根据需要加入)协同作用在粗氧化铝颗粒上,并有选择地作用在不规则的锐利断面上(或被不规则的锐利断面吸收),因此得到圆形的粗氧化铝颗粒。
对圆度增强剂的数量没有特殊的限制,因为该数量根据电熔氧化铝或烧结氧化铝的磨碎产品的粒径分布或类似的因素而变化。例如,当加入氢氧化铝时,其加入量优选为电熔氧化铝和/或烧结氧化铝的5到300质量%范围内(以还原成氧化铝计算)。该加入量更优选在50到150质量%的范围内。当上述加入量小于5质量%时,集料的附着力增加,而当该加入量超过300质量%时,会释放出过量氢氧化铝,并以氧化铝微粒移入到产品中。
对于根据需要在热处理之前加入的其它添加剂来说,可单独或组合使用用作氧化铝晶体生长促进剂的已知化合物。优选的晶体生长促进剂是优选由下列至少一种氟化合物引入的卤素化合物:选自AIF3、NaF、CaF2、Na3AlF6和MgF2,和/或至少一种选自B2O3、H3BO3、mNa2O·nB2O3(其中每个m和n是整数)和氟硼酸盐化合物的硼化合物。在这些化合物当中,特别优选氟化合物和硼化合物,以及氟硼酸盐化合物的组合。
当电熔氧化铝或烧结氧化铝的粒度增加时,碎裂率降低。当除了上述的氧化铝水合物之外加入的其它添加剂的含量增加时,进一步改进了碎裂率。因此,即使平均粒径大于35μm的粗电熔氧化铝/烧结氧化铝(至今还没有使用)用作原料,可以生产圆形粗氧化铝颗粒,其基本上不会对将其混入橡胶/塑料中的捏和机或对成型的模具产生磨损问题。
虽然添加剂的加入量根据使用的烧结氧化铝/电熔氧化铝的粒度、加热炉的加热温度、停留时间以及加热炉的类型而变化,但是该添加剂的有效加入量优选是氧化铝组分总量的3质量%或以上,特别优选5质量%或以上。此外,加入量优选20质量%或以下。当添加剂的加入量小于3质量%时,碎裂降低的效果不足,因此增加将其混入橡胶/塑料的捏和机或模型的模具的磨损,而从经济的观点来看,掺量大于20质量%不是优选的。
对加热炉的类型没有限制,可以使用已知的装置例如单窑、隧道窑和回转窑。对加热温度没有特殊的限制,只要温度能保证最终产品形成α-氧化铝。加热温度一般是1,000℃或以上,优选1,300℃到1,600℃(含),更优选1,300℃到1,500℃(含)。当温度升高到1,600℃或更高时,甚至在氢氧化铝存在下,集料的附着力也增加,因此抑制粉碎成初始颗粒。在加热炉中需要的停留时间,根据加热温度而变化,为30分钟或更长,优选大约为1小时到3小时。
通过上述方法的粗氧化铝颗粒会呈现出二次聚合颗粒。因此,通过已知的粉碎装置例如球磨机、振动球磨机或喷射磨粉碎该颗粒一段短时间,由此生产出目标粒径分布的圆形金刚砂颗粒。
在上述的生产方法中,可以由例如电熔氧化铝、烧结氧化铝和氢氧化铝(它们都含有微量放射性元素例如铀和氧化钍)等材料生产低α射线指标的圆形氧化铝颗粒。当在高集成化集成电路、大规模集成电路和超大规模集成电路的树脂密封材料中使用这种低α射线指标(0.01c/cm2·hr)的圆形氧化铝颗粒作为填料时,该颗粒特别适于预防由α射线所引起的记忆装置的操作故障(即,软件错误)。
本发明生产的圆形氧化铝表现为粗金刚砂颗粒形式,虽然保留一些碎裂断面,但是对将其混入橡胶/塑料中的捏和机或成型的模具没有磨损问题,而且当与微粒组分结合使用时产生良好的流化特性。
本发明方法生产的圆形氧化铝颗粒优选掺入橡胶或塑料中,由此提供高热导率橡胶组合物和高热导率塑料组合物。特别是,该掺入量优选为80质量%或以上。
在本发明中,对组成上述高热导率塑料组合物的塑料(树脂)的类型没有特殊的限制,可以使用任何已知的树脂。其例子包括不饱和聚酯树脂、丙烯酸树脂、乙烯基酯树脂、环氧树脂、二甲苯-甲醛树脂、胍胺树脂、二芳基邻苯二甲酸酯树脂、酚醛树脂、呋喃树脂、聚酰亚胺树脂、密胺树脂和脲素树脂。这些例子当中,优选不饱和聚酯树脂、丙烯酸树脂、乙烯基酯树脂和环氧树脂。
在本发明中,对组成上述高热导率橡胶组合物的橡胶材料(例如:橡胶组分)的类型没有特殊的限制,可以使用任何已知的橡胶材料。
下面通过实施例更详细地描述本发明,这不应该认为是限制本发明。
实施例1:
将250克平均粒径为1μm的氢氧化铝(Showa Denko K.K的产品)、35克试剂级无水氟化铝和35克试剂级硼酸加入到500克市场上可买到的平均粒径为51微米的磨碎的烧结氧化铝产品(Alcoa Kasei有限公司的产品)中并混合,然后将所得到的混合物放在由氧化铝陶瓷制成的耐热容器中。  在坎塔尔铁铬铝系高电阻合金(Kanthal)电炉中于1,500℃下加热该混合物4小时,然后通过振动式球磨机(将100克的烧成产品和1,000克高密度氧化铝质球磨用球(10毫米φ)放入粉磨机(型号SM0.6,Kawasaki重工业有限公司的产品))粉碎该加热产品30分钟。通过激光衍射法(microtrack)获得这种粉碎产品的粒径分布。
实施例2:
除了将无水氟化铝的加入量和硼酸的加入量分别改变为10克外,重复
实施例1的方法。
实施例3:
除了使用平均粒径为90微米的磨碎烧结氧化铝产品之外,重复实施例1的方法。
对比例1
将500克市场上可买到的平均粒径为51微米的磨碎烧结氧化铝产品(Alcoa Kasei有限公司的产品)放在由氧化铝陶瓷制成的耐热容器中,然后在坎塔尔铁铬铝系高电阻合金电炉中于1145℃下加热4小时。通过振动式球磨机(将100克烧成产品和1,000克高密度氧化铝质球磨用球(10mmφ)放入粉磨机(型号SM0.6,Kawasaki重工业有限公司的产品))粉碎该加热产品30分钟。通过激光衍射法(microtrack)获得这种粉碎产品的粒径分布。
下表1说明实施例1到3和对比例1生产的粉末的粒径分布和颗粒形态。
                               表1
实施例1 实施例2 实施例3 对比例1
平均粒径 58μm 60μm 93μm 52μm
颗粒形态 圆形颗粒 圆形颗粒 圆形颗粒 带有锐利断面的无定形粒子
为了测评在与树脂或类似材料捏和时颗粒的磨损性,将表2所示组成的材料通过两个温度预定在105℃到115℃的辊捏和3分钟。视觉上观察由每个辊面的硬铬镀层的磨损所引起的上述配方材料的着色,参考指标评定着色度。
                          表2
                         材料   质量份
环氧树脂 Sumiepoxy ESCN-220F(Sumitomo化学有限公司的产品,软化点:77.6℃) 100
酚醛树脂 Sumilite树脂PR-51688(Sumitomo Durez有限公司的产品,软化点:98℃) 50
  硬化加速剂 咪唑C-17Z(Shikoku化学公司的产品)   1
  巴西棕榈蜡 Toagosei有限公司的产品   3
  氧化铝   850
具体地说,视觉上判断在氧化铝和辊面之间由于磨损而磨掉的硬铬镀层屑片(黑色)进入到每种按配方制造的产品(白色)的程度。磨损程度分为以下几类:1)没有着色,2)微弱着色,3)轻微着色,4)大量着色和5)完全着色。结果显示在下表3中。
                          表3
    实施例1     实施例2     对比例1
磨损程度评定     2)     3)     5)
实施例4:
通过摇摆混合器将80质量%实施例1生产的圆形氧化铝颗粒和20质量%市场上可买到的拜耳法生产的平均粒径为1.7微米的低碱氧化铝(Showa Denko K.K的产品)混合1小时。
对比例2:
将250克平均粒径为1μm的氢氧化铝(Showa Denko K.K的产品)、25克试剂级无水氟化铝和25克试剂级硼酸加入到500克市场上可买到的平均粒径为13微米、最大粒径为48微米的磨碎的烧结氧化铝产品(AlcoaKasei有限公司的产品)中,然后将所得到的混合物放在由氧化铝陶瓷制成的耐热容器中。将混合物在坎塔尔铁铬铝系高电阻合金电炉中于1,450℃下加热4小时,然后通过振动式球磨机(将100克烧成产品和1,000克高密度氧化铝质球磨用球(10mmΦ)放入粉磨机(型号SM0.6,Kawasaki重工业有限公司的产品)粉碎该加热产品30分钟。通过激光衍射法(microtrack)获得这种粉碎产品的粒径分布。发现这样生产的氧化铝呈现圆形颗粒,而且平均粒径为18微米。
对比例3:
通过摇摆式混合器将80质量%的对比例2生产的圆形氧化铝颗粒和20质量%的市场上可买到的平均粒径为1.7微米的拜耳法生产的低碱氧化铝(Showa Denko K.K的产品)混合1小时。
(混合性能的评定)
将数量为500质量份(一次测量)和数量为700质量份(另一次测量)的实施例1和4以及对比例2和3获得的氧化铝产品各自掺入到100质量份的硅油(KF 96,1,000 cP(厘泊),Shin-Etsu化学有限公司的产品)中。使用B型粘度计测量每种这样制备的组合物在25℃下的粘度。结果示于下表4中。
发现实施例1获得的圆形氧化铝颗粒是粗金刚砂颗粒,如实施例4所示,与微粒组分结合使用,产生良好的流化特性。
                           表4
实施例1 实施例4 对比例2 对比例3
粘度(p)500质量份700质量份
600 300 1,500 400
捏和不可能 600 捏和不可能 1,800
实施例5:
将α射线指标为0.01c/cm2·小时或更低的工业用的低α射线氧化铝(Showa Denko K.K的产品)通过电熔制备的坯料粉碎,磨粉,并在使其没有放射性元素污染的条件下分级,由此生产出平均粒径为60微米且α射线指标为0.005c/cm2·hr的电熔氧化铝粗颗粒。将500克氧化铝颗粒加入到250克通过已知方法获得的α射线指标为0.005c/cm2·小时且平均粒径为5μm的低α射线氢氧化铝中,然后烧制所得到的混合物,并以类似于实施例1的方式粉碎,由此生产出α射线指标为0.004C/cm2·小时且平均粒径为67微米的圆形氧化铝颗粒。
工业实用性:
如上文所述,通过本发明方法生产的金刚砂颗粒是圆形粗颗粒,其基本上对机器和仪器没有磨损问题。当该颗粒与微粒组分混合从而扩大粒径分布时,能生产出含大量填料的树脂组合物,这在以前由于流动性差而从来没有生产过。

Claims (11)

1.一种生产圆形氧化铝颗粒的方法,包括在1,000到1,600℃下加热含有至少一种平均粒径大于35μm的电熔氧化铝和烧结氧化铝,和至少一种选自卤素化合物、硼化合物和氧化铝水合物的物质的组合物,然后粉碎该组合物。
2.权利要求1的方法,其中电熔氧化铝和烧结氧化铝的平均粒径至少为50μm。
3.权利要求1的方法,其中电熔氧化铝和烧结氧化铝的平均粒径大于35微米且小于或等于120微米。
4.权利要求1-3任一项的方法,其中,基于氧化铝总量计,以5到20质量%加入至少一种卤素化合物和硼化合物。
5.权利要求1-4任一项的方法,其中卤素化合物为至少一种选自AlF3、NaF、CaF2、MgF2和Na3AlF6的物质。
6.权利要求1-5任一项的方法,其中硼化合物为至少一种选自B2O3、H3BO3、mNa2O·nB2O3,其中每个m和n是整数,和氟硼酸盐化合物的物质。
7.权利要求1-6任一项的方法,其中氧化铝水合物为至少一种选自氢氧化铝、氧化铝凝胶、无定型氢氧化铝和部分水合的铝化合物的物质。
8.权利要求1-7任一项的方法,其中电熔氧化铝、烧结氧化铝和氧化铝水合物各自的α射线指标为0.01c/cm2·小时或以下。
9.按照权利要求1-8任一项的方法生产的圆形氧化铝颗粒。
10.一种含有权利要求9的圆形氧化铝颗粒的高热导率橡胶组合物。
11.一种含有权利要求9的圆形氧化铝颗粒的高热导率塑料组合物。
CNB028019733A 2001-05-30 2002-05-28 球形氧化铝颗粒及其生产方法 Expired - Lifetime CN100467380C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP163187/01 2001-05-30
JP2001163187A JP2002348115A (ja) 2001-05-30 2001-05-30 アルミナ粒子及びその製造方法
JP163187/2001 2001-05-30

Publications (2)

Publication Number Publication Date
CN1463250A true CN1463250A (zh) 2003-12-24
CN100467380C CN100467380C (zh) 2009-03-11

Family

ID=19006204

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028019733A Expired - Lifetime CN100467380C (zh) 2001-05-30 2002-05-28 球形氧化铝颗粒及其生产方法

Country Status (3)

Country Link
JP (1) JP2002348115A (zh)
CN (1) CN100467380C (zh)
HK (1) HK1061009A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264543A (zh) * 2021-04-14 2021-08-17 雅安百图高新材料股份有限公司 一种球形氧化铝最大粒径的控制方法
CN115947361A (zh) * 2022-11-21 2023-04-11 江苏联瑞新材料股份有限公司 一种低放射性氧化铝粉及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022963A (ja) * 2003-06-12 2005-01-27 Showa Denko Kk アルミナ粒の製造方法及び組成物
JP5336374B2 (ja) * 2007-07-31 2013-11-06 電気化学工業株式会社 アルミナ粉末の製造方法
JP2010126385A (ja) * 2008-11-26 2010-06-10 Denki Kagaku Kogyo Kk 球状アルミナ粉末及びその製造方法
CN104891540B (zh) * 2015-06-18 2016-09-28 成都华泽晶体材料有限公司 一种微米类球形α氧化铝粉体的制备方法
CN113173779B (zh) * 2021-04-29 2023-07-21 江西工陶院精细陶瓷有限公司 氧化铝填料颗粒及其制备方法、氧化铝填料球的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215498A (en) * 1975-07-28 1977-02-05 Showa Denko Kk Process for production of granular corrundum
JPS62191420A (ja) * 1986-02-17 1987-08-21 Showa Alum Ind Kk 球状コランダム粒子の製造方法
JPS6320340A (ja) * 1986-07-14 1988-01-28 Showa Denko Kk 高熱伝導性ゴム・プラスチック組成物
TW197458B (zh) * 1991-02-14 1993-01-01 Ciba Geigy Ag
JP2624069B2 (ja) * 1991-11-28 1997-06-25 昭和電工株式会社 球状コランダム粒子
JPH07206432A (ja) * 1993-11-25 1995-08-08 Sumitomo Chem Co Ltd α−アルミナ粉末及びその製造方法
JPH07206431A (ja) * 1993-11-30 1995-08-08 Sumitomo Chem Co Ltd α−アルミナ粉末の製造方法
JPH10120901A (ja) * 1996-10-16 1998-05-12 Kureha Chem Ind Co Ltd 樹脂組成物
JP3652460B2 (ja) * 1996-12-02 2005-05-25 株式会社メイト 樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264543A (zh) * 2021-04-14 2021-08-17 雅安百图高新材料股份有限公司 一种球形氧化铝最大粒径的控制方法
CN115947361A (zh) * 2022-11-21 2023-04-11 江苏联瑞新材料股份有限公司 一种低放射性氧化铝粉及其制备方法

Also Published As

Publication number Publication date
JP2002348115A (ja) 2002-12-04
HK1061009A1 (en) 2004-09-03
CN100467380C (zh) 2009-03-11

Similar Documents

Publication Publication Date Title
CN100343170C (zh) 粒状氧化铝、生产粒状氧化铝的方法和含有粒状氧化铝的组合物
US5340781A (en) Spherical corundum particles, process for preparation thereof and rubber or plastic composition having high thermal conductivity and having spherical corundum paticles incorporated therein
CN1293701A (zh) 粉末涂料组合物
KR20120049181A (ko) 산화마그네슘 입자, 그 제조 방법, 방열성 필러, 수지 조성물, 방열성 그리스 및 방열성 도료 조성물
CN1173479A (zh) 硼酸蜜胺颗粒、其制法和用途,以及生产六方晶系氮化硼粉末的方法
CN1019006B (zh) 用氧化铁引晶形成的氧化铝陶瓷磨料粒
CN108393792B (zh) 活性填料造孔剂、含此造孔剂的树脂磨具及其制作方法
KR20110079843A (ko) 산화아연 입자, 그 제조 방법, 방열성 필러, 수지 조성물, 방열성 그리스 및 방열성 도료 조성물
CN103140436A (zh) 氮化铝粉末及其制造方法
CN1463250A (zh) 球形氧化铝颗粒及其生产方法
EP0276321B1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
CN1414925A (zh) 氧化铝粒子、其制造方法、含有该粒子的组合物和研磨用氧化铝料浆
WO2021200490A1 (ja) アルミナ粉末、樹脂組成物、及び放熱部品
EP1633678B1 (en) Method for producing particulate alumina and composition containing particulate alumina
CN1274775C (zh) 水化硅酸钙纳米涂料及其生产方法
US6887811B2 (en) Spherical alumina particles and production process thereof
WO2021200491A1 (ja) アルミナ粉末、樹脂組成物、及び放熱部品
US20050182172A1 (en) Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
CN113234350A (zh) 一种热弯保护油墨及玻璃盖板的热弯抛光工艺
CN102516880A (zh) 一种氧化铈基质的玻璃镜片抛光粉制备方法
JP2002348116A (ja) アルミナ粒子及びその製造方法
CN1221606C (zh) 碱性硫酸镁纤维增强的聚丙烯树脂和使用该树脂组合物得到的注射成型制品
CN1500733A (zh) α-氧化铝粉末及其制造方法
JP2003201116A (ja) アルミナ粒、アルミナ粒の製造方法、アルミナ粒を含む組成物
JPH0432004B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1061009

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1061009

Country of ref document: HK

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090311