CN1455756A - 基于磷酸铝的高温无定形组合物 - Google Patents

基于磷酸铝的高温无定形组合物 Download PDF

Info

Publication number
CN1455756A
CN1455756A CN01815583A CN01815583A CN1455756A CN 1455756 A CN1455756 A CN 1455756A CN 01815583 A CN01815583 A CN 01815583A CN 01815583 A CN01815583 A CN 01815583A CN 1455756 A CN1455756 A CN 1455756A
Authority
CN
China
Prior art keywords
composition
matrix
aluminium
solution
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01815583A
Other languages
English (en)
Other versions
CN1289389C (zh
Inventor
S·萨姆巴斯范
K·A·斯泰纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Thin Films Inc
Original Assignee
Applied Thin Films Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Thin Films Inc filed Critical Applied Thin Films Inc
Publication of CN1455756A publication Critical patent/CN1455756A/zh
Application granted granted Critical
Publication of CN1289389C publication Critical patent/CN1289389C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62268Fibres based on metal phosphorus oxides, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62881Coating fibres with metal salts, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Materials For Medical Uses (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

在高温下提供热保护、抗腐蚀性和抗氧化性的组合物是基于合成的磷酸铝,其中铝的摩尔含量大于磷。所述组合物经热处理,在一直到1400℃的温度下是亚稳定的。

Description

基于磷酸铝的高温无定形组合物
发明背景
本发明涉及合成无机组合物,它们在中温和高温下,例如从800℃到1400℃或更高的温度下仍保持亚稳定性并具有其他所希望的性质。
使用金属氧化物涂层来进行基质和其他表面的高温保护是已知的。到目前为止,还没有一种已知的合成氧化物可以在1400℃和更高的温度下能保持无定形和亚稳定性。例如,在稍高于850℃的温度下已知的氧化硅就会析晶/晶化。其他非氧化物材料,例如碳氧化硅和氮氧化硅在高温下在空气中会迅速氧化并形成结晶相。
磷酸铝是大家熟悉的无机材料,已发现在各种应用场合中有许多用途,其中包括催化剂、耐火材料、复合材料、磷酸盐结合的陶瓷和许多其他的用途。磷酸铝有低的密度(d=2.56g/cm3)。在高温下,它在化学上是惰性的和稳定的,并在适中的温度范围内在化学上与许多金属和最广泛使用的陶瓷材料包括碳化硅、氧化铝和氧化硅是相容的。
但是,磷酸铝用作高温陶瓷材料是不适合的,因为它发生多晶型转变(石英型、鳞石英和方石英),有相应大的摩尔体积变化。因此,希望提供这样一种合成形式的磷酸铝,它在升温,或在加热和冷却循环下仍是亚稳定性的,仍基本上是无定形的。为了给基质例如金属和陶瓷提供氧化保护和抗腐蚀性,应使磷酸铝组合物具有另一所需的性质,即在高温或在苛刻的环境中具有低的氧扩散性。
发明概述
本发明通常涉及在高温条件下具有亚稳定性和其他相关性质的基本上为无定形的磷酸铝的材料和/或组合物。部分地,亚稳定性可通过在氧化条件下无定形特性的保留来证实,这样的形态及其程度至少部分由于这样的材料/组合物的铝含量,与它们的化学计量对应物相比,化学计量总体上过量铝的材料/组合物有增强的无定形特性和相关的稳定性。在这样的材料/组合物的制备中,这样的性质和相关的高温属性可主要受铝前体与相应的磷酸盐前体混合引起各种结构和/或组成改变影响,这种改变表现为生成的磷酸铝材料/组合物的高温性能。具体地说,正如在以下实施例中更清楚说明的,当铝加到磷酸盐前体中时,它可被鉴定出耒,并使生成的磷酸铝材料/组合物具有无定形特性和相关的亚稳定性。加入化学计量过量的铝前体增强了所得的无定形持形和亚稳定性。
部分地,本发明为一种含有磷酸铝组合物的亚稳定材料,这样的组合物可用式Al1+xPO4+3x/2表示,其中x为约0至约1.5。这样的材料的组合物可用在红外光谱中约795cm-1至约850cm-1处结构/组成组分吸收的射线来表征,还可进一步用在至少约1000℃下它们的存在来表征。不考虑任何特定的材料或组合物相,在本发明的各种优选的实施方案中,正如在下面更全面描述的,x为0或约0。在各种其他优选的实施方案中,视亚稳定材料所需的性能和/或最终的应用而定,x为约0.1至约1.0。通常,这样的材料是基本上无定形的,其程度部分取决于x的数值和整个组合物的铝含量。视这样的含量和形态而定,这祥的材料在至少约1200℃下是亚稳定的。正如下面说明的,在以下的实施例中,这样的材料也可含有结晶颗粒,包括但不限于CaWO4、Al2O3和ErPO4,这样的夹杂物可由温度处理和/或加入适合的前体组分产生。正如所希望的,这样的夹杂物可影响各种材料的物理特性和/或性能特性,包括但不限于对于特定的最终用途或复合物的制造的材料的热膨胀系数的改变。
根据上述内容以及结合以下实施例和详述,本发明还可为一种使用磷酸铝组合物的铝含量来影响和/或控制其亚稳定性的方法。这样的方法包括由或使用铝盐前体化合物来提供磷酸铝组合物。生成的磷酸铝组合物的铝含量对应于前体化合物的铝含量,这样的铝含量足以提供所需的和/或预期的组合物亚稳定性。正如下面说明的,以及正如本专业的技术人员理解的,这样的材料的亚稳定性可在光谱上表明的所述材料的无定形和/或非结晶方面来证实。相对于磷酸盐有化学计量的铝含量的材料可有一定的亚稳定性。通常,这样的材料的亚稳定性可通过化学计量过量的铝来提高。正如在这里说明的,相应的前体的制备和与磷酸盐前体的混合可影响铝含量和产生的稳定性。根据适合的前体的选择和/或改性,通过包含包括但不限于硅、镧和锆的其他金属组分可有利于亚稳定性和各种其他光学的、化学的和/或物理的性质。
因此,本发明还部分地包括一种制备用于生成金属磷酸盐组合物、优选磷酸铝组合物的前体溶液的方法。这一方法包括第一种金属和/或铝盐溶液的制备;磷组分的制备;以及溶液和组分的混合。通常,磷组分为五氧化磷的醇溶液,但其他与这里描述的有可比效果的磷组分/磷酸盐前体也可使用。同样的和没有限制的,提供金属/铝组分的醇溶液,溶剂的选择取决于金属/铝溶解性以及与相应的磷/磷酸盐组分的相容性。在与现有技术的各种不同中,本发明的这一方面设想在这样的前体制备中使用化学计量过量的相应金属和/或铝组分,并在随后生成所需的金属和/或磷酸铝材料/组合物中使用它。正如在这里更全面描述的,本发明的优选实施方案针对适合的铝盐组分、前体和生成的材料/组合物,但也可将各种其他金属组分加到前体溶液中,以便提供与热、光学和/或物理性质有关的生成的材料/组合物。
部分地,本发明还包括一种使用磷酸铝组合物来提高有关基质的抗氧化性的方法。这一方法包括(1)提供本发明的磷酸铝组合物,优选其式为Al1+xPO4+3x/2,其中x为约0至约1.5;以及(2)将组合物涂到适合的基质上。在各种优选的实施方案中,视最终的应用和/或制造技术而定,组合物可在基质涂覆以前或以后热处理。正如下面所述的,不管怎样,这样的组合物都可浸涂在基质上形成薄膜。另一方面,在没有限制下,组合物可制成粉末,然后用等离子喷涂或气溶胶喷涂到基质上。
部分地,本发明还包括一种具有铝-氧-铝结构部分并在红外光谱约795cm-1至约850cm-1处吸收射线的磷酸铝产品。这样的产品可用以下步骤制得和/或生产:(1)将五氧化磷的醇溶液与铝盐溶液混合,铝相对于磷前体为化学计量或化学计量过量;以及(2)将生成的混合物加热。这样的产品基本上是无定形的,但正如上面讨论的,也可有结晶颗粒夹杂物。作为一代表性实施方案,这样的颗粒为通过铒盐与上述铝盐溶液结合生成的结晶磷酸铒夹杂物。另一方面,说明本发明另一方面,产品可含有其量足以改变生成的产品的热膨胀系数的第IIIA和/或IIIB-VIB族金属氧化物颗粒。
关于上面讨论的一个或多个方面,本发明可包括新一类的磷酸盐化合物,在其组合物中含有过量的金属物质;也就是,根据一优选的实施方案,铝原子超过在化学计量磷酸铝中的磷原子数目。过量可大于1%、优选大于5%。
无论本发明的组合物是化学计量的或表现出过量的金属组分,其制备的方法包括在U.S.6036762中公开的那些方法,其全部内容作为参考在这里并入本发明。据此,前体溶液由两种液体组分形成。第一种组分为溶于醇的金属盐。第二种组分为溶于醇的五氧化磷。然后将两种组分按所需的摩尔比例混合在一起,得到稳定的前体溶液,磷酸盐部分至少部分地酯化,生成能均匀捕获金属离子的类聚合物结构。
可将溶液按原样直接加热以除去醇部分和其他物质,得到纯的金属磷酸盐。但是,优选的是,用任何适合的方法将溶液作为涂层涂覆到无孔的或多孔的基质上,然后将经涂覆的基质加热,通常加热到小于600℃的温度,在基质上得到均匀的和纯的金属磷酸盐涂层。
这种方法的特别优点在于,前体溶液为基质涂覆提供了平滑均匀厚度的基质涂层。在最初热处理以后,可再涂覆随后的涂层,以便增加涂层的厚度。这种方法适用于制备含有多种金属离子的前体磷酸盐溶液。在宽范围内调节复合物溶液浓度的能力是另一明显的优点,能形成准确或可控地金属磷酸盐的数量。
此外,正如本发明更具体针对的,上述混合物/前体溶液可经干燥然后热处理,例如在高达800℃或更高的温度下在空气中热处理。据认为热处理步骤使分子结构变化,最终产物50%以上的含量为无定形的,以及在高达1400℃或更高的温度下无定形性质长期保持而不发生氧化。视合成步骤和其他组分或添加物的存在而定,组合物还可含有可影响其他所需性质例如韧性和光活性的小结晶夹杂物。组合物有其他所需的性质,例如很低的氧扩散性、低的导热性和高辐射系数。因此,特别适合的应用是将组合物用作基质上的涂层,以便使基质在高温下的氧化最小。
最初生成的有机溶液可转变成任何所需的形式。例如,可将该溶液涂覆到金属、陶瓷或其他基质例如陶瓷复合材料上,然后热处理,或可将它转变成任何所需的形状例如纤维或长丝,或成任何其他所需的模制形式,或可转变成能用适合喷涂技术的涂覆到基质上的粉末。在这里还提供各种其他最终应用。本发明的各种材料/组合物可以以Cerablak商标由Applied Thin Films,Inc.提供。
附图简述
图1. 在1000℃100小时后未涂覆的和AlPO4涂覆的304型不锈钢。与未涂覆的部件相比(4.5-8.6%),氧化使经涂覆的部件的重量增加非常的少(0.08-0.24%)。
图2. a)1200℃420小时、b)1300℃100小时、c)1400℃10小时、d)电子衍射1200℃100小时热处理的粉末的TEM显微镜图。
图3. 1200℃2小时热处理的氧化铝涂层的Nextel 720纤维上的涂层的TEM显微镜图。
图4. a)1100℃1小时、b)1100℃163小时热处理的化学计量材料的XRD图。注意在21.5处峰的分离,表明结晶鳞石英和方石英相的存在。
图5. a)1100℃1小时下热处理的磷酸铝材料(x=0.75)的XRD图,b)1100℃163小时热处理的相同组合物的XRD图。注意鳞石英峰分化的缺少。
图6. 本发明磷酸铝组合物的热膨胀测量值。
图7. 1200℃100小时热处理的AlPO4涂覆的Nextel 720纤维的TEM显微镜图和电子衍射图。
图8. 埋在无定形基质中的AlPO4纳米晶的TEM明场图像。
图9. 1000℃1小时热处理的Er-掺杂的磷酸铝的TEM显微镜图。
图10. a)含有YSZ、熔融氧化硅、莫来石氧化铝和尖晶石的AlPO4(较低的线)的传热性。B)AlPO4(较低的线)和YSZ(常用的阻热材料)的传热性。
图11. AlPO4纤维截面的SEM显微镜图。
图12. a)1100℃1小时热处理的粉末和b)1200℃、500小时、10大气压、15%水蒸汽热处理的粉末(白色)的XRD图。
图13. 实施例31的破碎百色小粒的TEM显微镜图,显示在无定形基质中有纳米结晶夹杂物以及相同样品的不同区域的电子衍射图。
图14. 1400℃1小时热处理的AlPO4相同材料/组合物样品的a)黑色区域和b)白色区域的Raman光谱图。
图15. 溶于乙醇的五氧化磷的31P NMR图。a)溶解后不久,b)24小时回流以后。
图16. 混合的前体溶液的液体31P NMR图,表明铝加入的影响。a)全光谱、b)反映铝存在的峰的图。
图17. 1100℃160小时热处理后图16中所示的溶液的X-射线衍射图。a)全范围、b)放大部分,以便说明在21度附近峰的差别。
图18. 1100℃1小时热处理的化学计量和非化学计量的组合物的FTIR。
图19. 1100℃1小时热处理的化学计量AlPO427Al NMR光谱的去卷积。
图20. 1100℃160小时热处理后过量铝的组合物Al/P=2(1倍过量,x=1.0)的27Al MASNMR光谱的去卷积。
几个优选实施方案的详述
正如上面讨论的,本发明涉及新的一类亚稳定的高温无定形无机组合物。独特的无定形结构可用简单的低成本的溶胶-凝胶前体制得。无定形材料的热稳定性主要通过相应的前体的金属含量来控制,在优选的实施方案中为铝。几种无定形形式的组合物已合成,表明在1200℃以上稳定数百小时。现有技术用溶胶-凝胶途经合成的大多数结晶材料在1000℃以下就由无定形转变成结晶。但是,在这种情况下并以磷酸铝作为一般的例子,使结晶氧化铝和AlPO4相的热力学平衡一直到热处理超过1500℃才出现。量热测量揭示的高度放热溶解行为表明材料是热力学上不稳定的或亚稳定的。可能由于特殊的“Al-O-P”原子团产生的无定形材料极低的氧扩散性,似乎控制着粘滞动力学(Slugglish kinetics)。用简单浸涂法沉积的气密上致密和粘着的薄膜(1000或更薄)证明材料具有在1000℃下防止不锈钢氧化的显著能力(见下文的图1和实施例2)。
当制成薄膜或涂层时,所述的材料倾向于保持完全的无定形,而由此得到的粉末为含有少量,直到约20-30%,化学计量磷酸铝纳米晶夹杂物(尺寸为5-60纳米不等)的无定形材料(图2和3)。同样,正如这里所公开的,无定形的含量和纳米晶夹杂物的存在也可受铝前体的化学计量影响,其化学计量过量的应用使这样夹杂物的影响下降,使无定形含量增加以及使整个材料/组合物的亚稳定性提高。下表I提供表征本发明这样的组合物的几个性质。
表I.  所选的说明性性质
氧扩散性    ~1×10-12cm2/sec(化学扩散性@1400℃)
热膨胀      5×10-6K-1
传热性      1.0-1.5W/mK(RT-1300℃)
介电常数    3.3-6.35(x=0.5-0.75)
很低的氧扩散性允许使用极薄的无定形保护涂层(50-100nm),在那里由于热应力的裂纹影响不大。这一独特的性质可用于对高温应用中使用的许多金属和陶瓷提供保护。纳米晶玻璃-陶瓷复合材料的生成也可为许多应用场合定制物理、热、机械和光学性质提供机会。本发明的材料/组合物可作为连续的薄膜或作为粉末(它可被等离子喷涂)或以接近无余量的压实形式来制成。某些潜在的应用包括氧化和腐蚀保护(低氧扩散性和化学耐久性)、航空和航天器的热保护(高辐射系数、低传热性和低氧扩散性)、低可见的热稳定涂层(低介电常数)、抗熔融金属的保护(非润湿特性)、界面涂层(非润湿性)和陶瓷基复合材料(CMCs)的基质(高强度和制作容易)。
制备本发明的组合物的优选方法在上述的U.S.专利No.6036762中描述。将铝盐例如有水合水的硝酸铝溶于有机溶剂、优选醇例如乙醇。在分开的容器中,将一定质量的五氧化磷(P2O5)溶于相同的溶剂中。在Al溶液中的Al和P的摩尔比大于1比1,优选为至少1%最优选至少5%。过量铝的实际上限未确定,但己制备含有过量十倍的铝组合物;为在高温下保持无定形含量来说,1.5-3.5过量摩尔比看来是最有前途的。
更一般地说,适用于本发明的更广泛的方面,这一合成途径由两种分开的使用共同的有机溶剂液体组分得到金属磷酸盐前体溶液提供。虽然许多有机溶剂都可能是有用的,但液体醇类是优选的,例如甲醇或乙醇,乙醇是最优选的。因此,前体溶液的第一种组分由溶于醇例如乙醇中溶解的金属盐制得。可使用不同金属的盐的混合物。可使用硝酸盐、氯化物、乙酸盐或任何可溶于醇介质的金属盐。金属盐和/或醇的选择只受相关的溶解性考虑因素的限制。
任何金属的盐都可用于第一种组分。对于用于高温反应环境中的涂层的制备,可参考U.S.专利No.5665463,在这里作为参考并入。金属盐可包含通式为MPO4的独居石,其中M选自较大的三价稀土元素或镧系元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd和Th)。正如在上述专利中公开的,也可制备磷钇矿。其他二价和三价金属例如铝是特别适用的。
前体溶液的第二种组分是溶于相同溶剂例如乙醇中的五氧化磷(P2O5)。没有任何限制,据认为醇和五氧化磷之间有受控的反应性,其中生成磷酸酯。酯化过程继续生成酯链,同时溶液陈化,而溶液变得足够聚合,以致得到良好的成膜性质。优选将金属盐溶液在五氧化磷溶液中制备后和大量发生酯化以前加到后者中。
视所需的薄膜微观结构而定,可在各种浓度下制备前体溶液。例如,使用硝酸镧,可制得每升有160克磷酸镧的溶液。在化学计量比例或金属盐过量的混合物中提供金属盐和磷酸盐,从而得到所需的金属磷酸盐。
正如这里更加全面描述的,含有两种组分的溶液可稳定贮存,并可通过加热转变成金属磷酸盐。但是,因为溶液有良好的润湿性和涂覆性,使用的优选方法是在多孔的和无孔的基质上的涂层。例如,作为在陶瓷纤维、织物或在高温即超过1200℃下使用的其他结上的涂层,磷酸镧有重大的应用性。正如在U.S.专利No.5665463中提到的,磷酸盐涂层可提高复合材料的韧性。溶液可作为涂层涂覆到非孔材料例如金属和金属合金上。
当被前体涂覆的基质热解时,大量溶剂在相对低温下蒸发,在基质上留下残留前体材料的连续膜。当再次加热时,除了金属和磷酸盐外的所有物种都被除去,留下金属磷酸盐的涂层。所需加热到的温度可通过差热分析来测量。对于LaPO4前体,短期加热到600℃可确保总的转化率。制得膜的X射线衍射证实磷酸镧单相的生成。膜的扫描电子显微镜分析表明,它是平滑的、均匀的、连续的和化学计量的。挥发性溶剂体系的应用能在相对低的温度下生成金属磷酸盐。
可将前体液体涂覆到需要氧化和/或腐蚀保护的适合基质上,例如金属或合金或陶瓷,或者与陶瓷材料颗粒混合。此外,可将液体吸入纤维,放入铸模或单独使用。不管怎样,要通过热处理或在空气中热解将液体转变成稳定形式固体。通常,对于铝组合物,通常需要加热到750℃以上一段时间,例如1小时或更高的温度。当组合物呈现黑色或深灰色时,表明进行了完全的热处理。
至少就本发明的磷酸盐组合物来说,据认为有机基的前体的分解行为至少部分控制导致独特的无机化合物的分子过程。材料含有超过50%的无定形化合物,还可含有纳米晶。当从环境温度加热到1400℃或更高温度一段长时间,材料保持无定形的和亚稳定的。据认为增加前体溶液的贮存时间使无定形含量增加。
基于最初的观测,己发现本发明的经热处理的组合物的无定形含量可至少受两个因素的影响,也就是前体溶液的涂覆和陈化。作为第一个作用的一个例子,涂覆在纤维上的溶液涂层看来基本上是完全无定形的,甚至在1200℃热处理两小时以后。这一点首先被经溶液涂覆和处理的有氧化铝涂层的莫来石-氧化铝纤维TEM分析证实。另一方面,在1000℃30分钟下在氧化铝坩锅中合成的粉末含有一大部分AlPO4晶粒。前体溶液的陈化看来对前体中磷环境以及对热解产物中无定形的含量有重大的影响。溶液在冷冻器中贮存直到两年或在室温下贮存一月常常得到更纯的无定形含量。
测试的AlPO4样品中,与氧化铝的3.96g/cm3相比,组合物/材料有约1.99到2.25g/cm3的低密度。在1400℃下,组合物的化学扩散性在1×10-12cm2/sec的数量级。材料还显示出高辐射系好,可能用于热保护体系,例如空间应用。对传热性的测量在1到1.5W/m.k.。在各种苛刻环境中材料是惰性的,并对包括熔融铝和固体氧化物在内的大多数材料有不润湿性。薄至0.25微米的涂层能保护金属表面和其他表面。
可能的应用包括用于金属和金属/陶瓷基的热保护体系;高辐射系好涂层;用于碳化硅和氧化物基的陶瓷基质体系的界面涂层;用于金属和陶瓷基体系的环境屏蔽涂层;复合材料纤维和纤维激光器;熔融金属加工的防腐蚀;绝热的整体材料以及许多其他应用的热保护、腐蚀保护和氧化保护。材料还可具有低的介电常数,使它可用于屏蔽罩应用。
发明实施例
实施例1
为了制备850mL75.46g/L用于合成具有1.75∶1的Al∶P比(0.375摩尔过量Al2O3)的无定形磷酸铝材料的前体溶液,将408.94gAl(NO3)3·9H2O溶于382ml乙醇中制得500ml溶液。在惰性气氛中的另一容器中,将25.23gP2O5溶于300ml乙醇中。P2O5溶解以后,将两种溶液混合在一起,然后搅拌数分钟。溶液充分混合以后,将它放在150℃炉中的一个大容器中一小时或数小时。生成的粉末完全干燥以后,将它在1100℃空气中热处理一小时,以生成每摩尔磷酸铝有0.75摩尔过量铝的无定形磷酸铝粉末。
实施例2
为了在304不锈钢的矩形试件上形成抗氧化的无定形磷酸铝涂层,将试件浸在实施例1的前体溶液中,稀释到某一浓度并取出。样品在流动空气中干燥,以除去溶剂。将样品在65℃炉中更彻底地干燥。与未涂覆的相同尺寸和形状的304不锈钢试件一起,将试件在1000℃空气中热处理(升温速率为10℃/分)100小时,然后以10℃/分冷却到室温。在热处理以前测量每一未涂覆的试件的重量。在涂覆和热处理以后再次测量重量。涂覆无定形磷酸铝的试件有明显较小的重量增加。重量增加数据列入下表。
表I在1000℃空气中热处理的未涂覆和涂覆的(AlPO4,75%过
   量铝)不锈钢试件的重量增加。重量增加与未涂覆的试件
   重量有关。
  样品       原重量(g)   热处理后的重量(g)  重量增加(g)  %重量增加无定形磷酸铝    20.3727         20.4207          0.048       0.24%(包括涂层)
未涂覆的      20.6303         22.4123          1.782       8.64%
实施例3
为了用等离子喷涂在固体基质上生成无定形磷酸铝涂层,将实施例1中制得的无定形磷酸铝粉末在球磨机中研磨到小且均匀的尺寸(约20微米)。然后用小颗粒等离子喷涂法将粉末沉积(见U.S.专利No.5744777,在这里其全部内容作为参考引入)。
实施例4
通过电子固化法(electroconsolidation)制成大块无定形磷酸铝(U.S.专利No.5348694)。将细磨碎的无定形磷酸铝粉末与粘合剂(1wt%PEG8000和2wt%PEG20M)混合,然后压成小球。将这一小球在1200℃下预烧结5小时。然后将小球在1300℃下电子固化30分钟。最终小球的密度为1.99g/cm3
实施例5
由实施例1的前体溶液生成的粘稠聚合物制备无定形磷酸铝纤维。将AlPO4溶液在50-65℃下干燥,一直到留下40-30%的重量。残留物有高粘度的基本上透明的玻璃状外观。用针插入粘稠的残留物中并迅速拔出,牵拉未加工的纤维。立刻将纤维在650°F流动空气中干燥。然后将未加工的纤维在至少900℃下热处理,以便生成无定形磷酸铝纤维。
实施例6
可将稀土和其他金属离子结合到无定形磷酸铝结构中。用类似于实施例1的无定形磷酸铝溶液的方法合成铒为5mol%有0.75摩尔过量金属(铝和铒)的铒掺杂的前体溶液。将31.2gAl(NO3)3·9H2O溶于75ml乙醇中。在惰性气氛的手套箱中在分开的容器中,将1.94gEr(NO3)3·5H2O溶于20ml乙醇中。将硝酸铒溶液加到硝酸铝溶液中,并搅拌数分钟。在分开的容器中在惰性气氛的手套箱中,将3.55gP2O5溶于40mL乙醇中。在P2O5溶解以后,加入硝酸铝和硝酸铒溶液,手套搅拌数分钟。然后将溶液在150℃下干燥约1小时,然后在1000℃下热处理1小时。在1000℃下热处理1小时的材料的X射线衍射证实无定形的结构,没有磷酸铒结晶。
实施例7
图4为含有标称等摩尔量一水合硝酸铝和五氧化磷的乙醇前体溶液合成的化学计量磷酸铝得到的X射线衍射图(XRD)。将溶液干燥,并将得到的粉末在1100℃空气中焙烧1小时,为乌黑色。由图可立刻清楚,材料是不完全结晶的,可能含有大量结晶不规则物或无定形部分。宽峰的精细实验表明AlPO4的不规则鳞石英和方石英的存在。这种材料在空气中进一步更长时间热处理(1100℃、163小时)引起显著的晶化,正如在图4中看到的,在那里鳞石英峰被更好地确定,而方石英峰与主鳞石英峰分开。
相反,图5表示在前体溶液中有过量铝(x=0.75,75%摩尔过量)合成的磷酸铝的XRD图。图4和5之间的明显差别立刻很清楚:有过量铝的材料的衍射图保持的宽和低强度峰,说明有大量非结晶的无定形结构存在以及增强的亚稳定性。
不受任何理论和操作方式的限制,据认为有过量铝的前体设计是本组合物制备中的一个要素。P2O5与乙醇的多酯化和水解控制液体中簇团的化学,在此过程中发生一系列分子过程(molecular events),在P、Al、O和-OH之间产生独特的空间配位,并通过胶凝和焙烧保留下来。有过量铝的AlPO4的合成明显增强生成的材料/组合物的热稳定性。
实施例8
过量铝加到前体溶液中导致在热解产物中有大量除规则四面体配位外的配位存在,包括但不限于不规则的八面体配位的铝。现有技术的结晶磷酸铝包含四面体配位的铝和磷,但本发明的磷酸铝材料/组合物的27Al MAS NMR表明4-和6-倍的铝的存在(见下面实施例35a和35b以及图19和20),这与表现出的亚稳定性一致。
实施例9
用室温至1100℃的膨胀计测量法测量电子固化的磷酸铝小球的热膨胀(图6)。其热膨胀系数比热膨胀系数为约13X10-6/K的钢要低得多。但是,从不锈钢涂覆实验表明,这样材料的很薄的涂层能经受住热膨胀不匹配,甚至在加热到1000℃并返回室温以后仍保持附着和不开裂。
实施例10
在1200℃100小时热处理后,Nextel 720氧化铝/莫来石纤维上的50nm涂层的TEM分析表明,本发明的磷酸铝组合物仍完全是无定形的(图7)。没有明显的纳米晶夹杂物。
实施例11
镍基超级合金常常用于各种高温应用,例如涡轮叶片。但是,高温下的氧化仍然是一个问题。用本发明的AlPO4材料涂覆的镍基超级合金试样大大降低氧化铝氧化物层生长的动力学和剥落,证明本发明明显降低高温氧化。
实施例12
与作为薄膜制得的完全无定形材料相反,如这里描述的合成的磷酸铝粉末可含有埋在无定形基质中的纳米结晶夹杂物。热处理过的粉末的TEM研究表明两种完全不同类型的材料。在1100℃下热处理1小时以后,约20-30%粉末样品含有孤立的磷酸铝晶粒。但是,大部分样品含有5-30nm纳米范围且分散良好的纳米尺寸结晶夹杂物的无定形/玻璃状基质(图8)。1300℃下热处理100小时的粉末的TEM研究表明,材料中的大部分纳米结晶基本上是相同的,粒度稍有增加(25-60nm)。
实施例13
在基质中得到有ErPO4纳米结晶的相类似的结果。正如这里所述,制备了5mol%Er-掺杂的粉末。在1000℃热处理1小时的Er-掺杂的材料的TEM分析表明,纳米结晶部分比未掺杂的材料增加(图9)。EDS证实这些纳米结晶中Er的存在。在1000℃热处理1小时的Er-掺杂的材料的XRD分析表明有明确的ErPO4峰。
实施例14
本发明的组合物比氧化钇稳定的氧化锆,一种常用的热屏蔽涂层材料,有更低的传热性(1.0-1.5W/mK)(图10)。所以,这样的材料有可能同时提供环境保护和热屏蔽,可能在应用中在一个涂层中达到。热屏蔽涂料常常用等离子喷涂,它涉及粉末的部分熔化。将AlPO4粉末等离子喷涂到钢和铸铁上,XRD图未显示结构有任何变化。
实施例15
本实施例的AlPO4组合物作为平滑的、致密的无定形陶瓷纤维被制备,具有高强度和高抗蠕变性,没有晶界,而晶界处易形成缺陷。高温稳定的高强度和抗蠕变性具有巨大的潜在结构应用(见图11和下面几个其他实施例)。
实施例16
本发明的磷酸铝材料/组合物是非润湿的和不粘合的。由于在高达1400℃的热稳定性,它们可在烹调设备到工程组件的各种应用中为类Teflon非粘性涂料提供高温替代物。
实施例17
细颗粒在溶液中的浆料可用气溶胶喷涂法涂覆到基质上。因此,将AlPO4粉末的浆料(平均粒度为16微米)按5g粉末/100mL溶液混合到AlPO4溶液中。将这种浆料气溶胶喷涂到加热后的不锈钢试件上。结果得到埋在AlPO4涂层中的AlPO4颗粒涂层。涂层很好地附着到钢表面上。
实施例18
本发明的组合物/材料的涂层用化学气相沉积法(CVD)制得。CVD涂层可在低温下沉积,因此得到无定形涂层。CVD也能进行很好的化学计量控制。因此,将乙酰基丙酮铝和磷酸三甲酯溶于甲苯。将这一溶液放入液体输送辅助的CVD系统。这一液体前体能被仔细混合和化学计量控制。将溶液转移到闪蒸器中,在那里汽化。将蒸汽送入反应器,反应并作为固体沉积在基质上。
实施例19
制备本发明组合物的另一途径可通过固体与液体磷源(磷酸、五氧化磷溶液等)反应。固体可含铝,它促进无定形磷酸铝的生成。因此,将含有少量铝的固体浸在磷酸中。当这种固体加热到800℃以上时,表面上的磷与少量铝反应,生成无定形磷酸铝。
实施例20
本发明的复合涂料可沉积在基质上。将固体颗粒加到AlPO4溶液中,生成浆料。这种涂料可用使用刷子的浸涂法,或气溶胶喷涂等方法沉积在基质上。当这一涂层在加热灯下或在加热炉中完全形成时,生成埋在AlPO4涂层中的含颗粒复合涂层。颗粒能够是任何成份。
实施例21
在从蒸馏水到潮湿的空气许多气氛中,玻璃对腐蚀是敏感的。硅酸钠玻璃是常用的一种玻璃,它对腐蚀是很敏感的,无论在玻璃浸在液体中、雨水滴在上面还是在潮湿的仓库的场合下。玻璃容器易受到所装的液体腐蚀。水和酸性介质和碱性介质加速玻璃的腐蚀。当淋雨时玻璃窗受到腐蚀。当大气潮湿度使液滴沉积在表面上时,贮存的玻璃受到局部的点蚀。
通过与氢离子的离子交换,钠离子溶于周围的水中。水中的羟基成份也溶解氧化硅,但这一过程要缓慢的多。
使用几种防止玻璃腐蚀的方法。提高商业生产的玻璃的耐用性的一些常用的方法包括:将一些其他组分加到熔融物中,形成保护涂层。通常将CaO、Al2O3和MgO加到硅酸钠熔融物中,以便阻止钠的浸析。通过用SO2气体处理以形成硫酸钠并在微量氟气氛中热处理玻璃来提供表面涂层。
本发明的组合物/材料在玻璃上提供透明的涂层。涂层很平滑,仅仅在受干扰的区域中涂层才很容易看见(例如在浸涂的过程中停留的位置)。这样的涂料可用来在不降低透明性的条件下提高化学耐用性。本发明可提供一种保护层,它限制氢或羟基转移到玻璃表面,而使腐蚀产物转移到玻璃外。
实施例22
本发明的水溶液需要作为对其醇对应物的不可燃的、无毒的替代物。在运输过程中,水溶液不需特殊的危险标识,在工作场所不需要大量通风,以及对通常用含水体系和方法工作的制造商更有吸引力。通过在100℃下在对流炉中加热来生成干燥的AlPO4凝胶。这种干燥的凝胶是白色的和疏松的。将这种凝胶溶于去离子水中。凝胶很容易进入溶液,形成粘稠的浅黄色溶液。当在1100℃热处理1小时,XRD图表明典型的磷酸铝衍射图。当在1000℃下热处理0.5小时,XRD图显示了无定形隆起,对陈化组合物/材料是典型的。粉末外观为漆黑色的和玻璃状的。
可制得更浓的水溶液:高达25%重量比AlPO4,而在乙醇中为10-15wt%。用标准的浸涂法将这种溶液涂覆到玻璃片上。对水溶液的考虑是,成膜的特性是不同的,连续平滑的膜的制备比使用醇溶液可能更加困难。
实施例23
参考上述有关前体溶液的讨论,可以制备粘稠的透明溶液,通过插入和收回针拉出纤维。通过将前体溶液在旋转蒸发器中浓缩到约30wt%来制备纤维前体。纤维前体可能在变得太浓的危险下难以制备。纤维前体本身不稳定。在浓缩后,留下透明液体。这种液体在10分钟至数小时是稳定的,但最终在强放热的反应中自发分解。可使用生成的纤维前体,但通常有许多泡沫。但是,如果在从旋转蒸发器中取出后立刻将溶液放在水浴中,那么可阻止上述如此强烈的分解,得到透明的浅黄色液体。因此,100mL9.1wt%溶液在旋转蒸发器中被浓缩到40mL。温度为60℃,改变压力保持乙醇汽化。将溶液浓缩后,将它倒入容器,并保持在水浴中。15分钟以后,分解开始,留下澄清的粘稠黄色液体。
实施例24
预期的纤维应用包括a)用于陶瓷基复合材料、金属基复合材料的结构陶瓷纤维-目前正在开发SiC和各种氧化物纤维,b)纤维-光放大器以及c)纤维激光器。纤维从纤维前体中手工拉出(为了按比例放大,将前体送入喷丝头,以便连续生产单丝或多丝(通常直径为10微米))。通过将细棒放在前体中拔出纤维,然后迅速将它取出。生成的纤维是平滑的和致密的。直径不均匀,但这仅仅是由于人工拉的方法。纤维直到1200℃10小时都是稳定的,但在1200℃100小时后,见到磷显著损失。这样的纤维的一个有吸引力的优点是在无定形基质中纳米结晶夹杂物的使用,它使强度、韧性、抗蠕变性和热膨胀性得到改进。因此,将小的金属刮板稍浸在上述实施例中前体中。将刮板以稳定速率取出,纤维粘在不锈钢网片上。将网弯曲成C型,因此,纤维仅在两点接触钢。将纤维放在炉中,亚在900℃空气中热处理30分钟。
实施例25
用浸涂法可在各种基质上生成膜,钢是最常用。将样品在空气中干燥,然后用红外灯加热使涂层固化。涂层比在炉中固化迅速得多,即30秒至3分钟以上,这与基质有关。这样就消除了将样品放入炉中的步骤,从而降低了基质的温度和缩短了加热时间。根据其挥发性顺序,从前体状态除去的物种为乙醇和其他烃类(低于100℃)、硝酸盐(通常高于500℃)和羟基化物(在粉末的情况下至少高于1000℃)。对于非常薄的膜(在500埃以下),温度范围可低得多。值得注意的是,在225℃附近的DTA放热峰表明无定形磷酸盐相的生成。因此,将不锈钢的试件半浸涂在前体溶液中。用红外灯加热试件2分钟。得到的试件表明下半部很好地涂覆,而上半部仍象以前一样。相反,当不锈钢半浸和在炉中热处理时,下半部有良好组成的涂层,而整个试件氧化稍有变色。
实施例26
本发明的组合物在标准的旋涂器中被旋涂到硅和钢上。如在这里所述的,制备的磷酸铝也在3-维工艺中通过浸入试件和取出它,然后将整个试件旋转的方法涂覆到钢上(例如应用钻床(drill press))。与标准的浸涂试件相比,涂层看来更均匀,并有更少的裂纹。因此,将不锈钢试件完全浸在6.6g/L磷酸铝溶液中。取出试件,并立刻旋转(需确定转数,但小于540)。用IR灯使试件固化。通过用红外灯靠近试件缓慢照射使试件用5分钟缓慢固化。
实施例27
因为P2O5是高度吸湿的,所以最好在干燥的手套箱中进行制备。为了测试在敞开气氛中操作的可能性,在手套箱外称重P2O5,并放置过夜。总的来说,原来19g P2O5吸收3.8g水。将这种浆状P2O5溶于乙醇,然后加入硝酸铝溶液。XRD图表明在1100℃1小时热处理以后得到所需的磷酸铝组合物,说明它可在环境气氛下合成而不使用受控的环境,从而降低了高费用的气氛控制需要。因此,称出19.57g P2O5,并在实验室中放置22小时,吸水得到浆状粘稠物,而不是粉末;当它干燥时就是粉末。将它溶于乙醇,并加到硝酸铝溶液中。XRD表明在1100℃1小时热处理以后生成磷酸铝。
实施例28
本发明的组合物可通过浸涂法涂覆到玻璃上。生成的涂层是很平滑的和透明的。在涂层是连续的地方,在光学显微镜下它是没有特征的,仅仅当在光下才可注意到。在玻璃上的涂层用于防腐蚀,作为玻璃增强助剂(愈合表面裂缝),以及用于改变光学性质。因此,将玻璃显微镜载片浸在17.6g/L溶液中。试件用冷空气吹干至干燥。用低功率红外灯缓慢加热。干燥以后,开启高功率红外灯,将试件加热4分钟。
实施例29
可将浸涂的硅在1200℃下热处理一段时间。硅上的涂层可在半导体工业中用作低介电稳定的涂层(介电常数需低于2.9);己制得介电常数低至3.3的本发明典型的磷酸铝粉末;进一步的优化甚至可能更低,以满足2.9的标准,得到一种廉价制备这些涂层并得到这样的结果的方法。因此,将硅试件浸涂,并在1200℃下热处理180小时。存在某些涂层降解的证据,因为在TEM截面中没有明显的磷。类似的技术可用于涂覆钼基质。
实施例30
可将本发明的溶液喷雾干燥。生成颗粒的平均直径为11.5微米,通常为5-25微米。在1100℃下热处理1小时的粉末仍保持特征光谱图。
实施例31
己确定在1350和1600cm-1处的Raman峰与元素碳有关。还确定在某些FTIR光谱中1350cm-1附近的峰是大气污染的结果,而不是P=O。据认为纳米碳夹杂物的存在与本发明粉末的黑色有关。在Raman光谱中纳米结晶碳(粒度小至15)在1350和1600cm-1处有峰。碳有弱IR光谱,它解释在FTIR中为什么没有碳峰。
对热处理的粉末进行了XPS分析。Physical ElectronicsCorporation(MN,USA)分析了刚热处理的样品和破碎后的粉末(露出新鲜表面)。刚热处理的样品有小于0.1%的碳含量,而破碎后的粉末有接近1.6%的碳存在。然而,对报告中破碎后粉末的1.6%有疑问。怀疑点基于粉末在腔内的分散,可能是由于在广泛溅射过程中未除去的某些表面夹杂物的结果,溅射过程为从破碎的粉末中除去1500表面(从刚热处理的粉末中除去500埃表面以便除去表面污染,据报导对于暴露到空气中的任何材料是典型的)。这一假设也得到用低Z探测器的TEM和SEM分析的支持,虽然能量分散光谱(EDS)的检测限通常高于至少1wt%。此外,在无定形基质中未观测到石墨夹杂物。的确可能这些夹杂物的尺寸小于5nm且为随机分布的,或者它以玻璃状形式与无定形氧化物基质混合存在。
Raman光谱和CHNS(碳-氢-氮-硫)分析证实在本发明的磷酸铝材料中存在碳。存在的碳量用粉末的颜色来表示。黑色粉末比浅色粉末含有更多的碳。甚至称为“灰色”或“浅色”的粉末不一定真正是灰色,它们是黑色和白色部分的混合物;当破碎时看上去是灰色。
将黑色组合物/粉末的小球送到Oak Ridge National Lab在“Kaiser rig.”中进行测试。小球在1200℃下在10大气压总压下热处理500小时,有15%的水蒸汽。在实验过程中,小球损失约5wt%,然而在其他地方没有变化。小球几乎完全是白色的。清除表面以便消除任何表面污染物的影响,小球经X射线照射。X射线衍射图类似于原粉末(图12)。XRD图未表明明显的晶化。当在光学显微镜下观测时,小球有很少的孤立的黑色颗粒,而98%以上是白色的。
破碎的小球的TEM分析表明,有纳米结晶夹杂物埋在无定形基质中(图13)。电子衍射图表明扩散的无定形环叠在点状衍射斑上,这一点对于本发明的组合物是典型的。
得到Raman光谱。使用的microRaman有约3-5微米的空间分辨率,因此在相同的样品中可得到黑色和白色区域的光谱。黑色区域一致地在1350和1600cm-1附近有峰。这些峰的强度由一个样品到一个样品按比例变化。白色区域有低强度峰,它与结晶柏林石一致,在1350和1600cm-1处没有峰(图14)。
另外的分析未确定,但这一实施例的结果促进本发明在水蒸汽环境中应用,包括在SiC基的组合物用于煤燃烧中作为环境屏蔽涂层的应用,在那里与抗高温水蒸汽结合的低氧扩散性是关键的需要。此外,这样的涂料在含水蒸汽的气氛中在中高温应用场合的应用(例如石油化工工艺)也是切合的。
为了说明这一实施例的结果和本发明的一个应用,需要通过提高燃烧温度使由煤燃烧生产电力更有效。电力生产的更大效率有助于减轻不断增加的需求以及减少固相和气相有害废物排放。正如目前在California州证明的,电力需求迅速增加。California已面临滚动灯火管制,使位于那里的商家为此花费数百万美元。的确,具有有限环境影响的更有效的电力生产装置对于弥补不断增加的需求是必要的。
目前,锅炉的温度为550-650℃。常用的合金不具备用于700℃和更高的所需性质。下一代极-超临界锅炉所需的技术规格是在700℃下的高蠕变断裂强度和高的耐腐蚀性,在使用100000小时后截面损失不大于1mm。奥氏体不锈钢有希望作为替代材料,因为它们廉价且可在高温下维持必要的强度。但是,这些合金遇到的问题是,高温氧化和硫化以及被煤灰腐蚀。还有一个问题是钢部件的煤灰侵蚀。但是,煤灰迅速涂覆部件,事实上在基质上形成保护层。
在过去数十年,对金属和合金在煤燃烧环境中的保护进行了广泛的研究和开发。开发了许多新型的合金,它们与涂料一起使退化的速率减慢。研究者己探索了商业不锈钢、改性的不锈钢、镍基合金等的抗腐蚀性。含铁不锈钢被FeSO4的生成腐蚀。他们己发现,由于易生成NiSO4和CoSO4,含镍和钴的合金易于腐蚀。两种硫酸盐与NaSO4生成的熔点共晶,使合金的腐蚀增加。高铬含量合金(大于25%)改善了抗腐蚀性,因为氧化铬氧化物层由氧化生长。但是,这些合金也受到腐蚀,它在中等温度下在氧化铬生长缓慢的地方最严重。在燃烧气体中存在的硫生成CrS2,它使氧化物氧化物层的质量下降,进一步使它作为保护涂层的效率下降。由于这些问题,将其他合金元素加到钢中,例如钽和铌,它们已使抗腐蚀性提高。将含铝合金和金属间化合物(Fe3Al)用于开发氧化铝氧化物层中,它们有很好的抗氧化和腐蚀性。但是,这些高技术合金和大多数涂料对于广泛的应用来说有过高的价格。
对于普通的电力装置的应用来说,达到合理价格下所需的技术规格的适合体系到目前为止还没有找到。对于这一问题的理想解决是可作为常用的奥氏体钢的氧化和腐蚀屏蔽的廉价涂料。本发明提供一种可很容易涂覆的廉价材料,是对这一问题的低费用解决方法。如果可提高装置的温度,效率还可提高,对于一定数量的煤来说,得到提高输出功率的好处,它得到较低费用的能源,以及得到烧较少煤的环保好处。这不仅在处理电力中节省了钱,而且也使清理费用下降,这一点可能是重要的。组合物是廉价的和易于涂覆的:例如可将溶液喷到换热器管的外部或锅炉的内部。
实施例32a
对优选铝组合物的前体溶液的31P NMR光谱表明,硝酸铝与五氧化磷相互作用生成一种或多种独特的配合物。作为比较的基础,示出五氧化磷在乙醇中的31P NMR光谱。图15a表示溶于乙醇中的P2O5的光谱,在溶解以后很快取得。图15b表示在24小时回流以后的相同溶液。
实施例32b
硝酸铝Al(NO3)3·9H2O加到实施例32a的磷前体溶液中使31P光谱明显改变。图16a-b表示由三种混合的前体溶液得到的三个光谱:下部的曲线由C-1得到(化学计量A1),而其他两个曲线为增加铝的加入(C-1.5,50%过量Al;C-2,100%过量Al)。这些光谱和图1所示的光谱之间的差别很容易清楚。
在[-15和-24ppm]之间出现一组新的峰。在P2O5+乙醇前体光谱中未观测到这些峰。据认为这些峰属于铝与磷物种的配位。观测到随铝含量从化学计量到2倍过量的增加的光谱图。
实施例33
将实施例32b的溶液在高温下(1100℃)长时间(160小时)热处理。化学计量组合物随时间变得稍结晶,而本发明过量铝的这些材料得到有基本无定形特性的XRD图,表明亚稳定性提高(见图17a-b)。
实施例34
本发明的热处理材料/组合物的FTIR光谱表明几个独特的特性。对于短的热处理时间(1小时),化学计量的(x=0)和非化学计量的(x=0.25,0.5和0.75)组合物有类似的特性。光谱示于图18。光谱表明主要是Al-O-P键,但表明某些特性属于Al-O-Al和P-O-P。看来随着铝含量的增加,存在的Al-O-Al数量增加。化学计量的组合物含有很少量Al-O-Al。化学计量的组合物有相当强的P-O-P特性,它在Al∶P=1.25中较少,而在Al∶P=1.5中很少(或不存在,它难以确定),在Al∶P=1.75中没有。
实施例35a
化学计量组合物在1100℃热处理1小时后铝配位有变形。图19表示这一光谱的去卷积。在去卷积光谱中有四个曲线叠加为完整的光谱。在39ppm附近的锐峰表示在规则四面体配位中的Al。其他峰表示不规则配位的铝,并列入表II。
表II  化学计量AlPO427Al NMR光谱的去卷积
  四面体峰位置   八面体峰位置     相对面积
  38.163     100
  33.222     45.52
    10.749     11.11
    -16.356     14.84
实施例35b
非化学计量组合物(x=1.0)的27Al MAS NMR光谱的去卷积表明,有变形的4-倍铝物种以及更多规则4-倍铝(图20)。40ppm附近的峰为四面体铝,在绿色区中强调的峰为规则配位,而在红色区中强调的峰为变形的八面体配位的铝。据认为规则4-倍铝存在于纳米晶体中,而变形的4-和6-倍铝存在于无定形基质中。表III示出四面体和八面体铝的相对峰位置和区域。
                    表III
    八面体峰位置     四面体峰位置     相对面积
    -9.37     15.667
    7.027     26.06
    38.847     100
    40.206     43.13
    62.638     11.9

Claims (31)

1.一种含有磷酸铝的高温稳定的组合物,其中铝与磷的比大于1比1,所述组合物的特征是含有至少50%重量比的无定形成份,所述的组合物在常温至1400℃的温度下是亚稳定的。
2.根据权利要求1的组合物,还含有基质,所述的组合物为所述的基质上的涂层。
3.根据权利要求1的组合物,其中所述的组合物为纤维形式。
4.根据权利要求2的组合物,其中所述的涂层保护所述的基质在升温下免受氧化。
5.根据权利要求2的组合物,其中所述的涂层保护所述的基质在升温下免受腐蚀。
6.根据权利要求1的组合物,含有另外的金属。
7.一种磷酸铝组合物,所述的组合物含有磷酸铝,其中在所述组合物中铝相对于磷的量超过5%,所述的组合物在最高到1400℃的温度下是亚稳定的。
8.一种保护基质在升温下不受腐蚀和氧化的方法,所述的方法包括将前体溶液涂覆到所述的基质上的步骤,所述的前体溶液含有五氧化磷和铝盐,其中铝与磷的比大于1比1,此后干燥热处理在所述的基质上的所述溶液。
9.一种含有式为Al1+xPO4+3x/2的磷酸铝组合物的亚稳定材料,其中x为约0至约1.5,所述的组合物有吸收红外光谱中约795cm-1至约850cm-1处的射线的结构组分,所述的组分在至少约1000℃的温度下存在。
10.根据权利要求9的材料,其中x为约0。
11.根据权利要求10的材料,其中x为约0.1至约1.0。
12.根据权利要求11的材料,其中所述的材料为基本上无定形的。
13.根据权利要求11的材料,其中所述的材料在至少约1200℃的温度下是亚稳定的。
14.根据权利要求11的材料,其中还含有结晶颗粒。
15.根据权利要求14的材料,其中所述的结晶颗粒为ErPO4
16.一种使用磷酸铝组合物来提高基质的抗氧化性的方法,所述的方法包括:制得磷酸铝组合物,所述的组合物的式为Al1+xPO4+3x/2,其中x为约0至约1.5;以及将所述的组合物涂覆到基质上。
17.根据权利要求16的方法,其中所述的组合物在所述涂覆以前进行热处理。
18.根据权利要求16的方法,其中所述的组合物在所述涂覆以后进行热处理。
19.根据权利要求16的方法,其中将所述的组合物浸涂到基质上。
20.根据权利要求16的方法,其中将所述的组合物等离子喷涂到基质上。
21.根据权利要求16的方法,其中将所述的组合物气溶胶喷涂到基质上。
22.根据权利要求16的方法,其中将所述的组合物为组合物前体的溶液中的浆料。
23.一种使用磷酸铝材料的铝含量来影响所述的材料的亚稳定性的方法,所述的方法用铝盐前体化合物得到磷酸铝材料,所述材料的铝含量对应于所述前体化合物的铝含量,所述前体化合物和所述材料的铝含量足以提供材料的亚稳定性。
24.根据权利要求23的方法,其中所述材料的铝含量为化学计量的。
25.根据权利要求23的方法,其中所述材料的铝含量为大于化学计量的。
26.根据权利要求23的方法,还包括选自硅、镧和锆的第二种组分。
27.一种吸收红外光谱中约795cm-1至约850cm-1处的射线的有Al-O-Al结构部分的磷酸铝产物,所述的产物通过五氧化磷醇溶液与铝盐溶液混合然后加热混合物来制得。
28.根据权利要求27的产物,其中所述的产物为基本上无定形的。
29.根据权利要求27的产物,还含有结晶颗粒。
30.根据权利要求29的产物,其中所述的颗粒为铒盐与所述的铝盐溶液结合得到的结晶ErPO4夹杂物。
31.根据权利要求27的产物,还含有金属氧化物颗粒,所述的颗粒选自第IIIA和IIIB-VIB族金属氧化物,所述颗粒的量足以改变所述产物的热膨胀系数。
CNB018155839A 2000-08-23 2001-08-20 含有磷酸铝组合物的材料以及磷酸铝组合物 Expired - Fee Related CN1289389C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/644,495 US6461415B1 (en) 2000-08-23 2000-08-23 High temperature amorphous composition based on aluminum phosphate
US09/644,495 2000-08-23

Publications (2)

Publication Number Publication Date
CN1455756A true CN1455756A (zh) 2003-11-12
CN1289389C CN1289389C (zh) 2006-12-13

Family

ID=24585143

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018155839A Expired - Fee Related CN1289389C (zh) 2000-08-23 2001-08-20 含有磷酸铝组合物的材料以及磷酸铝组合物

Country Status (9)

Country Link
US (4) US6461415B1 (zh)
EP (1) EP1315673A4 (zh)
JP (1) JP2004506584A (zh)
KR (2) KR100860861B1 (zh)
CN (1) CN1289389C (zh)
AU (1) AU2001296852A1 (zh)
CA (1) CA2420057C (zh)
RU (1) RU2003107677A (zh)
WO (1) WO2002016263A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242948B (zh) * 2005-06-27 2012-06-13 应用薄膜股份有限公司 基于磷酸铝的微球
CN103987679A (zh) * 2011-12-14 2014-08-13 赫拉克勒斯公司 通过磷化处理陶瓷纤维的方法
CN111909547A (zh) * 2019-05-09 2020-11-10 中国科学院金属研究所 一种Si元素改性的磷酸盐防腐涂层及其制备方法
CN112592074A (zh) * 2020-12-14 2021-04-02 中建材蚌埠玻璃工业设计研究院有限公司 一种磷酸铝超亲水薄膜的制备方法

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461415B1 (en) * 2000-08-23 2002-10-08 Applied Thin Films, Inc. High temperature amorphous composition based on aluminum phosphate
US7678465B2 (en) 2002-07-24 2010-03-16 Applied Thin Films, Inc. Aluminum phosphate compounds, compositions, materials and related metal coatings
JP2005535554A (ja) * 2002-08-14 2005-11-24 アプライド シン フィルムズ,インコーポレイティッド リン酸アルミニウム化合物、組成物、材料及び関連複合体
US8021758B2 (en) * 2002-12-23 2011-09-20 Applied Thin Films, Inc. Aluminum phosphate compounds, coatings, related composites and applications
WO2005003033A2 (en) * 2002-12-23 2005-01-13 Applied Thin Films, Inc. Aluminum phosphate coatings
US6884527B2 (en) 2003-07-21 2005-04-26 The Regents Of The University Of California Biaxially textured composite substrates
WO2005061218A1 (en) * 2003-11-19 2005-07-07 Applied Thin Films, Inc. Aluminum phosphate compounds, compositions, materials and related metal coatings
CN1929919A (zh) * 2004-03-16 2007-03-14 联合碳化化学及塑料技术公司 用于乙烯低聚的磷酸铝负载的族6金属酰胺催化剂
US7773365B2 (en) * 2004-04-30 2010-08-10 Hewlett-Packard Development Company, L.P. Dielectric material
US7909263B2 (en) * 2004-07-08 2011-03-22 Cube Technology, Inc. Method of dispersing fine particles in a spray
KR20070042176A (ko) * 2004-07-13 2007-04-20 알타이어나노 인코포레이티드 약물 전용의 방지를 위한 세라믹 구조체
BRPI0403713B1 (pt) * 2004-08-30 2021-01-12 Universidade Estadual De Campinas - Unicamp processo de fabricação de um pigmento branco baseado na síntese de partículas ocas de ortofosfato ou polifosfato de alumínio
US7763359B2 (en) * 2004-08-30 2010-07-27 Bunge Fertilizantes S.A. Aluminum phosphate, polyphosphate and metaphosphate particles and their use as pigments in paints and method of making same
WO2006042116A2 (en) * 2004-10-05 2006-04-20 Applied Thin Films, Inc. Aluminum phosphate compositions, coatings and related composites
US20060115661A1 (en) * 2004-12-01 2006-06-01 General Electric Company Protection of thermal barrier coating by a sacrificial coating
US7479299B2 (en) * 2005-01-26 2009-01-20 Honeywell International Inc. Methods of forming high strength coatings
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US7147634B2 (en) * 2005-05-12 2006-12-12 Orion Industries, Ltd. Electrosurgical electrode and method of manufacturing same
US7531034B2 (en) * 2005-05-31 2009-05-12 Caterpillar Inc. Metal-phosphate binders
EP1910595B1 (en) 2005-06-30 2018-08-08 Unifrax I LLC Phosphate coated inorganic fiber and methods of preparation and use
US20070057391A1 (en) * 2005-08-05 2007-03-15 Den-Mat Corporation Method for forming ceramic ingot
JP4948806B2 (ja) * 2005-08-09 2012-06-06 Hoya株式会社 粒子の製造方法
JP2009505824A (ja) * 2005-08-23 2009-02-12 アルテアナノ インコーポレイテッド 高度な光触媒のリンドープアナターゼTiO2組成物及びその製造方法
US7754342B2 (en) * 2005-12-19 2010-07-13 General Electric Company Strain tolerant corrosion protecting coating and spray method of application
WO2007103820A1 (en) * 2006-03-02 2007-09-13 Altairnano, Inc. Nanostructured indium-doped iron oxide
US20080038482A1 (en) * 2006-03-02 2008-02-14 Fred Ratel Method for Low Temperature Production of Nano-Structured Iron Oxide Coatings
WO2007103829A1 (en) * 2006-03-02 2007-09-13 Altairnano, Inc. Method for production of metal oxide coatings
US20070298277A1 (en) * 2006-06-21 2007-12-27 General Electric Company Metal phosphate coating for oxidation resistance
JP5137362B2 (ja) 2006-09-12 2013-02-06 イビデン株式会社 金属基材と無機材料表面層とからなる構造体
KR101207381B1 (ko) * 2006-11-01 2012-12-05 더 스테이트 오브 오레곤 액팅 바이 앤드 쓰루 더 스테이트 보드 오브 하이어 에쥬케이션 온 비해프 오브 오레곤 스테이트 유니버시티 용액 처리된 박막들 및 적층체들, 상기 박막들 및적층체들을 포함하는 장치들, 및 그들의 사용 방법 및 제조방법
RU2415077C1 (ru) * 2006-12-13 2011-03-27 Таки Кемикал Ко., Лтд. Термочувствительный раствор фосфата алюминия, способ его получения и его применение
WO2008128000A1 (en) * 2007-04-12 2008-10-23 Altairnano, Inc. Teflon replacements and related production methods
US9023145B2 (en) 2008-02-12 2015-05-05 Bunge Amorphic Solutions Llc Aluminum phosphate or polyphosphate compositions
US8167995B2 (en) * 2008-06-12 2012-05-01 Latitude 18, Inc. Inorganic phosphate resins and method for their manufacture
US8119077B2 (en) * 2009-01-07 2012-02-21 General Electric Company Control joints in refractory lining systems and methods
US8497018B2 (en) 2010-01-27 2013-07-30 Applied Thin Films, Inc. High temperature stable amorphous silica-rich aluminosilicates
AR075381A1 (es) * 2009-02-10 2011-03-30 Unicamp Uso de particulas de fosfato, polifosfato y metafosfato, de aluminio en aplicaciones de recubrimiento de papeles.
WO2010096827A1 (en) * 2009-02-23 2010-08-26 Arun Wagh Fire protection compositions, methods, and articles
US20110076410A1 (en) * 2009-09-30 2011-03-31 Andrew Jay Skoog Method for making strain tolerant corrosion protective coating compositions and coated articles
US20110076480A1 (en) * 2009-09-30 2011-03-31 Andrew Jay Skoog Strain tolerant corrosion protective coating compositions and coated articles
WO2011063378A2 (en) * 2009-11-23 2011-05-26 Arizona Board Of Regents For And On Behalf Of Arizona State University Refractory porous ceramics
US8765230B1 (en) 2009-12-01 2014-07-01 The Boeing Company Thermal barrier coated RF radomes and method
KR20120101541A (ko) * 2009-12-11 2012-09-13 래티두드 18, 아이엔씨. 무기 인산염 내식성 코팅
WO2011072262A2 (en) 2009-12-11 2011-06-16 Latitude 18, Inc. Inorganic phosphate compositions and methods
US20130139930A1 (en) 2009-12-18 2013-06-06 Latitude 18, Inc. Inorganic phosphate corrosion resistant coatings
KR20120125518A (ko) 2010-02-09 2012-11-15 래티두드 18, 아이엔씨. 포스페이트 결합된 복합체 및 그의 제조 방법
DE102010028776A1 (de) * 2010-05-07 2011-11-10 Osram Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauelement
US9005355B2 (en) 2010-10-15 2015-04-14 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
US9371454B2 (en) 2010-10-15 2016-06-21 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
EP2681045A4 (en) 2011-03-02 2015-01-14 Applied Thin Films Inc PROTECTIVE INTERIOR COATINGS FOR POROUS SUBSTRATES
CN102500533B (zh) * 2011-11-03 2014-07-02 昆明理工大学 一种在钢材表面涂覆耐腐蚀涂料的方法
WO2013121355A1 (en) * 2012-02-16 2013-08-22 Koninklijke Philips N.V. Coated narrow band red-emitting fluorosilicates for semiconductor leds
US9155311B2 (en) 2013-03-15 2015-10-13 Bunge Amorphic Solutions Llc Antimicrobial chemical compositions
US9078445B2 (en) 2012-04-16 2015-07-14 Bunge Amorphic Solutions Llc Antimicrobial chemical compositions
US9611147B2 (en) 2012-04-16 2017-04-04 Bunge Amorphic Solutions Llc Aluminum phosphates, compositions comprising aluminum phosphate, and methods for making the same
DE102012210083A1 (de) * 2012-06-15 2013-12-19 Osram Gmbh Optoelektronisches halbleiterbauelement
US9499434B1 (en) 2012-08-31 2016-11-22 Owens-Brockway Glass Container Inc. Strengthening glass containers
FR2996842B1 (fr) 2012-10-15 2014-12-26 Snecma Procede pour augmenter la tenue thermique d'un element resistif noye dans un depot d'alumine sur une surface d'un substrat et applications dudit procede
EP2971687A4 (en) 2013-03-15 2016-11-02 United Technologies Corp COATED ARTICLES AND METHODS OF MANUFACTURE
EP2971686B1 (en) 2013-03-15 2018-10-17 United Technologies Corporation Coated articles and manufacture methods
CN105358499A (zh) 2013-03-15 2016-02-24 尤尼弗瑞克斯I有限责任公司 无机纤维
US9828658B2 (en) 2013-08-13 2017-11-28 Rolls-Royce Corporation Composite niobium-bearing superalloys
US9938610B2 (en) 2013-09-20 2018-04-10 Rolls-Royce Corporation High temperature niobium-bearing superalloys
EP2907797A1 (en) * 2014-02-17 2015-08-19 AV EKO-COLOR s.r.o. The preparation for reduction of oxidation in graphite products
EP3169833B1 (en) 2014-07-16 2019-08-14 Unifrax I LLC Inorganic fiber with improved shrinkage and strength
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
WO2016010579A1 (en) 2014-07-17 2016-01-21 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US10087101B2 (en) 2015-03-27 2018-10-02 Goodrich Corporation Formulations for oxidation protection of composite articles
US9945242B2 (en) * 2015-05-11 2018-04-17 General Electric Company System for thermally isolating a turbine shroud
US10047610B2 (en) 2015-09-08 2018-08-14 Honeywell International Inc. Ceramic matrix composite materials with rare earth phosphate fibers and methods for preparing the same
US20170159442A1 (en) * 2015-12-02 2017-06-08 United Technologies Corporation Coated and uncoated surface-modified airfoils for a gas turbine engine component and methods for controlling the direction of incident energy reflection from an airfoil
CN106898735B (zh) * 2015-12-17 2019-06-14 江苏华东锂电技术研究院有限公司 正极活性材料包覆液及其制备方法以及正极活性材料的包覆方法
CN106898734B (zh) * 2015-12-17 2019-06-14 江苏华东锂电技术研究院有限公司 正极活性材料包覆液及其制备方法以及正极活性材料的包覆方法
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
KR102230344B1 (ko) * 2016-05-18 2021-03-22 주식회사 쿠라레 다층 구조체 및 그 제조 방법 및 코팅액, 포장재, 전자 디바이스의 보호 시트
US10377675B2 (en) 2016-05-31 2019-08-13 Goodrich Corporation High temperature oxidation protection for composites
US10465285B2 (en) 2016-05-31 2019-11-05 Goodrich Corporation High temperature oxidation protection for composites
US10508206B2 (en) 2016-06-27 2019-12-17 Goodrich Corporation High temperature oxidation protection for composites
US10767059B2 (en) 2016-08-11 2020-09-08 Goodrich Corporation High temperature oxidation protection for composites
US10526253B2 (en) 2016-12-15 2020-01-07 Goodrich Corporation High temperature oxidation protection for composites
EP3653756A4 (en) * 2017-07-13 2020-12-30 Nippon Steel Corporation ORIENTED-GRAIN ELECTROMAGNETIC STEEL SHEET
BR112020007143A2 (pt) 2017-10-10 2020-09-24 Unifrax I Llc fibra inorgânica com baixa biopersistência isenta de sílica cristalina
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber
US11046619B2 (en) 2018-08-13 2021-06-29 Goodrich Corporation High temperature oxidation protection for composites
US11634213B2 (en) 2018-11-14 2023-04-25 Goodrich Corporation High temperature oxidation protection for composites

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2165819A (en) * 1934-06-05 1939-07-11 Steatit Magnesia Ag Electric insulator and method of making same
US3323889A (en) * 1963-04-16 1967-06-06 Owens Illinois Inc Method for increasing scratch resistance of a glass surface with a pyrolyzing treatment and a coating of an olefin polymer
US3176933A (en) * 1963-05-03 1965-04-06 Jr Dewey L Clemmons Thermal control of space vehicles
US3516811A (en) * 1966-10-04 1970-06-23 Indian Head Inc Method of and apparatus for coating glassware retaining its heat of formation
US3450574A (en) * 1966-11-14 1969-06-17 Northern Electric Co Method of coating refractory wares with magnesia
GB1322722A (en) * 1969-06-12 1973-07-11 Ici Ltd Complex aluminium phosphates
US3847583A (en) * 1969-08-13 1974-11-12 Jenaer Glaswerk Schott & Gen Process for the manufacture of multi-component substances
US3711322A (en) * 1970-07-06 1973-01-16 Nippon Sheet Glass Co Ltd Glass having semitransparent colored coating
US3793105A (en) * 1970-12-11 1974-02-19 Ici Ltd Glass laminates
US3694299A (en) * 1971-05-27 1972-09-26 Ppg Industries Inc Multiple glazed unit and method of manufacture
US4005232A (en) * 1971-10-29 1977-01-25 Imperial Chemical Industries Limited Coatings of metal phosphates on metals or glass
ES413746A1 (es) * 1972-06-21 1976-01-16 Knapsack Ag Procedimiento para la preparacion de fosfatos de aluminio condensados.
GB1396795A (en) 1972-07-14 1975-06-04 Ici Ltd Coated metal
IT996924B (it) * 1972-12-21 1975-12-10 Glaverbel Procedimento per formare uno strato di ossido metallico
JPS536945B2 (zh) 1973-02-27 1978-03-13
US3926103A (en) * 1973-12-06 1975-12-16 American Glass Res Recovery system for spraying apparatus
US3963500A (en) * 1973-12-26 1976-06-15 Motorola, Inc. Semiconductor wafer corrosion protection solution
US4289863A (en) * 1975-09-10 1981-09-15 Gulf Oil Corporation Ethylene polymerization process
GB1561756A (en) * 1975-09-10 1980-02-27 Gulf Research Development Co Ethylene polymerization catalysts
US3987591A (en) * 1976-01-26 1976-10-26 Ex-Cell-O Corporation Honing tool with reversible body sleeve
US4671909A (en) * 1978-09-21 1987-06-09 Torobin Leonard B Method for making hollow porous microspheres
US4303732A (en) * 1979-07-20 1981-12-01 Torobin Leonard B Hollow microspheres
US4336338A (en) * 1980-08-15 1982-06-22 The United States Of America As Represented By The United States Department Of Energy Hollow microspheres of silica glass and method of manufacture
NL8102689A (nl) 1981-06-03 1983-01-03 Philips Nv Beeldbuis en werkwijze voor het vervaardigen van een beeldscherm voor een dergelijke beeldbuis.
US4450184A (en) * 1982-02-16 1984-05-22 Metco Incorporated Hollow sphere ceramic particles for abradable coatings
US5292701A (en) * 1985-08-29 1994-03-08 W. R. Grace & Co.-Conn. High pore volume and pore diameter aluminum phosphate and method of making the same
US5030431A (en) * 1985-08-29 1991-07-09 W. R. Grace & Co.-Conn. High pore volume and pore diameter aluminum phosphate
DE8816514U1 (zh) * 1988-04-25 1989-10-26 Emitec Emissionstechnologie
US5348694A (en) * 1988-12-20 1994-09-20 Superior Graphite Co. Method for electroconsolidation of a preformed particulate workpiece
JPH02296750A (ja) * 1989-05-09 1990-12-07 Agency Of Ind Science & Technol 超微粒中空ガラス球状体の製造方法
WO1992002714A1 (de) * 1990-07-30 1992-02-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Elektrisch beheizbarer wabenkörper, insbesondere katalysator-trägerkörper, mit inneren tragstrukturen
US5223336A (en) * 1991-09-30 1993-06-29 Monsanto Company Glass fiber insulation
US5208069A (en) * 1991-10-28 1993-05-04 Istituto Guido Donegani S.P.A. Method for passivating the inner surface by deposition of a ceramic coating of an apparatus subject to coking, apparatus prepared thereby, and method of utilizing apparatus prepared thereby
DE4237145A1 (de) * 1992-11-04 1994-05-11 Grace Gmbh Aluminiumphosphatzusammensetzung mit hohem Porenvolumen und großem Porendurchmesser, Verfahren zu deren Herstellung und deren Verwendung
US5552361A (en) * 1993-11-04 1996-09-03 W. R. Grace & Co.-Conn. Aluminum phosphate composition with high pore volume and large pore diameter, process for its production and use thereof
FR2702757B1 (fr) * 1993-03-17 1995-06-16 Rhone Poulenc Chimie Nouveau phosphate d'aluminium, son procede de preparation et son utilisation dans la preparation de materiaux comprenant un liant et de pieces ceramiques .
US5665463A (en) * 1994-04-15 1997-09-09 Rockwell International Corporation Fibrous composites including monazites and xenotimes
WO1996007538A1 (en) * 1994-09-06 1996-03-14 Thermacell Technologies, Inc. Insulation microspheres and method of manufacture
US5744777A (en) * 1994-12-09 1998-04-28 Northwestern University Small particle plasma spray apparatus, method and coated article
JP2648116B2 (ja) * 1995-01-24 1997-08-27 工業技術院長 微細中空ガラス球状体の製造方法
US5716720A (en) * 1995-03-21 1998-02-10 Howmet Corporation Thermal barrier coating system with intermediate phase bondcoat
JP2857365B2 (ja) * 1996-03-27 1999-02-17 工業技術院長 微細中空ガラス球状体の製造方法
JP3633091B2 (ja) * 1996-04-09 2005-03-30 旭硝子株式会社 微小無機質球状中実体の製造方法
US6022513A (en) * 1996-10-31 2000-02-08 Pecoraro; Theresa A. Aluminophosphates and their method of preparation
DE69840069D1 (de) * 1997-04-01 2008-11-13 Cap Biotechnology Inc Kalziumphosphat-mikroträger und -mikrokugeln
DE19714949A1 (de) * 1997-04-10 1998-10-15 Inst Neue Mat Gemein Gmbh Verfahren zum Versehen einer metallischen Oberfläche mit einer glasartigen Schicht
US6140410A (en) * 1997-09-09 2000-10-31 E. I. Du Pont De Nemours And Company Fluoropolymer composition
EP0922736B8 (en) * 1997-12-09 2006-02-01 Dekro Paints (Proprietary) Limited Polyurethane resins
US6036762A (en) * 1998-04-30 2000-03-14 Sambasivan; Sankar Alcohol-based precursor solutions for producing metal phosphate materials and coating
US6110528A (en) * 1998-07-02 2000-08-29 Agency Of Industrial Science And Technology Method for the preparation of fine hollow glass spheres coated with titanium oxide
US6379746B1 (en) * 1999-02-02 2002-04-30 Corning Incorporated Method for temporarily protecting glass articles
US6312819B1 (en) * 1999-05-26 2001-11-06 The Regents Of The University Of California Oriented conductive oxide electrodes on SiO2/Si and glass
EP1160212A1 (en) * 2000-05-31 2001-12-05 Asahi Glass Co., Ltd. Hollow glass microspheres and method for producing the same
US6383989B2 (en) * 2000-06-21 2002-05-07 The Regents Of The University Of California Architecture for high critical current superconducting tapes
US6554948B1 (en) * 2000-08-22 2003-04-29 Donald Ferrier Process for improving the adhesion of polymeric materials to metal surfaces
US6461415B1 (en) * 2000-08-23 2002-10-08 Applied Thin Films, Inc. High temperature amorphous composition based on aluminum phosphate
US20020112648A1 (en) * 2000-12-20 2002-08-22 Krowl Thomas R. Calcium silicate insulating material containing alumina silica microspheres
EP1382384B1 (en) * 2002-07-15 2011-05-18 Asahi Glass Company, Limited Process for producing inorganic spheres

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242948B (zh) * 2005-06-27 2012-06-13 应用薄膜股份有限公司 基于磷酸铝的微球
CN103987679A (zh) * 2011-12-14 2014-08-13 赫拉克勒斯公司 通过磷化处理陶瓷纤维的方法
CN103987679B (zh) * 2011-12-14 2016-10-26 赫拉克勒斯公司 通过磷化处理陶瓷纤维的方法
CN111909547A (zh) * 2019-05-09 2020-11-10 中国科学院金属研究所 一种Si元素改性的磷酸盐防腐涂层及其制备方法
CN112592074A (zh) * 2020-12-14 2021-04-02 中建材蚌埠玻璃工业设计研究院有限公司 一种磷酸铝超亲水薄膜的制备方法

Also Published As

Publication number Publication date
KR100932768B1 (ko) 2009-12-21
RU2003107677A (ru) 2004-07-27
EP1315673A1 (en) 2003-06-04
US6461415B1 (en) 2002-10-08
CN1289389C (zh) 2006-12-13
CA2420057C (en) 2013-04-30
US20040011245A1 (en) 2004-01-22
US20030138673A1 (en) 2003-07-24
KR100860861B1 (ko) 2008-09-29
EP1315673A4 (en) 2009-03-25
AU2001296852A1 (en) 2002-03-04
KR20080053422A (ko) 2008-06-12
WO2002016263A1 (en) 2002-02-28
JP2004506584A (ja) 2004-03-04
CA2420057A1 (en) 2002-02-28
KR20030053504A (ko) 2003-06-28
US20090064893A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
CN1289389C (zh) 含有磷酸铝组合物的材料以及磷酸铝组合物
Al Nasiri et al. Water vapour corrosion of rare earth monosilicates for environmental barrier coating application
Zhong et al. Microstructure and thermal properties of atmospheric plasma-sprayed Yb 2 Si 2 O 7 Coating
CN101218188B (zh) 氧化钇烧结体和耐腐蚀性部件、其制造方法
CN1886255A (zh) 磷酸铝化合物,组合物,材料和相关的金属涂层
Luo et al. Al2O3 coating for densification of SiC ceramics and sintering kinetics
Katsui et al. Preferred orientations and microstructures of lanthanum phosphate films prepared via laser chemical vapor deposition
Kim et al. Interaction of Gd2Si2O7 with CMAS melts for environmental barrier coatings
Ridley et al. YbPO4: A novel environmental barrier coating candidate with superior thermochemical stability
Darthout et al. Structure stabilization by zirconia pinning effect of Y2Si2O7 environmental barrier coatings synthesized by solution precursor plasma spraying process
Sales et al. Cobalt aluminate spinel-mullite composites synthesized by sol-gel method
Boyer et al. Yttrium silicate powders produced by the sol–gel method, structural and thermal characterization
Vojisavljević et al. Characterization of the Alkoxide-based Sol-gel Derived La 9.33 Si 6 O 26 Powder and Ceramic.
Kumta et al. Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics
Bansal et al. Interactions between Ca2Gd8 (SiO4) 6O2 apatite and calcium-magnesium-aluminosilicate (CMAS) at elevated temperatures
Ramirez et al. Synthesis and photoluminescent properties of Y2O3: Eu3+ thin films prepared from F127-containing solution
Rose et al. Novel magnetron sputtered yttrium-silicon-iron oxide as CMAS resistant top coat material for environmental barrier coatings
Maıtre et al. Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics
JP2008214112A (ja) 耐酸化性黒鉛材料及びその製造方法
AU2008201826B2 (en) High temperature amorphous composition based on aluminium phosphate
Bhandari et al. Investigating Atmospheric Pressure Plasma Spray Coating of YPO4 and its Performance as a Corrosion Barrier Protective Layer Against Molten Uranium
Zhan et al. Effect of copper phosphate on the sintering and ablation resistance of novel ZrSiO4 based composites
JP6173778B2 (ja) 遮熱コーティング用材料
JP2021027344A (ja) 半導体製造装置用部材およびそれを用いた半導体製造装置
Winczewski et al. Additive manufacturing of 3D yttria-stabilized zirconia microarchitectures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20180820