CN1443152A - 芳族羧酸的制备 - Google Patents

芳族羧酸的制备 Download PDF

Info

Publication number
CN1443152A
CN1443152A CN01813102A CN01813102A CN1443152A CN 1443152 A CN1443152 A CN 1443152A CN 01813102 A CN01813102 A CN 01813102A CN 01813102 A CN01813102 A CN 01813102A CN 1443152 A CN1443152 A CN 1443152A
Authority
CN
China
Prior art keywords
reaction
heat
reactor
reaction zone
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01813102A
Other languages
English (en)
Other versions
CN1213015C (zh
Inventor
D·A·格拉哈姆
P·A·哈姆利
T·伊肯汉斯
M·波利尔科夫
D·C·沃德库克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista Technologies Sarl
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1443152A publication Critical patent/CN1443152A/zh
Application granted granted Critical
Publication of CN1213015C publication Critical patent/CN1213015C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种用于制备芳族羧酸的方法,所述方法包括:在连续流动反应器内,在催化剂存在下,将一种或多种芳族羧酸的前体与氧化剂接触,所述前体和氧化剂的接触在含有在超临界状态或接近超临界点的近超临界状态下的水的水性溶剂中完成,这样所述一种或多种前体、氧化剂和水性溶剂在反应区中构成了基本上单一的均相,其中至少部分所述前体和所述氧化剂的接触与所述催化剂和至少部分所述氧化剂的接触同时发生。

Description

芳族羧酸的制备
                 相关申请的交叉参考
本申请要求2000年7月19日提交的美国临时专利申请系列序号60/219,388的优先权益。
                       发明背景
本发明涉及用于制备芳族羧酸,如对苯二甲酸、间苯二甲酸、1,2,4-苯三酸、萘二甲酸和苯甲酸的方法。
例如对苯二甲酸是用于生产聚酯聚合物的重要中间体,聚酯聚合物一般用于纤维生产和制造瓶。本领域用于生产对苯二甲酸的现有技术包括在溶解的重金属催化剂体系存在下,使用在低级(例如C2-C6)脂族一元羧酸(一般为乙酸)中的分子氧将对二甲苯原料氧化的液相氧化法,其中催化剂体系一般包括助催化剂,例如溴。用乙酸做溶剂特别有效,因为它对氧化具有较强抵抗性并且可提高催化途径的活度。所述反应可在搅拌容器中和在高温及高压条件下完成,其中温度和压力一般分别为150到250℃和6到30bara(巴(绝对压力)),并且一般以高收率生产对苯二甲酸,例如至少95%。
然而,通常得到的对苯二甲酸不是十分纯,不能直接用于聚酯生产,因为它包括作为主要杂质的部分氧化的对苯二甲酸中间体,具体为4-羧基苯甲醛(4-CBA),同时还包括各种形成颜色的前体和有色杂质。在常规用于制备对苯二甲酸的方法中,当在反应过程中形成对苯二甲酸时,大部分对苯二甲酸将沉淀出,虽然在大多数情况下它在溶剂中的浓度仍低于其溶解度的界限,4-CBA趋于与对苯二甲酸一起沉淀。因此,这种比较粗制的对苯二甲酸必须进一步加工以确保对苯二甲酸达到可接受的质量,能用于制备高等级的聚酯。这种进一步的加工一般包括在高温下将不纯的对苯二甲酸溶于水中以生成溶液,将该溶液在适合的催化剂如碳载体上的贵金属催化剂存在下氢化。这个氢化步骤使4-CBA转变成对甲苯甲酸,同时将在比较不纯的对苯二甲酸中存在的各种发色体转变成无色的产物。然后通过一系列结晶、固-液分离和干燥步骤从溶液中回收纯净的对苯二甲酸。因为对甲苯甲酸与对苯二甲酸相比,在水中具有更高的溶解度,在结晶和固-液分离之后易于保留在水性母液中。例如,在EP-A-0498591和EP-A-0502628中公开了包括制备粗制对苯二甲酸及随后通过氢化将其纯化的方法。
在WO-A-98/38150中描述了连续法,其中使用了较高的溶剂/前体比,因此基本上制备的芳族羧酸可全部保留在溶剂中,从而可将反应过程中的反应中间体的共沉淀最小化。结果,所述中间体可继续反应以得到所需的芳族羧酸,并且由于所述中间体的缘故,与常规方法相比提高了反应速率。通过以这种方法来实施氧化反应,可减少芳族羧酸受任何在反应过程中产生的作为中间体的醛污染。例如,如上所述,当通过对二甲苯或其它前体的液相氧化制备对苯二甲酸时,所述反应会导致合成出中间体4-羧基苯甲醛。因为不让对苯二甲酸在反应期间沉淀,所以在很大程度上可避免4-CBA与对苯二甲酸的共沉淀,至少不会有大部分发生共沉淀。此外,实现这种目的所必须的条件会导致将中间体如4-CBA氧化至更高的程度而称为所需的最终产物。
但是,WO-A-98/38150中描述的方法代表了对先有技术有价值的改进,它包括使用大量的有机溶剂。根据上述的理由,虽然有机溶剂如乙酸在这种氧化法中特别有用,但是在某些情况下要求尽可能减少使用它们。这些有机溶剂较贵,并且由于环境限制,可能需要回收和循环。此外,一部分有机溶剂在氧化反应中可能因为消耗而“损失”。另一个关于使用乙酸的问题是:当它与空气或氧气混合后,在这个体系典型的反应条件下是可燃的。
另一个关于使用常规溶剂如乙酸的问题是:氧化剂组分在其中的溶解度很低。因此,当用双氧做氧化剂时,所述双氧主要以分散于反应介质中的气泡的形式存在,仅有很少比例的双氧溶于溶剂中。由于所述前体和双氧之间的反应是由从气泡扩散到主体液体中的双氧产生的,因此反应速率受到双氧在溶剂中的低溶解度的限制。
Holliday R.L.等(J.Supercritical Fluids 12,1998,255-260)描述了特别是用于使用分子氧做氧化剂,在次临界水的反应介质中由烷基芳族化合物合成芳族羧酸的间歇法。当水接近其临界点(374℃和220.9bara)时,其介电常数从室温下约80C2/NM2急剧下降到5C2/NM2,从而使得可更多地溶解有机分子。结果,水的行为就像有机溶剂,这样,在水的超临界状态或近超临界状态下,烃类例如甲苯可与水完全混溶。双氧在次-临界和超-临界水中也具有非常高的溶解度。Holliday等描述的方法可在密封的高压釜中通过间歇式反应来实施。
本发明的目的是提供用于生产芳族羧酸,如对苯二甲酸的作为替代的和改进的连续法,其中基本上所有制备的芳族羧酸,也就是中间体和前体,可在反应期间保留在溶液中,并且其中需要使用有机原料(例如脂族一元羧酸)可作为溶剂除去。本发明的另一个目的是提供用于生产芳族羧酸的作为替代的和改进的连续法,其中基本上所有反应物和产物可在反应期间保留在公共相中。本发明的另一个目的是提供具有良好选择性和高收率的,通过在次临界和超临界水中氧化前体来制备芳族羧酸的连续法。
现在我们设计了一种可克服先前使用超临界水所遇到的一个或多个问题的方法。
                       发明概述
本发明提供了一种用于制备芳族羧酸的方法,所述方法包括:在连续流动反应器内,在催化剂存在下,将一种或多种芳族羧酸的前体与氧化剂接触,所述前体和氧化剂的接触在含有在超临界状态或接近超临界点的近超临界状态下的水的水性溶剂中完成,这样所述一种或多种前体、氧化剂和水性溶剂在反应区中构成了基本上单一的均相,其中至少部分所述前体和所述氧化剂的接触是与所述催化剂和至少部分所述氧化剂的接触同时发生。基本上制备的所有芳族羧酸在反应期间都保留在溶液中,其后可从所述反应介质中回收所述芳族羧酸。
通过使用超临界或近超临界状态下的水,可制备出所需的芳族羧酸,同时无需使用脂族羧酸如乙酸做主溶剂。
实施所述方法,将反应物和溶剂形成基本上单一的均匀流体相,其中所提及的组分在分子水平混合。这与现有的方法相反,在现有的方法中双氧以不连续的气泡形式存在于反应介质如乙酸中。由于前体如对二甲苯和双氧之间的反应由从气泡扩散到主体液体中的双氧产生,因此已知方法的反应速率受到双氧在乙酸中较低的溶解度的限制。使用在超临界或近超临界状态下的水做溶剂,因为当达到并超过水的临界点时,双氧在水中的浓度会显著增大,由此可改变反应动力学。此外,当所述水溶剂在超临界或近超临界状态下时,主要通过高温进一步提高反应动力学。高温、高浓度和均匀性的结合意味着将前体转变成芳族羧酸的反应与通过用结晶三相氧化反应器的常规技术制备芳族羧酸(如对苯二甲酸)所使用的停留时间相比,前者可以相当迅速地发生。在此处描述的本发明的条件下,所述中间体醛(例如在对苯二甲酸时为4-CBA)可轻易地被氧化成所需的芳族羧酸,所述羧酸可溶于超临界或近超临界流体,由此可显著降低回收的芳族羧酸产物中醛中间体的污染。如上所述,在将对二甲苯氧化成对苯二甲酸的常规先有技术方法中,所述对苯二甲酸仅微溶于脂族羧酸溶剂中,并且它在反应过程中沉淀;因为4-CBA成为对苯二甲酸的转变进行得较慢,因此在反应期间和随后回收对苯二甲酸的过程中,4-CBA趋于与对苯二甲酸共沉淀。
本发明的方法特别有利之处在于它实质上克服了前体的自催化破坏性氧化和催化剂消耗的问题。此外,本发明的方法包括短的停留时间并且显示了高收率和良好的形成产物的选择性。
                   发明的详细描述
在本发明的方法中,选择方法的压力和温度以确保超临界或近超临的状态。因此操作温度一般为300℃到480℃,更优选为330℃到450℃,一般从大约350℃到370℃的下限至大约370℃到大约420℃的上限。操作压力一般为大约40到350bara,优选为60到300bara,更优选为220到280bara,特别优选为250到270bara。
我们用“近超临界状态”表示反应物和溶剂构成了基本上单一的均相;实际上,这可在低于水的超临界温度时达到。根据一个实施方案,术语“近超临界状态”表示溶剂的温度低于220.9bara下水的临界温度不少于50℃,优选不少于35℃,更优选不少于20℃。
在本文中,我们用“连续流动反应器”表示一种可以连续的方式引入、混合并且同时取出产物的反应器,它与间歇式反应器相反。例如,虽然本文定义的发明的各个方面不受这种连续流动反应器的具体类型的限定,但是所述反应器可为活塞流反应器。
在本发明的方法中,实质上所有,并且无论如何不少于98%重量的反应中制备的芳族羧酸可在反应期间保留在溶液中,并且直到所述溶液离开氧化反应区和进行冷却后才开始沉淀。
通过在连续流动反应器中实施本方法,可使反应的停留时间与实现将前体转变成所需的芳族羧酸,同时没有明显生成降解产物相匹配。反应介质在反应区中的停留时间通常不多于10分钟。但是,实际上当将反应物混合之后所述反应可瞬间完成,因此,反应物在反应区中的“停留时间”非常短,通常为约2分钟或更短的时间。
可控制停留时间,这样可将前体迅速转变成相应的芳族羧酸,由于效率非常高,因此在完成反应后从反应介质中沉淀出的芳族羧酸包含极低水平的醛中间体,例如在反应中产生的醛中间体(例如在制备对苯二甲酸时的4-CBA)的量不多于大约5000ppm,甚至低至1500ppm,并且在某些情况下不多于大约500ppm。一般在反应之后,至少存在有一些醛,并且一般至少为5ppm。
适合实施本发明的方法的反应器体系通常构造如下。
可具有多于一个的反应区,这些反应区以串联或平行的方式排列。例如,当使用平行的多反应区时,反应物和溶剂形成的液流可分别流经所述反应区,如果需要,可将从这个多反应区流出的产物流汇合成单一的产物流。当使用多于一个反应区时,每个反应器中的条件例如温度可以相同或不同。每个反应器可在绝热或等温条件下操作。当所述反应在所述反应器中进行时,可通过热交换来保持等温或控制温度升高来获得(define)预定的温度曲线。
在本发明的一个实施方案中,根据本领域技术人员熟知的常规技术,通过使用热-接受流体的热交换来从反应中除去反应热。
在一个实施方案中,将热-接受流体流经一个或多个具有一层或多层管壁的流动管道,其外表面暴露于反应区的反应介质中。例如,可将反应器设计成类似于管壳式热交换器,同时使反应物和溶剂流经壳体,而使热-接受流体流经壳体内部的管。
但是,我们不能排除以其它方式实施热传递的可能性,例如通过将热-接受流体流经至少部分围绕反应区的夹套设备。例如,上述的管壳式设计可为使反应物和溶剂流经管道,而使热-接受流体流经壳体。
热-接受流体可以与流经反应区的反应介质逆流和/或并流的方向经过反应区。可方便地排列引导热-接受流体的一根或多根管道以延伸至反应器的内部。
在与反应介质进行热交换之后,最好将热-接受流体处理以回收热、机械能和/或电能。回收的能量可部分用于压缩供给用作本发明方法的氧化剂的空气或氧气,例如通过驱动适合这个目的的压缩机来实施。例如,在能量回收体系中可将传递给热-接受流体的热转换成机械能或电能。一个方法是使用所述热-接受流体来升高高压蒸汽的温度,使其过热并且供给蒸汽涡轮以回收能量。可回收足够的能量以允许工厂输出到其它有用的地方。
所述热-接受流体包括水也是合适的。
在热-接受流体流经反应区之前,可将其预热,并且可通过与由氧化反应产生的产流物的热交换来完成这种预热。
本发明方法中的氧化剂优选为分子氧,例如空气或富氧空气,但是优选包括以氧气作为其主成分的气体,更优选为纯氧或溶于液体中的氧气。使用空气不是优选的(但也不从本发明的范围中排除),因为这将引起巨大的压缩成本,并且需要废气处理装置以处理由空气中高含量的氮气产生的大量的废气。另一方面,纯氧或富氧空气允许使用更小的压缩机和较小的废气处理装置。在本发明的方法中用双氧做氧化剂是特别有利的,因为它非常易溶于超临界或近超临界状态下的水中。因此,在某一刻,氧/水体系将变为单一的均相。
除分子氧外,所述氧化剂可包括源自化合物的原子氧,例如在室温下的液相化合物,在每个分子中包括一个或多个氧原子。这种化合物的一个例子为过氧化氢,如Lin,Smith等(International Journal ofChemical Kinetics,23卷,1991,第971页)所述,其通过反应或分解可起氧源的作用。
本发明的方法在氧化催化剂存在下进行。所述催化剂可溶于包括溶剂和芳族羧酸前体的反应介质中,或者,可使用多相催化剂。所述催化剂,无论均相的或多相的,一般包括一种或多种重金属化合物,例如钴和/或锰化合物,并且可任选包括氧化助催化剂。例如,所述催化剂可采用任何用于芳族羧酸前体(如在脂族羧酸溶剂中的对苯二甲酸前体)的液相氧化中的形式,例如钴和/或锰的溴化物、溴代链烷酸酯或链烷酸酯(一般为C1-C4的链烷酸酯如乙酸酯)。可使用其它的重金属化合物代替钴和/或锰,例如钒、铬、铁、钼、镧系元素如铈、锆、铪和/或镍。所述催化剂体系最好包括溴化锰(MnBr2)。所述催化剂可替换性地或额外地包括一种或多种如为高度细碎分散形式或为金属海绵形式的贵金属或其化合物,例如铂和/或钯或其化合物。使用的氧化助催化剂可为单质溴、离子溴化物(例如HBr、NaBr、KBr、NH4Br)和/或有机溴化物(例如溴苯、苄基溴、单-和二-溴代乙酸、溴代乙酰溴、四溴乙烷、二溴化乙烯等)。或者所述氧化助催化剂可包括酮如甲乙酮,或醛如乙醛。
当催化剂为多相形式时,应将其合适地置于反应区内,以确保连续流动的反应介质和催化剂之间的接触。在这种情况下,所述催化剂可合适地吸附在载体上并且/或者受限于反应区内以确保这种接触,同时没有过度地缩小流动横截面。例如,所述多相催化剂可被涂覆或施涂到,或者包含在位于反应区中的静态成分中(例如形成网眼式结构的成分),这样所述反应介质可从其上流过。另外当反应物经过反应区时,这种静态成分还可起到增强反应物的混合的作用。或者,所述催化剂可为流动的丸粒、颗粒、细碎分散形式、金属海绵形式等,同时如果有必要,可提供方法来将其限制在反应区中,这样所述催化剂丸粒等可在操作中悬浮或浸没在流经所述反应区的反应介质中。以这些方式中的任何一种来使用多相催化剂是有利的,因为能将催化作用限制在明确的区内,这样一旦所述反应介质穿过所述区时,可以减小的速率发生进一步的氧化或者可显著抑制进一步的氧化。
用于氧化催化剂的载体可为较低催化活性的或甚至对氧化反应呈惰性的载体。所述载体可为多孔的并且一般具有至少25m2/gm至250m2/gm,例如50m2/gm至200m2/gm的表面积(包括表面孔的面积),优选大约80m2/gm至大约150m2/gm的表面积。所述催化剂载体材料在主要条件下应该是具有明显的抗腐蚀和明显的抗氧化性。所述氧化催化剂的载体组分可为纯的材料或复合材料,例如后者被用以赋予所述催化剂具有所需的化学或物理性能。在优选的实施方案中,所述催化剂载体材料包括二氧化锆。
可通过加热和压缩反应物,随后可将经加热和压缩的反应物一起带到反应区中来引发氧化反应。这可以许多方式实现,可在水性溶剂达到超临界或近超临界状态之前或之后,将一种或两种反应物与其混合,可以保持反应物彼此分离直到将它们一起带到反应区之后才实现这种混合。
在本发明的连续法中,构造所述反应器体系,使得氧化剂和至少部分,并且优选基本上全部前体之间的接触与所述催化剂和至少部分,并且优选基本上全部氧化剂之间的接触在反应体系的同一点进行。
在第一个实施方案中,将水性溶剂加热和压缩以获得超临界或近超临界状态之后,再将氧化剂与其进行混合,同时在氧化剂与水性溶剂混合之前,可适当地将氧化剂压缩并且如有必要进行加热。将前体压缩并且如有必要进行加热。在使用均相催化剂的方法中,可将所述催化剂组分压缩并且如有必要进行加热。然后,可将前体、催化剂和氧化剂/溶剂混合物同时接触。在使用多相催化剂的方法中,可将前体和氧化剂/溶剂混合物在催化剂存在下接触。
在本发明的第二个实施方案中,将水性溶剂加热和压缩以获得超临界或近超临界状态之后,再将所述氧化剂与其进行混合,同时在前体与氧化剂混合之前,可适当地将所述前体压缩并且如有必要进行加热。在一个装置中,在将前体和水性溶剂接触的同时,将经压缩和任选加热的均相催化剂组分与所述水性溶剂接触。在一种作为选择的装置中使用多相催化剂,并如此处的描述限制在反应区中。在将水性溶剂加热和压缩以获得超临界或近超临界状态之后,将经压缩并且如有必要加热的氧化剂与所述水性溶剂混合。在使用均相催化剂的方法中,随后将氧化剂/水性溶剂混合物与包括前体、催化剂和水性溶剂的混合物接触。在使用多相催化剂的方法中,使氧化剂/水性溶剂混合物在反应区中,也就是在多相催化剂存在下,与包括前体和水性溶剂的混合物接触。
可通过将各种原料独立进料到装置中的方法来实现各种液流的接触,在装置中各种原料汇合形成单一的均匀流体相,由此可使氧化剂和前体反应。可使原料在其中汇合的装置可具有例如Y、T、X或其它结构,使独立的进料在单一的流动管道中汇合则构成连续流动反应器,或者在一些情况下在多流动管道中汇合则构成两个或多个连续流动反应器。汇合进料的流动管道或多个流动管道可包括管状结构的部分,同时具有或不具有内部动态或静态混合元件。
在优选实施方案中,最好使用在线或静态混合器,以确保迅速地混合和均匀性,例如以促使氧化剂溶于水性溶剂中并且形成单相。
可将氧化剂进料和前体进料在一个位置混合在一起,或者可分两阶段或多阶段来实施接触,因此一种进料或两种进料的至少一部分可以按其流经反应器的方向以逐步方式引入,例如经多个注射点引入。例如,使一种进料可流经连续流动管道,而在位于连续流动管道纵向的多个点引入另一种进料,这样可逐步完成所述反应。经过连续流动管道的进料可包括水性溶剂,进料可在多个位置引入所述水性溶剂。
类似地,催化剂可按其流经反应器的方向以逐步方式加入,特别是均相催化剂,例如经多个注射点加入。
在一个实施方案中,在两个或多个位置将氧化剂引入所述反应中。这些位置根据溶剂和反应物流经氧化区的总体流动而方便地设置,可在起始位置和至少一个另外的位于所述起始位置下游的位置将氧化剂引入反应中。
在穿过连续流动反应器之后,所述反应混合物包含了芳族羧酸的溶液。与常规先有技术的方法不同,基本上反应中制备的芳族羧酸的总量在这个阶段都留在溶液中。所述溶液也可包括催化剂(如果使用)和较少量的副产物如中间体(例如,在对苯二甲酸的情况下,副产物为对甲苯甲酸和4-CBA),脱羧产物例如苯甲酸和降解产物例如1,2,4-苯三酸酐和任何过量的反应物。可通过诱导或静置,使芳族羧酸在一个或多个阶段里从溶液中结晶出来,随后在一个或多个阶段里通过固-液分离以回收所需产物芳族羧酸,例如对苯二甲酸。
本发明的另一方面涉及将由氧化反应产生的产物流冷却的问题。在本发明的这个方面,可将产物流经固-液分离以回收芳族羧酸,并且将母液(可包括但非必须包括溶解的催化剂组分)循环至氧化反应区中。
优选在重新引入到氧化反应区之前,通过与产物流的热交换来加热母液,因此可冷却产物流。
在将母液重新引入反应区之前,可将一种或两种反应物与母液循环流或与各种独立的母液循环流混合,并且在与反应物或各种反应物混合之前,可加热和压缩所述母液循环流(或者与一种反应物或多种反应物结合的至少那一部分或其各部分)以获得超临界的/近超临界的状态。
当母液在重新引入到氧化区之前,通过与产物流的热交换来加热时,可在母液流或各母液流与产物流的这种热交换之前或之后,将一种或多种反应物与所述母液流混合。
现在,通过参考附图对本发明作进一步的描述,但这仅仅是示例性的说明,其中:
图1A和1B是举例说明了上文第一个实施方案的基本装置的示意性流程图,其中图1A举例说明了均相催化剂的用途,并且图1B举例说明了多相催化剂的用途。
图2A-2D是举例说明了上文第二个实施方案的基本装置的示意性流程图,其中图2A和2B举例说明了均相催化剂的用途,图2C和2D举例说明了多相催化剂的用途。在图2B和2D中,氧化剂是沿着反应区在多个注射点以逐步方式引入的。
图3是更详细地举例说明其中将前体加到氧气和水的预混合流中的装置的示意性流程图(也就是根据在图1A或1B中举例说明的方法的装置)。
图4A、4B、4C、4D和5举例说明了各种可用于实现将至少一种反应物与水性溶剂混合的预混合器的结构。
图6是举例说明氧化剂的多阶段注射的示意图。
图7和8是举例说明用于在超临界或近超临界水中氧化对苯二甲酸前体的母液再循环和从反应器中排出热的示意性流程图,其中在图7的实施方案用基本纯净的氧气作氧化剂,在图8的实施方案中用空气作氧化剂。
参见图1A,在压缩后,双氧可与加热后的水混合,并且将所得混合物压缩,任选进一步在预热器1中加热以达到超临界状态。在压缩之后,可在一开始或正好在反应器2之前将前体和催化剂加到O2/水流中,并且使所述混合物流经反应器。在离开所述反应器时,将所述液流冷却并且经回压调节器3减压。在冷却水流中得到所述产物。在相应的图1B中,所述催化剂已经以多相催化剂的形式存在于反应器中。
参见图2A和2B,将经压缩的前体和催化剂加入到经压缩和任选经加热的水中,并且任选进一步在预热器1A中加热以达到超临界状态。在压缩后,将双氧气体与水在超临界状态下混合并且任选进一步在预热器1中加热。在图2A中,可在一开始或正好在反应器2之前将两股流混合,并且使所得混合物流经所述反应器。在图2B中,将O2/水流在多个注射点以逐步方式引入反应区中。在离开所述反应器时,将所述流冷却,并且经回压调节器3减压。在冷却水流中得到所述产物。在相应的图2C和2D中,所述催化剂已经以多相催化剂的形式存在于反应器中。
参见图3,将包含水、对二甲苯和双氧气体的原料组分压缩至操作压力,各原料组分可连续地从各个来源10、12和14经预热器16供应,在预热器16中,可将所述各组分加热到300℃至480℃,更优选330℃至450℃,一般是从大约350℃至370℃的下限到大约370℃至420℃的上限,选择压力和温度以获得超临界的或近超临界的状态。用于预热原料组分的一部分热可来自对苯二甲酸前体(在这个实施方案中为对二甲苯)与氧化剂之间的后续反应过程中产生的放热。其它来源的热可为例如高压蒸汽的形式和/或可通过直接加热水流来实现加热。可用任何适合的方式回收反应热,例如通过反应后的流体与适合的热-接受流体如水之间的热交换的方式来回收。例如,可使所述热-接受流体以与流经反应区的反应物和溶剂逆流和/或并流的方向流进热交换器中。热-接受流体流经反应区所沿的管道或多个管道可从反应区的外部通过,和/或从反应区的内部延伸穿过。这种在内部延伸的流动管道可为例如与反应物/溶剂流经反应区的主要方向平行和/或横切的方向延伸。例如,所述热-接受流体可通过一个或多个位于反应器内部的盘管而横穿所述反应区。通过适合的能量回收体系如涡轮,可将反应焓用于回收能量;例如热-接受流体如水可用来升高高压饱和蒸汽的温度和压力至约例如300℃/100bara,反过来,该蒸汽可通过外部加热变得过热,并且进料到高效冷凝蒸汽涡轮中来回收能量。用这种方法,可将反应器保持在最佳温度,并且可获得有效的能量效率。在一种作为选择的方法中,可在绝热条件下操作反应器,并且为了抑制在操作中整个反应器的温度上升,可使水流以适当高的速率流经反应区。如果有必要,可使用两种方法的结合,也就是通过热-接受流体回收反应焓,同时使水流以适合的速率流经反应区。
在加热原料组分之后,氧气与水进行混合,其中水经过预热和压缩后处于超临界或近超临界的状态,因此能够增加对原料的溶解。在图3举例说明的一个实施方案中,将氧气和水在预混合器18A中混合。前体也与水在预混合器18B中混合。当然所述前体也可在进入预加热器16之前独立与水预混合。
如图4A、4B、4C、4D和5分别举例说明的那样,预混合器(或预混合各种反应物和水的各混合器)可采用各种形式例如Y、L或T部件、双T结构或静态混合器。在图4A到4D和5中,符号A表示将经预热的水供给预混合器,B表示反应物(对二甲苯或氧气)和P表示所得的混合流。在图4D的双T结构中,两股混合流被标记为P1和P2。这些流可流经各独立的连续流动反应器或将其合并成单一的流,然后流经单一的连续流动反应器。如本领域人员熟知的那样,也可使用X部件的结构。
应明白,除了将一种或两种反应物与水在引入反应区之前预混合外,还可将反应物和水独立引入反应区中,并且在某种形式的混合装置(静态混合器)的辅助下在反应区内混合,由此基本上各组分的所有混合都在反应区内发生。
当反应中使用均相催化剂时,在正好进入反应器之前或者在反应器的起始部分将所述前体加入到预混合的氧气/水流中的同时,将所述催化剂以来自来源19的溶液的形式加到所述预混合的氧气/水流中(即如图1A所示)。
在预热和预混合之后,将原料组分在反应区20汇合以形成单一的均匀的流体相,其中可将所述反应物集合在一起。所述反应区20可由管式活塞流反应器形式的简单混合器装置构成,例如一定长度的导管,其中长度与汇合的反应物的流速配合,提供适合的反应时间以保证对二甲苯高效率地转变成对苯二甲酸,并且获得低的4-CBA含量。
当所述反应在多相催化剂体系存在下完成时(即如图1B所示),所述催化剂体系可沿流动方向纵向分布并且可随反应区一起延伸,这样一旦超临界的或近超临界的流体流出由催化剂体系覆盖的管道部分之外时,则反应速率显著下降以抑制降解产物的产生。
各反应物可在反应器20上游的一点上“one shot”结合。或者可通过将一种反应物在沿着反应器长度方向上的多个点注射到包括另一种反应物的流中,以逐步方式将它们结合。在图6的连续流动反应器中显示了实现多点注射装置的一种方法,其中所述反应器用管P构建。在一个实施方案中,可将预混合的氧气/水流加到预混合的前体/水流中(如图2D所示),将经预混合的对二甲苯/超临界或近超临界水流W供给管P上游的末端。对使用均相催化剂的方法来说,水流W也可包括催化剂;在使用多相催化剂的方法中,所述催化剂存在于管P的内部。所述流流经反应器管P,并且通过在沿着管P的长度方向上间隔排列的一系列位置上的注射管道A至E提供溶于超临界或近超临界水中的经预热和压缩的氧气,从而制备出在超临界或近超临界的水溶液中含对苯二甲酸的产物流S。在这种方式中,对实现对二甲苯成为对苯二甲酸的完全氧化所必需的氧气以逐步方式注射入,这样有助于控制氧化、最大程度地减少副反应以及对二甲苯、对苯二甲酸或对苯二甲酸中间体可能发生的燃烧。
现在继续参考图3,在反应达到所需的程度之后,将超临界或近超临界流体流经热交换器22,通过该热交换器,热交换流体可经闭合圈24进行循环,因此可回收热用于预热器16。对苯二甲酸溶液的反应后冷却的一个示意图(未显示)包括:使用热交换器网络来冷却所述流至次临界温度,例如约300℃,以将对苯二甲酸产物保留在溶液中,因此避免了污染热交换器表面的危险,接着通过使用一组闪蒸结晶器(类似于常规的由氢化纯化对苯二甲酸所用的设备)来冷却和沉淀对苯二甲酸产物。
然后将经冷却的溶液供给产物回收部分26,其中对苯二甲酸从溶液中沉淀出来。可使用本领域技术人员熟知的任何回收产物的适合方法。产物回收部分26可包括一个或多个冷却或蒸发结晶阶段以使对苯二甲酸结晶,形成对苯二甲酸晶体在水性母液中的淤浆。当产物回收部分26包括一个或多个闪蒸结晶器时,从结晶器得到的闪蒸流可间接地通过常规热交换器或者通过将闪蒸流直接注射到进料到反应器中的水和/或对二甲苯中,以用于预热进入反应器入口的水和对二甲苯流。如在先前出版的国际专利申请号WO-A-93/24440和WO-A-94/17982所述(通过引用将公开部分结合到本文中),可将结晶后得到的淤浆经受固-液分离法,使用例如在超计大气压、大气压或低于一大气压条件下操作,同时具有或没有洗涤设施的过滤装置来实施该方法。因此,整体固体分离和水洗装置可例如包括带式过滤器、对淤浆操作的转筒过滤器或圆筒过滤器(例如,由大量淤浆接收室形成的BHS-Fest压力过滤器,在接收室中,在供给接收室的水压下由水将母液从滤饼中置换出)。在过滤淤浆之后,可将回收的对苯二甲酸直接用于生产聚酯,例如,用作包装材料(如瓶)或织物的聚酯。同样可将它干燥,如果不是已经在大气压下,可将对苯二甲酸的滤饼转移到低压区(例如大气压),以通过适合的排压装置,例如闭合料斗(lock hopper)装置、回转阀、柱塞泵、螺杆进料装置或逐步进料装置例如逐步空腔泵(cavity pump)(用于泵压高固含量的冷膏状物)进行干燥。
分离的温度和洗涤要求达到的水平将依赖于反应中产生的杂质的含量、回收产物的方法和所需产物的规格。但是总的来说,最好是制得的对苯二甲酸具有足够的纯度,而不必进一步纯化(例如通过氧化和/或氢化对苯二甲酸的水溶液,以将4-CBA转化成对苯二甲酸或转化成对甲苯甲酸(根据具体情况而定)),但我们不排除在超临界或近超临界水氧化对二甲苯之后实施这种纯化的可能性。
在回收芳族羧酸产物之后,至少部分水性母液(如果在氧化反应中使用均相催化剂,则包括溶解的催化剂组分)可被循环再用于氧化反应中,例如通过与新鲜水和/或反应物的混合再使用。但是,如果循环的母液包括催化剂组分,则不应在添加前体之前加到O2/水的流中。循环量一般为回收的母液的主要部分,为了降低本发明方法中副产物的浓度可对母液进行净化。可处理净化流以回收其可应用的催化剂成分和其有机成分。
现在参见图7,在这个实施方案中,将液氧(线30)、液态对二甲苯(线32)和水(线34)供给混合单元36。通过泵38、38A压缩氧气和对二甲苯原料,并且在热交换器40和40A中用例如高压蒸汽加热到高温。安装混合单元36以将反应物与水混合,产生两股液流42、44,一股流包括水/对二甲苯混合物而另一股流包括溶于水中的氧气,将这两股流进料至管形的连续流动反应器46中,在其中将所述液流混合(例如通过未显示的管内的静态混合装置)以引发反应。图7主要试图举例说明使用了多相催化剂的体系的装置。对这种利用多相催化剂的方法来说,如本文所述,为多孔介质的固体催化剂、固定床或其它装置可包括在反应器46的流动体积中。对使用均相催化剂的方法来说,可使用快速搅拌,将水溶液形式的催化剂在正好进入反应器之前加入到对二甲苯/水流42中,或者在反应器的起始部分或正好在反应器前加入到液流42和44的混合流中,其中快速搅拌例如通过使用静态混合器或类似装置来实施。
可在各个点实现为所述体系提供新鲜的补充水。最方便的点之一是在主压缩泵68的上游,例如经管线116补充水,以下将在图8中详细对它进行描述。水也可在泵38C中压缩之后,并且在热交换器40C中加热,经管线35A进到管线74中进料,或者在交换器之前(50,70)进料。或者,在泵38B中压缩和在热交换器40B中加热之后,将水经管线35独立地进料到预热器36中。
在超临界和近超临界状态下反应后,通过流经热交换器50和52将对苯二甲酸溶液形式的产物流48(加上少量未反应反应物、中间体等)冷却,并且任选在闪蒸器54中急骤降到较低的压力和温度。在这个点或在产物回收部分62实现这个步骤的装置可包括单一的或多个已知装置,但是应通过本领域技术人员熟知的装置如局部加热装置进行配置以避免固体沉积。因此,当将来自反应器46的流流经热交换器50和52时,监测并控制流的温度,这样产物不会发生沉淀;在进入闪蒸器54前产物不应发生沉淀。当通过管线60将对苯二甲酸溶液供给产物回收部分62时,相当大量的蒸汽和一些气体组分例如氮气、氧气和二氧化碳可经管线56供给能量回收体系58。
在产物回收部分,可将对苯二甲酸的溶液经多阶段结晶组的处理,在结晶组中,压力和温度逐步降低以结晶出晶体形式的对苯二甲酸。结晶处理的产物是对苯二甲酸晶体在水性母液中的淤浆。在最终结晶阶段之后,所述淤浆可处于任何所需的压力,例如大气压或更高。然后,将所述淤浆经适合的任何形式的固液分离,从而将晶体从母液中分离出。可使用任何适合这个目的的装置来实施固液分离,并且安排在高压条件下或在大气压下操作,这取决于随后最终结晶阶段的压力。正如先前提到的那样,可用整体固体分离和水洗装置如带式过滤器、转筒过滤器或圆筒过滤器(例如,由大量淤浆接收室形成的BHS-Fest压力过滤器,在接收室中,在供给接收室的水压下由水将母液从滤饼中置换出)来实施固液分离。
在图7中,可将回收的对苯二甲酸晶体通过管线64供给干燥器(未显示)或直接生产聚酯。当在高压条件下实施固液分离时,在将晶体转移到干燥装置之前,可使用适合的装置(例如国际专利申请号WO-A-95/19355或美国专利号5,470,473的公开)方便地将所述晶体的压力降低到大气压。可经管线66回收固液分离的母液,用泵68再压缩并经热交换器70、管线72、热交换器50、管线74、启动/调整加热器76和管线34循环回混合器单元36。因此,在稳定状态的操作条件下,特别在使用均相催化剂体系进行氧化的情况下,可将循环母液汇合到供给反应器46以及用作循环本发明方法催化剂的载体的水源中。当循环母液可能包括催化剂,也就是均相催化剂时,可配置所述混合单元36,使得再循环的母液可与对二甲苯流混合而不是与氧化剂流混合,因为根据本发明的方法,将催化剂加到氧化剂中应与前体加到氧化剂中同步。因此,当再循环母液包括催化剂时,可配置所述混合单元,使得氧化剂流30可与管线35的新鲜水混合。
因为在反应过程中产生水,所以应从所述体系中排出水。这可用几种方法来实现;例如,可经管线78或适合的闪蒸冷凝进行排水(例如在下文结合能量回收体系描述)。后者可更有利,因为它比经管线66回收的母液中排放受到更少的有机污染。但是,可将回收的排放水流经废水处理,例如有氧和/或厌氧处理。
在热交换器70中,可通过与一个或多个结晶阶段(例如第一阶段最高压力和温度的结晶器)闪蒸出的蒸汽的热传递而将母液的温度升高大约30到100℃。用于这个目的的闪蒸流(管线79)随后流经热交换器70,可作为冷凝物返回到产物回收部分,用作洗涤水清洗由固液分离产生的对苯二甲酸的滤饼。在热交换器50中,由于与来自反应器46的高温产物流48进行热传递,母液的温度仍进一步升高例如大约100至200℃。在这个方法中,产物流被冷却,同时显著升高母液循环流的温度。如有必要,调整/启动加热器76可用于提高母液循环流的温度,以实现超临界或近超临界状态。在本发明方法的稳定态操作下,这种提高操作是任选的,因为母液流经热交换器50后可得到超临界或近超临界状态。因此,在稳定态下加热器76并非是必须的,而可纯粹地用于初始时使用除母液外的来源的压缩水的启动操作。在这个实施方案中,水性溶剂在与一种和两种反应物混合之前,已处于超临界或近超临界状态。但是,应理解可在混合阶段之前,期间和/或之后实现升温以获得所需的超临界或近超临界状态。
在图7的实施方案中,可通过与热-接受流体,优选水的热交换将前体和氧气的反应过程中产生的至少部分反应热除去,其中热-接受流体经盘管80或一系列大致平行的管(如在管壳式热交换器中的设计)等通过反应器46的内部。在引导水通过反应器的管道或管道组80的外部表面,可将使用的水压缩和加热到足够高的温度,这样可避免局部冷却而导致反应介质中的组分如对苯二甲酸发生沉淀。用于这个目的的水来自能量回收体系58。因此,在图7中,可经管线82将在高压和高温下的水供给热交换器52,热交换器52可用于进一步冷却来自热交换器50的产物流。然后水经管线83流经管道80,得到高压、高温的蒸汽,可将该蒸汽经管线84进料到能量回收体系58中。
还将从结晶组的一个或多个阶段闪蒸出的蒸汽供给能量回收体系58。这由管线88表示。这股蒸汽可用于例如预热经管线82供应到热传递管道80的水。由供给能量回收体系58的蒸汽进料产生的冷凝物经管线90进到产物回收部分,用于例如清洗在固液分离中产生的对苯二甲酸滤饼。如果需要,可由管线90排放水,这样的优点是在这一点排放的水将比经管线78的母液中排放的水受到更少污染。
在图7中(如上所述,其主要意图是举例说明利用与均相催化剂相反的多相催化剂的方法)显示出循环母液在通过与热交换器50中的产物流热交换而被加热后,再将反应物引入到其中。在一个修改的方法中,可在母液循环流与产物流进行热交换的上游,将反应物与所述母液循环流混合。当将两种反应物都如此与母液流混合时,可将后者分成独立的液流,分别与所述反应物混合,这样直到反应时混合在一起前,两种反应物可保持互相独立。也应理解图7的实施方案可根据图6所示的方式进行修改,即可通过将一种或两种反应物经沿着反应介质流动路线的多个注射点引入,这样可将一种或两种反应物逐步引入反应中。
在能量回收体系58中,为了有效利用过程的能量,可实施各种热回收法。例如,可将由水流经管道80而产生的高压蒸汽在用可燃性燃料供应的炉内过热,然后将所得的过热蒸汽通过一个或多个蒸汽冷凝涡轮段回收能量。可输送部分高压蒸汽用于预热反应物(热交换器40、40A和40B)或预热液流82,这对于实现高热效的体系是必要的。然后,为了预热水,可将从涡轮阶段和从热交换器40、40A和40B回收的冷凝水流经一组加热段,这样经预热的水可经热交换器52再循环至46,由此形成了闭合圈,需要时可添加补充水。加热阶段一般包括级联热交换器,通过这种设备可将流回反应器46的循环水逐步升温。在一些加热阶段,供热流体可由来自结晶组不同阶段的不同压力和温度的闪蒸蒸汽构成。在其它加热阶段,所述供热流体可为来自用于过热经管线84供应的高压蒸汽的加热炉的烟囱的可燃气体。
图7的实施方案使用基本上纯净的氧气做氧化剂。图8举例说明了与图7类似的实施方案,不同之处在于使用压缩空气(可为富氧空气)做为氧化剂。图8的实施方案通常与图7的类似,并且在两个图中使用相同的参考数字来表示大体上以相同方式起作用的那些部件,在下文中不会进一步进行说明除非上下文另有需要。如图所示,经空气压缩机102供应空气源100。由于使用了空气,会将大量的氮气引入加工过程中,因此必须适当地处理。在这种情况下,可将流经热交换器50和52的产物流在闪蒸容器103中急骤下降至较低的温度,以比图7的实施方案更大程度地冷凝出水,从而降低塔顶馏出物的水含量。与图7中所述相似,控制流经热交换器50和52的产物流的温度,使得产物的沉淀仅在闪蒸器103中发生。经管线104、热交换器106和燃料燃烧的加热器108将塔顶物流供给气体涡轮110。为了将热传递给母液循环流,可将塔顶物流流经热交换器106,同时更进一步排出水,可将其经管线112流经产物回收部分62用作例如洗涤水。为了有效利用能量,最好在气态的塔顶物流引入涡轮110之前将其加热到高温,为此通过加热器108加热塔顶物流的原因。可有不止一个气体涡轮段,在这种情况下,可将塔顶物流在每个这种涡轮段上游加热至高温。管线114表示排出涡轮110的低压和低温塔顶物流。当氧化法导致产生例如一氧化碳等物质(出于腐蚀和/环境的原因,该物质是不符合需要的),可采取措施处理塔顶物流,从而在其流经涡轮110和/或排放之前或之后减少/消除这种组分。这种处理可包括将塔顶馏出物经催化燃烧和/或用适当的试剂(例如碱性的洗涤液体)洗涤。可将涡轮110与空气压缩机机械相连,使得可通过涡轮来驱动后者。
在图8的实施方案中,水经塔顶物流排出所述体系。如果需要,可至少回收这种水的一部分,并且循环用作例如产物回收部分62中的洗涤水。作为选择或另外地,由于使用了压缩空气,可经管线116供应补充水至产物回收部分以补偿在处理大体积的氮气中损失的水。可预热这种补充水并用其做洗涤水,预热可通过例如将部分闪蒸流(共同用参考数字88表示)经管线118输送到热交换器120中来实施,并且将从闪蒸流中冷凝的水作为洗涤水返回到产物回收部分62中。
虽然本发明主要对用对二甲苯做对苯二甲酸的前体进行了描述,但是应明白可用其它前体代替对二甲苯或除对二甲苯之外使用其它前体,例如4-甲苯甲醛和4-甲苯甲酸。也应明白本发明可用于制备其它芳族羧酸例如间苯二甲酸。
实施例
在实验室规模下,在大约375到420℃和240到280bara的超临界水和MnBr2催化剂中,通过O2将对二甲苯连续氧化来实施实验工作。通过使用较稀的溶液(<5%重量的有机物)最大程度减少放热。实验提供对苯二甲酸的收率为大约90%。体系的基本结构与图1A提出的相同。在图9中显示了用于这种实验室规模实验的体系的更详细说明。
使用两个不同示意图中的任一个来供应氧气。在第一个中,将氧气压缩进给料单元150,在其中将氧气间隔供给将氧气与冷水混合的混合段。或者,将过氧化氢(100体积)供给泵,冷却至5℃或更低,然后进料至将氧气与冷水混合的混合段。
然后将O2/水在预热器152中加热,预热器152由置于铝制缸体中的6m长的外径1/4英寸的不锈钢盘管构成。通过在预热器152中使用较长的盘管来使氧气和水得到充分混合。然后将O2/水的流体流经X形部件154,在其中它与对二甲苯和MnBr2催化剂的溶液(从它们各自的泵进料)接触。将反应混合物流经与预热器152类似的反应器156。
当对苯二甲酸(TA)溶液冷却时,对苯二甲酸可轻易地从其热溶液中沉淀出来,并且悬浮的TA可经常引起这种规模的装置阻塞。因此,将大量过量的冷NaOH注射到来自反应器156的产物流中,以确保所有TA为自由溶解的对苯二甲酸二钠盐的形式。然后使所述溶液流经冷却装置158、过滤器159和回压调节器160。随后,一旦TA冷却之后,可通过将收集的溶液酸化回收。在更大规模的装置中不需要NaOH,尺寸增大可减少阻塞的问题。
图9中标出的其它部件如下:162A-E:阀;163A-B:减压阀;164A-E:止逆阀;165A-F:压力转换器;T:热电偶(预热器152和反应器156的铝制缸体加热器也包括热电偶,未显示)。O2压缩机、给料单元、预热器和反应器可从NWA GmbH获得;泵为Gilson302、305、306和303;回压调节器从Tescom获得(型号为26-1722-24-090)。
最大腐蚀发生在X部件154的区域,其中O2、对二甲苯和催化剂溶液在此处汇合,尤其是入口的未加热的催化剂进料管处,其中高温梯度与溴离子协同起作用。在用于添加NaOH溶液的混合器段之前,可在接近5cm的长度上出现近似100℃的温度梯度,因此使用Hastelloy(或钛)做催化剂进料管的最终段和所述反应器的下游,并且将不锈钢用于其它部分。全部易于被腐蚀破坏的管件内部可用较大内径的不锈钢压力管保护,从而可容纳任何疏忽的泄漏物。
在每次运行前,在冷却时应对所述装置进行流体静力学试验,然后用流动纯水(5-10ml/分钟)加热。一旦达到操作温度时,可开动O2进料和对二甲苯、MnBr2和NaOH的泵。一般实验运行4-5小时。通常收集30-60分钟连续时间内的产物并进行分析。可用2N HCl(或者可使用硫酸或硝酸)酸化经过称重的一部分包含对苯二甲酸二钠盐的产物溶液,从而沉淀出TA或其它组分。使用布氏漏斗过滤TA,用冷水洗涤并放在含干燥硅胶的干燥器内进行空气干燥并称重。主要通过HPLC鉴定纯度。收集的固体产物的收率以泵入装置中并转换成TA的所有对二甲苯所占的百分比计算。
表1中的结果说明:根据所述条件、混合以及每种反应物的浓度,可获得将对二甲苯氧化成对苯二甲酸的高选择性。收率对包括对二甲苯:O2、反应器停留时间、对二甲苯:化剂以及反应器温度等变量的范围高度敏感。
经分析对二甲苯氧化中间体是4-羧基-苯甲醛(4-CBA)和对甲苯甲酸(p-Tol)。此外,测定出副产物包括2,6-二羧基芴酮(DCF)、间苯二甲酸(IPA)、苯甲酸(BA)、苯1,2,4-三羧酸(TMA)、2,4’,5-三羧基联苯(BPTC)、联苯甲酸、4,4’-二羧基二苯酮(DCBBP)、2,6-二羧基芴酮、2,6二羧基蒽醌、2,6-二羧基芴和2,6-二羧基蒽。
通过将回收溶液直接注射到柱内进行HPLC分析。使用乙腈(16.7%)和缓冲剂(83.3至60%并返回83.3%)的混合溶剂进行梯度洗脱。在加入乙酸(50%,100ml)之前,通过将15g无水乙酸钠溶于250ml去离子水中制备储备缓冲溶液。在稀释至500ml前,用5%的乙酸将pH值调节至3.9±0.01。用去离子水将30ml的储备缓冲液稀释500ml制得经稀释的缓冲液。注射体积及针头洗液为1微升。使用WatersXterra反相柱,保持在40℃。使用0.7ml/min的流速和14分钟的运行时间。使用设定在230nm的UV检测器分析峰。
实施例1
使用100体积的过氧化氢,使用56ml过氧化物和760ml纯水(nanopure water)(18.3兆欧电阻)制备稀的储备溶液。通过将溴化锰溶于纯水中至Br的浓度为5000ppm重量,制备出稀的催化剂储备溶液。对二甲苯独立保存不稀释。制备氢氧化钠(0.5M)的储备溶液,在反应器的下游,但在回压调节器之前进料。
将去离子水以一定速率单独泵入通过预热器、混合部件、反应器、碱混合器、冷却器和回压调节器,控制穿过反应器的最终停留时间为65秒。将停留时间定义为用体积流速除在混合部件之间的管道式反应器、管道和装置的体积;第一混合部件用于混合反应物以引发反应,第二混合部件用于添加氢氧化钠来淬灭反应。如由U.S.National Institute of Standards and Technology出版的InternationalSteam Tables中所述,体积流速以混合条件下水的物理性能为基础。
设置回压调节器以将反应器压力控制在250Bar。设置加热器以控制混合部件在385℃下并且反应器在400℃下。
如图9所示,将每种反应物独立地泵入所述混合部件中。对于将对二甲苯氧化成对苯二甲酸的反应来说,可将浓度为0.58%重量的对二甲苯进料至反应器中,氧气以接近化学计算量的速率进料,并且将催化剂溶液进料至混合部件中,以在反应器中生成1632ppm的Br浓度。
在达到稳定的设定点的条件之后,可收集30到60分钟之间的样品,随后进行分析。这个实验运行了3.5小时。结果显示被收集样品的固体收率在26至37%重量之间变化。在每个样品中的TA组成变化很小并且在每个样品中都检测到对二甲苯的氧化中间体。结果总结在表1中。实施例2
为了试验增加反应器停留时间的影响,如实施例1那样,在250Bar和400℃的反应器温度下运行实验,但反应器停留时间改为130秒并且略微增大了氧气的流量。这导致收率下降和运行过程中对氧化成TA的选择性较差(9.3至21.3%)。出现对二甲苯氧化中间体减少并且反应副产物减少的现象。导致苯甲酸浓度较高。表1实验条件和结果的总结表
   8    2.42   250   300    0.58     45    1632     13-98   13.0-26.4    8.5-11.5    35.4-64.1     2.4-3.7   4.3-5.6
   9    2.43   250   300    0.58     178    1632     42-81   71.6-81.8    0    0     4.9-7.1   0
   10    0.3   250   400*    0.58     120    1640     72-100   91.8-94.1    0    0     5.8-8.2   0
   11    0.3   250   400*    1.5     180    1640     69-95   92.1-93.8    0    0     6.3-8.0   0
   12    0.15   250   400*    1.5     180    1640     74-90   93.5-95.3    0    0     4.7-6.5   0
   13    0.15   250   400*    2     120    1640     79-85   93.9-95.1    0    0     4.9-6.1   0
Figure A0181310200301
在反应器中对二甲苯的浓度(重量)
↑占将p-X完全转化成TA的化学计算量的比例
*将反应器改为较短的管后混合部件的温度实施例3
通过如实施例1那样,在250Bar和350℃的反应器温度和125秒的反应器停留时间下运行实验,以测试降低温度的影响。使用975ppm Br的略微降低的催化剂浓度,并且增加氧气含量导致显著提高收率,同时具有中等的氧化成TA的选择性。除了水为次-临界状态外,这些结果显示出与实施例1中在超临界状态下获得的结果类似。与实施例2相比,副产物进一步减少。实施例4
如实施例3那样,在250Bar和300℃的反应器温度下运行实验,从而评价超临界温度的影响。使用537ppm Br的低催化剂浓度,尽管增加氧气浓度并且延长反应停留时间至超过11分钟,仍没有固体产物从样品的常规后处理中产生。分析结果显示进料的对二甲苯仅有极小的转化率。实施例5
如实施例4那样,但在更低的反应器温度250℃和250Bar下运行实验。与在实施例4中一样,没有固体产物从样品的常规后处理中产生。分析结果显示进料的对二甲苯仅有极小的转化率。实施例6
如实施例5那样,但在更低的反应器温度200℃和250Bar下运行实验。与在实施例4和5中一样,没有固体产物从样品的常规后处理中产生。分析结果显示进料的对二甲苯仅有极小的转化率。实施例7
为了研究反应器停留时间的影响,如实施例1那样,在250Bar和400℃的反应器温度运行实验,估计反应器停留时间为32秒。用于将对二甲苯完全转化的氧气化学计算量是大于比率的,由于4-CBA、p-Tol和产生的副产物减少了,所以固体产物的收率增加,同时氧化成TA的选择性相对提高。产生的BA似乎是随着TA选择性的增加而增加。实施例8
为了研究反应器停留时间、氧气化学计算量和催化剂浓度的影响,如实施例4那样,在250Bar、300℃的反应器温度(在296至324℃之间变化)和约145秒的反应器停留时间下运行实验。使用低氧气浓度并且使水处于次临界状态的温度。使用Br为1632ppm的催化剂浓度以提高反应程度,但是本实验得到的是低的转化率,仅为中等的氧化成TA的选择性。分析中均检测出氧化中间体和副产物,表明必须在反应器中保留足够的催化剂以促进对二甲苯的氧化选择性。实施例9
为了确定氧气化学计算量的影响,如实施例8那样,在250Bar、300℃的反应器温度和近似145秒的反应器停留时间下运行实验。使用增强的氧气浓度,该浓度明显大于将对二甲苯完全转变成TA所要求的浓度。将混合部件维持在378℃,但是反应器温度使水处于次临界状态。使用1632ppm Br的催化剂浓度。产物分析显示具有良好的氧化成TA的选择性,并且没有检测到对二甲苯的氧化中间体或副产物。在固体产物中仅检测到的其它有明显浓度的组分是苯甲酸。所述结果说明需要保持氧气的化学计算量以将对二甲苯的完全氧化。实施例10
如实施例1那样,在250Bar、400℃的反应器温度下和在减少的反应器停留时间内(估计反应器停留时间近似为20秒)运行实验。通过使用较短长度的管、而不采用加热盘管可获得减少的反应器停留时间。使用大于将对二甲苯完全转变成TA所要求的氧气浓度和1640ppm Br的催化剂浓度。产物分析显示具有良好的氧化成TA的选择性,并且没有检测到对二甲苯的氧化中间体或副产物。明显浓度的苯甲酸(相应于对TA的选择性的损失)存在于固体产物中。与实施例9相比,结果表明在反应器停留时间较短时,仅需要少量过量的氧气来产生高的TA收率和选择性。实施例11
如实施例10那样,在250Bar、400℃的温度下和在反应器内运行实验。将浓度增大的对二甲苯和大大超过化学计算量的氧气进料至混合部件中。使用1640ppm Br的催化剂浓度。收集分离出的样品15分钟,并且产物分析显示对氧化成TA有类似的选择性,并且没有对二甲苯的氧化中间体或副产物。苯甲酸再次成为唯一检测到的其它组分,但是与实施例10中相比,其含量减少了。实施例12
如实施例10那样,在250Bar、400℃的反应器温度下和在估计接近10秒的反应器停留时间内运行实验。通过用增加反应物的流速来获得较短的反应器停留时间。产物分析显示对氧化成TA有高的选择性。检测到与实施例10相比浓度略低的苯甲酸,这可能是由于反应器停留时间较短。在固体产物没有检测出对二甲苯的氧化中间体或其它副产物。实施例13
由于发生高度放热的反应,需控制反应器的温度,受这限制,进一步增加反应物的浓度。如实施例12那样,在250Bar和400℃的反应器温度下运行实验,同时增加对二甲苯浓度至2%,并且氧气超过其化学计算量。产物分析显示对氧化成TA有高的选择性。在固体产物中检测到有明显浓度的苯甲酸,并且没有检测出对二甲苯的氧化中间体或其它副产物。
为了确定实验总的物质平衡,实施了额外的测试。对一个在15分钟的固定时间隔取得的具体样品来说,固体产物的组成为92.1%重量的TA和7.9%重量的BA。在这段时间内,将0.6814g对二甲苯进料至实验单元中,回收的固体为1.009g。测试回收的碳为97.4%。实施例14
为了确定所需的混合结构,运行了如下实验,将1000ppm Br的催化剂溶液与含溶解有氧气的水进料至385℃和240Bar的预热器中。将对二甲苯进料至混合部件中以在该预热器的下游得到1%体积的浓度。按照将对二甲苯完全转化成TA要求的化学计算量供应氧气。在固体产物中回收的碳为22-69%重量,同时TA的收率在11-18%之间。
预热器的检查显示对预热器的管道的内表面有明显腐蚀,并且有黑色微粒覆盖在管道上。原子吸收和X-射线衍射显示所述固体为MnO2
在同样条件下,但是在进料至预热器之前,没有将氧气与所述催化剂溶液混合来实施实验,这样在反应后可完全回收MnBr2

Claims (16)

1.一种用于制备芳族羧酸的方法,所述方法包括:在连续流动反应器内,在催化剂存在下,将一种或多种芳族羧酸的前体与氧化剂接触,所述前体和氧化剂的接触在含有在超临界状态或接近超临界点的近超临界状态下的水的水性溶剂中完成,这样所述一种或多种前体、氧化剂和水性溶剂在反应区中构成了基本上单一的均相,其中至少部分所述前体和所述氧化剂的接触与所述催化剂和至少部分所述氧化剂的接触同时发生。
2.权利要求1的方法,其中所述前体在反应区中的接触非常迅速地发生,定义为在操作条件下反应物的体积流速除反应器的体积得到的停留时间小于4分钟。
3.权利要求2的方法,其中基本上所有制得的芳族羧酸在反应期间都保留在溶液中。
4.权利要求3的方法,其中在反应后所述芳族羧酸从反应介质中沉淀出来,并且包含不多于5000ppm重量的反应过程所产生的醛中间体。
5.权利要求4所要求保护的方法,其中通过与热-接受流体的热交换从所述反应中除去反应热。
6.权利要求5所要求保护的方法,其中使热-接受流体流经一个或多个至少部分环绕所述反应区的流动管道。
7.权利要求5所要求保护的方法,其中使热-接受流体流经一个或多个具有一层或多层管壁的流动管道,所述管道的外表面暴露在反应区的反应介质中。
8.权利要求7所要求保护的方法,其中所述热-接受流体以与流经所述反应区的反应介质逆流和/或并流的方向流经所述反应区。
9.权利要求8所要求保护的方法,其中在所述热-接受流体与所述反应介质热交换后,将所述热-接受流体进行处理以回收热、机械能和/或电能。
10.权利要求9所要求保护的方法,其中所述热-接受流体包括水和/或蒸汽。
11.权利要求1的方法,其中在两个或多个位置将所述氧化剂引入所述反应中。
12.权利要求4所要求保护的方法,其中将所述沉淀物从所述母液中分离出来。
13.权利要求12所要求保护的方法,其中将至少部分母液循环回所述反应区。
14.权利要求13所要求保护的方法,其中在将所述母液循环回所述反应区之前,可通过与来自所述反应区的产物流的热交换将所述母液预热。
15.权利要求1所要求保护的方法,其中在多于一个反应区内实施所述氧化反应。
16.权利要求2所要求保护的方法,其中在多于一个反应区内实施所述氧化反应。
CNB018131026A 2000-07-19 2001-07-17 芳族羧酸的制备 Expired - Fee Related CN1213015C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21938800P 2000-07-19 2000-07-19
US60/219,388 2000-07-19
US09/905,094 US6765113B2 (en) 2000-07-19 2001-07-13 Production of aromatic carboxylic acids
US09/905,094 2001-07-13

Publications (2)

Publication Number Publication Date
CN1443152A true CN1443152A (zh) 2003-09-17
CN1213015C CN1213015C (zh) 2005-08-03

Family

ID=26913840

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018131026A Expired - Fee Related CN1213015C (zh) 2000-07-19 2001-07-17 芳族羧酸的制备

Country Status (19)

Country Link
US (2) US6765113B2 (zh)
EP (1) EP1301456B1 (zh)
JP (1) JP2004504289A (zh)
KR (1) KR20030019595A (zh)
CN (1) CN1213015C (zh)
AR (1) AR029852A1 (zh)
AT (1) ATE400543T1 (zh)
AU (1) AU2001275960A1 (zh)
BR (1) BR0112990B1 (zh)
CA (1) CA2413748C (zh)
DE (1) DE60134744D1 (zh)
DZ (1) DZ3117A1 (zh)
EG (1) EG22982A (zh)
ES (1) ES2309080T3 (zh)
IN (1) IN2002MU01837A (zh)
MX (1) MX236902B (zh)
MY (1) MY127798A (zh)
RU (1) RU2003104827A (zh)
WO (1) WO2002006201A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816685B (zh) * 2003-07-10 2010-10-27 伊士曼化工公司 在制备芳族羧酸的工艺中回收能量的方法
CN101035763B (zh) * 2004-10-01 2011-08-03 因维斯塔技术有限公司 杂芳族羧酸的制造方法
CN102203041A (zh) * 2008-10-31 2011-09-28 伊士曼化工公司 二羧酸的综合联产
CN104907008A (zh) * 2015-06-04 2015-09-16 河北科技大学 一种甲苯直接氧化制备苯甲酸和苯甲醛的反应装置和方法
CN110997610A (zh) * 2017-08-01 2020-04-10 Bp北美公司 纯化芳族羧酸制造中锅炉给水的预热方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765113B2 (en) * 2000-07-19 2004-07-20 E.I. Du Pont De Nemours And Company Production of aromatic carboxylic acids
EP1402942B8 (en) * 2001-05-15 2010-04-14 Mitsubishi Chemical Corporation Process for producing a compound
WO2004005235A1 (en) * 2002-07-09 2004-01-15 Invista Technologies S.À.R.L. Process for producing aromatic dicarboxylic acids under supercritical conditions
JP3987929B2 (ja) * 2003-04-17 2007-10-10 独立行政法人産業技術総合研究所 第三級カルボン酸の製造法
US7213540B2 (en) * 2004-02-05 2007-05-08 Eastman Chemical Company Steam recompression in carboxylic acid processes
JP2006016304A (ja) * 2004-06-30 2006-01-19 Mitsui Chemicals Inc 芳香族カルボン酸の製造方法
US7568361B2 (en) * 2004-09-02 2009-08-04 Eastman Chemical Company Optimized liquid-phase oxidation
US7586000B2 (en) * 2004-09-02 2009-09-08 Eastman Chemical Company Optimized liquid-phase oxidation
US7910769B2 (en) * 2004-09-02 2011-03-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7381836B2 (en) 2004-09-02 2008-06-03 Eastman Chemical Company Optimized liquid-phase oxidation
US7507857B2 (en) 2004-09-02 2009-03-24 Eastman Chemical Company Optimized liquid-phase oxidation
US7371894B2 (en) * 2004-09-02 2008-05-13 Eastman Chemical Company Optimized liquid-phase oxidation
US7608732B2 (en) * 2005-03-08 2009-10-27 Eastman Chemical Company Optimized liquid-phase oxidation
US7741515B2 (en) 2004-09-02 2010-06-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7692036B2 (en) * 2004-11-29 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7582793B2 (en) * 2004-09-02 2009-09-01 Eastman Chemical Company Optimized liquid-phase oxidation
US7504535B2 (en) 2004-09-02 2009-03-17 Eastman Chemical Company Optimized liquid-phase oxidation
US7572936B2 (en) 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
US7692037B2 (en) * 2004-09-02 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7572932B2 (en) * 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
US7589231B2 (en) 2004-09-02 2009-09-15 Eastman Chemical Company Optimized liquid-phase oxidation
US7683210B2 (en) * 2004-09-02 2010-03-23 Eastman Chemical Company Optimized liquid-phase oxidation
US7560566B2 (en) * 2004-10-01 2009-07-14 Invista North America S.A.R.L. Process for producing heteroaromatic carboxylic acids
US8187992B2 (en) * 2004-12-20 2012-05-29 Process Design Center B.V. Catalyst and method for preparing aromatic carboxylic acids
JP4734505B2 (ja) * 2005-01-26 2011-07-27 独立行政法人科学技術振興機構 マイクロリアクター及びそれを用いた接触反応方法
US7919652B2 (en) * 2005-05-19 2011-04-05 Eastman Chemical Company Process to produce an enriched composition through the use of a catalyst removal zone and an enrichment zone
US7834208B2 (en) * 2005-05-19 2010-11-16 Eastman Chemical Company Process to produce a post catalyst removal composition
US7880031B2 (en) * 2005-05-19 2011-02-01 Eastman Chemical Company Process to produce an enrichment feed
US20060264656A1 (en) * 2005-05-19 2006-11-23 Fujitsu Limited Enrichment process using compounds useful in a polyester process
US20060264662A1 (en) * 2005-05-19 2006-11-23 Gibson Philip E Esterification of an enriched composition
US7897809B2 (en) * 2005-05-19 2011-03-01 Eastman Chemical Company Process to produce an enrichment feed
US7741516B2 (en) * 2005-05-19 2010-06-22 Eastman Chemical Company Process to enrich a carboxylic acid composition
US20060264664A1 (en) * 2005-05-19 2006-11-23 Parker Kenny R Esterification of an exchange solvent enriched composition
US7557243B2 (en) * 2005-05-19 2009-07-07 Eastman Chemical Company Enriched terephthalic acid composition
US7884231B2 (en) * 2005-05-19 2011-02-08 Eastman Chemical Company Process to produce an enriched composition
US7884232B2 (en) * 2005-06-16 2011-02-08 Eastman Chemical Company Optimized liquid-phase oxidation
US7732363B2 (en) * 2005-12-20 2010-06-08 Chevron U.S.A. Inc. Regeneration of acidic catalysts
US7678727B2 (en) * 2005-12-20 2010-03-16 Chevron U.S.A. Inc. Regeneration of ionic catalyst by hydrogenation using a homogeneous catalyst
US7358389B2 (en) * 2006-01-04 2008-04-15 Eastman Chemical Company Oxidation system employing internal structure for enhanced hydrodynamics
US7847121B2 (en) * 2006-03-01 2010-12-07 Eastman Chemical Company Carboxylic acid production process
US7420082B2 (en) * 2006-03-01 2008-09-02 Eastman Chemical Company Polycarboxylic acid production system employing hot liquor removal downstream of oxidative digestion
US7501537B2 (en) * 2006-03-01 2009-03-10 Eastman Chemical Company Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7462736B2 (en) * 2006-03-01 2008-12-09 Eastman Chemical Company Methods and apparatus for isolating carboxylic acid
US8697906B2 (en) * 2006-03-01 2014-04-15 Grupo Petrotemex, S.A. De C.V. Methods and apparatus for producing a low-moisture carboxylic acid wet cake
US7888529B2 (en) * 2006-03-01 2011-02-15 Eastman Chemical Company Process to produce a post catalyst removal composition
US20070208194A1 (en) * 2006-03-01 2007-09-06 Woodruff Thomas E Oxidation system with sidedraw secondary reactor
US20070208199A1 (en) * 2006-03-01 2007-09-06 Kenny Randolph Parker Methods and apparatus for isolating carboxylic acid
US7863483B2 (en) * 2006-03-01 2011-01-04 Eastman Chemical Company Carboxylic acid production process
US7816556B2 (en) * 2006-03-01 2010-10-19 Eastman Chemical Company Polycarboxylic acid production system employing enhanced multistage oxidative digestion
US7772424B2 (en) * 2006-03-01 2010-08-10 Eastman Chemical Company Polycarboxylic acid production system employing enhanced evaporative concentration downstream of oxidative digestion
US8173836B2 (en) * 2006-03-01 2012-05-08 Grupo Petrotemex, S.A. De C.V. Method and apparatus for drying carboxylic acid
DE102006016302A1 (de) * 2006-04-06 2007-10-25 Süd-Chemie AG Verfahren zur Oxidation von Alkylbenzolen
US7674739B2 (en) * 2006-04-21 2010-03-09 Chevron U.S.A. Inc. Regeneration of ionic liquid catalyst using a metal in the absence of added hydrogen
JP5344510B2 (ja) * 2006-07-28 2013-11-20 国立大学法人東北大学 酸化方法
GB0621970D0 (en) * 2006-11-03 2006-12-13 Invista Technologies S O R L Oxidation reactions-1
GB0621968D0 (en) * 2006-11-03 2006-12-13 Invista Technologies S O R L Oxidation reactions-II
US7465824B2 (en) * 2007-02-08 2008-12-16 Bp Corporation North America Inc. Process for the production of high purity aromatic carboxylic acids using a benzoic acid and water solvent for oxidation and purification
WO2009093862A2 (ko) * 2008-01-25 2009-07-30 Samsung Petrochemical Co., Ltd. 다단계의 산화방식을 적용한 친환경적인 테레프탈산 제조방법
GB0807904D0 (en) * 2008-04-30 2008-06-04 Invista Technologies Srl Oxidation reactions
GB0808200D0 (en) * 2008-05-06 2008-06-11 Invista Technologies Srl Power recovery
US20130255259A1 (en) * 2008-10-24 2013-10-03 Invista North America S.A R.L. Power recovery for use in start-up or re-start of a pure terephthalic acid production process
EP3214062B1 (en) * 2014-10-31 2020-01-08 LG Chem, Ltd. Distillation method for the separation of n-butanal and iso-butanal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245528A (en) * 1938-10-18 1941-06-10 Du Pont Catalytic oxidation of alkyl substituted aromatic compounds
US4550198A (en) * 1982-11-04 1985-10-29 Georgia Tech Research Institute Purification of terephthalic acid by supercritical fluid extraction
US5171880A (en) * 1987-09-01 1992-12-15 Allied-Signal Inc. Oxidation of organic compounds having benzylic carbon atoms in water
GB9102393D0 (en) 1991-02-05 1991-03-20 Ici Plc Production of terephthalic acid
GB9104776D0 (en) 1991-03-07 1991-04-17 Ici Plc Process for the production of terephthalic acid
US5250193A (en) * 1992-07-28 1993-10-05 Air Products And Chemicals, Inc. Wet oxidation of aqueous streams
US5674405A (en) * 1995-07-28 1997-10-07 Modar, Inc. Method for hydrothermal oxidation
CN1095822C (zh) 1997-02-27 2002-12-11 纳幕尔杜邦公司 对苯二酸的生产
JP2001079571A (ja) * 1999-09-14 2001-03-27 Toshiba Corp 超臨界水酸化反応方法、超臨界水反応プラントおよびユーティリティプラント
US6765113B2 (en) * 2000-07-19 2004-07-20 E.I. Du Pont De Nemours And Company Production of aromatic carboxylic acids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816685B (zh) * 2003-07-10 2010-10-27 伊士曼化工公司 在制备芳族羧酸的工艺中回收能量的方法
CN101035763B (zh) * 2004-10-01 2011-08-03 因维斯塔技术有限公司 杂芳族羧酸的制造方法
CN102203041A (zh) * 2008-10-31 2011-09-28 伊士曼化工公司 二羧酸的综合联产
CN104907008A (zh) * 2015-06-04 2015-09-16 河北科技大学 一种甲苯直接氧化制备苯甲酸和苯甲醛的反应装置和方法
CN110997610A (zh) * 2017-08-01 2020-04-10 Bp北美公司 纯化芳族羧酸制造中锅炉给水的预热方法

Also Published As

Publication number Publication date
AU2001275960A1 (en) 2002-01-30
CA2413748A1 (en) 2002-01-24
EG22982A (en) 2003-12-31
WO2002006201A1 (en) 2002-01-24
MY127798A (en) 2006-12-29
DZ3117A1 (fr) 2004-09-19
DE60134744D1 (de) 2008-08-21
BR0112990B1 (pt) 2012-12-11
US20020028968A1 (en) 2002-03-07
RU2003104827A (ru) 2004-07-10
US20040199006A1 (en) 2004-10-07
MXPA03000502A (es) 2003-10-15
CA2413748C (en) 2010-12-14
ES2309080T3 (es) 2008-12-16
IN2002MU01837A (zh) 2005-02-04
BR0112990A (pt) 2003-06-24
MX236902B (es) 2006-05-15
KR20030019595A (ko) 2003-03-06
US6765113B2 (en) 2004-07-20
ATE400543T1 (de) 2008-07-15
EP1301456B1 (en) 2008-07-09
EP1301456A1 (en) 2003-04-16
US7238833B2 (en) 2007-07-03
JP2004504289A (ja) 2004-02-12
CN1213015C (zh) 2005-08-03
AR029852A1 (es) 2003-07-16

Similar Documents

Publication Publication Date Title
CN1213015C (zh) 芳族羧酸的制备
CN1095822C (zh) 对苯二酸的生产
JP5889389B2 (ja) 排水処理用触媒を用いた排水の処理方法
CN1253424C (zh) 利用改进的脱水技术制备芳香羧酸的方法
CN1822900A (zh) 用于生产芳族羧酸的设备和方法
SA03240429B1 (ar) عملية لإنتاج أحماض كربوكسيلية أروماتية aromatic carboxylic acids
CN1085891A (zh) 纯对苯二酸的制备方法
RU2695221C2 (ru) Находящиеся под давлением сырьевые смеси, содержащие неочищенные ароматические карбоновые кислоты
RU2678993C2 (ru) Рецикл конденсата высокого давления при производстве очищенных ароматических карбоновых кислот
CN1255371C (zh) 起动反应器的方法和反应器系统
CN1230409C (zh) 改进的羧酸生产工艺
CN100355716C (zh) 在超临界条件下制备芳香族二羧酸的方法
CN1156430C (zh) 均三甲苯均相氧化生产3.5—二甲基苯甲酸的方法
CN1090170C (zh) 生产芳族羧酸的方法
CN1217906C (zh) 提高氧化反应器生产能力的方法
CN101035763A (zh) 杂芳族羧酸的制造方法
JPH06277679A (ja) 湿式酸化処理装置の洗浄方法
CN1275928C (zh) 纯多级冷凝物喷射
TS et al. PONTDENEMOURS AND COMPANY [US/US]; 1007
ZA200210037B (en) Production of aromatic carboxylic acids.
CN1177590A (zh) 芳香族羧酸的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: INVISTA TECH SARL

Free format text: FORMER OWNER: E. I. DU PONT DE NEMOURS AND CO.

Effective date: 20051223

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20051223

Address after: Zurich Switzerland

Patentee after: INVISTA TECHNOLOGIES S.A.R.L.

Address before: Wilmington, Delaware, USA

Patentee before: E. I. du Pont de Nemours and Co.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050803

Termination date: 20160717

CF01 Termination of patent right due to non-payment of annual fee